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Abstract

In recent years there has been widespread growth in the number of proposed Space Based
Augmentation Systems (SBAS).  Such systems are being developed by both civil authorities and
commercial interests.  The most stringent application of such systems is precision approach for
aviation, where the system provides vertical and horizontal guidance.  Specifically, precision
approach has very strict requirements for accuracy, integrity, continuity and availability, and these
become more stringent as the decision height decreases, for example, from 350 feet to 200 feet.  To
date, it appears that SBAS will be able to meet the accuracy requirements all the way down to a 200
foot decision height.  However, the requirements on integrity and availability will require special
attention.  In order to guarantee integrity, confidence bounds must be sufficiently large so as to
always cover the error of the broadcast correction.  However, to maintain availability, the confidence
bounds cannot be unduly conservative.  As such, careful choice of the integrity equation is
paramount.

This paper derives an integrity equation for the position solution starting from the expected
distribution of errors on the corrected pseudorange measurements.  We show that the details of the
integrity equation depend on these expected error distributions.  As a further complication, the
integrity requirement applies individually to each aircraft conducting precision approach and not to an
ensemble average over the airspace as a whole.  Thus, there is some question as to how to calculate
and apply confidence bounds.  An additional constraint is the bandwidth limitation on the corrections.
There are a limited number of bits with which to send corrections and confidences to the user.  An
integrity equation which significantly increases the amount of information broadcast to the user is not
practical.  The proper integrity equation must take all of these constraints into consideration.

We propose an equation which satisfies the integrity requirement while maximizing
availability.  Additionally this equation is fully compatible with the WAAS MOPS and requires no
additional bits beyond the current specification.  The bits used for integrity also serve to weight the
measurements for the position solution.  The proposed integrity equation has been verified through
Monte Carlo simulation.  We present both the derivation of this equation and the simulation results.

Introduction

The most important and most challenging problem when using GPS for aviation positioning is
guaranteeing the integrity of the final solution.  The goal is to bound the error in the position estimate.
A navigation solution is termed Hazardously Misleading Information (HMI) if the error is greater than
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a specified bound called the Vertical Alarm Limit (VAL) and this situation is not flagged to the pilot.
For precision approach to within 350 to 200 feet above the ground the Probability of HMI (PHMI)
must be less than 10-7 per approach for each aircraft conducting this phase of flight [1].  What makes
this problem particularly challenging is that the availability of precision approach must be kept very
high (> 99.9%).  Thus, our approach cannot be overly conservative at every step, or we will have a
system which is rarely, if ever, available.  On the other hand, the bounds cannot be under
conservative, as precision approach is a safety-of-life operation and the PHMI constraint must be met at
any cost.  Therefore, we must describe and trace the errors in the system as accurately as possible, so
that we end up with a probability density function that bounds the actual errors yet comes as close to
the true distribution as is practical.

The current proposal for operating procedures [2] specifies that the master station
communicates both wide area differential GPS corrections and confidences to the user.  This
information is combined into corrections and confidence bounds for the individual pseudorange
measurements.  However, all of the navigation requirements are in the user’s position domain.  In
order to translate the pseudorange errors into position errors we need to know two things: the
Probability Density Functions (PDFs) for the measurement errors, and how those PDFs combine to
form the PDF of positioning error.  Of course we don’t really know the PDFs for the pseudorange
errors, but we can attempt to bound them.  It is extremely important that the master station be able to
bound the true distribution of errors.  The more information we have about the measurements and
how they are processed, the more accurately we can predict the distribution of the errors.  Even with
this information, assumptions about the tail behavior of the errors will be necessary due to the finite
number of observations available.

It is important to note that this paper discusses nominal operation only.  It is possible, through
algorithm design flaw, interference, receiver failure, etc., for the measurement error to exceed its
specified bound.  However, this situation is not a nominal, “fault-free”, mode of operation.  If some
error or fault has occurred this situation must be identified through a fault detection method.  Typically
these methods exploit redundancy to prevent the fault from causing an integrity breach.  Such
techniques might employ redundant master stations to verify the corrections before they are broadcast
[3], redundant receivers to isolate receiver faults [4], or redundant measurements to isolate individual
measurement errors [5] [6].  Again, we are concerned with only the nominal operation.  Assuming we
have incomplete information about the distribution of the measurement errors, how do we best
translate that information into confidence bounds on the user’s position?

