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ABSTRACT 
 
The L1-only Satellite-Based Augmentation System 
(SBAS) Minimum Operational Performance Standards 
(MOPS) were developed long before any SBASs were 
certified for operation.  During the development and 
certification of the Wide Area Augmentation System 
(WAAS), it was discovered that the zero-mean Gaussian 
basis of the Vertical Protection Level (VPL) equation was 
not strictly true for some error sources, and very difficult 
to sufficiently demonstrate for others.  The actual data 
collected in support of system performance demonstrated 
non-Gaussian behavior.  Further, sources of small 
uncorrectable biases were discovered after the original 
MOPS development.  These biases can arise from 
consistent, minor differences in the signal structure from 
one satellite to another.  Antenna biases at the satellite, at 
the reference stations, and at the user are other possible 
sources of these biases.  Because the MOPS VPL 
equation is based upon zero-mean Gaussian error 
combination, much additional work was required to 
demonstrate that the actual errors could be sufficiently 
protected safely.  Some performance is lost because the 
system has to implement conservative approaches to 
account for these discrepancies. 
 
The advent of dual frequency SBAS affords the 
opportunity to revisit the MOPS and use different 
approaches for this new class of user.  Lessons learned 
from the L1-only system certification and operation can 
be leveraged to both ease development of the future dual 
frequency system and improve user performance.  This 
paper examines the VPL equations and proposes changes 
to directly address these lessons.  The handling of non-
Gaussian behavior and small biases directly address both 
goals.  The VPL can be further changed to directly 
address the threats that most limit availability.  Without 
the corrupting influence of the ionosphere, satellite faults 
become the dominant source of significant error.  New 
VPL equations are proposed to specifically account for 
individual satellite fault modes.  This paper will 
demonstrate that by avoiding overly conservative steps 
required to handle all possible cases, the users will see 
reduced protection levels and higher availability.  

INTRODUCTION 
 
The Global Positioning System (GPS) is in the process of 
adding new civil signals [1] [2] [3].  These new civil 
signals include a second frequency in a protected 
Aeronautical Radio Navigation Services (ARNS) band 
that may be used to guide aircraft.  The incorporation of 
this new signal into Satellite-Based Augmentation 
Systems (SBAS), such as the Federal Aviation 
Administration’s (FAA) Wide Area Augmentation 
System (WAAS) [4] [5], allows for greatly expanded 
service and capabilities.  Most importantly, the largest 
source of uncertainty affecting the accuracy and integrity 
of the system can be directly observed and eliminated in 
the aircraft.  This allows for better levels of service within 
the existing coverage region and expansion of coverage 
beyond where the reference station network can 
adequately monitor the ionosphere. 
 
The addition of a new frequency also provides an 
opportunity to broadcast a new set of SBAS corrections 
that can take a different approach than was used on the 
legacy L1 correction signal.  Thus, lessons learned from 
implementation of the L1-only SBASs can be applied to 
the development of the L5 correction signal to support 
L1/L5 signals.  The original integrity approach was based 
upon a simple notion that the actual error distributions 
would be close to Gaussian and that as they were 
convolved together the resulting positioning errors would 
also be close to Gaussian.  Although this notion is correct, 
the small departures from ideal behavior led to challenges 
in following this approach precisely.  In order to protect 
against non-Gaussian behavior, new approaches were 
developed to create safe confidence bounding terms to 
broadcast to the user [6] [7].  However, these approaches 
usually impose conservative constraints that restrict 
availability more than necessary.  In addition, some of the 
analyses are cumbersome and time-consuming.  A more 
direct approach could improve availability and simplify 
the certification of the system. 
 
Previously, it has been suggested to incorporate small 
nominal bias terms into the computation of the 
positioning bound [8] [9].  This paper goes even further, 



changing the protection level computation to specifically 
model the known fault modes.  The resulting proposal has 
similarities to other satellite navigation integrity schemes, 
borrowing elements from the Ground-Based 
Augmentation System (GBAS) [10], Advanced Receiver 
Autonomous Integrity Monitoring (ARAIM) [11] [12] 
[13], and the Galileo Safety-of-Life (SoL) approach [14]. 
 
