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ABSTRACT 
 
The modernization of GPS and the addition of new GNSS 
constellations bring forth a multitude of new signals with 
new capabilities.  One of the intended purposes of some 
of these new signals is the provision of high integrity 
positioning sufficient for use in aviation.  However, one 
must be extremely cautious, as the integrity requirements 
for aviation, particularly precision approach, are very 
strict.  There must be less than a one in ten million chance 
of providing misleading information to the pilot.  Further, 
each individual nation is responsible for approving 
equipment and procedures in their sovereign airspace.  In 
order to make use of signals over which they have no 
control, aviation authorities must have a clear 
understanding of the commitments and capabilities of 
these new signals.  These authorities will also likely want 
to monitor the signals to ensure that they are conforming 
to their intended design. 
 
This paper proposes equations to combine information 
from the satellites together with other error bounds to 
form appropriate upper bounds on the users’ position 
estimates.  The position domain bounds, called protection 
levels, are matched to proposed data monitoring criteria 
that ensure consistency between what has been observed 
and what is assumed by the bounding equations.  The 
protection level equations, their matching monitoring 
criteria, and their mathematical link are the main topics of 
this paper. 
 
 
INTRODUCTION 
 
The Global Positioning System (GPS) is in the process of 
adding new capabilities.  This modernization effort 
includes new civil signals whose capabilities improve 
greatly over the currently available signal [1] [2] [3].  In 
addition, new constellations are being fielded that will 
offer a much larger number of satellite navigation signals.  
It is important to study these new signals and capabilities, 
and plan how to utilize them for aircraft navigation. 
 

It is important for GNSS service providers to clearly 
describe the performance of their signals.  This includes 
important parameters such as the expected accuracy, 
probabilities and behaviors of fault modes, time to alert, 
confidence bounds on the signal in space errors, and how 
to combine the confidence bounds with other error 
sources and across multiple satellites.  Some of these 
parameters are more easily specified and evaluated than 
others.  Existing augmentation systems use the concept of 
Gaussian Bounding to assure that the confidences are 
correctly combined to produce a confidence bound in the 
position domain.  Unfortunately, Gaussian behavior can 
be difficult to evaluate.  Small samples of Gaussian data 
may appear to be non-Gaussian and non-Gaussian 
behavior may not be readily apparent in other sampled 
data sets.  Instead, we propose well-defined tests of 
sampled data that evaluate specified error quantiles using 
data sets of fixed length.  These quantiles (e.g., within 2-
sigma 95% of the time) may correspond to expected 
Gaussian behavior, but by fixing the sample interval and 
number of samples we can achieve a common 
understanding of precisely how to interpret probabilities 
and error distributions.  By specifying several such 
evaluations at different quantiles and data set lengths, we 
can bound the full error distributions. 
 
We then show that these evaluations can be rigorously 
linked to confidence bounds on the signal in space errors 
through a previously developed technique called paired 
bounding [4].  Paired bounding allows us to create safe 
protection level equations that ensure that any 
combination of signal and user errors has a corresponding 
confidence bound that meets the required level of 
integrity.  What is unique in this approach is that clear 
unambiguous evaluations of signal in space errors can be 
mutually agreed upon by GNSS service providers and 
integrity service authorities.  These evaluations will aid in 
the approval for use of the high integrity signals.  Further, 
they will enhance the ability to combine integrity from 
different GNSS service providers to create a more 
powerful multi-constellation service.  This approach is 
applicable to stand-alone safety of life services or 
integrity provided through multi-constellation ARAIM. 
 



These evaluations are not intended to serve as a complete 
integrity analysis.  Instead, they are intended to 
complement design assurance.  That is, a system will have 
integrity because the GNSS service provider designed it 
into the system, not because it has performed well for a 
fixed time.  Evaluation of the system is merely used to 
confirm that the integrity design goals continue to be met.  
A system that is not designed for integrity cannot be 
assured to be safe into the future no matter how long it 
has been observed to perform safely in the past.  Certain 
rare fault modes may not be observed, but could present 
themselves when new conditions arise.  Each GNSS 
service provider must create a complete hazard evaluation 
on their system and assure that all significant hazards 
have an adequate mitigation.  This analysis combined 
with evaluation of the actual performance provides the 
full assurance that the system will meet its integrity 
specifications. 
 
 
GPS SPECIFICATIONS 
 
We will concentrate our analysis in this paper on the GPS 
satellites and use nomenclature typically associated with 
this constellation [5].  The proposals would apply equally 
well to any other constellation with only small 
adjustments to the terminology.  The Signal-in-Space 
(SIS) errors that are under the influence of the GPS 
ground control and space vehicle segments are referred to 
as Instantaneous User Ranging Errors (IUREs).  These 
include satellite clock and ephemeris errors, satellite 
antenna variations, and signal imperfections.  
Specifically, the IURE does not include ionospheric or 
tropospheric delay, multipath, or user receiver errors.  The 
IURE is an instantaneous error affecting a particular user 
at a particular time.  The satellites broadcast a parameter 
called User Ranging Accuracy (URA) that is intended to 
be a conservative representation of the expected RMS 
behavior of the IURE at the worst-case location on Earth.  
The URA is meant to describe the accuracy of the IUREs 
and indicate an upper limit on their likely magnitude. 
 
