
 

 

 

 International Global Navigation Satellite Systems Society 
IGNSS Symposium 2007 

 
The University of New South Wales, Sydney, Australia 

4 – 6 December, 2007 
 

 
 
L5 Satellite Based Augmentation Systems Protection 

Level Equations 
 
 

Todd Walter 
Stanford University / USA 

1-650-723-7239 / 1-650-725-5517 / twalter@stanford.edu 
Juan Blanch 

Stanford University / USA 
1-650-725-4943 / 1-650-725-5517 / blanch@stanford.edu 

Per Enge 
Stanford University / USA 

1-650-723-2853 / 1-650-725-5517 / per.enge@stanford.edu 
 
 

ABSTRACT 
 

The current L1 Space Based Augmentation System (SBAS) protection level 
equations were agreed upon nearly a decade ago.  These equations are 
provided for L1-only users and are based upon covariance propagation of 
zero-mean gaussian errors.  While this description is reasonably accurate for 
some nominal error sources, it is not always a good model for actual error 
characteristics.  When departures from the zero-mean gaussian model are 
significant, the broadcast confidence terms must be inflated in order to 
provide protection for all user geometries.  This leads to a loss of availability 
even for users who do not observe the satellite with the problematic errors.  
Since these equations were first adopted, a significant amount of work has 
gone into accurate characterization of the error sources and the treatment of 
non-zero and non-gaussian errors.  New SBAS signals planned for the L5-
frequency offer an opportunity to revisit these decisions and make changes 
to improve integrity and availability.  
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1. INTRODUCTION 
 
An additional civil frequency at L5 will be incorporated into future Global Navigational 
Satellite System (GNSS) design (Van Dierendonck, 2005).  As part of this modernization, 
Space Based Augmentation Systems (SBASs) (Walter and El-Arini, 1999) will also be 
upgraded to incorporate the new civil frequency (Walter and Enge, 2004).  This offers a 
unique opportunity to design a new messaging structure that improves upon the existing L1-
only SBAS design.  Signals transmitted on L5 can contain different information and formats 
than those on L1.  It is possible to now use our experience with L1-only SBAS to suggest 
improvements for the L5 design.  This paper will focus specifically on the Protection Level 
(PL) equations. 
 
When the L1 SBAS Minimum Operational Performance Standards (MOPS) (recently updated 
in RTCA, 2006) were originally developed, it was envisioned that any knowable biases would 
be estimated and incorporated into the broadcast corrections.  The user would only be left 
with the error on the correction, which was expected to be random over time.  The only 
identified unknowable biases at that time were fault modes.  Deformed signals, such as those 
observed on space vehicle 19 in 1993 (Mitelman, 2004), are an example of an unknowable 
bias.  Separate analyses were created to account for these biases during their onset time before 
they were fully visible to the system.  Additionally, there is a severe bandwidth constraint for 
SBAS.  It only has available 250 bits per second to transmit corrections and confidences for 
all satellites in view plus the full ionospheric grid over the service area.  It also has to meet a 
six second time-to-alarm requirement.  Further, at the time the MOPS were initiated, selective 
availability was active, necessitating frequent clock updates for each satellite.  Therefore, at 
that time it was decided not to broadcast separate bias terms. 
 
Since that time, several unknowable biases have been characterized and are now included in 
the safety design of the Wide Area Augmentation System (WAAS) (Walter and Enge, 2006) 
and other SBASs.  These bias terms include nominal deformations on the signals (Phelts, 
2004) and group delay biases in the antennas (Shallberg and Grabowski, 2002).  These 
sources create small repeatable biases in the system.  For nominal deformation, the bias is 
dependent upon user hardware and cannot be removed by the ground infrastructure.  Antenna 
biases could theoretically be calibrated and removed, but the actual process is not practical for 
WAAS.  Further, there is no mechanism to eliminate small bias drifts over time.  
 