The paper begins by discussing the relative merits of an 
L1/L5 solution in the aircraft compared to the existing 
L1-only method.  Next we review the L1-only integrity 
equation and the benefit of adding nominal biases.  We 
then develop the new protection level approach based 
upon the expected fault modes.  The paper then examines 
a previous study on the accuracy of the existing L1-only 
system to develop models for the expected accuracy of 
the future L1/L5 system.  These models are used to 
compare the improvement offered by the proposed 
changes relative to a more conventional L1/L5 
implementation of the existing scheme.  Finally 
conclusions and recommendations are provided. 
 
 
THE UTILITY OF L1/L5 IN THE AIRCRAFT 
 
GPS satellites originally only offered one civil signal at 
the GPS L1 frequency (1575.42 MHz).  Fortunately this 
falls in an ARNS band and may be used for civil aviation.  
It has already been incorporated into several systems to 
provide guidance to aircraft [15] [5] [10].  Two additional 
civil frequencies are starting to be added to the GPS 
satellites.  L2 (1227 MHz) is further along, but is not in an 

ARNS band and may not be used for aviation.  L5 has 
only just started to be implemented but is in an ARNS 
band and may be used for aircraft guidance. 
 
The main advantage of having two signals at two distinct 
frequencies is that the range error caused by the 
ionosphere may now be directly estimated and removed.  
The ionosphere is the largest source of uncertainty for 
single-frequency GPS-based aircraft navigation.  Often, 
the ionospheric delay is small and smoothly varying.  
However there can be disturbances that create significant 
variations over time and/or space.  L1-only systems must 
account for this risk as they assess the potential bounds on 
position errors. 
 
L1/L5 systems are not vulnerable to this uncertainty and 
can form smaller bounds around the possible positioning 
error.  Table 1 highlights this advantage.  The table also 
identifies a disadvantage with this approach.  The 
ionosphere-free combination of signals increases the 
dependency on both the L1 and L5 signal errors.  
Although the combination eliminates dependence on 
ionospheric delay error and keeps the same dependence 
on tropospheric and satellite clock and ephemeris errors, 
other L1 only errors such as multipath are multiplied by 
2.26 and L5 only errors are multiplied by 1.26.  Thus, if 
the same level of multipath exists on L1 and L5 the 
overall contribution is increased to 2.6 times that of L1-
only. 
 
We will show this to be a poor trade most of the time, in 
that the nominal ionosphere accuracy of the WAAS 
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Table 1.  This table shows the dependencies of the L1-only and L1/L5 approaches on different error sources.  Also 
shown are nominal and extreme expected values of the errors.  



ionospheric correction is smaller than the increase in the 
contribution from the airborne multipath.  However, at the 
extremes, the ionosphere delay error can grow much 
larger than the multipath error.  Therefore, the extreme 
errors are reduced in this trade.  It is these extreme errors 
that we are most interested in for integrity.  By reducing 
them we can reduce the overall position error bound and 
improve availability. 
 
It may seem incorrect that by adding a new signal we 
reduce accuracy, but we are really adding a new signal 
and removing another one: the L1-only ionospheric 
correction.  Removing dependence on the broadcast 
ionospheric correction greatly expands the coverage 
region.  It is possible to find other ways to combine the 
different signals, L1 and L5 with the iono delay estimate 
that improve accuracy and integrity within the coverage 
region.  However, the need to do so has not yet been 
demonstrated.   
 
 
SINGLE-FREQUENCY VPL EQUATION 
 
The L1-only protection level equations were developed 
based upon early prototyping of the WAAS system.  The 
basic notion was that the error sources were 
approximately Gaussian and that a Gaussian model would 
be sufficiently accurate to be able to conservatively 
describe the positioning errors [16].  Therefore, four error 
terms were developed to describe satellite clock and 
ephemeris errors, ionospheric delay errors, tropospheric 
delay errors, and airborne receiver and multipath errors 
[17].  The conservative variances of these terms were 
combined to form a conservative variance for the 
individual pseudorange error. 
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This pseudorange variance is inverted and placed on the 
diagonal elements of the weighting matrix, W, and 
combined with the geometry matrix, G, to form the 
covariance of the position estimate [16][17]. 
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The third diagonal element represents the conservative 
estimate of the error variance in the vertical direction.  
Since the Vertical Protection Level (VPL) is intended to 
bound 99.99999% of errors it is set to the equivalent 
Gaussian tail value of 5.33.  Thus, the final VPL for L1-
only is given by [17]. 
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DUAL-FREQUENCY VPL EQUATIONS 
 
