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ABSTRACT

There has been widespread growth in the number of
differential augmentation systems for GPS under
development or in operation.  Such systems are being
developed by both civil authorities and commercial
interests.  These systems serve a variety of users and
applications including precision approach for aviation,
where the system provides vertical and horizontal
guidance.  Precision approach has very strict requirements
for accuracy, integrity, continuity, and availability, and
these become more stringent as the decision height
decreases.  To date, it appears that the Wide Area
Augmentation System (WAAS) will be able to meet the
accuracy requirements all the way down to a 200 ft
decision height.  The primary concern for such a system is
that it always maintain integrity.

The WAAS Minimum Operational Performance Standards
(MOPS) specifies how users combine error confidences
from the different sources to form a position bound.  The
service provider guarantees that the error at any user
location is smaller than the respective bound with a
sufficiently high confidence.  This paper describes the
validation of the integrity equation.  Actual data from the
National Satellite Test Bed (NSTB), a prototype for
WAAS, is compared side-by-side to simulated data.  The
difference between actual and expected performance is
investigated in detail.  It is shown that compared to the
real data, the assumptions used in the integrity equation
are conservative.  Integrity is maintained both in the
simulated data and in the live data.  The comparison of the
two data sets provides insights as to the actual probability
distribution of the errors in the live data and about
correlations between different error components.  This
knowledge helps to ensure that the full integri ty
requirements are always met.  In the future, it may also be
possible to utilize this information to increase the
availability of the system.

INTRODUCTION

Integrity of a system is often extremely difficult to prove.
One must demonstrate safe performance in the past and an
expectation of continued safe operation even in the face of
potentially unknown threats.  Past safe performance can
be demonstrated easily, but it may be difficult o r
impossible to gather enough data to meet stringent
requirements at 10-7 or 10-9 levels.  In addition, there is
the question of whether all possible fault modes were
adequately tested.  In fact it would not be possible to
prove the integrity of any system to a true skeptic.

In order to gain confidence in any system, one must be
able to predict the performance of the system under both
nominal and faulted operation.  For example, if the errors
have a gaussian distribution with certain means and
variances under “fault free” and various faulted modes of
operation, performance can be predicted if enough data is
collected to determine those values.  This system must
also be robust against general fault modes to ensure safety
in the face of unexpected errors.

The Wide Area Augmentation System (WAAS) [1]
protects the users of the service by providing timely
alarms and bounds on the error in the position solution.
These bounds, called protection levels, provide a n
indication of the quality of service.  In order for the
system to be usable, the protection levels must be below
predefined thresholds known as alert limits.  The most
challenging aspect of the system is to generate bounds
which are large enough to always protect the user but
small enough to permit the operation.  At the center of
this challenge is the integrity equation.

INTEGRITY EQUATION

The WAAS MOPS integrity equation is based on the
concept that the actual pseudorange errors can be
conservatively bounded at and beyond the 10-7 probability
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Figure 1.  The NSTB network.  Each circle represents
the location of a reference station.  The master stations
at the FAA Technical Center and Stanford University are
shown as stars. [11]

level by a zero mean gaussian [2] [3].  The variance of
this gaussian is described in the MOPS [4] and is largely
based on information broadcast to the users from the
geostationary satellite (GEO).  Another principle of the
integrity equation is that the pseudorange errors are
uncorrelated with one another.  This is a conservative
assumption for navigation as the actual correlations appear
to be negative.  That is, they combine to reduce the
overall positioning error rather than increase it.  For
example, errors common to all pseudoranges will affect
the clock, but will not influence the navigation solution.
Additionally, positive errors in the ionospheric estimation
may lead to negative errors in the satellite clock and
ephemeris terms.  When these are combined, the two tend
to cancel and reduce the overall error.

