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Abstract	
The Wide Area Augmentation System (WAAS) [1] has found that the ranging signals from its 
geostationary (GEO) satellites can significantly improve the availability of vertical guidance, particularly 
in Alaska and at times when not all GPS satellites are operational.  However, WAAS has also observed 
that the GEO ranging sources can be affected by errors that are bias-like in their behavior [2] [3] [4] [5] 
[6] [7].  Such errors do not change values randomly but may persist with a particular sign and magnitude 
for many hours or longer.  Some of these bias errors commonly affect our reference receivers and may 
thus be difficult to observe and bound in real time.  Others are readily observable but not necessarily 
easy to eliminate as they may impact user receivers differently. 

One such error results from incoherence between the code and the carrier signals.  Unlike GPS, the GEO 
signals are generated on the ground and have to traverse the ionosphere both on the way up from the 
ground uplink station (GUS) to the GEO and then on the way down from the GEO to the user.  The GUS 
electronics may not always be able to keep the two components perfectly aligned.  This results in a 
code-carrier incoherency (CCI) that creates a varying error for users with different smoothing times.  A 
user whose carrier smoothing filter has converged will see a different effect from a user who has not 
smoothed their code measurements with carrier data [2]. 

When WAAS generates a confidence bound on the ranging accuracy of the GEO satellites, it must 
account for all different users and for every error source.  Unfortunately, the protection level equations 
used by WAAS do not support the inclusion of bias terms or terms to account for different smoothing 
times [8].  Therefore, WAAS must conduct special analyses to bound these biases.  This paper describes 
the analysis WAAS performs to ensure that the UDRE it broadcasts for each GEO safely bounds all users 
for all possible bias errors.  This analysis accounts for other fault modes that may also be present, but 
not yet detected by the WAAS integrity monitors. 

Versions of GEO bias analyses have existed since before WAAS was commissioned in 2003.  The analysis 
has been updated and significantly improved since those early more conservative approaches.  WAAS is 
in the midst of replacing all three of its GEOs and will briefly have four operational ranging GEOs in the 
summer of 2019.  Pseudorange bias terms can lead to much bigger user position errors when there are 
more such terms that may all align.  This WAAS GEO bias analysis has been recently updated and each 
new GEO has been carefully examined to ensure the continued safe operation of GEO ranging.  This 
paper describes this analysis and demonstrates the safety and performance of the new WAAS GEOs 



 
 

Error	Bounding	Analysis	
Because the broadcast sigmas (User Differential Range Error (UDRE) and Grid Ionospheric Vertical Error 
(GIVE)) are larger than the actual overbounds, constant biases up to a certain magnitude can be 
tolerated by the user.  The analysis in this paper seeks to find the maximum tolerable biases that can be 
present for arbitrary geometries.   

The analysis in this paper examines seven cases listed in Table 1.  All seven cases must pass and each 
case itself has numerous subcases testing different UDREI and GIVEI values.  Further the risk is evaluated 
against three user protection level calculations: the vertical and horizontal precision approach (PA) 
protection levels and the non-precision approach (NPA) horizontal protection level. 

Table 1:  GEO Bias Threat Cases from 
 

Case Number Description Ionospheric State Faulted SV 
1 Fault-free Performance Both Nominal and Storm None 
2 CCC Fault Nominal-only GPS 
3 CCC Fault Nominal-only GEO 
4 SQM Fault Nominal-only GPS 
5 SQM Fault Nominal-only GEO 
6 UDRE Fault Nominal-only GPS 
7 UDRE Fault Nominal-only GEO 

 
The fault cases evaluate whether faults will be safely detected even in the presence of the unfaulted 
GEO biases.   