One significant difficulty encountered when developing 
the safety analysis for WAAS and LAAS was the 
presence of small biases and non-Gaussian behavior 
observed in data used to validate the analyses.  The 
integrity equations for these systems are based upon zero-
mean Gaussian behavior.  The sigmas broadcast for use in 
these equations were inflated to account for worst-case 
behavior that in turn led to larger protection levels.  
However, the underlying mathematical assumptions 
required exactly Gaussian and zero-mean characteristics.  
Additional analyses were created to ensure that the 
protection levels were sufficiently large to cover observed 
imperfect behavior.  However, these new analyses 
imposed additional constraints on the system and further 
limited performance [18] [7].  Thus, several previous 
papers [8] [9] [12] advocated the inclusion of nominal 
bias terms into the protection level equation to account for 
non zero means and non-Gaussian behavior. 
 
In addition to nominal bias terms, we propose a further 
change to the protection level equations.  The elimination 
of the ionospheric threats also removes the only 
significant threat that could introduce large errors on 
multiple satellite measurements simultaneously.  The 
remaining large threats are satellite specific and include 
satellite clock/ephemeris error, satellite code carrier 
divergence, and signal deformations [19] [20].  There are 
smaller threats than can affect multiple satellite 
measurements such as multipath and antenna biases at the 
ground reference equipment, tropospheric errors, and 
incorrect Earth orientation parameters affecting the 
conversion of the ephemeris estimate to the terrestrial 
frame.  The proposed protection level formulation 
addresses all of these threats. 
 
The variances in (1) have been developed as 
overbounding variances [21] [18] [7].  Figure 1 provides 
an example of how some of these variances are 
determined.  The error is typically protected in real time 
by a monitor within WAAS.  There is some noise 
associated with the ability to observe the error.  This is 
represented by the green nominal error distribution at the 
top of Figure 1.  The monitor will have a set threshold 
that will be used to declare a fault if the observed error 
becomes too large.  However, this threshold must be set 
sufficiently large such that the monitor is not declaring a 
fault too often.  Typically, in order to meet aircraft 



guidance continuity requirements, we would like this 
monitor to trip less than once a month under nominal 
conditions. 
 
The middle trace of Figure 1 demonstrates the presence of 
a small fault that is not yet large enough to assure tripping 
the monitor.  The fault is represented as a bias that does 
not otherwise affect the uncertainty in observing the error.  
The bottom part of the figure illustrates the largest error 
that will only just meet the required probability of missed 
detection.  This probability is represented by the portion 
of the red curve to the left of the threshold.  The 
magnitude of this largest fault is at the center of this 
distribution.  Because of the observation error, it is larger 
than the threshold.  This largest error must be transmitted 
to the user so that they properly account for the error.  In 
the single frequency VPL (3) the only way to represent 
this error is through the broadcast variance.  Therefore the 
sigma value must be at least equal to this largest possible 
fault divided by 5.33, as represented by the blue 
distribution at the bottom of Figure 1.  Typically this 
distribution is at least three times larger than the nominal 
distribution. 
 
Each of the variances in (1) must be inflated in this 
manner.  Thus, the final VPL consists of many 
simultaneously inflated variances.  However, there is no 
expectation that each error source on each satellite 
harbors a maximum undetected fault mode.  Instead, we 
know from long observation of system performance that 
such faults are rarely present on any measurements and 
never on more than one simultaneously.  We propose 
modifying the VPL equation to exploit this fact.  We 

recommend the addition of a faulted bias term to the VPL 
equation and a change in the variance terms to represent 
the nominal monitoring error rather than an artificially 
inflated variance to cover the latent fault. 
 
Our proposed equation covers two hypotheses, a nominal 
fault-free situation, and a separate faulted condition.  This 
approach is similar to that taken by the Ground-Based 
Augmentation System (GBAS) [22] and recently 
proposed Advanced Receiver Autonomous Integrity 
Monitoring (ARAIM) equations [12] [13].  The unfaulted 
term takes the form of 
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where K

v,PA
 corresponds to the Gaussian tail and is 

expected to be 5.33, S
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 is the third element of the ith row 
of the projection matrix given by 
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S
3,i

represents the effect on the vertical position error due 
to an error on the ranging measurement to the ith satellite.  
! ff ,i

2  is the fault-free or nominal error variance and bi is 
the nominal bias bound.  The weights used in the 
determination of the projection matrix may be freely 
selected, however, we will return to this topic later in the 
paper. 
 
