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ABSTRACT: One of the intended purposes of recently proposed Global Navigation Satellite System (GNSS) sig-
nals is the provision of high integrity positioning sufficient for use in aviation. Caution is required, as the integ-
rity requirements for aviation, particularly precision approach, are very strict. There must be less than a one in
ten million chance of providing misleading information to the pilot. Further, each individual nation is responsi-
ble for approving equipment and procedures in their sovereign airspace. In order to make use of signals over
which they have no control, aviation authorities must have a clear understanding of the commitments and
capabilities of these new signals. This paper proposes equations to combine information from the satellites to-
gether with other error bounds to form appropriate upper bounds on the users’ position estimates. The bounds
are matched to proposed data monitoring criteria that ensure consistency between what has been observed and
what is assumed by the bounding equations.

INTRODUCTION

The Global Positioning System (GPS) is in the
process of adding new capabilities. This moderniza-
tion effort includes new civil signals whose capabil-
ities improve greatly over the currently available
signal [1–3]. In addition, new constellations are
being fielded that will offer a much larger number
of satellite navigation signals.

It is important for Global Navigation Satellite
System (GNSS) service providers to clearly describe
the performance of their signals. This includes im-
portant parameters such as the expected accuracy,
probabilities and behaviors of fault modes, time to
alert, confidence bounds on the signal in space
errors, and how to combine the confidence bounds
with other error sources and across multiple satel-
lites. Some of these parameters are more easily
specified and evaluated than others. Existing aug-
mentation systems use the concept of Gaussian
Bounding to assure that the confidences are cor-
rectly combined to produce a confidence bound in
the position domain. Unfortunately, Gaussian
behavior can be difficult to evaluate. Small samples
of Gaussian data may appear to be non-Gaussian
and non-Gaussian behavior may not be readily
apparent in sampled data sets. Instead, we propose
well-defined tests of sampled data that evaluate
specified error quantiles using data sets of fixed

length. These quantiles (e.g., within two-sigma 95%
of the time) may correspond to expected Gaussian
behavior, but by fixing the sample interval and
number of samples we can achieve a common under-
standing of precisely how to interpret probabilities
and error distributions. By specifying several such
evaluations at different quantiles and data set
lengths, we can bound the full error distributions.

We then show that these evaluations can be rig-
orously linked to confidence bounds on the signal in
space errors through a previously developed tech-
nique called paired bounding [4]. Paired bounding
allows us to create safe protection level equations
that ensure that any combination of signal and
user errors has a corresponding confidence bound
that meets the required level of integrity. What is
unique in this approach is that clear unambiguous
evaluations of signal in space errors can be mutu-
ally agreed upon by GNSS service providers and in-
tegrity service authorities. These evaluations will
aid in the approval for use of the high integrity sig-
nals. Further, they will enhance the ability to com-
bine integrity from different GNSS service pro-
viders to create a more powerful multi-constellation
service. This approach is applicable to stand-alone
safety of life services or integrity provided through
multi-constellation Absolute Receiver Autonomous
Integrity Monitoring (ARAIM).

These evaluations are not intended to serve as a
complete integrity analysis. Instead, they are
intended to complement design assurance. That is,
a system will have integrity because the GNSS
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service provider designed it into the system, not
because it has performed well for a fixed time.
Evaluation of the system is merely used to confirm
that the integrity design goals continue to be met.
A system that is not designed for integrity cannot be
assured to be safe into the future no matter how
long it has been observed to perform safely in the
past. Certain rare fault modes may not be observed,
but could present themselves when new conditions
arise. Each GNSS service provider must create a
complete hazard evaluation on their system and
assure that all significant hazards have an adequate
mitigation. This analysis combined with evaluation
of the actual performance provides the full assurance
that the system will meet its integrity specifications
over the lifetime of the system.

GPS SPECIFICATIONS

We will concentrate our analysis in this paper on
the GPS satellites and use nomenclature typically
associated with this constellation [5]. The pro-
posals would apply equally well to any other con-
stellation with only small adjustments to the ter-
minology. The Signal-in-Space (SIS) errors that are
under the influence of the GPS ground control and
space vehicle segments are referred to as Instanta-
neous User Ranging Errors (IUREs). These include
satellite clock and ephemeris errors, satellite
antenna variations, signal imperfections, and
broadcast data errors. Specifically, the IURE does
not include ionospheric or tropospheric delay, or
user receiver errors such as multipath. The IURE
is an instantaneous error affecting a particular
user at a particular time. The satellites broadcast
a parameter called User Ranging Accuracy (URA)
that is intended to be a conservative representa-
tion of the expected Root Mean Square (RMS)
behavior of the IURE at the worst-case location on
Earth. The URA is meant to describe the accuracy
of the IUREs and indicate an upper limit on their
likely magnitude.

The current GPS specification only assures sig-
nals to have their IURE no greater than 4.42 x
URA with a probability of 1025/hour [5]. This is
not sufficient for high integrity aviation operations
without additional protection. However, as part of
its modernization, GPS is investigating a signifi-
cant system design change to support URAs that
are assured to bound IUREs to within 5.74 x URA
with a probability of 1028/hour [6]. Satellites that
meet this requirement will have a new specific in-
tegrity flag set to one. In this event, GPS may be
able to support certain aviation applications with-
out augmentation. None of the current GPS satel-
lites have their integrity flag set. The integrity flag
will only be set on future generations of satellites.

