
ABSTRACT

The Wide Area Augmentations System (WAAS) and
similar Satellite Based Augmentation Systems (SBASs)
broadcast differential Global Positioning System (GPS)
corrections and confidences.  From this information a user
can more accurately determine position.  Even more
importantly, the users can determine the confidence they
have in that position solution.  The format of the
messages containing these corrections is described in the
WAAS Minimum Operational Performance Standards
(MOPS) [1].  A new message type is described that
contains a relative clock and ephemeris covariance matrix
for individual satellites.  From this matrix users can
reconstruct their location specific error bound rather than
applying the largest bound in the service volume.  By
transmitting this information to the user, we can achieve
two benefits: improved availability within the service
volume and improved integrity in the region outside.

Message Type 28 contains matrices for two satellites per
message, and each message is broadcast at the same rate as
the long-term corrections (Message Type 25).  Message
Type 28 is in the process of being incorporated into the
WAAS and has been presented to RTCA and to the
International Civil Aviation Organization (ICAO) for
inclusion in the MOPS and the international Standards
And Recommended Procedures (SARPS).  Two issues
have been identified with its implementation.
Complexity is added to the system in generating and
monitoring the contents of the message.  Additionally, the
discretization error incurred when fitting the message into
the limited bandwidth of the correction channel reduces
some of the provided benefit.  Nevertheless, we will show
that application of this message achieves its goals.  Clock
and ephemeris errors are more accurately bounded outside
the service volume, and projected confidence factors inside
the service volume are reduce by more than 25%.

INTRODUCTION

The Wide Area Augmentation System (WAAS) and other
similar Satellite Based Augmentation Systems (SBASs)
broadcast differential GPS corrections and integrity
information valid over continental scales.  This data
includes corrections for the broadcast satellite ephemeris
and clock errors, corrections for ionospheric delay, and
confidence limits on these corrections.  Unfortunately,
this vast quantity of information must be squeezed into a
250 bit per second (bps) data channel.  The mechanism for
broadcasting this data is described in detail in the
Minimum Operational Performance Standards (MOPS) [1]
[2].  An important component of this correction stream is
a scalar confidence bound for the clock and ephemeris
corrections per satellite.  This confidence bound, termed
User Differential Range Error (UDRE), is broadcast in the
form of a variance, σUDRE

2 .

Since the UDRE is a single scalar value, it must protect
all users within the service volume.  As such, each UDRE
must take on the largest projected value observable in that
region, although the majority of the users would
otherwise apply a significantly smaller value.  In addition,
outside the service volume, integrity would not be
guaranteed.  Here, the projected error could grow larger
than within the service volume.  A single UDRE,
applicable everywhere in the footprint of the geostationary
satellite, would preclude high levels of performance in the
service volume.

Another message, Message Type 27, has been envisioned
for application to the out of service zone problem.
However, it is not a very elegant solution as it was
originally created to mitigate atmospheric events.
Message Type 27 is primarily static in time,
geographically fixed, and applies to all satellites equally
within its specified regions.  Therefore, it can only mimic
the true degradation in a conservative fashion.
Additionally, it does not offer availability benefits within
the service volume.
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A new message, Message Type 28, broadcasts the full
information set from which the UDRE was derived.
Because less information is lost in the transmission
channel, we greatly reduce the disadvantages of the scalar
UDRE.  Now the full 4-dimensional clock-ephemeris
covariance matrix can be broadcast to the users.  From
this matrix users can reconstruct their location specific
error bound rather than applying the largest bound in the
service volume.  For certain users this may reduce the
effect of UDRE by factors of three or more.  All users
will see some availability benefit as no single location
experiences the worst projected error bound on all
satellites simultaneously, as is assumed without Message
Type 28.  Since these matrices are sent per satellite, they
are dynamic and not geographically fixed.  The true error
bound can now be accurately modeled both inside and
outside the service volume.

MOPS DESCRIPTION  OF MESSAGE TYPE  28

Message Type 28 may be broadcast to provide the relative
covariance matrix for clock and ephemeris errors.  This is
an expansion on the information contained in the UDRE
in that it specifies the correction confidence as a function
of user location.  A single scalar UDRE bounds the error
for the worst-case user in the service volume.  Users
within the service volume may have smaller bounds than
the broadcast UDRE, while users outside the service
volume will have larger uncertainties.  Message Type 28
provides increased availability inside the service volume
and increased integrity outside.