The integrity equation is based on covariance propagation
from errors in the pseudorange domain, ∆∆ ŷ , to the error
in the position domain, ∆∆x̂ .  This mapping follows from
the navigation solution [2] and can be expressed as

∆∆ ∆∆ˆ ˆx y= ⋅ ⋅ ⋅ ⋅ ⋅( )G W G G WT T-1

(1)

where G  is the observation matrix and W  is the
weighting matrix for the measurements.  The matrix

G W GT⋅ ⋅( )-1

(2)

is the full position estimate covariance matrix which is
available when the position solution is calculated.  The
variance of the vertical position estimate is given by the
third diagonal element of this covariance matrix,

σ
V

≡ ⋅ ⋅( )[ ]G W GT -1

3 3
(3)

For WAAS, W  is a diagonal matrix and the inverse of
the ith diagonal element is given by the variance for the
corresponding satellite, σ

i

2 , which is defined as [4]

σ σ σ σ σ
i i flt i UIRE i air i tropo

2 2 2 2 2= + + +
, , , ,

(4)

The four variance terms on the right represent the
confidences for the fully degraded [4] [5] [6] clock and
ephemeris corrections, σ

i flt,

2 , the fully degraded
ionospheric correction, σ

i UIRE,

2 , the contribution from the
airborne receiver, σ

i air,

2 , and the tropospheric model
correction, σ

i tropo,

2 .

The Vertical Protection Level (VPL) is given by

VPL
WAAS V

≡ ⋅κ σ( )Pr (5)

where κ ( )Pr  is a constant defined in the MOPS which
depends on the tolerable probability of having an error
greater than this value.  For a 10-7 probability,
κ ( ) .Pr = 5 33.  For example, if the UDREs, GIVEs,
airborne receiver variance, and geometry combined to
create a σ

V
 of 2 m, then VPL m

WAAS
= 10 66. .  This

would indicate that the aircraft would only have one
chance in ten million of having a navigation error exceed
10.66 meters.

NSTB DATA

The NSTB data presented here was generated using the
Stanford developed master station code [7].  It is an
engineering prototype version of the WAAS master
station code.  It uses the stations shown in Figure 1 to
generate differential corrections applicable throughout the
United States.  The differential corrections are put into the
format specified by the WAAS MOPS [4].  Thus all the
correction data is passed through the 250 bit per second
bandwidth constraint.  The system latency is also in
effect.  Although we are infrequently granted access to the
geostationary delivery channel, we always apply the same
latency as though we were.

The ability of the integrity equation to protect users has
been borne out over time using the NSTB.  Tests include
nominal fault free operation and faulted modes.  These
faulted modes include the use of maneuvering GPS
satellites which the  Master Control Segment (MCS) had
declared “unhealthy,” but were monitored and differentially
corrected anyway [8].  Also included are six second non-
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Figure 2.  Actual vertical performance at Cold Bay.
This is a combined 2-D histogram of error and VPL
showing accuracy, integrity, and availability.  The errors
caused by PRN 18 can be seen in the CAT I region.
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Figure 3.  Actual vertical performance at Cold Bay.
These three histograms show the accuracy, integrity, and
availability separately.  Cold Bay had the worst
availability of all our reference stations on these days.
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Figure 4.  Simulated vertical performance at Cold Bay.
The errors are generated independently for each time and
satellite.  For reference, the lines of constant expected
probability are shown.
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Figure 5.  Simulated vertical performance at Cold Bay.
Each point is independently generated following a
gaussian distribution.  The center histogram shows the
close agreement between the simulated values (bars) and
the theoretical distribution (solid line).

standard code outages [9] and accelerations larger than the
specification in the Standard Positioning Service (SPS)
[10].  In addition several days of solar storms have been
recorded.  Despite these events, the integrity equation was
capable of protecting all users investigated.

It is easy to look at a data set after the fact and describe its
characteristics.  It is more difficult to predict future
behavior, particularly the integrity of the system.  We
have developed tools to help us examine our data and
rapidly identify problems.  In particular we have different
ways of representing the data.  Figure 2 shows a result
from three days in June of 1998.  This figure shows a two
dimensional histogram of the vertical navigation data.
The error-VPL space is divided into 25 cm by 25 cm bins.