This paper investigates both how future assured
URA values may be combined to form an assured
position domain bound and how non-assured satel-
lites could be used with ARAIM to achieve the
same goal.

LESSONS LEARNED FROM PREVIOUS SYSTEMS

One significant difficulty encountered when
developing the safety analysis for the Wide Area
Augmentation System (WAAS) and the Local Area
Augmentation System (LAAS) was the presence of
small biases and non-Gaussian behavior observed
in data used to validate the analyses. The integrity
equations for these systems are based upon
assumed zero-mean Gaussian behavior. The sigmas
broadcast for use in these equations were inflated
to account for worst-case behavior that in turn led
to larger protection levels. However, the underly-
ing mathematical assumptions required exactly
Gaussian and zero-mean characteristics. Although
it was known that the distributions were not
exactly Gaussian, it was discovered that nearly-
Gaussian was a very poorly defined term. It was
necessary to determine what was sufficiently
Gaussian and what was not. This could be done
subjectively, but not everyone would agree on the
dividing line. Additional analyses were created to
ensure that the protection levels were sufficiently
large to cover observed imperfect behavior. How-
ever, these new analyses imposed additional con-
straints on the system and further limited per-
formance [7]. It is therefore strongly recommended
that future systems use integrity equations that
can directly account for biases and non-Gaussian
behavior.

Fortunately, both can be accommodated by the
inclusion of a bias term in the protection level
equation. The handling of biases would then be
explicit. A technique called paired bounding [4] is
used to bound non-Gaussian behavior. It states
that an arbitrary error distribution can be replaced
by simple analytic models if the arbitrary distribu-
tion lies entirely in between two models. Because
the sign of a bias is not important to the protection
level equation, N(2l, r) and N(l, r) are bounded
by the same protection level parameters. There-
fore, any distribution whose Cumulative Density
Function (CDF) lies between the CDFs of those
two distributions can be bounded by that biased
Gaussian model.

Another significant lesson is that estimation of
an underlying error distribution can depend
greatly on the sample set chosen [8]. Because
many error sources may change behavior over
time, the observed characteristics may also change
with time. This may apply to many different error
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sources such as unmodelled pseudorange errors
caused by multipath, satellite clock errors, or iono-
spheric delay. When bounding such errors, it is
necessary to bound the worst expected distribution.
However, if one only looks at a small population of
data, it is unlikely that the largest expected errors
will be sampled. If one aggregates too much data
together, different conditions will all be mixed to-
gether creating an average rather than finding the
worst-case condition. Therefore, it is best to collect
as much data as possible, but partition it into the
smallest statistically significant subsets. Ideally,
these subsets would each contain only like condi-
tions, such that the observed errors are drawn
from the same distribution. In practice, this cannot
be assured.

For integrity to be maintained, each and every
data set must be bounded by the assumed distribu-
tion. This ensures that if there is non-stationary
behavior, the worst observed cased is overbounded.
Each data set must have a sufficient number of in-
dependent data points to assure that the distribu-
tion is properly sampled. Very small data sets
could contain rare normal errors that make them
appear to be worse than they really are. By having
a sufficient number of independent points, rare
normal errors should be appropriately balanced by
smaller nominal errors. However, there should not
be too many points as rare faults could be com-
pletely obscured by the nominal majority of the
data. Therefore, it is desirable to partition the data
into sets that contain close to the minimum num-
ber of independent samples required. How many
samples are required depends on the quantity
being evaluated. A mean value can be determined
with perhaps a few hundred samples. However, a
99.9% bound will require at least several thousand
independent samples.

The final significant lesson discussed in this pa-
per is that small errors can combine to create large
position errors. Most integrity analyses focus on
single large errors. However, multiple smaller
errors can also create a threat if they occur at the
same time. This can occur in error distributions
that have an excess of one to three sigma errors
even if they never have larger errors. Because
these moderate errors are occurring too often,
there is a greater chance that they are occurring
on different satellites at the same time. Thus, the
likelihood of large position errors could be greater
than implied by independent Gaussian distribu-
tions.

Alternately, if the errors are correlated across
satellites, they may occur individually with the
expected frequency, but when one error is moder-
ate to large, the other errors will be as well. This,
too, creates a greater likelihood of unacceptably
large positioning errors. Therefore, it is important

to ensure that the likelihood of separate errors
combining to create a larger positioning error is
not higher than expected. To monitor this threat,
we propose evaluating the central portion of the
error distribution rather than just the tails. Fur-
ther, we recommend evaluating a chi-square metric
to directly observe the sum of the squared errors
across multiple satellites.

The recommended actions in response to these
three lessons are explained in greater detail in the
following sections. We also include some prelimi-
nary results of evaluations performed on past GPS
data.

VERTICAL PROTECTION LEVEL EQUATIONS

When the WAAS Vertical Protection Level (VPL)
equation was created, it was believed that WAAS
would differentially remove all significant biases
[9]. That is, if a bias was known to exist, WAAS
would estimate it and remove it. The resulting
error would then be unknown and time varying.
Since that time, constant unobserved measurement
biases have been identified. Therefore, the WAAS
estimate may have a component that, while
unknown, is very slowly time varying. It is not cor-
rect to RSS such an error with the other terms
when it is not random. WAAS added specific analy-
ses to ensure that these unobserved biases are
adequately taken into account despite the lack of a
bias term in the VPL equation.