GPS Measurement Equation

If we wish to translate the bounding PDFs of the measurement errors into the bounding PDF
for the positioning error we must determine how the measurements and the user position are
connected.  The pseudorange measurements can be related to the true four dimensional position vector
(north, east, up and clock), x, through the linearized equation [7]

y S x= ⋅ ++ G η (1)

where y is an N dimensional vector containing the raw or corrected pseudorange measurements, G is
the observation matrix, S is an N dimensional vector containing information about the position and
clock state of each satellites, and ηηηη  is an N dimensional vector containing the errors on the
measurements.  The observation matrix consists of N rows of line of sight vectors from x to each
satellite, augmented by a -1 for the clock.  Thus the ith row corresponds to the ith satellite in view and
can be written in terms of the elevation angle Eli and the azimuth angle Azi
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Gi = − −[ ]cos cos cos sin sinEl Az El Az Eli i i i i 1 (2)

The elements in the vector S are given by

Si i= − ⋅G Xi (3)

where Xi is the four dimensional position vector for the ith satellite in the same coordinate frame as x.

Because G depends on x, this problem is non-linear and can be complicated to solve.
However, let us assume that the linearization is accurate and we have an estimate for x.  We wish to
express the error in this estimate in terms of the observation errors.  With estimates for the user’s and
satellites’ position and clock vectors in hand, we can generate estimates for G, y and S.  Then by
subtracting the estimate for y from the actual measurements and by assuming that x̂  is sufficiently
accurate such that Ĝ G= , we obtain

∆ ∆ εy x= ⋅ +G (4)

where ∆ y y y≡ − ˆ , ∆x x x≡ − ˆ , and εεεε is the observation error including measurement, satellite
position, and clock errors:

ε η≡ − +S Ŝ (5)

Equation (4) defines the linear transformation of PDFs for ∆x  into PDFs for ∆ y.  We are interested
in the inverse of this problem.  In general the number of measurements, N, exceeds the number of
unknowns, 4.  Thus, the solution is overdetermined and the optimal inversion depends on the PDFs
of εεεε.

Probability Density Functions

If we were to assume that the PDFs of εεεε  could take arbitrary form, the integrity problem
would be insoluble.  Fortunately, we know from past experience that the GPS measurement errors are
generally well behaved.  That is, they have a greater likelihood of being small than they do of being
large.  The errors can be traced from the measurements made at the reference stations, through the
various algorithms, all the way to the corrected pseudorange observation.  Along the way many
different error sources are combined and averaged, biases are calibrated or estimated and removed,
and outliers are detected and removed.  The central limit theorem [8] predicts that each time multiple
error sources are combined to form a whole, the PDF of the resulting error will look more and more
gaussian.  Thus, it is not unreasonable to assume that the PDFs of εεεε  should be not too far from
gaussian.  In fact, because the master station also employs fault detection and exclusion algorithms, it
is quite likely that the tails of the actual distribution will be clipped.  That is, a gaussian or near
gaussian distribution will probably be overly conservative in describing the true PDFs.  However,
when calculating the integrity, we cannot safely take advantage of this likelihood.  Instead, we must
consider distributions other than gaussian so that we may verify that the integrity equation does not
rely too heavily on this assumption.  We desire an integrity equation which is robust against a wide
class of PDFs.

The approach outlined in the above paragraph relies on covariance propagation.  It makes use
of the central limit theorem to predict a gaussian final result.  Another possible means for containing
errors is a threshold method.  This type of method exploits redundant measurements which are
presumed to be independent of each other.  If the measurements agree with one another to within a
specified threshold, the data is treated as if it is accurate to a level on the same order as the threshold.
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If the measurements do not agree the data is flagged as less accurate or invalid.  Provided the
measurements are independent and the occurrence of bad data is sufficiently infrequent, this method
should contain the errors within an upper and lower bound.

Another error source worth investigating is one introduced by the constraint of our correction
data link.  The master station is not able to communicate all of its knowledge to the user.  For
example, if we had measurements which showed unquestionable variations in the ionosphere at a
much finer spatial distance than 5°, we  could not broadcast all of that information to the users.  The
grid point corrections would strive to minimize the average error over the area and the confidence
value would have to reflect the known errors that the users might experience along with the model
uncertainty.  Part of the integrity question is how to combine these error sources?