The current GPS specification only assures signals to 
have their IURE no greater than 4.42 x URA with a 
probability of 10-5/hour [5].  This is not sufficient for high 
integrity aviation operations without additional protection.  
However, as part of its modernization, GPS is 
investigating a significant system design change to 
support URAs that are assured to bound IUREs to within 
5.74 x URA with a probability of 10-8/hour [6].  Satellites 
that meet this requirement will have a new specific 
integrity flag set to one.  In this event, GPS may be able 
to support certain aviation applications without 

augmentation.  None of the current GPS satellites have 
their integrity flag set, nor will they for many years to 
come.  This paper investigates both how future assured 
URA values may be combined to form an assured 
position domain bound and how non-assured satellites 
could be used with RAIM to achieve the same goal.  
 
 
LESSONS LEARNED FROM PREVIOUS SYSTEMS 
 
One significant difficulty encountered when developing 
the safety analysis for WAAS and LAAS was the 
presence of small biases and non-Gaussian behavior 
observed in data used to validate the analyses.  The 
integrity equations for these systems are based upon zero-
mean Gaussian behavior.  The sigmas broadcast for use in 
these equations were inflated to account for worst-case 
behavior that in turn led to larger protection levels.  
However, the underlying mathematical assumptions 
required exactly Gaussian and zero-mean characteristics.  
Additional analyses were created to ensure that the 
protection levels were sufficiently large to cover observed 
imperfect behavior.  However, these new analyses 
imposed additional constraints on the system and further 
limited performance [7].  It is therefore strongly 
recommended that future systems use integrity equations 
that can directly account for biases and non-Gaussian 
behavior. 
 
Fortunately, both can be accommodated by the inclusion 
of a bias term in the protection level equation.  The 
handling of biases would then be explicit.  A technique 
called paired bounding [4] is used to bound non-Gaussian 
behavior.  It states that an arbitrary error distribution can 
be replaced by simple analytic models if the arbitrary 
distribution lies entirely in between the two models.  
Because the sign of a bias is not important to the 
protection level equation, N(-µ, σ) and N(µ, σ) are 
bounded by the same protection level parameters.  
Therefore, any distribution whose Cumulative Density 
Function (CDF) lies between the CDFs of those two 
distributions can be bounded by that biased Gaussian 
model. 
 
Another significant lesson is that estimation of the 
underlying error distribution can depend greatly on the 
sample set chosen [8].  Because many of the error sources 
may change behavior over time, the observed 
characteristics may also change with time.  When 
bounding such errors, it is necessary to bound the worst 
expected distribution.  However, if one only looks at a 
small population of data, it is unlikely that the largest 
expected error will be sampled.  If one aggregates too 



much data together, different conditions will all be mixed 
together creating an average rather than finding the worst-
case condition.  Therefore, it is best to collect as much 
data possible, but partition it into the smallest statistically 
significant subsets as possible.  Ideally, these subsets 
would each contain only like conditions, such that the 
observed errors are drawn from the same distribution.  In 
practice, this cannot be assured. 
 
For integrity to be maintained, each and every data set 
must be bounded by the assumed distribution.  This 
ensures that if there is non-stationary behavior, the worst 
observed cased is overbounded.  Each data set must have 
a sufficient number of independent data points to assure 
that the distribution is properly sampled.  Very small data 
sets could contain rare normal errors that make them 
appear to be worse than they really are.  By having a 
sufficient number of independent points, rare normal 
errors should be appropriately balanced by smaller 
nominal errors.  However, there should not be too many 
points as rare faults could be completely obscured by the 
nominal majority of the data.  Therefore, it is desirable to 
partition the data into sets that contain close to the 
minimum number of independent samples required.  How 
many samples are required depends on what quantity is 
being evaluated.  A mean value can be determined with 
relatively few samples.   However, the tail behavior is 
being investigated the number required may be in the 
millions or more. 
 
The final significant lesson discussed in this paper is that 
small errors can combine to create large position errors.  
Most integrity analyses focus on single large errors. 
However, multiple smaller errors can also create a threat 
if they occur at the same time.  This can occur in error 
distributions that have an excess of one to three sigma 
errors even if they never have larger errors.  Because 
these moderate errors are occurring too often, there is a 
greater chance that they are occurring on different 
satellites at the same time.  Thus, the likelihood of large 
position errors could be greater than implied by 
independent Gaussian distributions. 
 
Alternately, if the errors are correlated across satellites, 
they may occur individually with the expected frequency, 
but when one error is moderate to large, the other errors 
will be as well.  This, too, creates a greater likelihood of 
unacceptably large positioning errors.  Therefore, it is 
important to ensure that the likelihood of separate errors 
combining to create a larger positioning error is not 
higher than expected.  To monitor this threat, we propose 
evaluating the central portion of the error distribution 
rather than just the tails.  Further, we recommend 

evaluating a chi-square metric to directly observe the sum 
of the squared errors across multiple satellites. 
 
The recommended actions in response to these three 
lessons are explained in greater detail in the following 
sections.  We also include some preliminary results of 
evaluations performed on past GPS data. 
 
 
VPL EQUATIONS 
 
When the WAAS VPL equation was created, it was 
believed that WAAS would differentially remove all 
significant biases.  That is, if a bias was known to exist, 
WAAS would estimate it and remove it.  The resulting 
error would then be unknown and time varying.  Since 
that time, constant unobserved measurement biases have 
been identified.  Therefore the WAAS estimate may have 
a component that, while unknown, is very slowly time 
varying.  It is not correct to RSS such an error with the 
other terms when it is not random.  WAAS added specific 
analyses to ensure that these unobserved biases are 
adequately taken into account despite the lack of a bias 
term in the VPL equation. 
 