The VPL under the faulted condition is similar except that 
it adds a faulted bias term 
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Because the occurrence of a fault is unlikely, the value of 
K

v,md
 can be below 5.33 and we expect it to take a value 

between 3 and 4 depending on the assigned probability.  
The term Bi represents the faulted bias and this 
corresponds to the fault value illustrated at the bottom of 
Figure 1.  The final user VPL is the maximum of the two 
terms 
 
 VPL = max VPL

0
,VPL
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It is expected that the faulted VPL term will dominate 
over the fault-free term for most geometries. 
 
 

 
Figure 1.  This figure shows the expected nominal fault-
free error distribution at the top, with a latent fault in the 
middle and a detectable fault at the bottom.  The 
measurement error distribution is unchanged by the fault 
except for the inclusion of the fault bias. 



NOMINAL ERROR VARIANCE 
 
A critical parameter in the VPL equations described 
above is the fault-free error variance.  This term is 
fundamentally different from the overbounding error 
variances used in the current implementation of SBAS.  It 
is intended to only overbound the unfaulted errors and not 
be inflated to cover any faults.  Interestingly, this term 
was implicitly used in the certification of WAAS for use 
in guiding aircraft to within 200 feet of the ground.  This 
approach, referred to as a Localizer Precision Vertical – 
200 (LPV-200) approach [23] has a requirement that the 
nominal vertical positioning error be below 4 m 95% and 
below 10 m 99.99999% [24].  Thus, existing WAAS 
already has requirements that its unfaulted error terms be 
bounded by values much smaller than the overbounding 
integrity variances.  In fact, since the system is approved 
with a Vertical Alert Limit (VAL) of 35 m, but the 
unfaulted error must be less than 10 m with the same 
probability, there is an implicit requirement that the 
unfaulted error distribution be at least 3.5 times smaller 
than the overbounding error distribution.   
 
This paper proposes to formalize this requirement and 
make it explicit.  This will be difficult because the natural 
tendency of integrity analyses is to inflate terms to ensure 
that they are sufficiently large to cover tail events.  
Instead, this fault-free distribution must be kept very close 
to actual observed performance, otherwise significant 
availability will be lost.  This variance will need to be 
empirically determined as it was for the LPV-200 analysis 
and any outliers scrutinized to determine if they belong to 
a fault mode instead of a fault-free error distribution.  As 
this is significantly different from previous integrity 
analyses, we expect that this process will need some time 
to be developed and accepted.  However, we emphasize 
that this process was already accepted for the 

authorization of LPV-200 service, although not explicitly. 
 
In order to determine reasonable values for the fault-free 
error variances, we turned to the LPV-200 analysis.  In 
this analysis, three years of 1 Hz data was collected and 
analyzed at 20 locations within WAAS coverage [25].  
The Vertical Position Error (VPE) was compared to the 
VPL (since this was for the operational single-frequency 
system, the VPL used corresponds to (3)).  The plot of 
VPE versus VPL is reproduced in Figure 2.  As can be 
seen, the actual 95% accuracy numbers are well below the 
VPL and well below the 4 m requirement.  Although the 
analyses contain more than 1.7 billion data points, there 
were not sufficient samples to determine the 99.99999% 
value at each VPL.  However, a Gaussian extension of the 
available probabilities lies below the 10 m requirement, 
hence the determination that WAAS satisfied the LPV-
200 requirements. 
 
We can use these results coupled with independent 
analyses on the expected accuracies of the various error 
components to model the fault-free behavior.  WAAS 
continuously evaluates its internal performance and 
examines the accuracy of its monitors.  From previous 
integrity analyses we know that the accuracy of its UDRE 
and GIVE monitors is at least three times better than the 
broadcast confidence.  The overbound of the actual 
observed error is determined for each UDREI and GIVEI 
index values.   These realistic values were placed into our 
Matlab Availability Analysis Simulation Tool (MAAST) 
[26], to estimate the expected accuracy for similar 
conditions to the LPV-200 study.  In addition, we used 
realistic values for the tropospheric error, and the airborne 
noise and multipath model.  For the tropospheric error, we 
referred to [27] that indicates the nominal standard 
deviation is 5 cm versus the overbounding value of 12 
cm.  For the airborne term we referred to a joint paper by 
Boeing and the FAA [28] that had actual observed curves.  
We used a simple linear fit to the data in Figures 14 and 
16 that showed the actual results varied from about 0.2 m 
at low elevation to 0.1 m at high elevation. 
 