The covariance matrix is a function of satellite location,
reference station observational geometry, and reference
station measurement confidence.  Consequently it is a
slowly changing function of time.  Each covariance
matrix need only be updated on the same order as the long-
term corrections.  Each message is capable of containing
relative covariance matrices for two satellites.  The
covariance matrices will be scaled by the broadcast UDRE.
This maintains the real-time six-second update of integrity
and scales the matrix to keep it within a reasonable
dynamic range.

Cholesky factorization [3] is used to reliably compress the
information in the covariance matrix, C .  The Cholesky
factor is an upper triangular matrix, R .  This information
can be used to reconstruct the full covariance matrix as
RTR  = C , where the superscript T denotes the matrix
transpose.  This factorization guarantees that the received
covariance matrix remains positive definite despite
quantization errors.  Because R  is upper triangular, it
contains only 10 non-zero elements.  These 10 elements

are broadcast in half of Message Type 28.  The elements
of R can be written as
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What is broadcast in the message is actually a scaled
version of R .  This broadcast matrix, E, and a scale
exponent are transmitted in Message Type 28 (see Table
1).  The scale factor is given by

scale factor scale exponent= −2 5 (2)

The Cholesky factorization matrix is given by

R E= scale factor× (3)

and the relative clock ephemeris correction covariance is
reconstructed by

C R R= ⋅T (4)

The relative covariance matrix is used to modify the
broadcast UDRE values as a function of user position.
The change to the UDRE value is specified by

δ εUDRE C≡ ⋅ ⋅ +l C lT (5)

where l  is the four dimensional line of site vector from
the user position (ruser) to the satellite position (RSV) in
the WGS-84 coordinate frame given by

l
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The additional term, εC, is to compensate for the errors
introduced by quantization.  Its value is connected to the
scale factor broadcast in the message by

εC C= ×scale factor covariance (7)

Originally it was envisioned that Ccovariance would be
hard-coded to a value of one half.  Later it was determined
that this would be insufficient and that Ccovariance should
be broadcast in Message Type 10 so that it could be
updated.  The final MOPS format has not been decided at
the time of this writing.  For the remainder of the paper
we will assume that Ccovariance= 1

2.



Note that the line of sight defined in (6) or its negative
would be acceptable because (5) only depends on the
square of l.  The sign can be defined either way.  Also l  is

not critically sensitive to either RSV or ruser.  RSV can
be either the broadcast satellite position or the SBAS
corrected position with negligible differences.  Similarly,
ruser can be the uncorrected position or a previous
position.

The δUDRE in (5) replaces the value in (A-46) of [1].
Thus, a service provider could use Type 27 or Type 28,
but not both.

Table 1 presents the contents of Message Type 28
representing the Cholesky factor of the clock-ephemeris
covariance matrix for two WAAS satellites.  The
covariance matrices are accompanied by the IODP
associated with the PRN mask.  Refer to Section A.4.4.2
for the application of IODP.

The PRN Mask No. is the sequence number of the bits set
in the 210 bit mask (that is, between 1 and 51).  As
opposed to data in Message Types 2 - 5, the data in this
Type 28 message does not have to appear in sequence.
The IODP of the message must agree with the IODP
associated with the PRN mask in Message Type 1.

Figure 1 also presents the contents of the Type 28
message.  There is a single IODP that applies to both
matrices broadcast.  The remainder of the 212 data bits is
divided in two and each half contains identically formatted
information for one satellite.  Thus, Message Type 28 is
capable of broadcasting clock-ephemeris messages for up
to two satellites.

GENERATION OF MESSAGE

The information to broadcast in Message Type 28 comes
from the observations of the ground based reference
stations.  Much like the user is able to determine position
using multiple satellites, a service provider can determine
satellite position using known reference station locations.
The distribution of the observing reference stations and
their measurement quality can be used to determine the
covariance matrix for projecting confidence to specific user
locations.