These analyses presume that the number of
pseudoranges used in the position solution is
limited below a maximum number and that every
satellite error bound has a minimum amount of
margin to protect the user from the biases. This
margin has to exist even on satellites that do not
contain the bias [7]. These two constraints make it
more difficult to adapt to system changes. Adding
new ranging sources increases the maximum num-
ber of potential ranging signals in view. This can
increase the amount of margin needed in the
bounding terms. Also, a slightly larger bias on a
particular satellite can lead to requiring additional
margin on all other satellites. These effects are
due to having to protect against biases that must
be added together linearly when there is only a
Root of the Sum of Squares (RSS) term in the VPL
equation.

This imperfect matching has led to an inflation
of the protection level values that may be as much
as 20% [7]. As we move forward it is desirable to
explicitly include terms to account for non-zero-
means and non-Gaussian behavior. We recommend
including a bias term. This term is used to bound
errors that may appear random, but that affect
users in the same way repeatedly. Examples of
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such biases are antenna biases [10] or nominal sig-
nal deformations [11, 12]. These error sources affect
a particular geometry identically each time it is
encountered. Thus, a maximum bias term is
included to bound the effect of these error sources.
If we follow the terminology of the WAAS Minimum
Operational Performance Standards (MOPS) [13],
where KV is the Gaussian quantile matching the
probability of misleading information, s3,i is the
projection of the ith pseudorange error into the ver-
tical dimension, and rtropo and ruser Gaussian
bound the tropospheric and dual-frequency user
error, respectively, then the recommended VPL is
given by:

VPLGIC ¼ KV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

s2
3;i3 a2

13URA2
i þ r2

trop;i þ r2
user;i

� �s

þ
Xn

i¼1

s3;i3 a23URAi þ a3ð Þ
�� �� ð1Þ

where URA is the broadcast confidence factor from
the satellite, and the a terms are parameters that
can be adjusted to ensure integrity.

If the satellite errors were zero-mean Gaussian
and properly overbounded by URA, then the a
terms could be a1 ¼ 1, a2 ¼ a3 ¼ 0. If there were
small biases independent of the URA value and the
URA needed to be inflated 25% to overbound the
remaining errors then these terms could be a1 ¼
1.25, a2 ¼ 0, a3 ¼ bias overbound. These parameters
offer the flexibility to adjust the VPL equation to
match currently unknown satellite error character-
istics. These terms will be determined later when
these characteristics are well known. They could be
hardcoded into the MOPS and the receiver, or they
could be broadcast dynamically to the user.

If the satellite signals do not have fully assured
integrity, then the users will need to perform their
own fault detection. Comparison of subset solutions
has been shown to be an effective means of detect-
ing and isolating satellite faults [14, 15]. If the
probability of multiple faults being present during
the required interval is sufficiently small, then
only subsets excluding a single satellite need to be
investigated.

Proposed ARAIM VPL equations [15–17] are
very similar in form to the assured integrity equa-
tion above. They have several terms starting with
the all-in-view solution:

VPL0 ¼ K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

s2
3;i3 a2

13URA2
i þ r2

trop;i þ r2
user;i

� �s

þ
Xn

i¼1

s3;i3 a23URAi þ a3ð Þ
�� �� ð2Þ

The subset solution terms are given by:

VPLj ¼ Kj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1; i6¼j

j s2
3;i3 a2

13URA2
i þ r2

trop;i þ r2
user;i

� �vuut

þ
Xn

i¼1

js3;i3 a23URAi þ a3ð Þ
�� ��þ Dj ð3Þ

where Dj is the actual or expected difference in the
position estimate between the subset excluding the
jth satellite and the all-in-view solution, and the K
values are related to the probability allocated to
each fault mode. The final VPL is determined by
taking the maximum over the all-in-view and the
subset values,

VPLARAIM ¼ max
j¼0;n

VPLj (4)

Full details of the algorithm can be found in [15–
17]. Because this paper is concerned with monitor-
ing of the SIS errors that are under control of the
ground and space segments, specific modifications
for the tropospheric and user errors have not been
included. Both error sources likely include bias
errors and non-Gaussian behavior and future work
will examine the benefits of adding bias terms for
these error sources as well.

MONITORING INDIVIDUAL SATELLITES

In order for the above VPL equations to properly
bound the user position error, certain assumptions
have to be valid. The CDF of the actual satellite
errors must be bounded to the left by the Gaus-
sian, N(2a2 x URA 2 a3, a1 x URA), and to the
right by the Gaussian, N(a2 x URA þ a3, a1 x
URA). The other errors must be similarly left-right
bounded by their respective terms. Unfortunately,
we do not know the true CDF of the errors. We
can only estimate it from sampled data. This sam-
pling will take place over an extended time, so it
may mix many conditions together, yielding not an
instantaneous distribution, but an averaged one.

Ideally, we would like the true distribution to be
bounded at every instant. If the conditions did not
change over time, then the average and instanta-
neous distributions would be the same. Unfortu-
nately, we know that some conditions do vary with
time, the satellites age, the clock and ephemeris
estimation accuracy varies with observability, etc.
Therefore, it is best to collect data over many sam-
pling periods and compare each set of results to
the others, so that we may better understand how
conditions may change over time. If we know of
changing conditions, we should attempt to parti-
tion data sets to group like behaviors together. For
example, data from a satellite in Earth’s shadow
may be separated from data taken in direct sun-
light. By keeping data sets as small as practical
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and comparing many of them, we can hope to iden-
tify unexpected changes should they occur.