We then formed a fault-free counterpart to the 
overbounding variance given by (1) 
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In addition to reducing the variances as described above, 
the δUDRE term was set to unity.  This term is used to 
describe uncertainty associated with satellite 
clock/ephemeris faults and is described elsewhere [29].  
The WAAS safety analysis has observed that it is not 
needed in the nominal case.  The fault-free variance is 

 
Figure 2.  The Vertical Positioning Errors (VPEs) as a 
function of Vertical Protection Level (VPL) from a three-
year study performed on WAAS accuracy [25]. 



therefore substantially reduced from the integrity 
overbound version.  These terms can be put on the 
diagonals of a matrix to form the fault-free measurement 
covariance, Covff.  The expected system position 
covariance matrix can then be determined from this 
covariance matrix and the projection matrix.  The 
expected 95% accuracy is given by two times the square 
root of the third diagonal element. 
 

 95%Accuracy = 2 ! S "Cov
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"ST#$ %&3,3  (9) 

 
Thus we can compare whether our modeling of the 
individual range components, combined with the 
observed geometries, matches the observed position 
accuracy.  Figure 3 presents this comparison where each 
magenta dot represents a particular instance of a VPL and 
an expected accuracy value.  The black squares and line 
correspond to the observed 95% value averaged over all 
stations and times taken from Figure 2.  As can be seen, 
the correspondence is quite remarkable given the 
differences in the two methods.  Thus, we can feel rather 
confident that we have good starting values for the fault-
free variance terms. 
 
As an aside, there is a powerful difference in the 
determination of the specific expectation of accuracy 
versus the average accuracy over all conditions.  The 
requirements in the SARPS are actually intended to be 
specific to the approach conditions, however, the LPV-
200 analysis, by necessity, averages over many 

conditions.  By matching these two approaches we can 
perform an analysis of the expected specific accuracy.  
During the three-year period of the evaluation, all but a 
few days were under conditions of nominal ionospheric 
behavior.  Because there were so few storm days averaged 
in, they would have no effect on the overall 95% average.  
An effort was made to analyze the storm data separately, 
and an increase in the VPE was seen.  However, the 
WAAS internal evaluations have even better estimates of 
the observed ionospheric accuracy during disturbed 
conditions.  These storm accuracy values were substituted 
in for the nominal values to calculate the light blue dots in 
Figure 3.  As can be seen, despite the significant increase 
in VPE, the accuracy is still expected to be below 4 m in 
all cases where the VPL is below 35 m.  The specific 
expected accuracy provide by (9) is a much better 
representation for the instantaneous conditions of the 
approach.  Ideally, this value would be used in place of 
the overall average. 
 
 
AVAILABILITY ANALYSIS 
 
Now that we have appropriate estimates for the individual 
error components, we can construct the dual frequency 
case.  Here we use 
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This can be used as the fault-free variance in (4) and (6). 
 
For comparison we also examined a more conventional 
adaptation of the single frequency VPL to dual frequency 
operation.  This VPL is much more similar to the single 
frequency VPL (3).  Instead of the single frequency 
pseudorange overbound given by (1), the dual frequency 
version uses 
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which is then combined with a nominal bias term to form 
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This is very similar to the proposed fault-free VPL0 except 
that in this case all variances are inflated to the full 
overbounding value inclusive of possible faults.  Thus, 
this VPL assumes all error sources could be at their 
maximum values simultaneously. 

 
Figure 3.  Expected 95% accuracy values as determined 
by empirical pseudorange error magnitudes and 
simulated geometries.  The magenta points correspond to 
nominal ionospheric behavior and the light blue points to 
disturbed ionospheric behavior.  The black square and 
line are the average 95% vertical position errors from 
Figure 2. 



 
We used MAAST to determine the satellite geometries 
and expected clock and ephemeris bounds, σflt, given the 
WAAS network.  MAAST also calculated the two 
different VPLS on a grid of users around North America.  
For the conventional VPL (12), σflt was determined 
identically to the current WAAS algorithm, the 
tropospheric term was set to 12 cm per the MOPS [17], 
the airborne error was as described in the MOPS, and the 
nominal bias terms were set to a constant .5 m. 
 