These analyses presume that the number of pseudoranges 
used in the position solution is limited below a maximum 
number and that every satellite error bound has a 
minimum amount of margin to protect the user from the 
biases.  This margin has to exist even on satellites that do 
not contain the bias [7].  These two constraints make it 
more difficult to adapt to system changes.  Adding new 
ranging sources increases the maximum number of 
potential ranging signals in view.  This can increase the 
amount of margin needed in the bounding terms.  Also, a 
slightly larger bias on a particular satellite can lead to 
requiring additional margin on all other satellites.  These 
effects are due to having to protect against biases that 
must be added together linearly when there only an RSS 
term in the VPL equation. 
 
Another early assumption was that the errors could be 
easily bounded with Gaussian variances.  It was 
recognized that the errors were not purely Gaussian and 
that conservative estimates would be required for the 
variances.  However, it was felt that the errors were close 
to Gaussian and that inflating the sigmas to handle the 
largest expected values would be sufficient.  
Unfortunately, it was discovered that nearly-Gaussian was 
a very poorly defined term.  It was necessary to determine 
what was sufficiently Gaussian and what was not.  This 
could be done subjectively, but not everyone would agree 
on the dividing line.  New methods were developed to 



rigorously define whether the actual observed 
distributions were sufficiently close.  Unfortunately, these 
methods introduced significant conservatism.  Even small 
deviations from perfect behavior may create large 
margins in the resulting bound. 
 
This imperfect matching has led to an inflation of the 
protection level values that may be as much as 20% [7].  
As we move forward it is desirable to explicitly include 
terms to account for non-zero-means and non-Gaussian 
behavior.  We recommend including a bias term.  This 
term is used to bound errors that may appear random, but 
that affect users in the same way repeatedly.  Examples of 
such biases are antenna biases [9] or nominal signal 
deformations [10] [11].  These error sources affect a 
particular geometry identically each time it is 
encountered.  Thus, a maximum bias term is included to 
bound the effect of these error sources.  If we follow the 
terminology of the SBAS MOPS [12], where KV is the 
Gaussian quantile matching the probability of misleading 
information, s3,i is the projection of the ith pseudorange 
error into the vertical dimension, and σtropo and σuser 
Gaussian bound the tropospheric and dual-frequency user 
error, respectively, then the recommended VPL is given 
by: 
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where URA is the broadcast confidence factor from the 
satellite, and the α terms are parameters that can be 
adjusted to ensure integrity. 
 
If the satellite errors were zero-mean Gaussian and 
properly overbounded by URA then the α terms could be 
α1 = 1, α2 = α3 = 0.  If there were small biases 
independent of the URA value and the URA needed to be 
inflated 25% to overbound the remaining errors then these 
terms could be α1 = 1.25, α2 = 0, α3 = bias overbound.  
These parameters offer the flexibility to adjust the VPL 
equation to match currently unknown satellite error 
characteristics.  These terms will be determined later 
when these characteristics are well known.  They could be 
hardcoded into the MOPS and the receiver, or they could 
be broadcast dynamically to the user. 
 
If the satellite signals do not have fully assured integrity, 
then the user will need to perform their own fault 
detection.  Comparison of subset solutions has been 
shown to be an effective means of detecting and isolating 

satellite faults.  If the probability of multiple faults being 
present during the required interval is sufficiently small, 
then only subsets excluding a single satellite need to be 
investigated. 
 
The proposed ARAIM VPL equations are very similar in 
form to the assured integrity equation above.  They have 
several terms starting with the all-in-view solution: 
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The subset solution terms are given by: 
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where Δj is the actual or expected difference in the 
position estimate between the subset excluding the jth 
satellite and the all-in-view solution, and the K values are 
related to the probability allocated to each fault mode.  
The final VPL is determined by taking the maximum over 
the all-in-view and the subset values, 
 
 VPL

ARAIM
= max

j=0,n
VPLj  (4) 

 
Full details of the algorithm can be found in [13] [14]. 
 
 
MONITORING INDIVIDUAL SATELLITES 
 
In order for the above VPL equations to properly bound 
the user position error, certain assumptions have to be 
valid.  The CDF of the actual satellite errors must all be 
bounded to the left by the Gaussian N(-α2 x URA - α3, α1 
x URA) and to the right by the Gaussian N(α2 x URA + 
α3, α1 x URA).  The other errors must be similarly left-
right bounded by their respective terms.  Unfortunately, 
we do not know the true CDF of the errors.  We can only 
estimate it from sampled data.  This sampling will take 
place over an extended time, so it may mix many 
conditions together, yielding not an instantaneous 
distribution, but an averaged one. 
 



Ideally, we would like the true distribution to be bounded 
at every instant.  If the conditions did not change over 
time, then the average and instantaneous distributions 
would be the same.  Unfortunately, we know that some 
conditions do vary with time, the satellites age, the clock 
and ephemeris estimation accuracy varies with 
observability, etc.  Therefore, it is best to collect data over 
many sampling periods and compare each set of results to 
the others, so that we may better understand how 
conditions may change over time.  If we know of 
changing conditions, we should attempt to partition data 
sets to group like behaviors together.  For example, data 
from a satellite in the shadow of the Earth may be 
separated from data taken in direct sunlight.  By keeping 
data sets as small as practical and comparing many of 
them, we can hope to identify unexpected changes should 
they occur. 
 
