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ABSTRACT 
 
The majority of the monitors in the Wide Area 
Augmentation System (WAAS) [1] focus on errors 
affecting individual error components.  For example, the 
User Differential Range Error (UDRE) monitor [2] 
protects against large satellite clock and ephemeris errors.  
Its purpose is preventing errors larger than roughly four 
times σUDRE from being broadcast to the users.  The 
UDRE monitor does not necessarily need to react to 
errors on the order of two to three times σUDRE, as such 
errors are expected to occur occasionally as part of a 
normal error distribution.  Disallowing these smaller 
errors may limit the overall system availability.  Although 
two sigma errors are not all that uncommon individually, 
it is very unlikely to have many independent two-sigma 
errors present at the same time.  Such an occurrence could 
lead to unsafe position errors for the user.  Consequently, 
WAAS has monitors to examine not just the individual 
component errors, but to also the aggregate effect of the 
component errors together.  Chief among these monitors 
is the User Position Monitor (UPM) [3]. 
 
This paper describes an efficient new algorithm being 
developed for WAAS that significantly improves upon 
the prior UPM.  This new algorithm is based on the sum 
of the squares of the normalized errors at each reference 
station.  It has significantly improved the ability to detect 
error conditions that could be harmful to users.  As a 
consequence, excess conservatism may be removed from 
other WAAS monitors, as this new UPM is better suited 
to identify potential threats.  As these other monitors are 
also improved we expect this innovation to lead to higher 
availability while maintaining equal or better levels of 
integrity. 
 
 
INTRODUCTION 
 
The current UPM computes the real-time, WAAS-
corrected, position estimates (using the reference station 

pseudorange measurements) and compares them against 
the known survey locations.  The monitor uses tight 
thresholds, well below the broadcast protection levels, in 
order to determine if there may be a threat.  
Unfortunately, a position calculation only tests a specific 
combination of errors.  A nearby user may observe a 
slightly different set of satellites or weight them 
differently due to its local conditions.  Thus, while the 
UPM is generally good at detecting small ranging errors 
that can map to larger position errors, it is hard for it to 
quantitatively limit the worst-case user computed position 
error.  As a result, the other monitors in WAAS retain a 
high level of conservatism to reduce the overall likelihood 
of two and three sigma errors. 
 
A new UPM is being developed for WAAS that is based 
on the sum of the squares of the normalized errors at each 
reference station.  As we will show, this chi-square based 
UPM tests not only the specific set of weights used by 
each reference station, but effectively evaluates all 
possible sets of weights including every possible subset.  
The new monitor only uses a single chi-square metric to 
perform this evaluation, so the computational cost is not 
higher than the existing UPM.  In subsequent sections, we 
derive the analysis behind the chi-square UPM and 
demonstrate its efficacy using real WAAS data.  We show 
that this new monitor rigorously bounds the observed 
position errors and how this bound may be applied not 
just at the reference stations, but also for all nearby users.  
This more effective monitor allows WAAS to reduce 
conservatism in the individual monitors, allowing the 
possibility of broadcasting smaller UDREs, leading to 
better availability.   
 
 
CURRENT USER POSITIONING MONITOR 
 
The current UPM uses reduced versions of the WAAS 
error bounds to calculate the reference station position 
errors and associated protection levels.  The protection 
levels calculated by the UPM are much smaller than those 



calculated by the users.  The GIVE used by the UPM, 
GIVEUPM, is much less conservative than the GIVE value 
broadcast to the users.  The broadcast version has an 
inflation factor that depends on the self-consistency of the 
ionospheric measurements [4].  The GIVEUPM calculation 
requires greater inconsistency among the measurements in 
order for it to be inflated.  In addition, the broadcast 
GIVE includes a protection term against the possibility of 
poorly observed ionospheric disturbances [5].  
Ionospheric disturbances are infrequently present over 
North America and are usually well observed and 
identified before they affect users.  Therefore, the 
GIVEUPM uses a greatly reduced term for this threat.  
Finally, GIVEUPM is an internal value and is not quantized.  
The large steps between the discrete GIVE values often 
leads to significant increases due to this quantization.  In 
the end, GIVEUPM is typically one third of the value of the 
broadcast GIVE. 
 