Another issue is the specification of probabilities.
The current specification says that the probability
of the instantaneous error exceeding 4.42 x URA
without a timely alert is less than 1x1025 in any
given hour. However, how is this to be interpreted
and/or evaluated? Looking at past data one will
see that either this condition was met or that it
was not. It is not possible to tell what the probabil-
ity was during any given hour. If the probability
were equally likely for any given hour, then one
could evaluate 105 hours to ensure that no more
than one was affected. However, this is longer
than 11 years. If a larger error is seen during the
first few years of operation, should the satellite
continue to be evaluated for the full 11.4 years to
make sure that no more occur and then decide
that each hour did have a 1 3 1025 chance? If two
separate large errors are seen early on but then
nothing for the next 20 years, does the satellite
satisfy the specification?

It is impossible to know from the above informa-
tion whether the satellite met the specification and
was safe to use at all times. The user conducting
an approach during the time of the failure is not
helped by the fact that the satellite performed well
at all other times. Nor does this large average
probability necessarily reflect the instantaneous
likelihood. Unfortunately, it is not possible to eval-
uate such low probabilities without large amounts
of data. But shorter periods than 11 years are pos-
sible to evaluate. It is also important to under-
stand how such low probabilities are used to
assure the position bound.

A distribution tail probability requirement, such
as not to exceed 4.42 x URA with probability
greater than 1 3 1025 per hour, may be used in
three different ways: it can become an effective
upper limit, particularly for even lower probabil-
ities; it can be used to assure multiple large errors
are unlikely, so that combined variances of inde-
pendent errors can be RSSed; and, for ARAIM, it
can be used to assure multiple large errors are
unlikely, so that only one fault mode at a time
need be considered. For each use, it is possible to
specify alternate means to ensure these goals. At
very low probabilities, such as 1 3 1028 per hour,
such a requirement is best evaluated as a not to
exceed number. Thus, even though it is formally
acceptable to be exceeded once every 11,000 years,
in practice this should never be seen.

In order to assure that errors RSS together as
expected, one can monitor their RSS. This is sim-
pler and more direct than requiring Gaussian per-
formance and independence, neither of which is
likely true. Instead, by examining the chi-square
value, one can directly assure that errors are not

all simultaneously becoming large. This is not com-
pletely ideal as the users will weight the error
sources differently, so the chi-square value does
not measure exactly what is being used. The next
section shows that the chi-square value provides
an upper bound for the RSS term in the VPL.

An assurance that there will never be a situation
when more than one satellite has an error greater
than 4.42 x URA may be as useful to the ARAIM
algorithm as a probability commitment. Such a
statement could be used to limit subset analysis to
only one faulty satellite at a time. A requirement
stated in this manner is also much easier to verify
than a 1 3 1025 probability. Thus, instead of speci-
fying probabilities, the desired properties could be
specified in other terms that better support the
intended usage and for which complaince may also
be easier to assess.

We turn now to a potential means of practically
evaluating the distribution of the SIS errors. Eval-
uations of probabilities have an ambiguity. They
can be monitored over different time-frames using
different data sets. Two observers looking at the
same satellite may disagree as to whether a cer-
tain probability requirement is met depending on
how much conforming data they aggregate to-
gether with an observed violation. A specification
of probability that can be unambiguously tested
must include the length of time for evaluation.
Therefore, rather than merely specifying a proba-
bility such as 1 3 1025, we will also specify a time
interval over which to evaluate the probability.

Another important characteristic is the duration
of the error. A moderate error may be tolerated for
a relatively long time because by itself it is
unlikely to create a large positioning error. How-
ever, large individual ranging errors can much
more easily create hazardous positioning errors.
A GPS satellite can be seen by nearly half of the
Earth and an hours-long error could affect many
thousands of aircraft. If a large error were to occur,
it is better to have it reduced quickly rather than
allow aircraft after aircraft to be affected at each
visible location. Thus, rather than specifying a
probability we will specify a corresponding fraction
of the time interval that can tolerate a fault of a
certain magnitude.

Following the discussion above, we propose pre-
liminary monitoring criteria for evaluation. These
are based upon expected Gaussian behavior,
although the underlying behavior need not be
strictly Gaussian. We propose monitoring the
mean, RMS, 1 x URA, 2 x URA, 3.29 x URA, 4.42 x
URA, and 5.73 x URA values of the maximum pro-
jected signal in space error. The last five corre-
spond to Gaussian probabilities of 0.32, 0.05,
0.001, 1 x 1025, and 1 x 1028, respectively. Assum-
ing a 15-minute correlation time, to match the
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future GPS data upload rate, we propose time
intervals that will have at least as many independ-
ent observations as one over the corresponding
probability of exceeding the threshold. These are
only starting recommendations, the final values
will require greater study of actual correlation
times and will also have to consider practical limi-
tations. The proposed evaluation criteria on each
individual satellite are:

• The RMS of IURE/URA over any given 24
hour period shall not exceed 1;

• The absolute mean value of IURE/URA shall
not exceed 0.5 over any given 24 hour period;

• The absolute value of any IURE shall not
exceed the URA for more than 7.7 hours in
any given 24 hour period;

• The absolute value of any IURE shall not
exceed 1.96 x URA for more than 1.2 hours in
any given 24 hour period;

• The absolute value of any IURE shall not
exceed 3.29 x URA for more than 45 minutes
in any given 31 day period;

• If the integrity flag is set, the absolute value
of any IURE shall not exceed 4.42 x URA for
more than 300 seconds in any given year-long
period, otherwise shall not exceed this except
for major service failures; and,

• If the integrity flag is set, the absolute value
of any IURE shall not exceed 5.73 x URA for
longer than 5.2 seconds at any time or loca-
tion.