Probability	of	Position	Error	Exceeding	the	Protection	Level	
The purpose of the GEO Bias gaussian bounding analysis is to ensure that the broadcast UDRE and GIVE 
values are at least as large enough to bound the user’s actual errors.  This can be written mathematically 
as:  

 

  (1) 

 

where the left side is the user computed Protection Level (PL) and the right side is a conservative 
representation of the actual position error assuming a Gaussian overbounding model.  KMOPS is the WAAS 
Minimimum Operational Performance Standards (MOPS) [8] Gaussian K-factor corresponding to the PL 
(e.g. 5.33 for vertical), sx,i is the projection from the ith satellite range measurement to the user position 
error in the x direction, sB,i is the broadcast sigma (which is derived from the UDRE and GIVE values), 
KPE>PL+ the Gaussian K-factor that corresponds to the desired probability bound on the position error 
exceeding the protection level for the right tail, sa,i is the actual overbounding sigma for the data, and µi 
is the actual bias overbound.  The equation calculates the one-sided probability of the position error 
exceeding the protection level.  There is also a small contribution from the left Gaussian tail (in the 

ååå
==

+>
=

+³
N

i
iix

N

i
iaixPLPE

N

i
iBixMOPS ssKsK

1
,

1

2
,

2
,

1

2
,

2
, µss



 
 

direction opposite the bias terms) that will be considered later.  We can solve for the maximum KPE>PL 
supported given the broadcast sigmas and the actual sigmas and biases: 

 

  (2) 

 

The first order probability of the position error exceeding the protection level can be obtained, for 
example, through the Matlab function normcdf: PPE>PL = normcdf(-KPE>PL+) [9].  Unfortunately, (2) 
depends upon the user’s geometry through the sx,i terms.  In this section, we will provide a simplified 
solution, but the actual evaluation uses the optimal solution presented in the appendix of this paper.  

First, we define the ratio .  If we further define , we can bound the middle term 

of (1): 

 

  (3) 

 

Using the Cauchy-Schwartz inequality we can bound the last term of (1):  

  (4) 

 

Therefore, we can rewrite the requirement in (1) as: 

 

  (5) 

 

which can be simplified to: 

 

  (6) 

 

We now have a form of (1) that does not depend upon user geometry.  We can again rearrange the 
equation to determine the probability of violating the PL given a set of biases and amin:  
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  (7) 

 

Because geometry is not part of this equation, the risk of exceeding either the precision approach 
vertical or horizontal protection levels can be calculated simply by replacing KMOPS with KV,PA or KH,PA 
respectively while the risk of exceeding the non-precision approach horizontal protection level is given 
by replacing KMOPS with KH,NPA.  This simplified formula requires the use of the minimum a over all 
satellites.  A better solution is derived in the appendix that provides the probability using individual ai 
terms and that accounts for the left tail contribution to the probability.  This optimal calculation finds a 
smaller probability than (7) and is used by the later analysis of the WAAS GEO biases.  The probability 

given in the appendix by (A.21) only depends upon KMOPS, ai, and . 

Determination	of	sB,	sa,	µ,	a,	and	g	
The analysis begins by calculating sB,i, sa,i, µI, a, and g values for the GPS satellites and GEO satellites 
under both nominal and storm ionospheric conditions.  It does this by first calculating sB,i, sa,i, and µi for 
each condition, for each possible UDRE index (UDREI) and each GIVE index (GIVEI) values.  For GPS, 
these are given by: 
 

  (8) 

 

  (9) 

 

  (10) 

 

Where sflt = sUDRE × dUDRE, sUIRE is the interpolated value of sGIVE at the user pierce point location 
multiplied by the obliquity factor, strop is the tropospheric overbound from the SBAS MOPS [8], sair is the 
airborne receiver noise and multipath overbound also from the SBAS MOPS [8] and Biasnom is an 
assumed nominal bias term.  Note that for GPS dUDRE is conservatively set to 1.  The sob terms are the 
empirical normalized overbounds for each term and the µob terms are the sample means overbounding 
values.  As an example, Table 2 shows the input sigma values from our GEO and GPS UDRE 
overbounding analysis.  Means and normalized overbounding sigma values are calculated for the all GPS 
satellites as well as each GEO and at each UDREI value.  Values are normalized by sUDRE so any value less 
than 1 in the table is considered an overbound.  The small ratios (all below 0.35) indicates that there is a 
lot of margin to exploit for covering the biases. 
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Table 2: GEO & GPS Normalized Overbounding Sigmas by UDREI 

 