For every position solution the error is determined by
comparing that solution to the pre-surveyed location of
the antenna along with the VPL.  These two values are
quantized to within 25 cm values and the appropriate bin
of the histogram is incremented.  The bins which
contained one or more data points are shown at their
appropriate location in the error-VPL space.  Matlab
routines for generating these figures as well as exemplar
code for formatting the data are available at our web site
[12].

We commonly refer to these plots as VPL or “triangle”
charts.  The chart is broken into three main sections: an
unavailable region where the VPL is too large to support



the desired navigation procedure, an unsafe region where
the VPL supports the operation but the error is large
enough to create Hazardously Misleading Information
(HMI), and a usable region where both the VPL and the
actual error are below the Vertical Alert Limit (VAL) so
the system is usable and safe.  However, it should be
noted in normal operation mobile users do not have access
to the actual error.  They are entirely dependent on the
accuracy of the VPL.  The usable and unavailable regions
are further divided.  Above the diagonal line in the triangle
chart, the VPL is always larger than the actual error which
is the desired outcome.  In the lower right hand regions
the error has exceeded the VPL and provides Misleading
Information (MI).  Operationally, these regions are not
necessarily hazardous. In the unavailable region, the
procedure will not be flown since the VPL exceeds the
VAL, while in the usable region the error is small enough
to keep the aircraft within the obstacle clearance region.
Despite these operational considerations, from a systems
standpoint, the master station and/or integrity equation
have failed to protect the navigation solution if the error
becomes larger than the VPL.  Thus all points should be
above the diagonal line.  As can be seen in Figure 2, all
points are above the diagonal, so for these days, at Cold
Bay, the integrity requirement was met.

The two most stringent applications for WAAS will be
Category I precision approach (CAT I) and the still
evolving instrument approach with vertical guidance
(IPV).  These operations have VALs of 12 and 20 meters,
respectively.  Thus we have further subdivided the usable
region by these two values.  If the VPL is below 12
meters then the system is usable for CAT I.  If it is below
20 meters the system will support IPV.  If the VPL is
larger than 20 meters the system is unavailable for these
stringent applications but may still be usable for non-
precision approach, terminal, and en route operations.

This data is typical of the performance we see with our
Testbed Master Station (TMS).  It was taken at Cold Bay,
which was chosen because it had the worst availability of
all of our reference stations.  This is helpful because a
common question on the behavior of our system is the
performance when the VPL is large (low availability).  On
these days, CAT I operations could have proceeded more
than 90% of the time and IPV more than 96%.  All other
stations had higher availability, most better than 99.9%
for both CAT I and IPV.  Again, Cold Bay was chosen for
illustrative purposes.

Figure 3 is another way of representing the data.  Here
instead of a two-dimensional histogram we have three
separate one-dimensional distributions.  They show, from
top to bottom, the accuracy, integrity, and availability of
the system.  As with Figure 2 the probabilities are plotted

on a logarithmic scale.  The logarithmic scales are used to
emphasize the tails of each distribution.  We already have
great confidence in the TMS operation the vast majority
of the time.  We are now interested in exceptions.  The
middle histogram is of primary interest.  It shows the
ratio of actual error to the one sigma value in Equation 3.
For reference, a gaussian curve is also shown.  This
parabola would be applicable if all the errors were
gaussian, zero mean, and independent.  As can be seen, the
errors are more tightly distributed than the gaussian
reference.  All but seven of the 259,602 data points have
values less than 2.5.  These seven points can also be seen
in Figure 2 with a corresponding VPL of roughly 8.5
meters.