For the improved VPL (7), σff, flt is set to 30% of σUDRE 
(δUDRE was set to 1 for this term), the tropospheric term 

is set to 5 cm, and the airborne term as described in the 
previous section.  The nominal biases were also set to 0.5 
m and the faulted bias term was set to 5.33 times σflt 
(δUDRE takes it full value from MT28 for this term). 
 
Figure 4 compares the two VPL options against each 
other where the conventional implementation (12) is on 
the x-axis and the improved version (7) is on the y-axis.  
As can be seen, the new version proposed here is 
significantly smaller than the more conventional 
implementation.  On average it is about three-quarters the 
size and is never larger.  Thus, by taking advantage of the 
expectation of only a single worst-case faulted 
pseudorange at a time, we can make many more 
geometries available. 
 
Figures 5 and 6 compare maps of the 99% VPL as a 
function of location.  The colored contours indicate a 
value that is larger than or equal to 99% of the VPLs that 
would be obtained at that location during the course of the 
day.  As was evident in Figure 4, Figure 6 shows 
significant reduction in the VPL versus Figure 5.  LPV-
200 service is provided even further from the WAAS 
network concentrated on the North American land mass.  
Within the primary WAAS region, smaller VPLs are 
obtained.  Thus, there can be significant advantage to 
explicitly building our existing fault assumptions into the 
information broadcast to and used by the airborne 
receiver. 
 
 

 
Figure 4.  The comparison of the improved VPL proposed 
in this paper (7) is compared to a more straight-forward 
implementation described in (12).  As can be seen, the 
improved VPL is about 25% lower than the conventional 
version 

 
Figure 5.  The 99% maximum VPL as a function of user 
location for the conventional dual frequency VPL 
described by (12). 

 
Figure 6. The 99% maximum VPL as a function of user 
location for the improved dual frequency VPL described 
by (7). 



ACCURACY REQUIREMENTS 
 
The previous section demonstrates that significantly more 
times and locations can be made available.  That is, by 
providing more information on the assumed nominal and 
faulted modes of the satellites, it is possible to protect 
against potential 35 m errors in more cases.  However, it 
is not automatic that all other requirements are 
simultaneously met for these geometries and conditions.  
In particular, we are concerned about system accuracy, as 
we know that the dual-frequency iono-free combination 
may have greater noise than the single frequency iono-
corrected pseudorange. 
 
Figure 7 shows the expected accuracy using the same 
fault-free variances determined by MAAST for the VPL 
equation and inserting the values into (9) to compute the 
specific 95% accuracy value for each geometry condition.  
These are plotted against the corresponding VPL, 
similarly to what was done for Figure 3.  Compared to 
Figure 3 it is obvious that the accuracy is worse.  Of 
greater concern is that a couple of points actually exceed 
the desired 4 m limit.  Thus, some of the geometries that 
can have their tail behavior limited to 35 m do not meet 
our desired performance for accuracy.  In an average 
sense, all geometries do meet the requirement, but by 
determining the specific accuracy of each situation we can 
determine that specific cases exist that have worse 
expectations for accuracy. 
 
It is our recommendation that this test be added to the 
avionics to disallow these geometries.  As there are a 
relatively small number of instances that fail this test 

compared to the very large number enabled by the change 
in VPL, there is still a significant increase in availability. 
 
Another accuracy requirement exists and that is that, 
under fault-free conditions, the 99.99999% accuracy be 
below 10 m.  This accuracy can be estimated by  
 

 99.99999%Accuracy = 5.33! S "Cov
ff
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This requirement has the same dependence on the 
geometry and the fault-free variances, but is a more 
stringent requirement as 10 m/5.33 = 1.88 m, which is 
less than 4 m/2. 
 
Figure 8 shows the effect of this requirement.  Now a few 
more geometries should be removed, but still a very small 
fraction of the much larger number allowed.  We 
recommend that both of these tests be implemented in the 
avionics, although if this is the correct and final form for 
these tests, they can be simplified to a single evaluation.  
In this manner changes that limit the extreme values of 
the error distribution are also evaluated for their impact 
on the core of the distribution. 
 
 
FUTURE OPTIMIZATIONS 
 
The L1-only VPL equation has no bias terms.  Therefore, 
the optimal weights for minimizing the VPL equation are 
the ones specified in the MOPS.  However, the VPL 
proposed here in (7) includes both nominal and faulted 
bias terms.  The optimal weight is thus unlikely to be the 

 
Figure 7.  The expected 95% accuracy for each geometry 
is plotted versus the calculated VPL.  Compared to 
Figures 2 and 3 overall accuracy is worse, but nearly all 
are below the desired 4 m requirement. 