Another limitation of the L1 protection level formulation is that it is specifically formulated 
for gaussian errors.  Although many of the error sources do have errors that have nearly 
gaussian shapes, the formula does not explicitly account for even small deviations.  Several 
mathematical approaches have been formulated to address this shortcoming, but they each 
introduce other limitations.  All limit the number of biased error distributions that can be 
convolved together.  All require that additional margin be left in the broadcast sigma terms to 
account for the non-gaussian behaviour (Rife et al. 2004a), (Rife et al., 2004b), (Schempp and 
Rubin, 2002), (Shively, 2000), (Van Graas, et al., 2004). 
 
The protection level equations for L5 SBAS should be updated to explicitly account for non-
zero means and non-gaussian behaviour.  By broadcasting bias magnitude terms in addition to 
overbounding sigma terms, non-zero means can be explicitly handled. Smaller sigma values 
may then be broadcast so as not to adversely penalize all users.  Further, the bias term allows 
a technique called paired bounding (Rife et al. 2004a) to be applied to handle non-gaussian 



 

 

 

error sources. 
 
The broadcast of a bias term requires that additional information be transmitted to the user.  
However, the additional bandwidth needed may be quite small if the same UDREI index is 
used to indicate both the sigma and bias term.  Flexibility can be maintained by occasionally 
broadcasting a definition table for the bias magnitude terms.  Each individual service provider 
would optimise this table for their own error characteristics.  Including a bias magnitude term 
in the L5 protection level equations will allow for both a simpler certification process for the 
ground system and higher availability for the user. 
 
 
2. AVAILABILITY ANALYSIS 
 
2.1 Modelling of Errors 
 
We begin by examining the error distribution that we are trying to protect.  As part of the 
formal proof of safety of WAAS, extensive data was collected (Raytheon, 2007).  In 
particular, the term bounding the clock and ephemeris error, termed the User Differential 
Range Error or UDRE, was analysed.  Here we show data for when satellites are best 
observed, that is, when the UDRE is at its lowest.  This minimum UDRE value for WAAS is 
3 m which is treated as a 3.29-sigma value.  Figure 1 shows the Cumulative Density Function 
(CDF) for 30 days worth of pseudorange residual data when the UDRE was 3 m.  This data 
has been normalized by the broadcast σUDRE term having a value of 0.912 m.  The data is 
extremely well behaved and appears to be very close to Gaussian.  We have also plotted some 
potential bounding distributions.  These are normal distributions with sigma values of 0.3 and 
biases of plus and minus 0.25.  They appear to surround the actual data to the left and to the 
right, but it is not clear on this scale. 
 
Figure 2 is a so-called QQ plot where the quantiles of the actual distribution are plotted versus 
the quantiles of the normal distribution.  On this plot, it is much easier to see the departure of 
the actual data from normality.  It is also much clearer that the left and right bounds actually 
surround the real data.  This data is extremely well behaved, but still is not perfectly Gaussian, 
nor perfectly symmetric.  The original overbounding proof (DeCleene, 2000) requires 
symmetry, and does not offer a means to handle even a slight departure.  This restriction led 

 
Figure 2.  QQ plot of WAAS normalized 

UDRE data 

 
Figure 1.  CDF of WAAS normalized 

UDRE data 



 

 

 

to the creation of alternate methods for bounding real data (Rife et al. 2004a), (Rife et al., 
2004b) (Schempp and Rubin, 2002).  Using these other methods, it was determined that a 
Gaussian with a variance as small as 0.4 could by itself bound the distribution provided in 
Figure 1.  Therefore, it is very well overbounded by the broadcast value. 
 
 
2.2 Protection Through Broadcast of Biases 
 
The desired VPL when incorporating biases in addition to Gaussian error is 
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where S is the projection matrix that takes errors from the pseudorange domain to the position 
domain (see Appendix J of RTCA, 2006), µ is an upper bound on the bias and σ2 is an 
overbounding variance.  The first term accounts for the biases and the second term covers the 
Gaussian errors.  The L1-only SBAS MOPS VPL equation consists of only the second term.  
We will use a subscript a on the above bias and variance to denote the actual values we would 
send if we could use (1) as the VPL equation.  Currently, SBAS must overbound the above 
equation with the equation defined in the SBAS MOPS.  That is, it requires that 
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for all possible values of S3,i.  Here !
B

2  is the broadcast variance inflated to cover the bias 
term and overbound the random errors.  Because this relationship must hold true for any user 
geometry, the inflation must be made larger than necessary for the average user.  Hence, we 
can see that the ability to broadcast a bias term would in fact lead to a smaller VPL for the 
majority of users. 
 