These seven points clearly belong to a different
distribution and represent the greatest concern.  These
points do not follow the same probability distribution as
the bulk of the errors.  Upon investigation it was
determined that these points were caused by excessive
phase noise on a satellite.  Our investigation is still
ongoing, but the preliminary evidence is that on June
25th, 1998 around 5:19 UTC, SVN 18 (also PRN 18)
exhibited phase noise some twenty times larger than the
nominal value.  All 23 of the NSTB receivers that were
able to track this satellite saw identical effects on their L1
and L2 carrier phase measurements.  These rapid
fluctuations caused the clock error to vary more quickly
than the fast corrections could track, leading to errors that
were several meters in magnitude.  Our prototype software
does not currently have a trap for error sources of this
type.  All that is required is a simple clock acceleration
check which both the WAAS and LAAS systems will
have.  However, we have not implemented such traps, in
part to determine and characterize the effects of such errors.
It should be noted that this error persisted for more than an
hour yet only seven points were driven off of the main
distribution and no errors were larger than their
corresponding VPLs.  More detail on this anomaly will be
presented at the end of this paper.

SIMULATED DATA

The real NSTB data described above was used to generate a
distribution of observation and weighting matrices.  By
using the same lines of sight, UDREs, GIVEs a n d
airborne variances, we could create simulated errors for
identical conditions as experienced with real data.  The true
range was defined by taking the known antenna locations
and corrected satellite locations.  To this true range we
added simulated noise.

Initially we started with independently distributed zero
mean gaussian noise.  Each measurement is independent



of all others whether for another satellite or for a different
time.  This result is not intended to reflect actual
performance but to simulate the conditions which are
assumed by the integrity equation.  As will be seen, this
situation is more conservative than the actual
performance.  These results are shown in Figures 4 and 5.

One of the most common questions regarding the triangle
charts is why the data points do not fill in the whole
upper left hand triangular region.  This pure gaussian data
set points to part of the answer.  Here, as can be seen in
Figure 5, the errors are truly gaussian in distribution and
fill in the tails as expected yet the distribution of errors
does not seem to get much larger as the VPL gets worse.
The reason behind this phenomenon is that there are fewer
points sampled at large VPL.  When the VPL is between
5 and 11 meters, there are greater than 2,000 data points
per row.  The number of data points per row rapidly drops
down below 300 for VPLs above 15 meters.  Thus the
reason the tails seem to decrease at higher VPLs is not
because the higher VPLs are overly conservative, but
rather there are fewer data points in this area.  More than
95% of the data has a VPL below 16 meters.  The
maximum likelihood value for a zero mean gaussian is
zero, 68% of the points are contained within one sigma,
95% within two sigma and 99.9% within 3.29 sigma.
For reference, these lines are shown in Figure 4.

The reference probability lines further illustrate why the
upper points tend to be nearer to zero than intuition
expects.  These lines all converge at the origin.  Since
their slopes are greater than the diagonal line, there is
more space between the 99.9% line and the 10-7 line as
the VPL becomes larger.  Thus there is a larger region
with fewer points going into it resulting in a sparsely
filled appearance.  In reality, as many points are in the
region as would be expected given the distribution.

The empty appearance in the upper right part of the safe
region is not due to overcautiousness when the VPL
becomes large.  We are not discarding availability in the
face of uncertainty.  Rather, we are undersampling the
region, and as always, the errors are more likely to be
small than they are to be large.  The comparatively
smaller number of points we have at these upper VPLs are
most likely to be distributed near zero.  Even if the VPLs
were uniformly distributed from 5 to 25 meters, the bulk
of the data points would still appear to pull away from the
diagonal line at the top as a consequence of the increasing
separation of the lines of constant probability (68%, 95%
and 99.9%) from the diagonal line.  Only if each discrete
VPL level had greater than 107 points (an impossibly
large number for real data and nearly so for simulated)
would the distribution of data appear to fill in the whole
of the upper triangular region.

Temporal Correlations

Correlations in the data will also affect the shape of the
distribution.  The real NSTB data contains correlations
across both time and satellite corrections.  To better
understand the distribution of the correction errors and any
correlations between them, we studied the pseudorange
errors from our real time master station.  One difficulty
with this method is the lack of a precise truth source.
Although we know the location of our reference antennas
very accurately, it is difficult to translate this into precise
pseudorange errors.  Instead we must contend with errors
in the “truth” reference which may be larger than the errors
in the differential corrections.  We separated the correction
errors into two effects: clock and ephemeris correction
errors and ionospheric correction errors.  The error
contribution from the user receiver is included in the
“truth” reference.