We can define an observation matrix, G, whose rows can
be related to the line of sight vector (6) except the

24-BITS
PARITY

8-BIT PREAMBLE OF 24 BITS TOTA L IN 3 CONTIGUOUS BLOCKS
6-BIT MESSAGE TYPE IDENTIFIER (= 28)

250 BITS - 1 SECOND

SCALE FACTOR EXPONENT  

DIRECTION OF DAT A FLOW FROM SAT ELLITE; MOST SIGNIFICANT B IT (MSB) TRANSMITTED FIRST

E1,1 E2,2 E3,3 E4,4 E1,2 E1,3 E1,4 E2,3 E2,4 E3,4

PRN MASK NUMBER

SECOND HALF OF MESSAGE

IODP

Figure 1.  Type 28 Clock-Ephemeris Covariance Matrix

Parameter No. of
B i ts

(No te  1 )

Effective
Range

(Note 1)

Uni ts

IODP 2 0 to 3 discrete

PRN Mask No.
(Note 2)

6 0 to 51 —

Scale exponent.
(Note 3)

3 0 to 7 discrete

E1,1 9 0 to 511 discrete
E2,2 9 0 to 511 discrete
E3,3 9 0 to 511 discrete
E4,4 9 0 to 511 discrete
E1,2 10 ±512 discrete
E1,3 10 ±512 discrete
E1,4 10 ±512 discrete
E2,3 10 ±512 discrete
E2,4 10 ±512 discrete
E3,4 10 ±512 discrete

PRN Mask No.
(Note 2)

6 0 to 51 ---

Scale exponent.
(Note 3)

3 0 to 7 discrete

E1,1 9 0 to 511 discrete
E2,2 9 0 to 511 discrete
E3,3 9 0 to 511 discrete
E4,4 9 0 to 511 discrete
E1,2 10 ±512 discrete
E1,3 10 ±512 discrete
E1,4 10 ±512 discrete
E2,3 10 ±512 discrete
E2,4 10 ±512 discrete
E3,4 10 ±512 discrete

Table 1.  Message Type 28 Contents.
Notes:
1) All signed values are coded as two's complement,
with the sign bit occupying the MSB.  The effective
range is smaller than indicated, as the maximum
positive value is actually constrained to be one value
less (the indicated value minus the resolution).
2) Mask sequence.  The count of 1's in mask from the
first position in mask to the position representing the
subject satellite.  If set to 0, no satellite is represented
and the remainder of the message should be ignored.
3) A Single scaling factor multiplies each of the E
elements.  It is given by 2(scale exponent - 5).  Thus the
overall scale factor for each element ranges from 2-5 to
22 by discrete powers of 2.



reference station position, rRS i, , would take the place of
ruser.

Gi = − − − −[ ] = −l l lx i y i z i i, , , 1 l (8)

The subscript i for the i th row of the matrix refers to the i th

reference station.  The observation matrix relates the
difference between the broadcast satellite position and
clock, and the true position and clock, ∆∆X SV, to the
resulting differences in pseudorange, ∆∆y ,

∆∆ ∆∆ εεy G X= ⋅ +SV (9)

where ∆∆X SV is the satellite position error vector
augmented by clock error
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andεε  is the vector of observation errors.

The equation above can be inverted to find the snapshot
estimate of satellite position and clock error

∆∆ ∆∆√X G W G G W ySV = ⋅ ⋅( ) ⋅ ⋅ ⋅
−T T1

(11)

The uncertainty in that snapshot estimate is described by
the four by four dimensional clock and ephemeris
covariance matrix, P,

P G W G≡ ⋅ ⋅( )−T 1
(12)

This matrix contains the information describing how the
uncertainty in the estimate maps onto different lines of
sight.  It is the information in this matrix that we wish to
convey in the combination of Message Type 28 and the
UDRE.