First, we will investigate how to formulate !

B

2  given a µ
a
 and a !
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2 .  We will impose the 
simplifying requirement that for all lines-of-sight, the ratio of the actual values to the 
broadcast values be below some maximum value 
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From (2) we can find 
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By dividing through by the left-hand side we obtain 
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Both sides are multiplied by !
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 to yield 
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We can use the Cauchy-Schwarz inequality to place an upper bound on the right-hand side 

 !
B,i

"
N

K
V ,PA

µ
a,i
+!

a,i
 (7) 

Here we can see the inflation required by the presence of a bias.  First, σa,i must overbound 
the random error.  Thus, it is often much larger than the sample standard deviation, as it 
protects against rare errors and fault modes whose magnitude is not easily detectable.  The 
bias term is linearly added to this and scaled by the ratio of the square root of the maximum 
possible number of measurements to the MOPS constant, KV,PA.  Assuming a maximum of 12 
ranging signals, this ratio will equal 0.65.  Further, the worst ratios for the bias and the sigma 
terms must be used for all lines-of sight regardless of whether they actually contain a bias. 
 
It is evident that there can be a significant penalty in using the current SBAS MOPS VPL 
equation in the presence of unknowable biases.  If we allowed the direct broadcast of 
bounding bias magnitudes, these penalties could be avoided through the use of (1).  In the 
next section, we investigate the reduction offered by transmitting the biases directly. 
 
 
2.3 Availability Improvement 
 
The improvement offered by (1) can be characterized by dividing that equation by the WAAS 
MOPS VPL equation 
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When the same ratios are applied on each line of sight, the above expression reduces to 
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In order to estimate the performance benefit, we need to determine values for the geometry 
ratio, γ and α. 
 
As discussed above, well-observed satellites have a minimum UDRE value of 3 m under 
WAAS.  In the analysis of the Probability of Hazardously Misleading Information (PHMI) for 
the system, it was discovered that a minimum value for α was 0.4 (Raytheon, 2006).  Further, 
from nominal signal deformation analysis, biases on user equipment could be in the range of 
0.5 - 0.75 m.  Taking an upper limit, this provides an upper bound of γ = 0.75 m / 0.912 m or 
approximately 0.8225. 
 
To find values for the geometry ratio in (9) we conducted a simulation using our Matlab 
Availability Analysis Simulation Tool (MAAST) (Jan, et al., 2001).  We simulated users 
across the world on a five-degree by five-degree grid.  We calculated a position every 5 
minutes using one of two GPS constellations.  The first was the optimised 24-satellite 
constellation described in Appendix B of the WAAS MOPS.  The second constellation is the 
same except that the most critical satellite (A2) is removed.  Figure 3 shows the ratio in (9) 
for the 24-satellite constellation.  In Figure 3, we can see that the ratio has an average value of 
about 0.46 and is largely bounded between 0.3 and 0.6.  In Figure 4, we examine the ratio 
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which we know is bounded by the Cauchy-Schwarz inequality.  We see that indeed the ratio 
does reach the upper bound of 1 indicating that the upper bound in (7) is required by some 
users although Figure 3 shows that the maximum value of 0.65 from the example following 
(7) was not quite reached. 
 
When we select α and γ to evaluate we will choose them such that the RSS version of the 
VPL and the bias version provide the same protection for the worst-case hypothetical user.  In 
this case the selection of α and γ are not independent.  The relationship is governed by (7) and 
can be expressed as 

 
Figure 4. The geometrical ratio in (10) 

for the 24 satellite constellation 

 
Figure 3.  The geometrical ratio in (9) for 

the 24 satellite constellation 
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This relationship is plotted in Figure 5.  By selecting a value of γ = 0.8225 above, we require 
that α = 0.4654 to exactly match the bounding provided by σB for the assumed worst-case 
user.  The red circle in Figure 5 indicates this selection. 
 