Clock and Ephemeris Correction Errors

The clock and ephemeris correction errors are covered by
the appropriately degraded UDRE terms in addition to the
user receiver variance.  In our case the user is not an
airborne receiver, but a static ground receiver at a known
location.  Even though the reference pseudorange
measurement can be smoothed using dual frequency carrier
phase measurements in post processing, there is still a
non-negligible error left.  This data for one satellite trace
is shown in the top part of Figure 6.  The data was
examined for correlations in time.  Common mode errors,
as would be expected from the reference clock were
removed.  Figure 7 shows the autocorrelation for the real
data as a solid line.  It is clear that the errors are correlated
for times less than 150 seconds.

In order to simulate this temporal correlation, we used a
first order Gauss-Markov process.  The errors were
generated using

ε γ ε

σ σ γ σε ε

no iono i k no iono i k no iono i k

no iono i k no iono i k no iono i k

w
, , , , , ,

_ , , , , _ , ,

= +

= +

−

−

1

2 2 2

1

2
(6)

where σ
no iono i k, ,

2  is given by

σ σ σ σno iono i k flt i k trop i k air i k, , , , , , , ,

2 2 2 2≡ + + (7)

and w
no iono i k, ,

 is zero mean gaussian variable with variance
given by σ

no iono i k, ,

2 .  The subscript k denotes time.  The
actual error applied to the satellite, δ

no iono i k, ,
, is scaled to

have the correct variance by
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For uncorrelated white noise, the values of γ  and α
would be 0 and 1 respectively.  To match the amplitude
and shape of the autocorrelation of the actual errors in
Figure 7, γ  and α  were set to 0.975 and 0.467,
respectively.  The resulting autocorrelation of the
simulated errors is shown as the dashed line in Figure 7.
In this section we wish to investigate only the effects of
the temporal correlations.  Therefore we used the value of
α  = 1, rather than matching the amplitude as well.  In a
later section we will further investigate the effect of
variance scaling.

Ionospheric Correction Errors

The ionospheric correction errors are covered by the
appropriately degraded GIVEs and then scaled by the
obliquity factor to a slant range.  Upon examination of
these errors they appear to have very long time constants.
One such error trace is shown in the bottom part of Figure
6.  The errors are more biases than random fluctuations.
However, the aggregate of errors, across different
satellites, different reference stations, and different times,
appear to fill in a gaussian distribution.  The dominant
error term most likely comes from our local dual
frequency reference rather than the ionospheric corrections
themselves.  For simplicity, we modeled ionospheric
errors as constant errors for the entire satellite pass.  Thus,
when a satellite first rises, it is assigned a random
variable, δ

iono i, , 0
, which is zero mean and gaussian in

distribution with variance given by σ
i UIRE, , 0

2 .  Then at each
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time thereafter the value is scaled by the new variance

δ δ
σ

σiono i k iono i

i UIRE k

i UIRE

, , , ,

, ,

, ,

=
0

2

0

2
(9)

so that the distribution of errors always matches the
gaussian expectation.  The scaling by the variance also
incorporates the expected obliquity factor term.

Temporal Correlation Results

The two simulated, time-correlated error sources are
combined to form the total satellite correction error

∆ˆ
, , , , ,

y
i k no iono i k iono i k

= +δ δ
(10)

These individual satellite errors combine as described by
Equation 1 to form the position error.