Let us start to look at some possible PDFs for the observation errors.  All of the PDFs we
consider will have zero mean.  This is appropriate because, while individual measurements and
corrections will have biases, if we had knowledge as to the sign of that bias we could estimate it and
remove it.  Thus, the remaining biases must be equally likely to be positive or negative, otherwise we
have incorrectly designed our master station and user algorithms.  The covariance propagation method
favors a zero mean gaussian distribution given by

n x e
x

( ) ≡
−1

2

2

22

σ π
σ (6)

where σ2 is the variance of the gaussian distribution.  The threshold approach favors either a clipped
gaussian or a uniformly distributed variable whose PDF is given by

u x
a

x a

otherwise

( ) ≡
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2
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(7)

where a is the resulting bound on the error.  A more conservative view of the threshold approach is
that since the error can take any value up to a, we must assume that the user has the worst case error.
This view is particularly applicable for the errors induced by the bandwidth constraint.  Here we have
knowledge that certain users will in fact have errors as great as the bound.  The uniform distribution
more accurately describes the PDF for users scattered within the service area, but for integrity
purposes we must use the more conservative distribution given by

d x x a x a( ) ( ) ( )≡ + + −{ }1
2

δ δ (8)

where δ(x) is the dirac delta function.  This density function places all of the energy right at the
thresholds.

There are many other approaches that could be taken in describing the PDFs of the
measurement errors.  However, we feel that these approaches can be combined to create a reasonable
bounding PDF for any fault free measurement errors.  For integrity purposes, we consider each
element of εεεε to be composed of the sum of a two random variables, one with the conservative
distribution (8) and one of normal distribution.  This new random variable has the following PDF:
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Dist \ Pr 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9

n(x) 2.576 3.291 3.891 4.417 4.892 5.327 5.731 6.109
f1(x) 3.327 4.090 4.719 5.265 5.753 6.199 6.612 6.998
f2(x) 2.938 3.718 4.363 4.924 5.425 5.882 6.305 6.699

Table 1.  Confidence bounds for varying Probabilities for the four Probability
Density Functions.  The bounds are on x/σ and we have set a = σ.

f x e e
x a x a

1
2 21

2 2

2

2

2

2

( )
( ) ( )

≡ +












− + − −

σ π
σ σ (9)

The expected distribution for the ensemble airspace would be the sum of the gaussian with the
uniform in place of the conservative distribution.  Its PDF is given by

f x
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(10)

Having the full PDF for the errors allows us to specify containment bounds for arbitrary
probabilities.  The bounds are found by integrating the PDFs from -b to b.  The value of b which
integrates to 1 - Probability is the corresponding bound.  Table 1 lists some confidence bounds of x/σ
for various probabilities.  For the distributions given by f1 and f2, we have set a = σ.  Of course, we
have less confidence in our knowledge of the true PDF for lower probabilities.  However, we can
remain hopeful that the fault detection and isolation algorithms do remove true outliers.  This would
result in a true PDF which is bounded by (8) or (9).  Notice that f1(x) is the most conservative
distribution for large x.  Despite this fact, the zero mean constraint creates smaller confidence bounds
than would be expected from a biased gaussian.  The latter case results in bounds given by b = a +
κ(Pr) σ, where κ(Pr) corresponds to the values listed in Table 1 for the gaussian distribution.

Position Solution

The next step towards finding the confidence bounds in the position domain is to determine
the best method to estimate the position.  If the errors were distributed according to a gaussian, the
maximum likelihood estimator would be weighted least squares.  Given (9) and (10) we could devise
a maximum likelihood estimator specific to each distribution.  However, provided a is not much
greater than σ, neither of these distributions is too far from gaussian.  An estimator optimized to one
of these bounding functions would not yield a large improvement over weighted least squares, even if
the errors truly had that distribution.  An advantage of the weighted least squares method is that it is
easily solved.  Other estimators require non-linear techniques which are not necessarily guaranteed to
converge.  Weighted least squares is simple, fast and sufficiently accurate.  The weighted least
squares solution requires only the variances for measurement errors.  The variances are defined as:

σ ε ε

σ ε ε ε ε

ε

ε

i

i j

i i

i i j j

2 2

2
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≡ − < > ⋅ − < >

( )

( ) ( )
,

(11)

where the < > brackets about an object denote its expected value.  All of the PDFs we have considered
are zero mean.  Again this is a necessary result of well designed correction algorithms and receivers.
If we had knowledge that the measurement errors had an expected value other than zero, we could
remove this expected bias from the measurements and produce a better position solution.  The
variances for our conservative and expected distribution functions are given by:
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The weighted least squares estimator minimizes the cost function given by