Instead of the broadcast UDRE value, the UPM uses the 
Kalman filter estimate from the corrections processor, 
UDRECP.  As with the GIVE, this version of the UDRE is 
unquantized and neglects certain threats such as antenna 
biases and nominal signal deformation.  As a result, it is 
typically only two-thirds the size of the broadcast UDRE, 
although it is much smaller when the broadcast UDRE 
becomes very large (15 m and larger).  As a further step, 
the UPM neglects the δUDRE term corresponding to the 
covariance parameters in Message Type 28 (MT28) [6].  
This parameter increases the effective UDRE contribution 
to the protection level calculation.  Its value increases for 
users farther from the reference station network.  It has an 
average value of two, meaning that it typically doubles 
the magnitude of the UDRE in the users protection level 
calculation. 
 
The variance used for satellite i in the UPM is  
 
 σUPM ,i

2 =σUDRE _CP,i
2 +σUIRE _UPM ,i

2 +σCNMP,i
2 +σ tropo,i

2  (1) 
 
where σCNMP is the estimated code noise and multipath 
bound for the reference station measurement to that 
satellite and σtropo is the standard MOPS tropospheric 
bounding term [7].  The vertical protection level (VPL) 
calculated by the UPM corresponds to 
 

  (2) 

 
Where the smaller value of 3.5 (vs. 5.33 as specified in 
the MOPS) further reduces the evaluated error bound.  
The protection levels calculated by the UPM are typically 
less than a quarter of the value specified in the MOPS [7]. 

The UPM compares the position error against this reduced 
protection level and declares a fault if the error exceeds 
the protection level.  If that were to occur, all associated 
UDREs and GIVEs would be set to Not Monitored and 
those values would be broadcast to the users.  This action 
would effectively disable all WAAS positioning, as a 
large number of satellites would no longer be usable for 
either horizontal or vertical guidance.  Fortunately, the 
UPM has never tripped in the history of WAAS operation.  
The UPM is seen as a monitor of last resort in the very 
unlikely event of an unforeseen fault mode. 
 
 
ANALYSIS OF UPM NEAR TRIPS 
 
This section describes some investigations into previously 
observed events where the vertical position error (VPE) as 
calculated by the UPM came close to or exceeded 
VPLUPM.  It was observed that there was a UPM trip on 
the shadow system for Iqaluit on November 1, 2011 
during the period 13:24:11–26 UTC.  The shadow system 
is a parallel hardware chain for evaluating prototype 
versions of software.  In this case, the next intended 
software release for WAAS was being tested.  There were 
frequent carrier smoothing resets and the residual errors 
were higher on multiple satellites from roughly hour 
11:00 to 17:00.  Figure 1 shows two related traces: the top 
shows the pseudorange residuals for all satellites 
normalized by the UPM sigma value (1), and the bottom 
shows the pseudorange residuals normalized by the full 
broadcast sigma values (except that δUDRE is set to 1 as 
it was not recorded in the diagnostic data set, see 
Equation 5).  As can be seen, the UPM sigmas are much 
smaller than the broadcast sigmas applied by the user.  

VPLUPM = 3.5 GT ⋅W ⋅G( )
−1

 
Figure 1.  Normalized pseudorange residuals by the 
UPM sigma (top) and broadcast sigma (bottom) for 
Iqaluit on November 1, 2011 



The smaller UPM sigmas result in much larger 
normalized residual errors.  Many of the normalized 
pseudorange residuals corresponding to the UPM sigmas 
go above 2 and sometimes approach 4.  The ratios 
corresponding to the broadcast UDRE and GIVE values 
are always below 2, and almost always below 1.  The 
VPE divided by the VPL based on the broadcast values 
was always well below 0.18, so there never was any 
actual user threat.  PRN 19 had the largest residual at the 
time, however, removing PRN 19 from the solution still 
led to UPM VPEs that were more than 50% of VPLUPM. 
 
The apparent UPM threat occurs because the UPM UIVE 
for PRN 19 is much smaller than the broadcast value and 
leads to a normalized residual error of 3.46.  Further, the 
UPM VPL was calculated using 3.5 x σvert rather than 
5.33 x σvert as specified in the MOPS.  This deliberate 
reduction of the VPL is to make the monitor more 
sensitive.  Unfortunately, in this case, the UPM is overly 
sensitive.  The issue arises because the errors increase on 
some of the lines of sight, likely because of actual 
undersampling of an ionospheric disturbance, but the 
UPM GIVE does not get increased.  Figure 2 shows the 
pseudorange residuals in the top plot. As can be seen, the 
error on PRN 19 increases by more than two meters 
leading up to the trip time (which occurred between the 
two vertical black dashed lines). The residual 
pseudorange error during the trip was 4.88 m while the 
UPM sigma was 1.41 m and the broadcast sigma was 
5.14 m. 
 