The product of δUDRE from Message Type 28 and the
broadcast UDRE must overbound the user’s projected
clock and ephemeris correction uncertainty.  Because the
UDRE is broadcast every six seconds while MT28 is
broadcast only every 120 seconds, MT28 should be viewed
as providing the relative shape of the projections while the
UDRE provides the absolute value.  Note that one may be
multiplied by an arbitrary constant and the other may be
divided by that same constant without altering the end
result.  This leaves us flexibility in deciding how to
normalize the covariance.  To optimize availability we
would like to normalize the covariance matrix so that the

UDRE falls in the densest region of quantized values.  For
backwards compatibility we would want to normalize at
the largest projected value in the service volume.  For
convenience we may wish to normalize at the minimum
projected value.  We will proceed with the latter choice for
this paper, although the user is protected for whichever
option chosen.  A search may be required to find the
minimum value but it will likely be very near the
weighted average of the reference station lines of sight.
We will call the minimizing line of sight lmin and the
corresponding minimum projection Pmin

Pmin min minmin= ⋅ ⋅ = ⋅ ⋅
> °all elevationl

l P l l P l
5

(13)

If we divide the P we obtained from (12) by our
normalization value, we have the quantity we wish to
discretize and put into MT28

C
P

full P
≡

min

(14)

The covariance matrix in (12) is based on a snapshot
solution.  Various methods have been proposed to lower
the uncertainty in the error.  Two of the most prominent
schemes are the use of dynamical orbit information [4] and
the use of a priori information [5].  Both provide similar
benefits as far as yielding better conditioned matrices and
allowing solutions to be obtained with fewer than four
reference stations.  Dynamical orbit estimation yields the
highest accuracy, but require longer time intervals of data.
The use of a priori information is far simpler but relies on
the continued good performance of the broadcast error.
Both have issues with regard to integrity and certification.
Here we will investigate only the incorporation of a priori
information.

We know from observations that the expected broadcast
orbital accuracy is quite good.  Jefferson and Bar-Sever
found the accuracy to be better than a few meters [6].  The
largest observed errors were around 60 m.  This a priori
information could be included in the position solution.
The least squares fit seeks to minimize measurement
residuals.  The solution in (11) minimizes the cost
function

∆∆ ∆∆y W yT ⋅ ⋅ (15)

The inclusion of a priori information minimizes a
different cost function

∆∆ ∆∆ ∆∆ ∆∆X P X y W ySV SV
T T⋅ ⋅ + ⋅ ⋅−

0
1 (16)



There is a balance between minimizing measurement
residuals and offsetting the satellite from its expected
location.  The resulting covariance matrix is

P P G W G= + ⋅ ⋅( )− −
0

1 1T (17)

In this paper we investigate two different a priori
conditions.  One is based on the historical observations of
Jefferson et al.  And the other is based on the limitations
of the magnitudes of the corrections in the MOPS
message format.  The first conservatively describes
nominal performance, but it may be difficult to
demonstrate its integrity.  The second provides less benefit
but should be provably safe.  For the historical a priori we
conservatively set the diagonal elements of P0 to (3 m)2,
(10 m)2, (10 m)2, and infinite (no a priori claimed on the
clock).  This was in a radial, along-track, and cross-track
frame.  This matrix had to be rotated into the Earth
centered earth fixed (ECEF) frame before application in
(17).  For the MOPS limited a priori we used the dynamic
range of the corrections.  Message Type 25 can support
orbital errors as large as 128 meters for each of the X, Y,
and Z directions.  Message Types 2-5 and Type 25
combined can support a clock error of about 410 meters.
Thus, the MOPS limited a priori is a diagonal matrix
with (128 m)2 for the first three elements and (410 m)2 for
the fourth.  If the broadcast errors were really larger than
the MOPS limit, this constraint would not be sufficient
to override the measurements.  It will be shown, however,
that it is sufficient to improve quantization error.

QUANTIZATION ERROR

The limited number of bits in which the covariance matrix
is broadcast results in non-negligible quantization error.
The magnitude of this error is directly related to the scale
factor.  The larger the value of the Least Significant Bit

(LSB) is, the greater the possible error in the discretized
version of the covariance matrix can be.  If the discretized
projection is smaller than the true projection, an integrity
violation may result.  The term εc is included to prevent
such integrity violations.  Unfortunately, as originally
defined, this protection was not guaranteed.  Although
usually sufficient, certain geometries may lead to an
underbounding greater than εC = scale factor× 0 5. .
Theoretically, the underbounding may be several times the
magnitude of the least significant bit.  However, a fairly
extensive Monte Carlo exploration has found that the
maximum underbounding is limited to 1.4 times the least
significant bit.  This limit was found to be independent of
assumed noise profile, a priori, and normalization point.