Figure 8 shows the triangle chart for the vertical
navigation data simulated with temporal correlations,
using the same distribution of VPLs as Figures 2 and 4.
Because of the time correlations, there are fewer
independent samples and this data fills out less of the
histogram than did the uncorrelated simulated data.  In
Figure 9, the histogram still follows out the theoretical
gaussian curve near to the origin.  However, as the errors
grow larger, the likelihood drops more rapidly.  This is
due to undersampling.  Since the errors are correlated in
time there are fewer independent samples and the
histogram becomes narrower than the uncorrelated model.
Note that the 95% and 99.9% values match the model to
within about 5%.  It is largely the low probability errors
which are under represented.  This distribution still does
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Figure 8.  Simulated vertical performance at Cold Bay.
The errors are generated independently for each satellite,
but include the time correlations described.  For reference,
the lines of constant expected probability are shown.
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Figure 9.  Simulated vertical performance at Cold Bay.
These errors follow the gaussian model close to the
origin, but fall off at the tails.

not match the actual data.  Time correlation alone cannot
explain the observed behavior.  We must invoke another
process to accurately simulate the true performance.

Variance Scaling

The simulated errors described above only incorporated
correlations in time.  The variance of the real data is of a
different magnitude than the predicted variances in (4).
Recall that the magnitude of the autocorrelation of the
actual clock/ephemeris noise is less than half of the
predicted magnitude. We now reduce the size of the
simulated errors to determine this effect.  Here the
simulated clock/ephemeris data was generated using the
value α  = 0.467.
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Figure 10.  Simulated vertical performance at Cold
Bay.  The errors are generated identically to the previous
case (Figure 8), except that the clock ephemeris errors
have been reduced to 46.7% of their predicted value.
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Figure 11.  Corresponding vertical performance
histograms.  These errors are closer to, but still larger
than the actual errors in Figures 2 and 3.

The actual ionospheric errors observed were about 20%
larger than the prediction from the UIRE confidence.  It is
believed that this discrepancy actually resulted from
uncertainty in the truth reference.  Therefore, the simulated
errors were not increased to match the observed errors, but
were left at the lower predicted levels.  If the larger values
were correct, we would expect to see integrity violations
as the GIVEs would not be bounding the actual error.
However, this subject does require further investigation.

Figure 10 shows the triangle chart for the vertical
navigation data simulated as described above, using the
same distribution of G  and W , and therefore VPLs, as
Figures 2, 4, and 8.  The reduced variance of the simulated
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Figure 12.  Normal satellite behavior shown up top for
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PRN 18.  Also shown are the simulated effects on the
WAAS fast correction messaging.  Not shown is the
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noise decreases the error in the navigation solution.  The
triangle chart for this data looks much more like the actual
data in Figure 2.  However, as can be seen in Figure 11,
the distribution of errors is still more than 20% larger.
The temporal correlations for these simulated data are
conservative compared to the actual data.  The
clock/ephemeris terms match closely, but we assumed
worse correlations for the ionospheric corrections.  Also,
the magnitudes of the errors either match (for clock
ephemeris) or are smaller than the real data (for
ionospheric corrections).  Despite this, the resulting
simulated position solution is still worse than the real
data!  This discrepancy arises because we have only
incorporated correlations in time.  There are obviously
correlations between the different error sources which tend
to reduce the overall position error.

SATELLITE ANOMALY

The integrity equation works because the errors are either
uncorrelated or beneficially correlated.  Thus they do not
tend to combine in a worst possible fashion.  The
anomalous points in the real data shown in Figures 2 and
3 reflect a failure mode on a single satellite.  SVN 18
exhibited large accelerations and jerk in its clock signal.
As mentioned, all 23 stations viewing the satellite
observed identical behavior in their L1 and L2 carrier
phases.

Figure 12 shows the time history of clock error as
determined by our TMS for both PRN 16 and PRN 18.
Notice that PRN 16 exhibits the expected behavior for
selective availability.  In this figure we have also placed a
simulated WAAS message.  A fast correction message is
generated every 6 seconds and is based on 18 seconds of
previous data which is then forward predicted to account
for a 4 second latency [5].  Each correction is also
discretized by 0.125 meters and then used to extrapolate
the simulated WAAS correction shown by the solid line.
As can be seen, this process provides a correction for PRN
16 accurate to better than a meter.  However, for PRN 18,
the large accelerations and sudden sign changes combined
with the message rate and latency result in a very poor
correction message.  Here the errors can be off by as much
as 10 meters.