Another issue is the specification of probabilities.  The 
current specification says that the probability of the 
instantaneous error exceeding 4.42 x URA without a 
timely alert is less than 1x10-5 in any given hour.  
However, how is this to be interpreted and/or evaluated?  
Looking at past data one will see that either this condition 
was met or that it was not.  It is not possible to tell what 
the probability was during any given hour.  If the 
probability were equally likely for any given hour, then 
one could evaluate 105 hours to ensure that no more than 
one was affected.  However, this is longer than 11 years.  
If a larger error is seen during the first few years of 
operation, should the satellite continue to be evaluated for 
the full 11.4 years to make sure that no more occur and 
then decide that each hour did have a 1x10-5 chance?  If 
two separate large errors are seen early on but then 
nothing for the next 20 years, does the satellite satisfy the 
specification? 
 
It is impossible to know from the above information 
whether the satellite met the specification and was safe to 
use at all times.  The user conducting an approach during 
the time of the failure is not helped by the fact that the 
satellite performed well at all other times.  Nor does this 
large average probability necessarily reflect the 
instantaneous likelihood.  Unfortunately, it is not possible 
to evaluate such low probabilities without large amounts 
of data.  But shorter periods than 11 years are possible to 
evaluate.  It is also important to understand how such low 
probabilities are used to assure the position bound. 
 
A distribution tail probability requirement, such as not to 
exceed 4.42 x URA with probability greater than 1x10-5 
per hour, may be used in three different ways: it can 
become an effective upper limit, particularly for even 
lower probabilities; it can be used to assure multiple large 

errors are unlikely, so that combined variances of 
independent errors can be RSSd; and, for RAIM, it can be 
used to assure multiple large errors are unlikely, so that 
only one fault mode at a time need be considered.  For 
each use, it is possible to specify alternate means to 
ensure these goals.  At very low probabilities, such as 
1x10-8 per hour, such a requirement is best evaluated as a 
not to exceed number.  Thus, even though it is formally 
acceptable to be exceeded once every 11,000 years, in 
practice this should never be seen. 
 
In order to assure that errors RSS together as expected, 
one can monitor their RSS.  This is simpler and more 
direct than requiring Gaussian performance and 
independence, neither of which is likely true.  Instead, by 
examining the chi-square value, one can directly assure 
that errors are not all simultaneously becoming large.  
This is not completely ideal as the users will weight the 
error sources differently, so the chi-square value does not 
measure exactly what is being used.  Nevertheless, it is a 
reasonably close metric and still very indicative. 
 
For RAIM, an assurance that there will never be a 
situation when more than one satellite has an error greater 
than 4.42 x URA could be used to limit subset analysis to 
one faulty satellite at a time.  This is also a much easier 
requirement to verify than a 1x10-5 probability. 
 
Evaluations of probabilities have an ambiguity.  They can 
be monitored over different time-frames using different 
data sets.  Two observers looking at the same satellite 
may disagree as to whether a certain probability 
requirement is met depending on how much conforming 
data they aggregate together with an observed violation.  
A specification of probability that can be unambiguously 
tested must include the length of time for evaluation. 
 
Another important characteristic is the duration of the 
error.  A moderate error may be tolerated for a relatively 
long time because by itself it is unlikely to create a large 
positioning error.  However, large individual ranging 
errors can much more easily create hazardous positioning 
errors.  A GPS satellite can be seen by nearly half of the 
Earth and an hours long error could affect many 
thousands of aircraft.  If a large error were to occur, it is 
better to have it reduced quickly rather than allow aircraft 
after aircraft to be affected at each visible location. 
 
Following the discussion above, we propose preliminary 
monitoring criteria for evaluation.  These are based upon 
expected Gaussian behavior, although the underlying 
behavior need not be strictly Gaussian.  We propose 
monitoring the mean, RMS, 1 x URA, 2 x URA, 3.29 x 
URA, 4.42 x URA, and 5.73 x URA values of the 



maximum projected signal in space error.  The last five 
correspond to Gaussian probabilities of 0.32, 0.05, 0.001, 
1 x 10-5, and 1 x 10-8, respectively.  Assuming a 15-
minute correlation time to match the future GPS data 
upload rate, the proposed evaluation criteria on each 
individual satellite are: 
 
• The RMS of IURE/URA over any given day shall not 

exceed 1, 
• The absolute mean value of IURE/URA shall not 

exceed 0.5 over any given day, 
• The absolute value of any IURE shall not exceed the 

URA for more than 7.7 hours in any given day, 
• The absolute value of any IURE shall not exceed 1.96 x 

URA for more than 1.2 hours in any given day, 
• The absolute value of any IURE shall not exceed 3.29 x 

URA for more than 45 minutes in any given 31 day 
period, 

• If the integrity flag is set, the absolute value of any 
IURE shall not exceed 4.42 x URA for more than 300 
seconds in any given year, otherwise shall not exceed 
except for major service failures, and 

• If the integrity flag is set, the absolute value of any 
IURE shall not exceed 5.73 x URA for longer than 
5.2 seconds at any time or location. 