If the integrity flag is not set, then the satellite
has 1 x 1025 per hour probability of a major serv-
ice failure occurring. Here a major service failure
is defined to be an error of 4.42 x URA or greater
and its duration could be as long as six hours.
Clearly, a satellite that does not have its integrity
flag set cannot provide assured position domain in-
tegrity without some additional augmentation.
However, such a satellite may be used with
ARAIM. This specification should be recast to
make the interpretation of 1 x 1025 per hour clear.
If there are 32 satellites without the integrity flags
set, an average of three per year would experience
major service failures. Therefore, the above
requirements should be amended to allow up to
three separate major service failures per year to be
excluded. Each service failure must affect only one
satellite at a time and up to six contiguous hours
[5] may be removed per failure. Events more than
six hours apart must be counted as separate, as
must events affecting separate satellites. It is also
not acceptable for two satellites to have overlap-
ping major service failures (one must end or be
alerted to the user before another may start).
ARAIM algorithms assume that the probability of

two or more simultaneous independent faults is
well below 1 3 1028/hour.

Figure 1 provides an illustration of several of
these checks and their implication on the CDF of
the errors. This plot is a normal probability plot
also referred to as a quantile-quantile (q-q) plot.
The y-axis shows the ordered, observed errors and
the x-axis corresponds to the quantile (fraction) of
the observed data that is below each value. The
bottom shows the probabilities and the top axis
shows the corresponding Gaussian values. If the
observed distribution were a zero-mean, unit-var-
iance Gaussian, the data would fall along the diag-
onal line shown. If the data were zero-mean, but
with a smaller variance, it would still follow a
straight line but it would have a smaller slope
as shown. Non-Gaussian distributions will have
curved lines. The proposed evaluations are shown
as corners in a staircase boundary on the plot.
Data that passes these evaluations will lie in the
white unshaded region. Data that fails will cross
the boundary into the shaded region.

Note that a typical q-q plot is usually made up
of a single set of data rather than the different
time periods noted. Further, the tests are to apply
to any such period, for example any 24 hour pe-
riod, not merely ones that begin and end at mid-
night. Thus, Figure 1 is more illustrative of how
the tests restrict the CDF rather than specifically
how they are implemented.

Fig. 1–The normal probability plot is shown with the proposed
evaluations highlighted. The actual CDF must not enter the
shaded region. A standard, unit-variance Gaussian distribution
is shown as the diagonal line. A Gaussian with a smaller var-
iance would have a smaller slope as shown.
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Figure 2 focuses on the upper right-hand quad-
rant of this plot. It shows that a CDF that avoids
the shaded region can also be bounded by a Gaus-
sian with a mean of 0.9 and a sigma of 1.33. Thus,
these discrete evaluations can be replaced with a
single Gaussian form. The concept of paired bound-
ing [4] can be applied. If the actual distribution is
always to the right of N(l,r) and to the left of
N(2l,r), then it can be said to be bounded by
N(l,r). It will also be bounded by N(l,r) if it can
be right-left bounded by a Gaussian with the same
means, but a smaller sigma. Thus, a nearly arbi-
trary distribution in the acceptable region of Fig-
ures 1 and 2 can be Gaussian bounded with known
attributes.

Figure 2 also suggests that a tighter Gaussian
bound may be possible if the evaluation points are
trusted and one is not concerned that the actual
CDF may have the worst-case properties in
between each evaluation point. In this case, the
Gaussian N(.5, 1) bounds the evaluation points
and likely behavior in between. Bounding with
this smaller Gaussian may translate into a signifi-
cant availability increase. Here we begin to see the
linkage between the evaluation points and the
Gaussian bound used for analysis. It is possible to
add more evaluations such that even tighter

bounds are possible, or it may be possible to
achieve the same level of performance with fewer
well chosen evaluations.

The corresponding Gaussian bound from paired
bounding directly connects back to the a parame-
ters in the VPL equations completing the link
between them and the monitoring. The mean pa-
rameter corresponds to a2 and the sigma parame-
ter to a1. Thus for the conservative bound in Fig-
ure 2, we would have a1 ¼ 1.33 and a2 ¼ 0.9. For
the less conservative bound we could use a1 ¼ 1
and a2 ¼ 0.5. The difference in availability between
these two is likely significant. The smaller values
may be used if one may safely assume that the
expected behavior is unlikely to be worst-case. If
this is not an acceptable assumption, additional
evaluations may reduce the conservatism of the
worst-case overbound.

MULTIPLE SATELLITE MONITORING

One of the key aspects of having low probability
of large errors is that, should a larger error occur
on one satellite, similarly large errors on other sat-
ellites or from other error sources are unlikely to
occur at the same time. Another means of evaluat-
ing whether or not one or more errors are combin-
ing to form a very large position error is to look at
the sum of the square of the normalized errors. If
the errors are close to Gaussian and independent,
then this sum will be close to chi-square distrib-
uted. By formally evaluating the chi-square, it is
possible to ensure that the RSS of the errors is
close to independent Gaussian expectations.

Therefore, we propose an evaluation of the form:

Xn

i¼1

IUREiðtÞ� < IUREiðtÞ >
URAiðtÞ

8>>: 9>>;2

� K2
prob (5)

where a common mode clock term, \IUREi (t)[, is
removed from the evaluation. The next question is
at what probabilities and time periods should such
evaluations be made? Following chi-square statis-
tics, an upper bound on the expected value, assum-
ing nine degrees of freedom and 1027 probability,
leads to a value of �7.1 for Kprob.