In the region between -5 and 10 seconds, the clock
acceleration changes from greater than 200 mm/s2 to less
than -150 mm/s2 and back greater than 170 mm/s2.
Remember that the Standard Positioning Service (SPS)
specification for the magnitude of the clock acceleration is
not to exceed 19 mm/s2 [13].  Thus we have accelerations
greater than 10 times the specification and rapid changes
as well.  This is more than the WAAS messaging system

can keep up with.  If we had implemented a more
sophisticated acceleration trap, as will be in place for the
operational WAAS and LAAS systems, we could have
recognized and flagged this problem before data was
transmitted to the user.  As it was, our TMS recognized a
problem and broadcast fast clock corrections more often
than every six seconds to mitigate this problem.  Thus,
within the required six second time to alarm, when our
system recognized that the user would suffer an
unacceptably large error, it sent out an emergency
correction message (not shown in Figure 12).
Operationally there were no ill effects as the VPL always
covered the actual error.  However, we feel the system can
be made to perform better if we installed the kind of error
handling that will be present in the operational system.
In this case, the seven anomalous points will either be
recognized and removed beforehand, or the UDRE will be
sufficiently increased to account for this unusual satellite
behavior.  Again it should be noted that this anomalous
behavior persisted for hours yet only seven points departed
from the nominal distribution and no points led to
integrity violations.

CONCLUSIONS

This paper has addressed two key assumptions of the
integrity equation: the position errors can be overbounded
at the tails by a zero mean gaussian with specified
variance, σV, and the errors do not combine in a worst case
fashion.  The data in Figures 2 and 3 demonstrate that the
real errors are always bounded by the VPL.  In addition,
the data is more tightly distributed than the reference



gaussian curve.  We have seen these effects at every
reference station, over numerous data sets spanning many
years.

The weighting matrix for the integrity equation i s
diagonal, meaning that any correlations between the
satellites are ignored.  Also the variances for the individual
error components for a single satellite are combined
assuming independence (4).  We have asserted that this is
a conservative assumption because in reality they are
correlated in such a manner so as to reduce the overall
error.  This has been demonstrated via the simulated data.
Figures 10 and 11 incorporated conservative assumptions
about correlations in time and the magnitudes of the error
components yet the resulting distribution is still larger
than the actual one.  We did not simulate correlations
between the satellites.  At a minimum such correlations
do not appear to inflate the error and all of the evidence to
date suggests that they in fact reduce it.  This is the
expected outcome from analysis as well, given that
common errors affect only the clock, and an error in one
part of a satellite’s correction will tend to create an
offsetting error in another part.

The anomalous points in the real data lead to a weakness
in the Stanford generated UDREs and not in the integrity
equation itself.  Although the errors were subsequently
corrected within the six second time to alarm, a n
algorithm exists which could have prevented their
transmission altogether.  It is important to note that
despite having clock errors on PRN 18 much larger than
what is protected by the UDRE, these errors combined
with other satellites to create a small overall position
error.  Thus, even in a faulted mode, the errors combined
in a beneficial manner.

The real data shows the VPLs to be nearly twice as large
as they need to be.  Unfortunately we are already using the
lowest possible values for UDRE and have reduced the
degradation parameters as well.  However, the observed
variance of the errors appears to be significantly lower
than the MOPS allows the master station to predict.
Unfortunately the broadcast UDREs are also coarsely
discretized and for safety the master station must broadcast
the next larger value.  Thus the MOPS forces much of
this conservatism.  However, some of it is a reflection of
conservatism on the part of our master station.

Ideally, as these error sources become better understood we
will be able to reduce the UDREs and GIVEs and hence
the VPLs for the users.  This will increase availability at
stations such as Cold Bay, our worst station, and increase
the margin of availability and continuity at other stations
already having high availability.
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