∆ ∆ˆ ˆy yT ⋅ ⋅W (13)

where the weighting matrix, W, is the inverse of the measurement covariance matrix
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If we had no knowledge about the correlation between measurement errors, then the off-
diagonal elements of the covariance matrix should be set to zero in order to form the position solution.
However, knowledge of these cross-correlation terms, not merely bounds, could be included to
improve the position solution.  It is unlikely that this information would be known to the aircraft’s
receiver.  Therefore, the cross-correlation terms will be set to zero, simplifying the procedure for
finding the position estimate.  If there were no reason to assume that any one measurement were better
than any other, the problem could be further simplified by setting the covariance matrix to a constant
times the identity matrix.  This situation leads to the traditional non-weighted position solution [7].

Given an initial estimate for position and an estimate of the weighting matrix, we can perform
the weighted least squares inverse of (4) to improve our position estimate.  The solution is given by

∆ ∆ ∆ˆ ˆ ˆx y y= ⋅ ⋅( ) ⋅ ⋅ ⋅ ≡ ⋅G W G G W KT T-1
(15)

where the definition has been made

K ≡ GT⋅ W ⋅ G( )-1
⋅ GT⋅ W (16)

As we mentioned before, the position solution may need to be iterated, updating x̂ , Ĝ , Ŝ, and ŷ  at
each step.  We obtain our best estimate for position, x̂ , when we have driven ∆ x̂  to zero and the cost
function (13) is at a minimum.

Notice that the definition for K has the weighting in both its denominator and its numerator.
If all variance estimates were scaled up or down, it would have no impact on the position solution.
The best estimate of x depends only on the relative confidence between the measurements and not on
their absolute values.  The same is not true for the confidence bounds on the position estimate.  In the
next section we will see that the bounds are very much dependent on the overall scaling of the
measurement variances.

Confidence Bounds

Finding the confidence bound is not as simple as finding the position estimate.  Again there
are at least two approaches one can take: error thresholding and covariance propagation.  The
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threshold approach assumes that the user has N measurements each with some error, εi, bounded by
bi.  These measurement errors are related to the position errors by the K matrix.  Thus, the Vertical
Protection Limit (VPL) if we had a single error would be given by K bi i3, ⋅ .  However, each individual
measurement has an associated error and confidence bound.  The final vertical position bound
depends on the relationship of these errors and their PDFs.  The most conservative bound, which
would work for arbitrary PDF, is given by:

VPLabsolute ≡ ⋅
=
∑ K bi i
i

N

3
1

, (17)

This bound is overly conservative in most situations.  This protects against the worst case errors
combining in the worst possible way.  While this method has high integrity, the availability would
almost certainly be very low.  Instead we would like to find a less conservative method that provides
full integrity while yielding better availability.

The covariance propagation method’s estimate of the final PDF of position error would be
given by the convolution of each element K i i3, ⋅ ε .  The resulting distribution approaches a gaussian as
N becomes large.  The mean and variance of the positioning distribution are given respectively by the
sums of the means and variances of the original variables, K i i3, ⋅ ε .  Thus, the second moment of
vertical estimate can be written:

σ σεˆ ,x3 3

2

1

= ⋅( )
=
∑ K i
i

N

i (18)

We can define another Vertical Protection Limit using (18).  The assumption that the position error is
bounded by a gaussian with variance (18), and confidence bounds from Table 1 results in the less
conservative VPL:

VPLσ κ σ≡ ⋅(Pr) x̂3
(19)

If each individual error εi had a gaussian distribution, the κ may be pulled inside the radical
and applied to each element.  Here, the final bound is expressed as the square root of the sum of the
squares of the measurement confidence bounds

VPLsum of squares ≡ ⋅( )
=
∑ K bi i
i

N

3

2

1
, (Pr) (20)

where bi(Pr) is the confidence bound on εi for a given probability Pr.  However, one must be
extremely cautious when using this as a protection limit.  It is only valid if each individual
measurement error distribution is gaussian.  Otherwise (20) will likely underestimate the bound on
position creating an integrity risk.  As we will later see, even for leptokurtic distributions such as (9)
and (10) the predicted limit in (20) does not bound the actual error.