The peak pseudorange error ratio occurs at 13:24:23 
UTC.  The UPM VPE reaches 8.27 m while VPLUPM is 
8.04 m.  Using the broadcast sigmas to weight the 
position solution reduces the VPE to 6.51 m and the 
actual corresponding VPL is 43.37 m.  The large error on 
PRN 19 causes 5.62 m of vertical error by itself.  The next 
largest contributor is PRN 22 and it only adds another 
0.68 m to the UPM VPE.  Thus, PRN 19 is by far the 
dominant cause of the error.  It has a relatively high 
elevation angle of 64 degrees at the time. 
 
The next event examined was a near-UPM trip at Chicago 
on April 23, 2012.  Unlike the prior trip, this event is not 
dominated by a single large error.  Instead, it appears that 
several smaller errors added coherently to create a larger 
position error.  For the majority of the day the VPE was 
below 1.5 m, but around the times of the near trips it was 
between 3.5 and 4.5 m, which is certainly elevated, but 
not threatening.  There were two periods of time when the 
UPM VPE exceeded 70% of VPLUPM.  The first occurred 
at 23:09:57 and the second between 23:53:56 and 
23:54:42.  Figure 3 shows the residual errors around the 
time of the two trips.  The middle and bottom plots in this 
figure show the range error normalized by the UPM 
sigmas and the broadcast sigmas respectively.  The first 
event involves PRN 30 whose error slowly increased 
while its UPM sigma also increased, but much more 
slowly.  At the time of the peak, the ratio between the 
error and the UPM sigma had reached 2.2.  PRN 30 
contributed 2 m to the UPM VPE, which reached 4.5 m at 
this point.  No other satellite contributed more than 
0.67 m, but all contributed coherently creating a much 
larger sum.  The other issue was that VPLUPM at this point 
was 6.48 m.  During this period of time, the broadcast 

 
Figure 2.  Pseudorange residuals near the time of trip 
(indicated by vertical dashed lines in top plot), residuals 
normalized by UPM sigma (middle), and normalized by 
broadcast sigma (bottom) for Iqaluit on November 1, 
2011. 

 
Figure 3.  Pseudorange residuals, UPM sigma values, 
and broadcast sigma values around the time of near UPM 
trips for Chicago on April 23, 2012. 



UIRE was increasing from approximately 4 m to 
approximately 6 m, while the UPM UIRE remained 
constant near 2 m.  This indicates that the underlying 
pseudorange error was also likely ionospheric in origin. 
 
The second Chicago near trip also involved no single 
large satellite error.  Figure 4 shows a zoomed in view 
around this region. PRN 6 has the largest ratio to the 
UPM sigma, but it is just above 1.5 sigma.  At the same 
time, three other satellites (PRNs 8, 16, & 19) have errors 
above 1 sigma.  Although this does not seem threatening, 
it is uncommon to have four satellites simultaneously 
above 1 sigma (because of the conservatism inherent in 
the sigma values).  The largest contributor to VPE UPM 
was PRN 16, which caused 0.70 m of vertical error.  The 
other satellites all contributed less, but all contributions 
were in the same direction.  The individual errors are not 
particularly large, three had range errors greater than 2 m 
(PRNs 6, 8, & 16).  However, it also is not common to 
simultaneously have three errors greater than 2 m.  Again 
the UPM VPE was not particularly large (4.2 m), and the 
UPM VPL was very small (5.79 m).  It is not known why 
three satellites had errors greater than 2 m while three 
others had errors larger than 1 m all at the same time nor 
why they would all add coherently.  Perhaps the local 
ionosphere was more difficult than usual to correctly 
model. 
 
The final event described is the near-UPM trip observed 
at Goose Bay on April 12, 2012 that occurred between 
19:00:16 and 19:21:35 UTC.  This near trip also was 
caused by multiple small errors rather than a single large 
error.  Figure 5 shows the pseudorange residual errors 
(top), the errors normalized by UPM sigma (middle) and 

the errors normalized by the broadcast sigma.  Although 
PRNs 12 and 20 have somewhat elevated values, neither 
appears to be large enough to increase the UPM VPE to 
within 70% of the UPM VPL. 
 