The reduction in VPL (9) is then determined by the geometric ratio multiplying the γ term.  
We have seen that this ratio ranges from 0.3 to 0.6 and has an average value of 0.46.  If we 
look at the reduction in VPL for constant values of this geometric ratio, we can determine the 
benefit as a function of α.  Figure 6 shows these values for the higher geometric ratio value 
(red), mean value (blue) and lower value (green).  As would be expected, the benefit is a 
function of α.  When α = 1, there is no bias and therefore no benefit.  When α = 0, there is 
only bias and no variance.  For this situation, the benefit is the greatest.  The benefit varies 
linearly with α between these two extremes. 
 
For the values selected in the simulation, the ratio between the two VPLs is about 0.84 as 
shown by the blue circle in Figure 6.  This indicates more than a 15% reduction in VPL on 
average by broadcasting separate bias and sigma terms.  Even better, the reduction is largest 
for the worst geometries: those with fewer satellites.  If we look only at cases where the 
WAAS MOPS VPL is greater than 35 m, the average ratio is just above 0.8 as indicated by 
the green x.  Thus, there is nearly a 20% average reduction of the largest VPLs. 
 
Figure 7 shows histograms of the distribution of VPLs for the two VPL formulations.  The 
blue bars indicate the distribution for the WAAS MOPS VPL and the red for the VPL with 
the bias term.  It is obvious that there is a shift to lower VPLs when explicitly using the biases 
in the VPL.  For this case, all of the VPLs originally above 35 m were shifted to below this 
value, creating 100% availability of LPV-200 service (Cabler and DeCleene, 2002).  When 
the constellation is made a little weaker by removing a valuable satellite (A2), the 
performance is noticeably worse.  Figure 8 shows the histograms for this 23-satellite 
constellation.  Although there is still substantial improvement by broadcasting the biases, not 

 
Figure 5.  The relationship between α 
and γ to match the σB overbound.  The 

red circle indicates the selected value for 
simulation 

 
Figure 6. The ratio of the VPL with 

biases to the WAAS MOPS VPL as a 
function of α. 



 

 

 

all users have their VPLs improved to below 35 m.  However, the average availability is 
improved from 99.72% to 99.88% and the fraction of the Earth that achieves 99% availability 
goes from 87% to 92%.  Thus, there still is a significant improvement also under the worse 
constellation. 
 
 
3. CONCLUSIONS 
 
The upcoming civil signals on L5 offer us a unique opportunity to define new methods to 
broadcast information from the ground to the user.  One possible improvement is to broadcast 
bias parameters in addition to sigma terms to overbound the user error positions.  By making 
this information directly available to the user, we can avoid applying a worst-case inflation 
term on all users.  As was demonstrated here VPLs can be lowered by 15-20% for the current 
GPS constellation.  The reduction should be even larger when more signals are incorporated 
into the solution.  With the advent of Galileo and Compass, the number of measurements 
could increase significantly.  Under the existing protection scheme, UDREs would need to be 
increased to handle the additional sources even though each individual error distribution does 
not change.  The inflation would be needed to protect against the greater possible number of 
convolved errors. 
 
The addition of broadcast bias terms simplifies the ground integrity analysis and allows for 
better interoperability between constellations.  Currently each system must inflate the 
broadcast sigma terms in order to protect against biases and non-Gaussian behaviour.  The 
inflation factors are not transparent outside of the system.  However, every sigma is required 
to be inflated by a minimum amount.  This makes compatibility more difficult.  By 
broadcasting biases, the inflation factors are no longer necessary, thus users can combine 
corrections and confidences from two different systems.  Thus, the broadcast of bias terms 
can reduce complexity while increasing flexibility and availability. 
 
 
ACKNOWLEDGEMENTS 
 
We gratefully acknowledge the support of the FAA GPS product team for funding this work.  
We also appreciate the helpful discussions with Professor Jason Rife of Tufts University. 

 
Figure 8.  Histograms of VPL without 
biases (blue) and with biases (red) for a 

23 satellite constellation. 

 
Figure 7.  Histograms of VPL without 
biases (blue) and with biases (red) for a 

24 satellite constellation. 
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