 
If the integrity flag is not set, then the satellite has 1 x 10-5 
per hour probability of a major service failure occurring.  
Here a major service failure is defined to be an error of 
4.42 x URA or greater and its duration could be as long as 
6 hours.  Clearly, a satellite that does not have its integrity 
flag set cannot provide assured position domain integrity 
without some additional augmentation.  However, such a 
satellite may be used with RAIM.  This specification 
should be recast to make the interpretation of 1 x 10-5 per 
hour clear.  If there are 32 satellites without the integrity 
flags set, an average of 3 per year would experience major 
service failures.  Therefore, the above requirements 
should be amended to allow up to 3 separate major 
service failures per year to be excluded.  Each service 
failure must affect only one satellite at a time and up to 
six contiguous hours may be removed per failure.  Events 
more than six hours apart must be counted as separate, as 
must events affecting separate satellites.  It is also not 
acceptable for two satellites to have overlapping major 
service failures (one must end or be alerted to the user 
before another may start). 
 
Figure 1 provides an illustration of several of these checks 
and their implication on the CDF of the errors.  This plot 
is a normal probability plot also referred to as a quantile-
quantile (q-q) plot.  The y-axis shows the ordered, 
observed errors and the x-axis corresponds to the quantile 
(fraction) of the observed data that is below each value.  

The bottom shows the probabilities and the top axis 
shows the corresponding Gaussian values.  If the 
observed distribution were a zero-mean, unit-variance 
Gaussian, the data would fall along the diagonal line 
shown.  If the data were zero-mean, but with a smaller 
variance, it would still follow a straight line but it would 
have a smaller slope as shown.  Non-Gaussian 
distributions will have curved lines.  The proposed 
evaluations are shown as corners in a staircase boundary 
on the plot.  Data that passes these evaluations will lie in 
the white unshaded region.  Data that fails will cross the 
boundary into the shaded region. 
 
Note that a typical q-q plot is usually made up of a single 
set of data rather than the different time periods noted.  
Further, the tests are to apply to any such period, for 
example any 24 hour period, not merely ones that begin 
and end at midnight.  Thus, Figure 1 is more illustrative 
of how the tests restrict the CDF rather than specifically 
how they are implemented. 
 
Figure 2 focuses on the upper right-hand quadrant of this 
plot.  It shows that a CDF that avoids the shaded region 
can also be bounded by a Gaussian with a mean of 0.9 
and a sigma of 1.33.  Thus, these discrete evaluations can 
be replaced with a single Gaussian form.  The concept of 
paired bounding [4] can be applied.  If the actual 

 
Figure 1.  The normal probability plot is shown with the 
proposed evaluations highlighted.  The actual CDF must 
not enter the shaded region.  A standard, unit-variance 
Gaussian distribution is shown as the diagonal line.  A 
Gaussian with a smaller variance would have a smaller 
slope as shown.   



distribution is always to the right of N(µ,σ) and to the left 
of N(-µ,σ), then it can be said to be bounded by N(µ,σ).  
It will also be bounded by N(µ,σ) if it can be right-left 
bounded by a Gaussian with the same means, but a 
smaller sigma.  Thus, a nearly arbitrary distribution in the  
acceptable region of Figures 1 and 2 can be Gaussian 
bounded with known attributes. 
 
Figure 2 also suggests that a tighter Gaussian bound may 
be possible if the evaluation points are trusted and one is 
not concerned that the actual CDF may have the worst-
case properties in between each evaluation point.  In this 
case, the Gaussian N(.5, 1) bounds the evaluation points 
and likely behavior in between.  Bounding with this 
smaller Gaussian may translate into a significant 
availability increase.  Here we begin to see the linkage 
between the evaluation points and the Gaussian bound 
used for analysis.  It is possible to add more evaluations 
such that even tighter bounds are possible, or it may be 
possible to achieve the same level of performance with 
fewer well chosen evaluations. 
 
The corresponding Gaussian bound from paired bounding 
directly connects back to the α parameters in the VPL 
equations completing the link between them and the 
monitoring.  The mean parameter corresponds to α2 and 
the sigma parameter to α1.  Thus for the conservative 
bound in Figure 2, we would have α1 = 1.33 and α2 = 0.9.  
For the less conservative bound we could use α1 = 1 and 
α2 = 0.5.  The difference in availability between these two 
is likely significant.  The smaller values may be used if 
one may safely assume that the expected behavior is 
unlikely to be worst-case.  If this is not an acceptable 
assumption, additional evaluations may reduce the 
conservatism of the worst-case overbound. 
 
 
MULTIPLE SATELLITE MONITORING 
 
One of the key aspects of having low probability of large 
errors is that, should a larger error occur on one satellite, 
similarly large errors on other satellites or from other 
error sources are unlikely to occur at the same time.  
Another means of evaluating whether or not one or more 
errors are combining to form a very large position error is 
to look at the sum of the square of the normalized errors.  
If the errors are close to Gaussian and independent, then 
this sum will be close to chi-square distributed.  By 
formally evaluating the chi-square, it is possible to ensure 
that the RSS of the errors is close to independent 
Gaussian expectations. 
 
Therefore we propose an evaluation of the form: 
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where a common mode clock term, < IURE

j
(t ) > , is 

removed from the evaluation.  The next question is at 
what probabilities and time periods should such 
evaluations be made?  Following chi-square statistics, an 
upper bound on the expected value, assuming nine 
degrees of freedom and 10-7 probability, leads to a value 
of ~7.1 for Kprob. 
 