Figure 2 shows histograms of projected discretized error
divided by the scale factor.  This is defined by

l C l l C lT T

scale exponent

⋅ ⋅ − ⋅ ⋅
−

full

2 5 (18)

where C  is the discretized version of the matrix (4) and
C full (14) is the full floating point version.  On average,
this distribution is reasonably zero-mean gaussian with a
sigma of roughly one third.  However, specific cases will
vary.  For some matrices the errors will all be positive
and for others primarily negative (see Figure 3).
Fortunately, this is deterministic; once we have C full we
can find C and then determine the projection errors.

For integrity purposes it is the minimum projected
discretization error in the service volume that is most
important.  This will result in the most significant
underbounding.  The UDRE must be large enough to
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Figure 2 .  Histograms of projected discretization error
normalized by the value of the scale factor (18).  The scale
factor is also the Least Significant Bit (LSB).
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cover this error.  Unfortunately the constraints on l  make
finding this minimum difficult.  There may be several
local minima and the true global minima may be fairly
narrow.  This makes finding the true minimum a non-
trivial task.  Here again the a priori can help.  Even the
MOPS limit based a priori significantly smoothes the
projection of Cfull compared to no a priori.  This broadens
the sharp local minima thus easing the effort of minimum
finding.

The upper histogram of Figure 2 is for projections
throughout the visibility region of the satellite.  The
lower histogram is for projections within the primary
coverage area of the reference station network.  For a
WAAS simulation this would be the CONUS region.
Notice that restricting projections to the service region
offers a slight improvement but does not significantly
change the distribution.

Figure 3 shows a map of the minimum projected
discretization error as a function of satellite location.  The
a priori assumed here corresponds to the MOPS limit and
certain noise profiles were assumed for the reference
stations to generate the W  matrix.  The specifics of the
map are very sensitive to such parameters.  The important
point is the random nature of the distribution.  Although
there are some large-scale trends, the minimum projected
error will vary quite rapidly with reference station
geometry.  It all depends on the errors in the discretized
Cholesky factorization.  Small changes in C full will
change the magnitudes and signs of these quantization
errors leading to large differences in the projected
quantization error.

Figures 4 and 5 show distributions of scale factors for
different conditions.  The three cases in Figure 4
correspond to when C full is normalized to the minimum
point as defined in (13) and (14).  It is obvious that
tightening the a priori lowers the scale factor exponent.
Since each index lower cuts the least significant bit in
half, the resulting quantization error difference is dramatic.
The maximum index that can be broadcast is 2.  Therefore
if no a priori is used there will be geometries that do not
fit within the dynamic range of Message Type 28.  Use of
the MOPS based a priori curtails these upper excursions
and ensures that the matrix remains within the dynamic
range.  Using the historically based a priori leads to an
even more significant decrease in quantization error.

Another parameter that affects dynamic range and least
significant bit is the normalization point for C full.  Figure
4 shows the histogram for when it is normalized at the
minimum projected value, but it is possible to normalize
this matrix at different points.  If we followed a backward
compatible notion of normalizing the matrix at the

maximum projected covariance within the service volume,
we get the distributions shown in Figure 5.  Note that
these distributions are nearly one index lower than the
preceding case.  Thus, the quantization error is cut nearly
in half for this normalization choice.  Of course there are
many factors influencing selection of normalization point
and this choice will likely increase quantization error of
the UDRE.

An interesting suggestion was made by Doug Tyler of
Raytheon [7] to reduce the quantization error.  He
recognized that the fourth diagonal element of the R
matrix would always be 1 if the covariance matrix were
normalized at the minimum.  He suggested defining this
term to be 1 and distributing its nine bits among the other
nine elements.  This would double their range and cut
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quantization error in half.  However, it would make
normalizing at the minimum point mandatory.  This may
be undesirable in that it limits options for different service
providers and may force a greater discretization penalty on
the UDRE.