We propose adding the following monitoring
requirement:

• For satellites with the integrity flag set, the
sum of the squared ratios (IURE minus a
common clock term divided by URA) shall not
exceed 50.2 for longer than 5.2 seconds at any
time or location.

To understand the potential application of this
monitor limit, we look at the RSS component of
the VPL equation coming only from the SIS terms:

Fig. 2–This figure shows how Gaussian overbounds may be
determined from the evaluation. A smooth distribution that
stays inside the acceptable region may look similar to the zero-
mean, unit-variance Gaussian shown on the diagonal. Such a
distribution stays within the right-most corners of the boundary.
This boundary can be represented by a half-unit mean, unit-var-
iance Gaussian. A worse distribution that only just stays within
the boundary can be bounded by a more conservative Gaussian
model.
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VPLSIS ¼ KV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

s2
3;i3a2

13URA2
i

s
(6)

This is to be compared to the Vertical Position
Error (VPE) coming solely from the SIS errors:

VPESIS ¼
Xn

i¼1

s3;i3IUREi

�����
����� (7)

This can be rewritten as:

VPESIS ¼
Xn

i¼1

s3;i3
IUREi

URAi
3URAi

�����
����� (8)

According to the Cauchy-Schwartz inequality:

VPESIS �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

s2
3;i3URA2

i

s
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

IURE2
i

URA2
i

s
(9)

From (5) the second radical can be replaced with
Kprob leading to:

VPESIS � Kprob3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

s2
3;i3URA2

i

s
(9)

Therefore, provided KV 3 a1 ‡ Kprob we can be
assured that VPESIS � VPLSIS to the required
probability. This is only rigorously demonstrated
when the other error terms are neglected, but
because these other error terms are independent of
the SIS errors and if both are close to Gaussian,
the full VPL equations (1)–(4) are expected to hold
as well.

This leads to the requirement that if KV ¼ 5.33 as
in WAAS and Kprob ¼ 7.1 as above, then a1 ‡ 1.33.
This coincidentally matches the conservative over-
bounding value from the previous section. Smaller
values may be possible by exploiting other expected
properties of the s3,i factors or by exploiting existing
conservatism in the URAs to set Kprob lower. In the
next section we will see that historical data has
much lower observed chi-square values.

INDIVIDUAL SATELLITE RESULTS

To begin to see whether these proposed monitor
limits are reasonable, we examined historical GPS
data from the year 2008. IUREs were approxi-
mated by comparing the broadcast satellite clock
and ephemeris data to precise values as deter-
mined by the National Geospatial-Intelligence
Agency (NGA) [18]. These errors were then pro-
jected onto Earth’s surface to determine the maxi-
mum projected error at a given time [19].

These errors only approximate the actual IURE as
they only include the satellite clock and ephemeris

errors. Other possible SIS errors such as signal de-
formation [11, 12], antenna group delay variation
[10], and others are not included in this formula-
tion. Further, we only have precise orbit informa-
tion available every 15 minutes and even so, they
are not always available for every satellite at every
15-minute epoch. Thus, some errors may be missed
if they are shorter in duration than 15 minutes or
precise estimates are not available at the time. If
an anomaly makes it difficult to determine a pre-
cise ephemeris estimate, then that data may be
missing and the anomaly will not appear in this
record.

Some errors may be alerted to the user in ways
that are not evident in the recorded broadcast
ephemeris data. If the satellite switches to non-
standard data, it may not be reflected in the data
investigated. That is, precise orbits may still be
calculated, but new ephemerides that fail parity
checks are not recorded. Consequently, some of the
anomalies observed may not have really affected
users as they were alerted by alternate means
than the health bits in the ephemeris. These are
still being investigated to determine whether users
were actually affected. For this analysis, we will
assume that until the health bits were set unheal-
thy, users would incorporate that signal.

The most significant limitation of evaluation
with current or previous data is that the broadcast
ephemeris information is typically uploaded to the
satellite only once per day. Thus, errors are
strongly correlated over many hours instead of the
15-minute period assumed in selecting the pro-
posed evaluation periods. This is unfortunate
because the evaluation periods would need to be
extended by a factor between 10 and 100. However,
even the lower end of this range starts to make
the evaluation periods much too long to be practi-
cal. Therefore, we will start by using the proposed
evaluation periods, although we would not neces-
sarily expect even well-behaved satellites to pass
all tests.

For the existing GPS interface, the minimum
possible broadcast value of URA is 2.4 m. It
appears that much of the time the maximum pro-
jected IURE is much smaller, leading to excess
margin in the URA. It is not clear if this margin
would be maintained if it were possible to broad-
cast smaller values. The future signal on L5 does
allow smaller values to be broadcast and values of
0.7 m are being targeted. For 2008, the URAs
appear to be fairly conservative and many satel-
lites pass all of the evaluations proposed despite
the large difference in correlation time and update
rate (24 hours versus 15 minutes). Some of the sat-
ellites fail a few daily tests (RMS, mean, 1 x URA,
and/or 2 x URA). Three of the satellites have appa-
rent major service failures (errors greater than
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4.42 x URA). Again, these are unconfirmed failures
as they may have been alerted by a different
means than the ephemeris health bits. The
affected satellites are PRN 12, on April 2, PRN 9
on June 7, and PRN 27 on November 14. There
are unscheduled outage notice advisories associ-
ated with each event.