We propose adding the following monitoring 
requirement: 
• For satellites with the integrity flag set, the sum of the 

squared ratios (IURE minus a common clock term 
divided by URA) shall not exceed 50.2 for longer 
than 5.2 seconds at any time or location. 

 
To understand the potential application of this monitor 
limit we look at the RSS component of the VPL equation 
coming only from the SIS terms: 
 

 
Figure 2.  This figure shows how Gaussian overbounds 
may be determined from the evaluation.  A smooth 
distribution that stays inside the acceptable region may 
look similar to the zero-mean, unit-variance Gaussian 
shown on the diagonal.  Such a distribution stays within 
the right-most corners of the boundary.  This boundary 
can be represented by a half-unit mean, unit-variance 
Gaussian.  A worse distribution that only just stays within 
the boundary can be bounded by a more conservative 
Gaussian model. 
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This is to be compared to the Vertical Position Error 
(VPE) coming solely from the SIS errors: 
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This can be rewritten as: 
 

 VPE
SIS

= s
3, i
!
IURE

i

URA
i

!URA
i

i =1

n

"  (8) 

 
According to the Cauchy-Schwartz inequality: 
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From (5) the second radical can be replaced with Kprob 
leading to: 
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Therefore, provided KV ! "

1
# Kprob  we can be assured 

that VPE
SIS

! VPL
SIS

 to the required probability.  This is 
only rigorously demonstrated when the other error terms 
are neglected, but because these other error terms are 
independent of the SIS errors and if both are close to 
Gaussian, the full VPL equations (1)-(4) are expected to 
hold as well. 
 
This leads to the requirement that if KV = 5.33 as in SBAS 
and Kprob = 7.1 as above, then !

1
" 1.33 .  This 

coincidentally matches the conservative overbounding 
value from the previous section.  Smaller values may be 
possible by exploiting other expected properties of the s3,i 
factors or by exploiting existing conservatism in the 
URAs to set Kprob lower.  In the next section we will see 
that historical data has much lower observed chi-square 
values. 
 
 
INDIVIDUAL SATELLITE RESULTS 
 
To begin to see whether these proposed monitor limits are 
reasonable, we examined historical GPS data from the 

year 2008.  IUREs were approximated by comparing the 
broadcast satellite clock and ephemeris data to precise 
values as determined by NGIA [15].  These errors were 
then projected onto the surface of the Earth to determine 
the maximum projected error at a given time [16]. 
 
These errors only approximate the actual IURE as they 
only include the satellite clock and ephemeris errors.  
Other possible SIS errors such as signal deformation [10] 
[11], antenna group delay variation [9], and others are not 
included in this formulation.  Further, we only have 
precise orbit information available every 15 minutes and 
even so, they are not always available for every satellite at 
every 15-minute epoch.  Thus, some errors may be missed 
if they are shorter in duration than 15 minutes or precise 
estimates are not available at the time.  If an anomaly 
makes it difficult to determine a precise ephemeris 
estimate, then that data may be missing and the anomaly 
will not appear in this record. 
 
Some errors may be alerted to the user in ways that are 
not evident in the recorded broadcast ephemeris data.  If 
the satellite switches to non-standard data, it may not be 
reflected in the data investigated.  That is, precise orbits 
may still be calculated, but new ephemerides that fail 
parity checks are not recorded.  Consequently, some of 
the anomalies observed may not have really affected users 
as they were alerted by alternate means than the health 
bits in the ephemeris.  These are still being investigated to 
determine whether users were actually affected.  For this 
analysis, we will assume that until the health bits were set 
unhealthy, users would incorporate that signal. 
 
The most significant limitation of evaluation with current 
or previous data is that the broadcast ephemeris 
information is typically uploaded to the satellite only once 
per day.  Thus, errors are strongly correlated over many 
hours instead of the 15-minute period assumed in 
selecting the proposed evaluation periods.  This is 
unfortunate because the evaluation periods would need to 
be extended by a factor between 10 and 100.  However, 
even the lower end of this range starts to make the 
evaluation periods much too long to be practical.  
Therefore, we will start by using the proposed evaluation 
periods, although we would not necessarily expect even 
well-behaved satellites to pass all tests. 
 
For the existing GPS interface, the minimum possible 
broadcast value of URA is 2.4 m.  It appears that much of 
the time the maximum projected IURE is much smaller, 
leading to excess margin in the URA.  It is not clear if this 
margin would be maintained if it were possible to 
broadcast smaller values.  The future signal on L5 does 
allow smaller values to be broadcast and values of 0.7 m 



are being targeted.  For 2008, the URAs appear to be 
fairly conservative and many satellites pass all of the 
evaluations proposed despite the large difference in 
correlation time and update rate (24 hours vs. 15 
minutes).  Some of the satellites fail a few daily tests 
(RMS, mean, 1 x URA, and/or 2 x URA).  Three of the 
satellites have apparent major service failures (errors 
greater than 4.42 x URA).  Again, these are unconfirmed 
failures as they may have been alerted by a different 
means than the ephemeris health bits.  The affected 

satellites are PRN 12, on April 2, PRN 9 on June 7, and 
PRN 27 on November 14.  There are unscheduled outage 
NANUs associated with each event. 
 