The peak ratio of VPEUPM / VPLUPM is ~74% and it occurs 
at 19:10:53 UTC.  Table 1 shows the pseudorange 
residual, UPM sigma, the projection matrix element for 
the vertical direction (s3,i) and the product of s3,i and the 
residual error, which provides the projection of the 
pseudorange error into the vertical position, at the time of 
the peak ratio.  As can be seen in the last column, none of 
the satellite errors lead to a very large position error by 
themselves.  However, the signs of the errors are 
essentially always opposite to the signs of the s3,i terms.  

 
Figure 4.  Pseudorange residuals, UPM sigma values, 
and broadcast sigma values around the time of the second 
near UPM trip for Chicago on April 23, 2012 

 
Figure 5.  Pseudorange residuals, UPM sigma values, 
and broadcast sigma values around the time of the near 
UPM trip at Goose Bay on April 12, 2012. 

PRN PR 
Residual 

(m) 

UPM 
Sigma 

(m) 

Vertical 
Projection 
Element 

(s3,i) 

Vertically 
Projected 
Error (m) 

1 -1.4166 1.9228 0.2075 -0.2940 
12 -2.2723 1.2058 0.3966 -0.9011 
14 0.5509 0.9232 -0.6342 -0.3494 
20 -2.1949 1.5631 0.2246 -0.4929 
22 -1.0228 1.2592 0.3042 -0.3111 
25 -0.0383 0.9578 -0.3345 0.0128 
29 -1.3282 2.1549 0.2436 -0.3236 
30 -1.1750 1.7451 0.2251 -0.2645 
31 0.8619 0.9907 -0.6025 -0.5193 
32 1.1518 1.1415 -0.0851 -0.0980 

133 -1.4699 3.1018 0.0200 -0.0294 
138 -0.9836 3.2830 0.0347 -0.0341 

Table 1.  Breakdown of error contributions from the 
satellites in view at Goose Bay at 19:10:53 UTC on April 
12, 2012. 



Thus, all of the errors (except for the smallest value) add 
coherently to create a larger vertical error of -3.6 m.  
Although the residual errors may be slightly elevated 
during this period, it appears that the loss of accuracy is 
caused by the unfortunate alignment of all of the errors.  
While this is expected to be an uncommon occurrence, it 
should not be surprising that, given enough data from 
many WREs, it would be observed on occasion. 
 
In all cases the UPM correctly identifies periods of 
increased position error.  Even though the user position 
errors are all small compared to the actual protection 
levels, the VPE can exceed the desired accuracy level of 
4 m and in the worst case nearly reaches 8 m.  However, 
user integrity is never threatened.  There is no need to 
have the UPM trip in these events.  Further, the UPM 
VPE is not always accurately reflecting the user’s VPE 
because the difference in the sigmas lead the UPM to give 
more weight to erroneous satellites that are already 
indicated as less trustworthy to the users. 
 
It would be better to have the UPM use the broadcast 
sigmas rather than creating special reduced sigmas that 
may neglect important and already well known protection 
terms (e.g. the undersampled threat term).   
 
The LPV-200 procedure [8] [9] has a strong requirement 
to ensure that vertical position errors larger than ~10 m 
are rare.  This could be interpreted as creating a desire to 
have the UPM trip before user VPEs would exceed 
~10 m.  For the specific case where the 8 m VPE was 
observed, the VPL was above the 35 m vertical alert limit 
(VAL) required to support LPV-200, so no special action 
is required in this case.  However, we do want to ensure 
that some action is taken before a >10 m vertical error is 
likely to affect a user. 
 