Figure 3 shows the results for all satellites eval-
uated for the full year. Note that most satellites
are very well behaved, that is, they are reasonably
linear indicating Gaussian behavior and their
slopes are noticeably smaller than 1, indicating
margin in the URA. All pass nearly through the
intercept indicating small mean values. For this
long time period all but the three previously identi-
fied satellites appear to pass the evaluations and
lie in the acceptable region. However, when eval-
uated over shorter periods of time, several of the
satellites fail an occasional daily test. These
smaller data set tests are an indication of poten-
tially non-stationary behavior.

To better understand the type of problem that
these daily tests may identify, we examined PRN
14. PRN 14 is a Block IIR satellite launched in late
2000. It failed the RMS, mean, 1 x URA, and 2 x
URA tests around day 45 of 2008. Figure 4 shows
the RMS test evaluated for overlapping 24-hour
periods every 15 minutes over the course of the
year. Around day 45, the RMS value increases to
more than triple its typical upper values. This indi-
cates that the satellite behavior at this time may be
unlike its behavior during the rest of the year.

Figure 5 looks at the time history of the maxi-
mum projected error around the day in question.

Up through day 44, the behavior is extremely
good. However, at the end of day 44 and into day
45 we see that the broadcast parameters are not
describing the actual satellite performance nearly
as well, and after day 45 we see another change in
behavior. During this time, the error never went
above 2.5 x URA, so it is hard to say for certain
what harm this effect causes. Around day 45 the
statistics for PRN 14 are different from other
times, but because the event only lasts for a day, it
is hard to fully characterize its new behavior. It

Fig. 3–This figure shows the q-q plot for the full year’s worth of
data for all satellites. In this plot, all but three satellites appear
to lie within the acceptable CDF region. However, several of the
satellites fail the shorter time period evaluations.

Fig. 4–The RMS of the maximum projected error divided by the
URA is shown for PRN 14 for all of 2008. These are overlapping
data sets accumulating 24 hours of data evaluated at 15 minute
steps. Near data 45 a short but significant increase is observed
indicating non-stationary behavior.

Fig. 5–The maximum projected clock and ephemeris error is
shown for PRN 14 around the time of the anomalous behavior.
Clearly, there is a change of behavior late on day 45 with a more
quickly changing error that is not fully compensated by the
broadcast parameters. Starting on day 46 another change in
behavior is observed.
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does appear that the probability of large error was
much higher during this period. Figure 4 indicates
that at a minimum the expected RMS behavior
was at least three times worse during this event.
Thus, any effort to exploit the margin seen during
the rest of the year, would be limited by such
behavior. Such events make it hard to place too
much confidence in the future performance of the
satellite. Other Block IIR satellites that were
launched near the same time do not exhibit this
same behavior. Does this anomaly indicate that all
satellites are susceptible to such behavior even if
they did not experience it in 2008? Satellites that
pass all tests provide much greater confidence that
their operation will continue to be well behaved
into the future.

Figure 6 shows the q-q plot for PRN 14. The
CDF is distinctly non-linear and hence non-Gaus-
sian. A year’s worth of good data does not hide the
bad day’s results in this case, although the daily
tests can be made to pass by extending evaluation
period to just three days. This is largely due to the
excess margin in the URA value. Thus, such tests
still do not guarantee finding all non-stationary
behavior. Although there is too little data here to
say for certain that this CDF is unsafe, it does not
firmly indicate that it is safe either. Aviation integ-
rity works more from the principle of guilty until
proven innocent, which means that this behavior
is a cause for concern. Precisely what happened
to PRN 14 on day 45 of 2008 should be further

investigated to understand how likely it is to hap-
pen again, to learn what the appropriate statistics
are during such an event, and to determine if
other satellites are likely to be similarly affected.

Contrast the behavior of PRN 14 with the per-
formances of PRNs 15, 19, 21, and 23 shown in
Figure 7. These are the best performing satellites
of 2008. Their behavior is very linear, with no indi-
cation of significant non-Gaussian behavior. The
observed maximum projected error never exceeds
1 x URA. Thus, there is much excess margin in
their performance that could be exploited. Further,
these pass all daily and other tests and closer
inspection reveals no evidence of significant vari-
ability from day to day. PRNs 19, 21, and 23 are
Block IIR satellites launched in 2003 and 2004.
PRN 15 is a Block IIR-M satellite launched in
2007. It is not clear why these four are performing
much better than many others from the same
blocks with similar or more recent launch dates.
This aspect also needs to be further investigated
as one would expect identically designed satellites
to perform similarly barring failures.

Figure 8 shows both the nominal and yearly
overbounding sigma values as a fraction of the
broadcast URA for each PRN. The filled squares
are the result of a linear fit to the q-q CDFs and
represent the nominal value or sigma of the major-
ity of the data for each satellite. The open circles
are calculated by finding the minimum value that
would keep the q-q curve no worse than a unit-var-
iance Gaussian. It is generally driven by the tails.

Fig. 6–This figure shows the q-q plot for the full years worth of
data for PRN14. Although the data appears to pass all require-
ments, its behavior is distinctly non-Gaussian. This is also indi-
cated in the daily evaluations. It is hard to be confident that
future behavior will remain within the acceptable region.