The quantization errors in Message Type 28 must be
protected either by the εC  term or by increasing the
broadcast UDRE.  The condition we must satisfy is

σ δUDRE UDRE⋅ ≥ ⋅ ⋅l P lT (19)

everywhere in the service volume.  Using the definition of
δUDRE from (5), and assuming we normalize at the
minimum, we can place the condition on the broadcast
UDRE as

σ

ε
UDRE full

C
Pmin

≥
⋅ ⋅

⋅ ⋅ +

l C l

l C l

T

T
(20)

for all l in the service volume.  This can be satisfied by

σ
ε

UDRE
full

C

P=
⋅ ⋅

⋅ ⋅ +∈
min max

l

l C l

l C lservice volume

T

T
(21)

The maximum ratio in (21) is a much stronger function of
assumed a priori, reference station geometry and noise
profile than (18).  Figure 6 shows the maximum ratio for
the historically based a priori as a function of satellite
location.  For the particular choice of the εC  term here,

Ccovariance= 1
2, this ratio is less than one the majority of

the time.  Thus, σUDRE can be reduced to overcome
discretization error and gain availability.  However, some
of the time σUDRE must be increased to maintain
integrity.

APPLICATION OF MESSAGE

Let us consider an example.  We will assume reference
stations at the current WAAS placements, a satellite at
21°N, 204°W, and an assumed noise profile.  For this
example the observation matrix is

G =
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0.8521 -0.4958 -0.1679 -1

0.8483 -0.4943 -0.1898 -1

0.7686 -0.5523 -0.3227 -1

0.8373 -0.5190 -0.1720 -1

0.7913 -0.5693 -0.2229 -1

0.8135 -0.5487 -0.1926 -1

(22)

The weighting matrix has units of meters-2 and is

W =
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(23)

From these we can form the product GTWG

G WGT

11.1310 -7.0740 -3.2082 -13.6209

-7.0740 -13.6209 2.1073 8.6979

-3.2082 2.1073 1.0334 3.9895

-13.6209 8.6979 3.9895 16.7059

⋅ ⋅ =
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(24)

To find the covariance matrix, we need to add (24) to the
inverse of the a priori as described by (17).  Here we used
the historical based a priori.  The covariance matrix is

P =


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











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65.9410 11.5212 -37.4832 56.7169

11.5212 12.1237 -6.7844 4.7016

-37.4832 -6.7844 31.2340 -34.4881

56.7169 4.7016 -34.4881 52.0914

(25)
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availability (if less than 1) or to maintain integrity (if
greater than 1).



which has units of meters2.  The minimum projected
value of this matrix, Pmin, is 0.0599 m2.  Figure 7 shows
the projected covariance for all surface users with a
viewing angle greater than 5°.  Dividing (25) by Pmin leads
to the dimensionless Cfull.

C full = ⋅



















103

1.1016 0.1925 -0.6262 0.9475

0.1925 0.2025 -0.1133 0.0785

-0.6262 -0.1133 0.5218 -0.5762

0.9475 0.0785 -0.5762 0.8702

(26)

In order to fit this into Message Type 28 we need to take
the Cholesky factorization

R full =



















33.1904 5.7990 -18.8666 28.5476

0 12.9965 -0.3025 -6.6944

0 0 12.8745 -3.0745

0 0 0 1.0000

(27)

This value must be discretized as described earlier.  The
smallest scale factor that will enable (27) to fit in the
message constraints is 0.125.  The resulting discretized
version is given by

R =



















33.25 5.75 -18.875 28.5

0 13 -0.25 -6.75

0 0 12.875 -3.125

0 0 0 1

(28)

The broadcast matrix is then

E =



















266 46 -151 228

0 104 -2 -54

0 0 103 -25

0 0 0 8

(29)

The user can then reconstruct the bandwidth limited C
according to (4)

C = ⋅



















103

1.1056 0.1912 -0.6276 0.9476

0.1912 0.2021 -0.1118 0.0761

-0.6276 -0.1118 0.5221 -0.5765

0.9476 0.0761 -0.5765 0.8686

(30)

which can be compared to (26).  Figure 8 shows the
projection of C onto the user space.  Note the similarities
in shape to Figure 7.  As expected the minimum projected
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Figure 7.  Projected user confidence from full
covariance matrix (25).