Satellite UDREI Npoints Mean sOBMC 

CRW (135) 10 112682 0.0007 0.281 

11 4453 -0055 0.129 

CRE (138) 10 116779 0.0006 0.244 

11 3569 -0.0103 0.087 

SM9 (131) 10 116079 -0.0035 0.214 

11 9596 0.0220 0.056 

S15 (133) 10 108909 -0.0034 0.237 

11 8120 0.0230 0.109 

GPS (1 -32) 5 867766 0.0083 0.232 

6 205648 -0.0171 0.208 

7 98013 -0.0099 0.207 

8 44964 -0.0111 0.194 

9 20964 -0.0110 0.190 

10 15240 -0.0163 0.255 

11 13186 -0.0122 0.114 

12 3973 -0.0044 0.031 

13 55 - - 

 

The probability in (A.21) is evaluated at all elevation angles for the GPS data between 5 and 90 degrees 
for each UDREI and GIVEI.  The arguments that lead to the largest probability are used to record ai, and 
gi for both the nominal and storm ionospheric conditions. 
 

For the GEOs, similar calculations are made, except that the operational static MT28 values are used to 
evaluate the actual dUDRE.  The equations for sB,i, sa,i, and µi are evaluated throughout the GEO 
footprint from 15 to 75 degrees North, and from 170 to 55 degrees West, at one degree increments.  
The analysis finds the ai and gi values corresponding to maximum probability of exceeding the PL across 
all UDREIs, GIVEIs and user locations.  



 
 

Figure 1 shows the sB values over this region for PRN 131 with a UDRE of 7.5 m and GIVE values of 3 m 
everywhere.  This is a conservative estimate as it includes lines-of-sight outside of the broadcast 
ionospheric grid and below the line where all GIVEs are set to 15 m or above.  Values for sB, sa, µ, a 
<sa/sB, g < µ/sB , and KPE>PL+, were calculated at each location (SM9 was the 3rd GEO entered into the 
analysis hence GEO #3 in the title).  The maximum a and µ values and the minimum KPE>PL+ values shown 
in the title are used for later computation. 

 

Figure 1.  The SM9 Values of sB as a Function of User Location. 

Unfaulted	Probability	
Next in the calculation we consider four vectors each with nGPS identical elements and nGEO elements.  
The latter are each unique to its GEO.  One pair of vectors contains the worst-case a and g values for 
nominal ionospheric conditions, and the other pair, their corresponding values for storm conditions.  
These vectors are sufficient to determine the probability of exceeding the protection levels for fault-free 
conditions.  The optimal probability in (A.21) is evaluated and the probabilities for nominal and storm 
conditions are each compared against their specific integrity allocation for both the horizontal and 
vertical nodes.  Generally, the storm ionospheric conditions are expected to have less margin and 



 
 

therefore a larger overall PHMI.  The analysis considers that this particular evaluation passes if the vertical 
PVPE>VPL and the horizontal PHPE>HPL are below their respective fault-free allocations. 
 

The fault-free results are shown in Table 3 below.  The analysis outputs the maximum between iono 
storm and non-storm conditions with the storm conditions always being worse.  As can be seen there is 
substantial margin between the nominal risk and the allocated risk for all three evaluated operations. 

Table 3: Nominal GEO bias integrity risk 

 Vertical PA Horizontal PA Horizontal NPA 

Storm 4.63 × 10-16 /approach 2.90 × 10-20 /approach 4.21 × 10-20 /hour 

Allocation 6.66 × 10-10/approach 3.33 × 10-10/approach 1.00 × 10-9/hour 

 

The next sections analyze the influence of the biases when a fault is present.  For the remainder of the 
evaluations only the nominal ionospheric conditions are considered.  It is considered sufficiently unlikely 
that a fault onset will occur in the narrow window of time when a severe ionospheric storm is beginning, 
but the ionospheric storm detectors have not yet tripped. 

CCC	Faults	
In the faulted cases, only the nominal ionospheric a and g values are used.  For one satellite, the 
nominal values are replaced with values corresponding to specific fault scenarios. Threats are evaluated 
for each UDREI and GIVEI.  Beginning with GPS, a bias is added to the bounding nominal µi value.  This 
bias is evaluated in from 0 to many times the value for the UDREI.  A new g is calculated according to 
 

  (11) 

 

And a corresponding a is calculated 
 

  (12) 

 

These values replace one of the nominal GPS values in the nominal ionospheric a and g vectors and are 
then used to evaluate PPE>PL(UDREI, GIVEI, bfault) using (A.21). 
 