Fig. 7–This figure shows the q-q plot for the full year’s worth of
data for PRNs 15, 19, 21, and 23. All satellites here easily pass
all evaluations. In fact the maximum error never exceeds 1 x
URA and the overall behavior is exceedingly Gaussian.
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A large difference between the two indicates non-
Gaussian behavior. The best four PRNs have both
the lowest overall sigma values and the open
circles lie right on top of the filled squares. PRN
10 by contrast has a very large difference between
its nominal and tail behavior.

PRNs 9, 12, and 27 have open circles calculated
both including and excluding the data from the
possible major service failures, when the errors
were greater than 4.42 x URA, but the signal was
not flagged as unhealthy. As can be seen, many of
the satellites could have safely used URA values
close to one third of what was broadcast. The best
four satellites could divide their URA by nearly
four. However, some satellites were only just cov-
ered by the existing URA. In order to exploit the
margin in the best performing satellites, there
would need to be a way for the control segment to
distinguish between their performance in real time
and send larger URA values for the worse perform-
ing satellites.

CORRELATION RESULTS

The previous section examined the behavior of
individual satellites against the Gaussian ideal.

This section looks at the potential for correlation
among multiple satellite errors. Here we evaluate
the chi-square value across all satellites in view.
Instead of looking at the maximum projected error,
each satellite error is projected to a five-degree by
five-degree grid of users on Earth’s surface. A com-
mon clock term is removed from each user error at
each epoch, and the remaining error is divided by
the URA. These normalized residuals are then
squared and added together to form the chi-square
value.

Figure 9 shows the histogram of values where
we have excluded the three major service faults
from the calculation, but included all other errors.
As can be seen, performance is quite good with a
maximum observed value of 25.4. The correspond-
ing Kprob value, if this were an upper bound, is
5.04. This value works very well with the K value
used in the VPL equation. However, the result is
not quite as optimistic as it initially appears. The
average nominal sigma value from Figure 8 is
close to one third. Therefore, the expected chi-
square values should be reduced by approximately
a value of nine. Indeed, this is nearly the case for
the average chi-square value. However, as already
observed, the tail extends out to 25.4 which is very
large compared to the mean. For this volume of

Fig. 8–This figure shows the nominal and overbounding sigma for each satellite. The filled
squares are the nominal value (majority of data) and the open circles bound the tails. For PRNs
9, 12, and 27 the open circles are calculated both with and without the errors greater than 4.42 x
URA.
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data, we would expect about a five to one ratio
between the maximum and average. Instead we
observe a value greater than 17. Thus, large chi-
square values appear out of proportion to smaller
values. We saw that this was often the case with
the individual distributions in Figure 8.

We also observed that, for the most part, each
satellite was well behaved although some exhibited
non-Gaussian behavior and increased tails relative
to the nominal. The concern in this section is the
possibility of correlated behavior. To assess the
effect of a single error versus a combination of sev-
eral smaller ones, we calculated the chi-square
value removing the single largest residual error at
each location and at each time step. Thus, the
effects of individual errors would be eliminated,
but multiple smaller ones would still be included.
Figure 10 shows that in this case, the largest
observed chi-squared value is 5.18. This is much
more in line with the expected five to one ratio to
the mean value and broadcast URAs that are often
three times larger than required.

The chi-square data in Figure 10 indicates that
correlated SIS errors were not an issue during
2008. There were individual satellite errors that
grew large compared to the URA and, in three
identified cases, may have led to major service fail-
ures. However, at any given time there was no
more than one such large error. The N-1 chi-square
evaluation in Figure 10 is consistent with the
observed individual performance in Figure 8 and
near independence of the errors. Together these
can be used to demonstrate that RSSing the errors,
as in the ARAIM VPL equations, would have been
safe with the existing data.

CONCLUSIONS

We have proposed specific data monitoring eval-
uations that are both unambiguous and directly
linked to requirements that support VPL equa-
tions. We have proposed evaluations at both the
core and tails of the error distributions as well as
on the sum of the squared errors. These evalua-
tions have been preliminarily evaluated on actual
data from 2008. It has been shown that the tests
are effective at identifying behavior that requires
further investigation to determine its impact.
These tests are linked to Gaussian models that in
turn set the alpha parameters in the VPL equa-
tions. Tighter monitor limits can be directly trans-
lated to smaller VPLs. Once these monitor limits
are established, the alpha values can be deter-
mined and provided to the users. Each sovereign
state would have the ability to determine their own
alpha values and indicate which satellites may be
safely used. Thus, they would have much more con-
fidence in and control over integrity determination
within their airspace.

Although the vast majority of GPS data from
2008 indicates excellent behavior, there are some
subsets of data that behave very differently from
others. Further, different satellites have very dif-
ferent levels of performance, some having large
margins compared to the broadcast URA while
others have very little margin. Ideally, the satel-
lites would be much more consistent in their
behavior with regard to the margin in the URA.

It is important to remember that the monitoring
does not assure integrity on its own. Rather, it is a
properly designed system, carefully analyzed to

Fig. 9–The chi-square values is shown for a grid of terrestrial
users is shown excluding the suspected major service failures.
Although the largest value is well within expectations, it is very
large compared to the main distribution.

Fig. 10–Here the chi-square values are calculated excluding the
single largest error at each location. Now the main distribution
and tail are much more consistent indicating that the residuals
typically only ever experience a single large error at a given time.
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ensure that it is capable of meeting such monitor-
ing requirements, that assures safety. The monitor-
ing requirements merely provide confidence that
the system continues to meet its design goals.
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