Figure 3 shows the results for all satellites evaluated for 
the full year.  Note that most satellites are very well 
behaved, that is, they are reasonably linear indicating 
Gaussian behavior and their slopes are noticeably smaller 
than 1, indicating margin in the URA.  All pass nearly 
through the intercept indicating small mean values.  For 
this long time period all but the three previously identified 
satellites appear to pass the evaluations and lie in the 
acceptable region.  However, when evaluated over shorter 
periods of time, several of the satellites fail an occasional 
daily test.  These smaller data set tests are an indication of 
potentially non-stationary behavior. 
 
To better understand the type of problem that these daily 
tests may identify, we examined PRN 14.  PRN 14 is a 
Block IIR satellite launched in late 2000.  It failed the 
RMS, mean, 1 x URA, and 2 x URA tests around day 45 
of 2008.  Figure 4 shows the RMS test evaluated for 
overlapping 24-hour periods every 15 minutes over the 
course of the year.  Around day 45, the RMS value 
increases to more than triple its typical upper values.  This 
indicates that the satellite behavior at this time may be 
unlike its behavior during the rest of the year. 
 
Figure 5 looks at the time history of the maximum 
projected error around the day in question.  Up through 
day 44, the behavior is extremely good.  However, at the 

 
Figure 3.  This figure shows the q-q plot for the full 
year’s worth of data for all satellites.  In this plot, all but 
three satellites appear to lie within the acceptable CDF 
region.  However, several of the satellites fail the shorter 
time period evaluations. 

 
Figure 4.  The RMS of the maximum projected error 
divided by the URA is shown for PRN 14 for all of 2008.  
These are overlapping data sets accumulating 24 hours of 
data evaluated at 15 minute steps.  Near data 45 a short 
but significant increase is observed indicating non-
stationary behavior. 

 
Figure 5.  The maximum projected clock and ephemeris 
error is shown for PRN 14 around the time of the 
anomalous behavior.  Clearly, there is a change of 
behavior late on day 45 with a more quickly changing 
error that is not fully compensated by the broadcast 
parameters. Starting on day 46 another change in 
behavior is observed. 



end of day 44 and into day 45 we see that the broadcast 
parameters are not describing the actual satellite 
performance nearly as well, and after day 45 we see 
another change in behavior.  During this time, the error 
never went above 2.5 x URA, so it is hard to say for 
certain what harm this effect causes.  Around day 45 the 
statistics for PRN 14 are different from other times, but 
because the event only lasts for a day, it is hard to fully 
characterize its new behavior.  It does appear that the 
probability of large error was much higher during this 
period.  Figure 4 indicates that at a minimum the expected 
RMS behavior was at least three times worse during this 
event.  Thus, any effort to exploit the margin seen during 
the rest of the year, would be limited by such behavior.  
Such events make it hard to place too much confidence in 
the future performance of the satellite.  Other Block IIR 
satellites that were launched near the same time do not 
exhibit this same behavior.  Does this anomaly indicate 
that all satellites are susceptible to such behavior even if 
they did not experience it in 2008?  Satellites that pass all 
tests provide much greater confidence that their operation 
will continue to be well behaved into the future. 
 
Figure 6 shows the q-q plot for PRN 14.  The CDF is 
distinctly non-linear and hence non-Gaussian.  A year’s 
worth of good data does not hide the bad day’s results in 
this case, although the daily tests can be made to pass by 
extending evaluation period to just 3 days.  This is largely 
due to the excess margin in the URA value.  Thus, such 
tests still do not guarantee finding all non-stationary 

behavior.  Although there is too little data here to say for 
certain that this CDF is unsafe, it does not firmly indicate 
that it is safe either.  Aviation integrity works more from 
the principle of guilty until proven innocent, which means 
that this behavior is a cause for concern.  Precisely what 
happened to PRN 14 on day 45 of 2008 should be further 
investigated to understand how likely it is to happen 
again, to learn what are the appropriate statistics during 
such an event, and to determine if are other satellites 
likely to be similarly affected. 
 
Contrast the behavior of PRN 14 with the performances 
of PRNs 15, 19, 21, and 23 shown in Figure 7.  These are 
the best performing satellites of 2008.  Their behavior is 
very linear, with no indication of significant non-Gaussian 
behavior.  The observed maximum projected error never 
exceeds 1 x URA.  Thus, there is much excess margin in 
their performance that could be exploited.  Further, these 
pass all daily and other tests and closer inspection reveals 
no evidence of significant variability from day to day.  
PRNs 19, 21, and 23 are Block IIR satellites launched in 
2003 and 2004.  PRN 15 is a Block IIR-M satellite 
launched in 2007.  It is not clear why these four are much 
better performing than many others from the same blocks 
with similar or more recent launch dates.  This aspect also 
needs to be further investigated as one would expect 
identically designed satellites to perform similarly barring 
failures. 
 
Figure 8 shows both the nominal and yearly overbounding 
sigma values as a fraction of the broadcast URA for each 

 
Figure 7.  This figure shows the q-q plot for the full 
year’s worth of data for PRNs 15, 19, 21, and 23.  All 
satellites here easily pass all evaluations.  In fact the 
maximum error never exceeds 1 x URA and the overall 
behavior is exceedingly Gaussian. 

 
Figure 6.  This figure shows the q-q plot for the full years 
worth of data for PRN14.  Although the data appears to 
pass all requirements, its behavior is distinctly non-
Gaussian.  This is also indicated in the daily evaluations.  
It is hard to be confident that future behavior will remain 
within the acceptable region. 