The analysis also calculates the probability of missed detection, Pmd, for the CCC monitor given a fault of 
magnitude bfault.  This is obtained from the CCC monitor threshold, TCCC(UDREI) and the CCC monitor test 
statistic stest(UDREI): 
 

  (13) 
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The CCC metric values used by the analysis are listed in Table 4.  The values are listed in meters.  The 
maximum value is applied to all GEOs and to all larger UDREI values. 

Table 4: GEO CCC Metric values in meters 
 

 CRW CRE SM9 S15 Final 

UDREI stest,L1 stest,L1 stest,L1 stest,L1 sCCC,GEO 

10 0.502 0.434 0.643 0.409 0.643 

11 0.155 0.344 0.198 0.150 0.643 

 

 
Finally, an a priori rate of CCC fault is also applied.  The final calculation of HMI for a CCC fault is then the 
maximum value of the product of these three probabilities: 
 

  (14) 

 

Figure 2 illustrates this process as a function of the CCC fault magnitude.  The red lines show the 
probability that the actual user error will exceed the corresponding protection level for the provided 
sigmas and biases including the fault bias whose magnitude is shown on the x-axis.  There are three lines 
with the solid line corresponding to the Vertical Protection Level (VPL), the dashed line corresponding to 
the matching Horizontal Protection Level (HPL), and the dashed dot line corresponding to the HPL for 
Non-Precision Approach (NPA).  As expected, these lines increase as the fault magnitude increases and 
gradually approach one as the fault magnitude exceeds the UDRE (7.5 m in this example).  The blue line 
shows the probability that the CCC monitor will fail to detect a fault of such magnitude.  It starts at 1 for 
very small faults and goes to 50% at the monitor threshold (around 5 m for this UDREI) and rapidly 
becomes smaller as the magnitude increases.  The cyan lines show the prior probability that CCC fault 
will be present during the period of time of the operation (150 seconds for vertical or LPV and one hour 
for NPA).  The magenta lines show the product of these three lines and shows the probability that a fault 
will be present, will go undetected, and lead to a Position Error (PE) that exceeds the PL.  It is evaluated 
as a function of the fault magnitude and the maximum value is selected. 
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Figure 2 GPS CCC Fault Probabilities 

 

The black lines represent the WAAS fault tree allocation for a CCC fault creating Hazardously Misleading 
Information (HMI) on a GPS satellite for each operation.  As can be seen, the magenta line is below the 
black line for all possible fault values.  This value was evaluated for all possible values of UDREI and 
GIVEI and the risk was maximized for the values of UDREI = 10 and GIVEI = 9 as shown in the plot. 

The same process is used then applied to each GEO in turn.  The only difference is that because the 
nominal GEO bias is predominantly caused by code-carrier incoherence that the monitor is designed to 
detect, the faulted bias replaces the nominal bias, unlike the GPS case and all subsequent GEO fault 
cases.  Figure 3 shows these results where the maximum also occurred for UDREI = 10 and GIVEI = 9 and 
on PRN 131.  Note that for the GEO CCC fault the prior probability of fault is considered to be 1.  Again 
the probabilities meet their respective allocations. 
 



 
 

 
Figure 3 GEO CCC Fault Probabilities on PRN 131 

SQM	Faults	
A similar process is used to evaluate SQM faults as is described in the previous section.  It is also more 
difficult to evaluate Pmd in the user range domain for the SQM Monitor.  An SQM analysis evaluates the 
ability of the monitor to detect values in the SQM metric domain.  It then maps these values through the 
SQM fault model to determine the corresponding maximum user threat.  These biases and Pmd values 
are then tabulated and recorded for use for this GEO bias analysis.  The biases are used to create faulted 
a and g elements that are calculated as in (11) and (12).  Additionally, an a priori is used: 
 

  (15) 

 

This maximum is calculated for both the vertical and horizontal case and then compared to the 
corresponding SQM GPS fault tree allocation.  The same process is applied to each GEO in turn.  Figure 4 
shows the worst-case result for the GPS SQM threat analysis. 
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Figure 4 GPS SQM Fault Probabilities 