 
Figure 8.  The 99.99999% fault-free accuracy 
requirement is even more demanding to dual-frequency 
operation than the 95% accuracy requirement.  A small 
number of geometries do not meet the desired 10 m limit. 



inverse of the covariance matrix.  From (6) it is intuitive 
that the weight for the dominant satellite can be increased 
to reduce the value of S3,i.  The weights can be optimized 
such that this term is equal across all satellites.  However, 
this weight selection may be very different from the set of 
weights that optimize accuracy.  This latter set of weights 
would be the inverse of the fault-free covariance matrix. 
 
Given that we have these competing goals, it is important 
to track accuracy and integrity specifically.  For this paper 
we have chosen weights based upon the conventional 
inverse of the overbounding variances.  We anticipate that 
optimizing the weights in order to minimize the maximum 
fault bias contribution will lead to an additional 
significant reduction in VPL as has been found for 
ARAIM [13].  However, have not yet confirmed this nor 
tested the resulting effect on accuracy.   
 
 
CONCLUSIONS 
 
This paper proposes a specific form for the dual 
frequency SBAS protection level equations.  These 
equations exploit the iono-free combination of L1 and L5 
GPS signals to eliminate the largest source of uncertainty 
affecting the current single-frequency SBAS equations.  
Further, the removal of the ionospheric influence also 
eliminates the only significant source of large range errors 
that are likely to affect more than one range measurement 
at a time.  Therefore, we propose that the new equation 
treat all satellites but one, as operating under nominal 
error distributions, with the one satellite possibly being 
affected by the worst-case undetected error.  We also 
include nominal error bias terms to account for small 
unobservable range biases and for non-Gaussian behavior 
of the underlying error distribution. 
 
We demonstrate that the existing SBAS implementation 
already requires that WAAS maintain small nominal error 
distributions in order to support the LPV-200 operation 
and that the approach advocated here merely formalizes 
this dependence.  We further show, that by taking this 
approach, we significantly reduce the VPL.  This 
reduction provides improved availability and continuity of 
service against the most stringent supported operation, 
LPV-200.  The approach also provides a real-time 
estimate of the expected accuracy.  The accuracy should 
also be evaluated in the aircraft to ensure that future 
system changes continue to meet operational 
requirements. 
 
The proposed VPL equation is also better matched to the 
WAAS hazard analysis.  This will make subsequent 

analyses of system safety easier as there is better 
correspondence between what is required for certification 
and the information provided to the user.  Finally, we 
expect to gain even smaller VPLs when we optimize the 
weights used in the position estimate. 
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APPENDIX: HPL 
 
The corresponding Horizontal Protection Level (HPL) can 
simply be found by determining bounds in the East and 
North directions and RSSing them together.  Thus, one 
possible form of the unfaulted HPL would be 
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where K

H ,PA
 corresponds to the Gaussian tail and is 

expected to be 5.73, S
1,i

 and S
2,i

 are the first and second 
elements of the ith row of the projection matrix.  They 
represent the effect on the horizontal position error due to 
an error on the ranging measurement to the ith satellite.  
The remaining terms are as described below (4). 
 
The HPL under the faulted condition is given by 
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As with the VPL, because the occurrence of a fault is 
unlikely, the value of K

H ,md
 can be below 5.73 and we 

expect it to take a value between 4 and 5 depending on the 
assigned probability.  The final user HPL is the maximum 
of the terms 
 
 HPL = max

j
HPL

0
,HPL

j
( )  (16) 

 
There may be more optimal formulations of the HPL, but 
because GPS is generally better performing in the 
horizontal direction and the aviation requirements are less 
demanding, it is not critical to optimize the HPL. 
 
The horizontal accuracy should also be evaluated in the 
aircraft and it is obtained through 
 

 2.45 ! S "Cov
ff
"ST#$ %&1,1 + S "Cov

ff
"ST#$ %&2,2  (17) 

 
for the 95% horizontal accuracy and  
 

 5.68 ! S "Cov
ff
"ST#$ %&1,1 + S "Cov

ff
"ST#$ %&2,2  (18) 

 
for the 99.999999% fault-free horizontal accuracy. 
 