PRN.  The green square is the result of a linear fit to the 
q-q CDFs and represents the nominal value or sigma of 
the majority of the data.  The open circles are calculated 
by finding the minimum value that would keep the q-q 
curve no worse than a unit-variance Gaussian.  It is 
generally driven by the tails.  A large difference between 
the two indicates non-Gaussian behavior.  The best four 
PRNs have both the lowest overall sigma values and the 
open circles lie right on top of the green squares.  PRN 10 
by contrast has a very large difference between its 
nominal and tail behavior. 
 
PRNs 9, 12, and 27 have open circles calculated both 
including and excluding the possible major service failure 
points.  As can be seen many of the satellites could have 
safely used URA values close to one third of what was 
broadcast.  The best four satellites, could divide their 
URA by nearly four.  However, some satellites were only 
just covered by the existing URA.  In order to exploit the 
margin in the best performing satellites, there would need 
to be a way for the control segment to distinguish between 
their performance in real time and send larger URA 
values for the worse performing satellites. 
 
 
CORRELATION RESULTS 
 
The previous section examined the behavior of individual 
satellites against the Gaussian ideal.  This section looks at 
the potential for correlation among multiple satellite 

errors.  Here we evaluate the chi-square value across all 
satellites in view.  Instead of looking at the maximum 
projected error, each satellite error is projected to a five-
degree by five-degree grid of users on the surface of the 
Earth.  A common clock term is removed from each user 
error at each epoch, and the remaining error is divided by 
the URA.  These normalized residuals are then squared 
and added together to form the chi-square value. 
 
Figure 9 shows the histogram of values where we have 
excluded the three major service faults from the 
calculation, but included all other errors.  As can be seen 
performance is quite good with a maximum observed 
value of 25.4.  The corresponding Kprob value, if this were 
an upper bound, is 5.04.  This value works very well with 
the K value used in the VPL equation.  However, the 
result is not quite as optimistic as it initially appears.  The 
average nominal sigma value from Figure 8 is close to 
one third.  Therefore, the expected chi-square values 
should be reduced by approximately a value of nine.  
Indeed, this is nearly the case for the average chi-square 
value.  However, as already observed, the tail extends out 
to 25.4 which is very large compared to the mean.  For 
this volume of data, we would expect about a five to one 
ratio between the maximum and average.  Instead we 
observe a value greater than 17.  Thus, large chi-square 
values appear out of proportion to smaller values.  We 
saw that this was often the case with the individual 
distributions in Figure 8. 
 
We also observed that, for the most part, each satellite 
was well behaved although some exhibited non-Gaussian 
behavior and increased tails relative to the nominal.  The 
concern in this section is the possibility of correlated 
behavior.  To assess the effect of a single error versus a 
combination of several smaller ones, we calculated the 
chi-square value removing the single largest residual error 
at each location and at each time step.  Thus, the effects of 
individual errors would be eliminated, but multiple 
smaller ones would still be included.  Figure 10 shows 
that in this case, the largest observed value is 5.18.  This 
is much more in line with the expected five to one ratio to 
the mean value and broadcast URAs that are often three 
times larger than required. 
 
The chi-square data in Figure 10 indicates that correlated 
SIS errors were not an issue during 2008.  There were 
individual satellite errors that grew large compared to the 
URA and, in three cases, may have led to major service 
failures.  However, at any given time there was no more 
than one such large error.  The N-1 chi-square evaluation 
in Figure 10 is consistent with the observed individual 
performance in Figure 8 and near independence of the 
errors.  Together these can be used to demonstrate that 

 
Figure 8.  This figure shows the nominal and 
overbounding sigma for each satellite.  The green square 
is the nominal value (majority of data) and the open circle 
bounds the tails.  For PRNs 9, 12 and 27 the open circle 
is calculated both with and without the errors greater 
than 4.42 x URA. 



RSSing the errors, as in the ARAIM VPL equations, 
would have been safe with the existing data. 
 
 
CONCLUSIONS 
 
We have proposed specific data monitoring evaluations 
that are both unambiguous and directly linked to 
requirements that support VPL equations.  We have 
proposed evaluations at both the core and tails of the error 
distributions as well as on the sum of the squared errors.  
These evaluations have been preliminarily evaluated on 
actual data from 2008.  It has been shown that the tests 
are effective at identifying behavior that requires further 
investigation to determine its impact.  These tests are 
linked to Gaussian models that in turn set the alpha 
parameters in the VPL equations.  Tighter monitor limits 
can be directly translated to smaller VPLs.  Once these 
monitor limits are established, the alpha values can be 
determined and provided to the users.  Each sovereign 
state would have the ability to determine their own alpha 
values and indicate which satellites may be safely used.  
Thus, they would have much more confidence in and 
control over integrity determination within their airspace. 
 
Although the vast majority of GPS data from 2008 
indicates excellent behavior, there are some subsets of 
data that behave very differently from others.  Further, 
different satellites have very different levels of 
performance, some having large margins compared to the 
broadcast URA while others have very little margin.  
Ideally, the satellites would be much more consistent in 
their behavior with regard to the margin in the URA.  

 
It is important to remember that the monitoring does not 
assure integrity on its own.  Rather, it is a properly 
designed system, carefully analyzed to ensure that it is 
capable of meeting such monitoring requirements, that 
assures safety.  The monitoring requirements merely 
provide confidence that the system continues to meet its 
design goals. 
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