UDRE	Faults	
The UDRE fault evaluation is similar to the SQM fault evaluation.  However, unlike the CCC and SQM 
monitors, the UDRE monitor does not have a unique Pmd given a bias and a UDREI.  Instead, there are a 
range of possible Pmd values that depend upon the number and quality of the reference station 
observations.  A simulation was run using our Matlab Algorithm Availability Simulation Toolset (MAAST) 
[10] with the standard constellation specified in Appendix B of the WAAS MOPS [8].  Every five minutes, 
over a 24-hour period, the UDRE monitor equations were evaluated for each satellite in view.  A range of 
biases were evaluated from zero to the MERR value, to determine the corresponding Pmd(UDREI, bfault) 
for that specific observing geometry.  The maximum Pmd for each UDREI and bfault were determined 
across all satellites and all time-steps.  This maximum Pmd and the corresponding biases were recorded 
into files for use in the analysis.  For the a priori probability, a conservative value of 1 is used.  The net 
PHMI for the faulted UDRE case is then the product of the three probabilities: 
 

  (16) 
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This maximum is calculated for both the vertical and horizontal cases and then compared to the 
corresponding UDRE GPS fault tree allocations.  The same process is applied to each GEO in turn.  Figure 
5 shows the worst-case results of the GPS UDRE evaluation. 
 

 

Figure 5 GPS UDRE Fault Probabilities 

Summary	of	Results	
Table 5 shows the summary results for all 7 cases.  Nearly all of the above evaluations meet their 
allocations and therefore successfully pass.  The one failure case is for a GPS UDRE fault with a UDREI 
value of 10 and a GIVEI value of 9 as shown in Figure 5.  This indicates that there could be an excess risk 
of 5 × 10-10 due to this underbounding.  However, this analysis is extremely conservative and assumes 
that all sigma values are at their minimum values and all biases are at their maximum value and aligned 
with the worst possible combination of signs.  Given these conservative assumptions, It is likely that the 
calculation itself is overly conservative by at least this margin.  Further, it can be seen that some of the 
other fault cases pass with more margin than this.  Thus, it is possible to reallocate risk on the fault tree 
and meet our top level objective.  Therefore, it is recommended that the system can operate with all 
four GEOs for several weeks and still meet its integrity requirements. 
 



 
 

Table 5: Largest Risk Per Case 

Condition Satellite Affected by 
Fault 

Fault Tree Vertical  
Allocation 

(per Approach) 

Max Vertical Risk 
Probability 

(per Approach) 
Fault-free Performance None 6.66×10-10 4.63 × 10-16 
CCC Fault GPS 4.17 × 10-13 6.50 × 10-16 
CCC Fault GEO 1.00 × 10-10 1.05 × 10-21 
SQM Fault GPS 2.50 × 10-9 1.59 × 10-11 
SQM Fault GEO 2.50 × 10-9 1.67 × 10-9 

UDRE Fault GPS 2.25 × 10-8 2.30 × 10-8 
(1.47 × 10-8 for 3 GEOS) 

UDRE Fault GEO 2.25 × 10-8 1.30 × 10-8 
 
 
The analysis also examined the case where CRW is retired and only three GEOs are operating, the 
expected long-term operational case.  It found that when there are only three GEOs all of the above 
numbers decrease, and the GPS UDRE fault case goes below its allocation.  It will now have the value of 
1.47 × 10-8.  This analysis has demonstrated that the observed system performance allows the maximum 
2.5 m GEO CMCI biases tolerated by the CCC monitor trip thresholds to be present on all three GEOs and 
still meet the overall PHMI requirements.  It further argues that temporary or even extended operation 
with four GEOs is safe given the extremely conservative nature of the analysis.  This section 
demonstrates that sufficient margin exists to handle both the fault-free and faulted conditions. 
 