 
EFFECTS OF VISIBILITY/WEIGHTING ON UPM 
 
To see the effect of weighting on the calculated position 
error, we look at a specific user geometry.  This example 
was created using Stanford’s Matlab Algorithm 
Availability Simulation Tool (MAAST) [10] and was 
previously described in [11].  In this example, the user has 
eight satellites in view as shown in Table 2.  Figure 6 
shows the elevations and azimuths of the satellites along 
with their PRN values.  Table 2 also shows the PRN, 
elevation, azimuth, and one sigma confidence bound (σi).  
In addition, the fifth column shows the dependence of the 
vertical error to a pseudorange error on that satellite, s3i.  
S is the projection matrix and is defined as S = 
(GTWG)-1GTW, where G is the geometry matrix and W 

is the weighting matrix, see Appendix J of [7].  This term 
multiplies the error on the pseudorange to determine the 
contribution to the vertical error.  Thus a 1 m ranging 
error on PRN 2 would create a positive 59.5 cm vertical 
error for the user with this combination of satellites and 
weights.  The final column in Table 1 shows the 
projection matrix values if PRN 8, a low elevation 
satellite, is not included in the position solution. 
 
With the all-in-view solution, the user has a VPL of 
33.3 m (HPL = 20.4 m).  When PRN 8 is dropped, the 
VPL increases to 48.6 m (HPL = 20.5 m).  Both values 
are below the 50 m Vertical Alert Limit (VAL) for LPV 
[8].  Either solution could be used for vertical guidance.  
Notice that the vertical error dependency changes 

PRN EL AZ σ i s3i s3i 
without 
PRN 8 

2 45.8° -32.3° 2.34 m 0.595 0.451 
5 11.2° -76.8° 10.1 m 0.258 0.437 
6 36.6° 48.4° 2.32 m 0.162 2.005 
8 9.98° 73.0° 3.74 m 1.000 - 
9 61.4° 28.5° 2.03 m -1.928 -3.087 

15 32.8° 151.0° 6.89 m -0.015 0.174 
21 42.3° -136.0° 4.83 m 0.066 -0.003 

122 40.6° 120.1° 6.19 m -0.139 0.022 
Table 2.  Vertical projection elements for all-in-view and 
PRN 8 out geometries. 

  
Figure 6.  Satellite elevation and azimuth values for a 
standard skyplot.  PRN 8 is a low elevation satellite that if 
not included in the solution dramatically changes the 
influence of PRN 6. 



dramatically with the loss of PRN 8.  In particular, PRN 
6, which had little influence over the all-in-view VPE, 
now has a very strong impact on this subset VPE.  Also 
notice that the other values change as well.  PRNs 2, 21, 
and 122 lose influence while PRNs 5, 6, 9 and 15 become 
more important.  More surprisingly, the influences of 
PRNs 15, 21, and 122 change sign; therefore, what led to 
a positive VPE for the all-in-view solution now leads to a 
negative VPE for this particular subset. 
 
The changes in the s3i values with subset or superset 
position solutions limit the ability to verify performance 
exclusively in the position domain.  For example, if PRN 
6 had a 25 m bias on its pseudorange, it would lead to a 
vertical error of greater than 50 m with PRN 8 missing, 
but just over 4 m for the all-in-view solution.  This effect 
limits the ability of the current UPM to mitigate all 
possible threats.  The fact that it is evaluated at all 
reference stations means that different values of s3i are 
tested, but it does not guarantee that all threatening 
combinations will be caught.  For this reason, we wanted 
to create a more effective UPM. 
 
 
CHI-SQUARED UPM ALGORITHM 
 
We wish to evaluate whether or not there are several 
larger than normal errors regardless of their sign or 
corresponding s3i parameters.  We further wish to 
quantitatively bound the positioning error any user may 
experience with the set of errors.  We begin by looking at 
the positioning error and for simplicity we will begin with 
the vertical positioning error (VPE): 
 

  (3) 

 
where εi is the pseudorange error on satellite i. 
 
This can be rewritten as: 
 

  (4) 

 
where σi is the overbounding sigma according to the 
MOPS [7]: 
 
  (5) 
 
When calculating σflt in this new UPM we will continue 
to neglect the effects of δUDRE from MT28 (as is done in 
the current UPM).  This adds conservatism to the 

calculation. Also it is consistent with the prior UPM 
algorithm and will be simpler to implement. 
 