2

3

4

5

6

7

8

9

0° 50° 100° 150° 200° 250° 300° 350°

-80°

-60°

-40°

-20°

0°

20°

40°

60°

80°

La
tit

ud
e

Longitude

R
el

at
iv

e 
P

ro
je

ct
ed

 C
on

fid
en

ce
UDRE Projection for a Satellite at 21°N and 204°W

Figure 8.  Projected user confidence according to the
normalized discretized C matrix (30).
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value of this normalized matrix is 1.  Figure 9 shows the
projected discretization error ratio in the matrix C  defined
by

l C l

l C l

T

T

⋅ ⋅

⋅ ⋅ +

full

Cε
(31)

Here the maximum CONUS value is about 1.02.
Therefore the quantization error in this matrix would need
to be protected by increasing the σUDRE by about 2%.
Thus, by following the requirements of (20) and (21), the
broadcast σUDRE could be no smaller than 0.2496 m.
Quantization of the σUDRE will require the transmitted
value to be 0.3040 m.

AVAILABILITY IMPROVEMENT

One of the benefits of utilizing Message Type 28 is the
potential for better availability.  When not using Message
Type 28, the service provider must broadcast the σUDRE
that corresponds to the worst-case projection in the service
volume.  This is a pessimistic approximation.  No
location will correspond to the worst-case projection point
for all satellites simultaneously.  Therefore, by
incorporating Message Type 28 a user should be able to
lower some or all projected clock and ephemeris variances.

To investigate the magnitude of this effect we examined
the projected δUDRE from the message (5) relative to the
maximum full bandwidth value in the service volume.  To
account for discretization error, this ratio was scaled by the
maximum projected discretization ratio as in (21).  This
final value

l C l

l C l

l C l

l C l
l

l

T

service vol.

T service vol.

T

T

⋅ ⋅ +

⋅ ⋅

⋅ ⋅

⋅ ⋅ +
∈

∈

ε

ε
C

full

full

Cmax
max (32)

is the ratio of the projected confidence from use of
Message Type 28 relative to not utilizing the message, for
a particular line of sight.

Figure 10 shows histograms of this ratio (32) for two
different conditions: a MOPS limit based a priori and a
historically based a priori.  As expected, smaller
discretization errors lead to better performance.  For the
historically based a priori, this results in roughly a 32%
reduction in the broadcast clock and ephemeris confidence.
For the MOPS limited case, the reduction is still of order
26%.  When quantization error can be further reduced, the
lowering of confidence level can be improved to greater
than 35%.

Notice that, for a small percentage of the projections, the
quantization error is so large that utilizing Message Type
28 increases the projected confidence.  In some cases this
confidence is more than doubled.  However, this only
happens for the minority of cases and is more than offset
by the number of times the confidence can be reduced.  If
this were of primary concern, note that these rare cases are
determinable.  A computationally intensive algorithm
could determine when discretization error for a particular
matrix would be worse than not utilizing Message Type
28.  In those instances Message Type 28 could broadcast
the identity matrix and σUDRE would correspond to the
worst value in the service volume adjusted to remove the
effects of εC .  This would optimize for availability in the
service volume, but may lead to a loss of integrity
outside.

This improvement in the projected clock and ephemeris
confidence cannot be translated into an availability
improvement without assuming values for the other
confidences.  For the initial version of WAAS, the
ionospheric error confidences are expected to be larger than
the clock and ephemeris terms.  This will reduce the
availability benefit.  However in the longer term, GPS
will offer second and third civil frequencies that will allow
users to directly estimate their own ionospheric error.
This will result in dramatically lower confidences for these
terms.  When this occurs, the UDRE will be the dominant
term and the reduction offered by Message Type 28 will be
significant.

OUT OF SERVICE VOLUME PROTECTION

The other major benefit of Message Type 28 is that it can
provide integrity for satellites everywhere in their viewing
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Figure 10.  Histograms showing the reduction in
projected confidence (32) when utilizing Message Type 28
for the MOPS limit based a priori and historically based a
priori .



area and not just in the service volume.  Message Type 28
can be employed to provide en route integrity for oceanic
routes far away from the reference network.  As can be
seen in Figure 8 the ratio of best to worst can exceed an
order of magnitude.  In this figure, a UDRE sufficient to
protect the service volume can be more than 5 times too
small for a user in Australia.  However, when Message
Type 28 is employed, the user gains protection both
inside and outside of the service volume.  Thus, Message
Type 28 will increase the utility of SBASs in their
intermediate regions [8] and will do so more efficiently
than Message Type 27.