Conclusions	
The GEO bias analysis examines the risk of unbounded position errors due to the simultaneous presence 
of nominal bias terms (>2.5 m in the case of the GEOs) and faults.  The analysis demonstrates that the 
combination of the prior probability of the fault occurrence, the probability that the monitors will fail to 
detect the fault, and the probability that the position error will exceed the corresponding protection 
level is smaller that the allocated probability of hazardously misleading information (HMI) in the WAAS 
fault tree with one exception.  That exception is sufficiently close to the requirement, that the excess 
risk can be absorbed by other sections of the fault tree.  Therefore the conclusion of the analysis is that 
the proposed operation meets the top level safety requirement.  The analysis utilizes the large margin 
between the broadcast confidence bounds (UDRE and GIVE) and the actual error distribution Gaussian 
overbounds.  There are several conservative steps in the process that allow it to be applied for every 
geometry and for worst possible combinations of biases, faults, and nominal errors.  The appendix 
derives a method to apply separate upper bounds (i.e. the amin parameter) for each of the GEOS and for 
all of the GPS satellites.  This new method allows for a significant reduction in the upper bound of the 
estimated probability of HMI (PHMI).  Using this approach, we have been able to validate that despite 
the potential presence of large biases on each GEO, the GEO UDRE values could be set as low as 7.5 m 
on WAAS for the proposed four operational GEOs.  Previous analyses could not support such large 



 
 

biases on multiple GEOs.  This analysis allows WAAS to retain useful range error bounds on all four of its 
GEOs and increase vertical guidance availability of the system. 
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Appendix	 Derivation	of	Optimal	Calculation		
 

The optimal evaluation of (2) can be computed by finding the minimum value over all possible 

geometries: 

 

  (A.1) 

 

This can be solved with Lagrange multipliers as follows: 

 

  (A.2) 

 

The problem becomes: 

 

  (A.3) 

 

Where we have substituted a and g as defined in the previous sections.  We define the Lagrangian 

associated to this problem: 

 

  (A.4) 

 

Because we want to find the minimum with respect to x, we calculate the derivative: 

 

  (A.5) 

 

The minimum will occur at , from which we obtain: 
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  (A.6) 

 

We can separate x and square both sides to obtain 

 

  (A.7) 

 

We can cancel the x terms on the left side and the numerator of the right by multiplying by aj
2 and 

summing over j. 

 

  (A.8) 

 

Cancellation yields 

 

  (A.9) 

 

We then define a new variable f: 

 

  (A.10) 

 

So that we now only need to solve a function with the single variable f whose optimal values satisfies: 

 

  (A.11) 
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Because both xj and gj are greater than or equal to zero, we know that the quantity inside the 

parentheses in (A.6) must also be greater than or equal to zero.  This requirement is equivalent to: 

 

  (A.12) 

 

We also know that the optimal value of f minimizes (A.11), so that: 

 

  (A.13) 

 

Therefore: 

 

  (A.13) 

 

The search for fopt can be done numerically by interval halving starting between upper and lower values: 

 

  (A.14) 

 

The analysis evaluates the midpoint in (A.13) and if result of the sum is greater than one, the midpoint 

becomes the new upper bound.  Otherwise the midpoint becomes the new lower bound.  The process is 

repeated until the difference between the upper and lower bounds is below a threshold (set to 10-7).  

Once fopt is determined, we determine λ by putting (A.10) into (A.7): 

 

  (A.15) 

 

Applying the constraint 
 

  (A.16) 

 

We can solve for l: 
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  (A.17) 

 

We can then use (A.15) to solve for xj: 

 

  (A.18) 

 

Finally, we can solve for the optimal maximum right side probability of having the position error exceed 
the protection level by inserting the values xj,opt into (A.3): 
 

  (A.19) 

 

The left side probability can at most be equal to this value as it is evaluating the Gaussian tail farther 
from the biases.  We can also determine another upper bound on the left tail.  It would be at its largest 
if all of the bias values were zero.  Evaluating (7) in this case provides 
 

  (A.20) 

 

Therefore the left tail probability can be considered the minimum value between (A.19) and (A.20).  
Therefore the combined left and right tail probability can be obtained from 
 

  (A.21) 

 

This represents an upper bound on the total probability of the position error exceeding the protection 
level. 
 

If all of the a values to be evaluated are identical, there is no difference in performance between the 
optimal calculation in (A.16) and the simplified calculation in (7).  For example, if there are 14 satellites 
in view and all have a values of 2 and g values of 1, both calculations return the value of P = 2.28 × 10-12 
for a KMOPS value of 5.33.  However, if half of the a values are increased to 3, the simplified solution 
returns the same value because it uses the minimum a.  However, the optimal solution returns a 
probability of P = 3.25 × 10-15, a significant improvement. 
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