From the Cauchy-Schwarz inequality, we obtain: 
 

 VPE ≤ s3,i
2 ×σ i

2

i=1

n

∑ ×
εi
2

σ i
2

i=1

n

∑  (6) 

 
Then, because: 
 

  (7) 

 
we can see that:  
 

  (8) 

 
This yields a useful upper bound on the VPE relative to 
the VPL.  The ratio of the error to the protection level is 
bounded by the square root of the sum of the squares of 
the normalized pseudorange errors (i.e. the square root of 
the chi-square metric) divided by the K factor.  This upper 
bound is independent of geometry and weighting; the s3i 
parameters can take on arbitrary values, they do not affect 
the right hand side of the equation.  Thus, the upper 
bound holds for all subset geometries as well (since some 
of the s3i could be set to zero).  Using the chi-square 
metric is far more powerful than merely comparing the 
position error against the protection level which only 
checks one specific geometry and one specific set of 
weights. 
 
Note that the pseudorange errors may contain a common 
clock term that will not affect positioning error.  It is 
advisable to remove this common mode component 
before computing the chi-square value.  In fact, when 
computing either the VPE or the HPE, additional error 
components that only affect the orthogonal direction may 
also be removed.  That is, we can compute separate, 
specific chi-square values for the vertical and horizontal 
directions.  This is advantageous because the HPL and 
VPL use different K factors and we can match them with 
corresponding chi-square evaluations.  The vertical chi-
square, , is given by: 
 

  (9) 

 
where ε  is the vector of pseudorange residuals, the 
weighting matrix is given by: 

VPE = s3,i ×εi
i=1
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∑
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εi
σ i

×σ i
i=1

n

∑

σ i
2 =σ flt,i

2 +σUIRE,i
2 +σ air,i

2 +σ tropo,i
2

VPL = KV s3,i
2 ×σ i
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i=1

n
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VPE
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1
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2
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2

i=1

n
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and GV is given by: 
 

 

 (11) 

 
The second term in the parentheses in (9) removes the 
common clock term as well as error components that do 
not affect the vertical upper bound.  Proof for this formula 
is provided in the appendix to this paper. 
 
The horizontal chi-square , is given by: 
 

 χhorz
2 = εT ⋅ W−W ⋅GH ⋅ GH

T ⋅W ⋅GH( )
−1
⋅GH

T ⋅W( ) ⋅ ε  (12) 

where GH is given by: 
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The second term in the parentheses in (12) removes the 
common clock term as well as error components that do 
not affect the horizontal upper bound. 
 
The chi-squared UPM monitor can now compare these 
chi-square values to the corresponding K factors, to 
ensure that the positioning errors will remain below the 
protection levels for all users.  Thus, we want to ensure 
that: 
 
 χ vert

2 ≤ KV
2  (14) 

 
and 
 
 χhorz

2 ≤ KH ,PA
2  (15) 

 

where KV = 5.33 and KH,PA = 6.0 as specified in [7].  In 
reality, we will use threshold values somewhat below 
these upper bounds to increase conservatism.  
 
 
CHI-SQUARED UPM PERFORMANCE 
 
The chi-square metrics from the previous section were 
computed for several prior days where elevated values 
were observed with the current UPM monitor.  These 
days included November 1-2, 2011, April 12 and April 
23, 2012 previously described.  The metrics were 
computed for each WAAS reference station every second 
for the twelve days that had the highest legacy UPM 
values.  Figure 7 shows the  and  values for 
Iqualit on November 1, 2011.  These values can be 
compared to the results in Figure 1.  Notice that there is 
almost no effect on the vertical measure, while the 
horizontal measure shows a distinct spike.  However, this 
spike barely exceeds six, while the threshold for concern 
could be close to KH ,PA

2  or 36.  Thus, the chi-square UPM 
correctly recognizes that while the errors are worse than 
normal, they do not threaten integrity, nor is the monitor 
particularly close to creating a false alert. 
 
Figures 8 and 9 show results for all days at all stations.  In 
all cases it was found that: 
 

 VPE
VPL

≤
χ vert
2

KV

and HPE
HPL

≤
χhorz
2

KH ,PA

 (16) 

 
It is perhaps surprising that the calculated ratio was 
occasionally right at the upper bound, indicating that the 
s3i parameters were near worst-case, yielding the 
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Figure 7.  Chi-squared UPM sigma metric values 
corresponding to vertical (top) and horizontal (bottom) 
for Iqaluit on November 1, 2011. 