OLD BUT ACTIVE DATA

Messages broadcast by the service providers must be safe
and accurate not only at the time of creation, but until
they time out for the user as well.  Thus, either the
contents of Message Type 28 must be monitored and the
UDREs adjusted as necessary, or the contents of the
message must be made to be applicable over the lifetime
of the message.  Both have relative merits: monitoring the
message in real-time is computationally intensive while
pre-degrading the message at creation loses availability.

Monitoring in real-time would have its basis in Equation
(21).  The same equation would be used but now the
denominator of the ratio would be based on already
broadcast information and the other terms would be based
on the current, yet to be broadcast covariance matrix.
Another difficulty in real-time monitoring is that changes
in viewing geometry can lead to sudden changes in the
covariance matrix.  This can cause sudden increases in
UDRE and alarms.  These alarms are caused by a lack of
observability rather than a true error.  Thus, there may be
some instances when degrading the covariance matrix by
the expected time-evolution of errors leads to better
availability.

The degraded matrix would add a posteriori information to
the covariance matrix (17).  The new degraded matrix,
Pdeg, would be of form

P P Pdeg( ) ( )t terr= + (33)

where P is the undegraded matrix at time of creation (17),
and Perr t( ) describes the time evolution of the error terms.
In the radial, along-track, and cross-track frame, Perr t( )
will have form

Perr

radial

along

cross

clock

t

t

t

t

t

( )

( )

( )

( )

( )

=





















σ
σ

σ
σ

2

2

2

2

0 0 0

0 0 0

0 0 0

0 0 0

(34)

Over the lifespan of the message the individual terms
could be represented by simple polynomial expressions,
σ radial t( ) , σalong t( ) , and σcross t( ) could be described as
linear functions of time and σclock t( )  would be a quadratic
function.  This would properly describe the errors if all of
the information were sent to the user at the same time.
Unfortunately the ephemeris correction, clock correction,
and covariance matrix span several messages with different
update rates.  In addition, some of these error terms are
already present in the MOPS (Section A.4.5.1).  For
example, the clock correction is broadcast every six
seconds, resetting this component of the error term to
zero.  Sections A.4.5.1.1 and A.4.5.1.2 of [1] already
describe protection of the clock corrections.  Section
A.4.5.1.3 describes the protection of the ephemeris
corrections.

In addition, the C matrix in the message will be scaled by
the UDRE.  Therefore, we are only interested in how the
orbital uncertainties affect the shape of C .  We can
remove the clock term and leave the minimum point
unchanged if we define a new matrix [9]

C
P P l

l P l P l
err

eph eph

eph eph

t
P

( )
min

min

min min min

=
[ ] − ⋅[ ]

− ⋅[ ] ⋅ ⋅[ ]












× ×

× ×

1 3 3 3 1

1 3 1 1

T T (35)

where Pmin and l min correspond to the undegraded
covariance matrix (13) and Peph is the upper left 3 3×
portion of (34) rotated into the ECEF frame.  This is the
degradation term that must be added to C , either before or
after discretization.

CONCLUSIONS

Message Type 28 is a late, but important addition to the
MOPS.  This paper described its format as originally
conceived.  However, its final form has not yet been
determined so one should check the latest version of the
MOPS (DO-229C or later), which would take precedence
over this paper.

Message Type 28 improves both availability inside the
service volume and integrity outside the service volume.
Its application is relatively simple for the user and
optional for the service provider.  Two issues remain with
its use: it has non-negligible quantization error and it may
be computationally costly for the service provider.



However, it has been shown that the reduction in projected
confidence is still greater than any discretization penalty.
Reductions between 25% and 35% were shown.  While
this may not lead to significant availability gains during
early phases when other terms dominate, it will be very
significant for end-state WAAS when this error source
may be the limiting factor.

In addition, the service provider has plenty of leeway in its
application.  Different levels of benefit can be achieved
depending on the complexity of implementation and
tolerable computational load.  Even for simplistic
implementations there is significant reduction in projected
confidence.  In the future, as these problems become easier
to address, more complex implementations will lead to
greater improvements.
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