There is a more efficient method to calculate the second moment of the expected positioning
accuracy than (18).  The covariance matrix for the position estimate is given by:

< ⋅ > = < ⋅( ) ⋅ ⋅( ) > = ⋅ < ⋅ > ⋅∆ ∆ ∆ ∆ ∆ ∆ˆ ˆ ˆ ˆ ˆ ˆx x y y y yT T T TK K K K (21)

Then, because our best estimate of < ⋅ >∆ ∆ˆ ˆy yT  is the same as our best estimate for < ε ε⋅ >T , we
can use (14) to simplify this to:
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< ⋅ > = ⋅ ⋅( )∆ ∆ˆ ˆx xT T -1
G W G (22)

Thus, the full position estimate covariance matrix is available when the position solution is calculated.
The variance of the vertical position estimate is given by the third diagonal element of the position
estimate covariance matrix.  We need not to apply the K matrix to the expected measurement
variances.  Equation (18) is replaced with the more efficient equation

σV ≡ ⋅ ⋅( )[ ]G W GT -1

3 3
(23)

where σV  replaces the notation σ x̂3
, and with this minor change in notation, (19) becomes

VPLσ κ σ
V V≡ ⋅(Pr) (24)

For integrity purposes, W could either be the same diagonal weighting matrix used to form the
position estimate, or we can include bounds on cross-correlation terms.  While these bounds are
unlikely to improve our position estimate, they will most likely make the expected integrity bounds
more conservative, by properly accounting for correlations between measurement errors.  These off
diagonal elements should be applied only when we actually have knowledge.  For example, the error
in the vertical tropospheric delay will be correlated for all of the users measurements, but the
tropospheric mapping function errors may not be.  Ionospheric delays will have some correlation
across the user’s measurements, but differentially corrected ionospheric delays will have much less
correlation.  Assumed cross correlations should be added with hesitancy, and only if we truly believe
they are necessary to protect integrity.

We now have two candidates, (17) and (24), for providing the vertical protection level for
SBAS.  Equation (20) will be investigated for comparison purposes only.  Since it is only applicable
for gaussian measurement errors and is not robust to different distributions.

Monte Carlo Results

The equations of the preceding sections were verified using Monte Carlo simulations.
Random geometries were generated by choosing arbitrary user locations within CONUS and using
random times to position 24 of the GPS satellites using almanac information.  The user weighting is
based on a fit to the curve in [6], the nominal value as a function of elevation is given by

σε i

i ie el el≈ −( . sin . sin )1 4175 2 91252

(25)

where the amplitude of the fit, σA = 3.45 m, has been left off as it is the relative scaling which is most
important.  Once the geometry was selected and the elevation angle determined for each satellite, the
values for σ and a were independently selected from a uniform distribution ranging from 0.5 to 1.5
multiplied by the value calculated in (25).  This process is depicted in Figure 1.  The curve in (25) and
Figure 1, shows nearly a 4 to 1 ratio between the parameters very high and very low satellites.  In
addition, the 0.5 to 1.5 spread in the selection of σ and a implies that the ratio of a/σ for any given
satellite can take on the value of 1/3 to 3.

Using a randomly selected G matrix we were able to create a random W matrix.  We then
used (17), (20) and (24) to generate predicted vertical protection limits.  These VPLs could be
compared to actual vertical errors created by simulating error terms distributed according to (9).  For a
given probability, Pr, we used fixed G and W matrices and generated 30/(1 - Pr). position solutions
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Figure 1.  Curve from which values of σ and a were
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curve corresponds to (25) and the shaded region shows
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Figure 2.  Histograms of the “true” 99.999% position
error to the one predicted by the various vertical
protection levels (17), (20), and (24).

to determine the true bound.  For example, for a
99.9% probability we generated 30,000 position solutions with errors distributed according to (9) and
calculated the “true” 99.9% position bound.  The “true” bound was then compared to the candidate
VPLs.  The uncertainty in the “true” bound was found by using the same number of cases to estimate
the bound for a gaussian.  This value was then compared to the calculated values in Table 1.  It was
found that, for a gaussian, this numerical method of estimating the “true” bound was accurate to better
than 3% more than 95% of the time.