maximum possible error.  However, it is reassuring that 
despite these worst-case positioning errors, the chi-square 
value did always provide an upper bound.  We further see, 
that in all cases, the chi-square UPM is never particularly 
close to tripping.  The square root of the chi-square values 
were below 35% of threshold for vertical and below 45% 
of threshold for horizontal.  This is a substantial 
improvement over the current UPM which exceeded 70% 
of its threshold for many of these days and over 90% at 
Iqaluit on November 1, 2011.  Notice that the Iqaluit 
event creates a noticeable spike in Figure 9, but is still 
well below causing an alert.  The horizontal chi-square 
value indicates that even for the worst-case user would 
not have an HPE that exceeded 28% of the HPL 
 
 
CONCLUSIONS 
 
A new user position monitor is proposed that more 
effectively tests for simultaneously elevated error values 
across all corrected pseudoranges.  This chi-square UPM 
is able to evaluate not just the threat for one specific user 
geometry and set of weights, but for all possible 
combinations of the errors.  This new UPM is therefore 
more effective at identifying threats from multiple 
increased errors that individually may not appear 
threatening. 
 
We have further shown that the risk of false alert for this 
new monitor is decreased compared to the existing 
monitor.  This is because the current monitor uses reduced 
values of the UDREs and GIVEs to perform its 
evaluations.  These reduced values neglect terms that 
already protect the user from potential threats.  The 
current monitor may then incorrectly perceive a threat that 

has already been handled by the other monitors.  The new 
UPM uses the broadcast UDRE and GIVE values together 
with with the observed errors.  We have shown that the 
new chi-square metrics create upper bounds on the ratio 
of the potential position errors relative to the protection 
levels, thus fully protecting all users. 
 
Because the new UPM is very effective at catching any 
potentially harmful error, it may be possible to eliminate 
some conservatism in the UDRE (and perhaps the GIVE) 
monitor.  Any such reduction could lead directly to 
increased system availability while fully maintaining 
integrity.   
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APPENDIX: UPPER BOUND ON THE 
NORMALIZED POSITION ERROR BASED ON 
THE CHI-SQUARE OF THE MEASUREMENT 
ERRORS 
 
ASSUMPTIONS 

We consider the system of equations: 

 

y = G ⋅x + ε  

 

We consider the set of projection matrices S which 

produce an unbiased estimate of x, so that: 

 

S ⋅G = I  

 

We consider a given row of S, for example the first one, 

we have: 

 

s1 ⋅G = 1 0 0 0"
#$

%
&'  

 

We define G j as the matrix obtained by removing the jth 

column of G.  We have for our example of j = 1: 

 

s1 ⋅G1 = 0  0"
#$

%
&'  

This relation holds true for any j even if j is a set 

containing more than one row (and removing the 

corresponding columns from G). 

 

RESULT 

Let W be a positive definite weighting matrix and ε a 

vector of errors. For any sj constrained by the equation 

above, it can be shown that we have: 

 

s j
T ⋅ ε ≤ s j

T ⋅W-1 ⋅ s j ×

εT ⋅ W-W ⋅G j ⋅ G j
T ⋅W ⋅G j( )

-1
⋅G j

T ⋅W%
&
'

(
)
*⋅ ε

 



This result links the magnitude of the estimation error 

with an error bound computed assuming a zero mean 

Gaussian distribution.   

 

PROOF 

For any x we have: 

s j
T ⋅ ε = s j

T ⋅ ε+G j ⋅x( )
= s j

TW
−
1
2 ⋅W

1
2 ε+G j ⋅x( )

 

We apply the Cauchy-Schwarz inequality to the scalar 

product of these two vectors: 

 

s j
T ⋅ ε ≤ s j

T ⋅W-1 ⋅ s j ε+G j ⋅x( )
T
W ⋅ ε+G j ⋅x( )  

 

This inequality is valid for any x.  It is in particular true 

for the x that realizes the minimum of the right term.  This 

minimum is achieved by the least squares estimate of x: 

 

x = − G j ⋅W ⋅G j( )
-1
⋅G j ⋅W ⋅ ε  

 

By replacing this expression in the inequality, we get: 

 

s j
T ⋅ ε ≤ s j

T ⋅W-1 ⋅ s j ×

εT ⋅ W-W ⋅G j ⋅ G j
T ⋅W ⋅G j( )

-1
⋅G j

T ⋅W%
&
'

(
)
*⋅ ε

 

 

The equality is obtained when: 

 

s j ∝ W-W ⋅G j ⋅ G j
T ⋅W ⋅G j( )

-1
⋅G j

T ⋅W#
$
%

&
'
(⋅ ε  

 