This process was applied to 10,000 geometries for each probability level.  Due to processing
constraints, the probabilities we evaluated were 99.9%, 99.99% and 99.999% rather than at the full
PHMI.  Figure 2 shows the histograms of the ratios of the “true” error to the three different vertical
protection levels.  Ideally the histogram would be a narrow spike right at or below unity.  This would
indicate that the bound exactly matched the actual error and correctly predicted its magnitude.  As is
evident in the figure, VPLabsolute (17), provides full integrity, but sacrifices quite a bit of availability
by predicting an error roughly twice as large as the actual.  VPLsum of squares (20) does not provide
integrity and cannot be safely used.  VPLσ V

 (24) has nearly the ideal distribution.  It is pushed up
against 1, maximizing availability, while maintaining the tightest distribution among the candidates.
In addition, the long tail of the distribution is toward the left, meaning that when it is most in error, it
predicts high.  The other two protection levels have their tails running toward the right.  Thus, even if
we were to rescale them (divide VPLabsolute by 1.5 to increase availability or multiply VPLsum of squares
by 1.25 to increase integrity) the distributions still have a worse shape.  Neither one could be made to
optimize both integrity and availability as effectively as VPLσ V

.

In order to form the Pr% bound for (17) and (20) we used the approximation
b a(Pr) (Pr)= +κ σ .  This value is a little conservative as can be seen in Table 1.  Depending on the
ratio of a/σ and the value of Pr, the bound could be nearly 10% conservative.  Unfortunately,
calculating the true bound, b, requires inverting the integral of (9).  While this can be done
numerically, it is time consuming.  To see the effect this overestimation had on VPLabsolute and
VPLsum of squares, we ran one simulation calculating the exact 99.9% bound.  While this resulted in a
slightly better magnitude for VPLabsolute, it shifted VPLsum of squares more than 5% to the right.  Thus
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using the exact bound in (20) caused it to become even worse at providing integrity.  In neither case
did it improve the shape of the histograms.

Conclusions and Recommendations

Both the analysis and the Monte Carlo results strongly support VPLσ V
 as the clear choice for

the SBAS integrity equation.  For the observation error PDFs investigated, it maximizes availability
without sacrificing integrity.  It is robust against non-gaussian distributions.  In addition (24) makes
better use of the correction bandwidth.  Both (17) and (20) require the variance, σ σi a2 2 2= + , and
the bound, b ai (Pr) (Pr)= +κ σ , for each satellite to be sent.  However, (24) only requires the
variance.  Thus we need not separate the bias and noise terms and send them separately.  This
integrity equation conforms with the current MOPS specifications.  The UDRE and GIVE values
would merely have to be altered to transmit the bounding variance values instead of the currently
specified 99.9% bound.  The number of bits required remains unchanged.

The master station would combine its estimate of the noise terms and estimates of bias terms
as though they were distributed according to (9).  The bias terms would include the maximum
deviations of errors which are observed by the master station but cannot be transmitted due to
bandwidth constraints.  It would then generate the final bounding variance estimates as in the upper
part of (12) and transmit them to the user via the UDREs and GIVEs.  The users would take these
values and combine them with their local receiver variances to determine the weighting matrix W
according to

σ σ σ σ σ σ
i UDRE i i UIVE i SNR i

m

i

trv

i

El
El El

2 2 2 2 2 45
2

2

2

2= + + + +F ( )
tan sin

(26)

where F ( )Eli  is the ionospheric obliquity factor, σ SNR i
2  contains the user receiver variance, σ m45

2  is the
multipath variance at 45°, and σ trv

2  is the variance of the vertical tropospheric delay estimate.  This
final variance is used to weight the position solution in (15) and to verify the integrity of the user
geometry and weights according to (24).

Our simulations only covered the tails out to 99.999% and assumed that perfect knowledge of
the values for a and σ could be transmitted to the user.  In reality, predicting tail behavior requires
extreme care.  Also, the master station and user algorithms will have inexact knowledge of the actual
variances of the observation errors.  Thus, the values transmitted to the user and applied in the
algorithms must be the bounding estimate for the variances.  We must be extremely confident that the
broadcast values are no smaller than the true values.  Moreover, the variance must cover the position
solution error to the PrHMI  level.  One must be certain that the tails of (9) cover the actual error to that
level of probability.  However, we also do not wish to grossly overestimate these values, as we wish
to exploit their relative differences to weight the position solution (15).

We assumed a specific PDF for the observation errors in this analysis.  This PDF, (9), can be
made much more pessimistic than the likely distribution of actual measurement errors.  Yet (24) still
provided full integrity and good availability against errors with this distribution.  Further research can
be done to verify that VPLσ V

 performs as well for other PDFs, but we already know that it performs
exceeding well against optimistic distributions (6) as well as worst case ones.
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