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ABSTRACT 

In GNSS techniques like Precise Point Positioning (PPP), many of the errors affecting the position solution 

are modelled and estimated over time.  In order to use PPP or related techniques for applications that 

require integrity, we need models of the errors that will lead to upper bounds of the estimated error 

covariance.  In this work, we use the properties of the power spectral density to develop error models 

that bound autoregressive models with uncertain parameters.  As an example, we show how this 

approach can be applied to the determination of a first order model that bounds the clock and ephemeris 

errors of GPS for multiple satellites.  

 

INTRODUCTION 

Most safety-of-life systems based GNSS like SBAS, GBAS, or RAIM, and even the future Advanced RAIM 

use simple snapshot estimators.  These estimators can be analyzed assuming that they only use 

measurements from the current epoch.  As a consequence, the integrity of the instantaneous position 

solution is not affected by the temporal correlation of the measurement errors, or more precisely, when 

it is, it follows a simple monotonic relationship.  This simplifies considerably the integrity analysis of these 

systems, but it also means that the temporal structure of the errors cannot be exploited to improve 

performance.  The situation changes when we consider filtered solutions, and Kalman filters in particular. 

In filtered solutions of the type used in Precise Point Positioning (PPP) [1], [2], [3], [4], [5], [6], [7], the 

errors affecting the position solution are modelled and estimated over time, so the temporal structure of 

these errors is key.   These techniques are very attractive because they have the potential of improving 

performance very significantly for airborne applications [4], [5], [6], [7], and of providing meter level 

protection levels for automotive applications [2], [3].  These improvements rely mostly on the temporal 

structure of the errors, it is therefore very important to develop temporal error models that will result in 

integrity error bounds (protection levels (PL)) that bound the actual errors to the required probability. 

Estimation under model uncertainty has been studied for more than three decades.  However, it has 

proven challenging to find results that are practical and adapted to the integrity problem [8].  In particular, 

the proposed solutions are often reliant on techniques that are not yet standard, at least not for real time 

applications (this includes linear programming, quadratic programming, etc).  For our purpose, one of the 

goals is to provide measurement noise characterizations that allow the use of standard Kalman filtering 

techniques, or at least with minimum modifications.  An example of the kind of methods that are well 

adapted to our objective is given by [8], [9], because it provides a simple and practical bound for uncertain 



first order Gauss-Markov processes with unknown, but bounded time constants.  In this work, we will 

make use the properties of the power spectral density as it appears to be a very practical representation 

for stationary processes.  In GNSS applications, this method has been used at least in [10], [18], [19], [20], 

[21].  It is based on the fact that a function is semidefinite positive (in the sense that the associated 

quadratic form is semidefinite positive) if and only if its Fourier transform is positive [11], [12].  This result, 

which is a very narrow form of Bochner’s Theorem [13], has been extensively used in the analysis of 

stationary time series, and in spatial statistics [14], because it provides a relatively simple rule to ensure 

that a given form of the autocovariance function of the process is valid (in the sense that it defines a 

positive covariance matrix). Here we use this result to ensure that a certain temporal process 

characterization bounds one that is either not entirely known (but with bounded parameters), or 

described by an empirical autocovariance function that is difficult to parameterize. 

In the first part we will review the approach.  In the second part, we will derive simple conditions under 

which the autocovariance of one process bounds another one for some common processes (like a Gauss-

Markov process).  In the third part, and to evaluate the viability of this method we apply it to the (very 

preliminary) determination of a first order model that bounds the GPS clock and ephemeris errors. 

 

USING THE PSD TO DERIVE BOUNDING CONDITIONS 

This method is based on the fact that a function is semidefinite positive (in the sense that the associated 

quadratic form is semidefinite positive) if and only if its Fourier transform is positive [11], [12].  This result, 

which is a very narrow form of Bochner’s Theorem [13], has been extensively used in the analysis of 

stationary time series, and in spatial statistics [14], because it provides a relatively simple rule to ensure 

that a given form of the autocovariance function of the process is valid (in the sense that it defines a 

positive covariance matrix). Here we use this result to ensure that a certain temporal process 

characterization bounds one that is either not entirely known (but with bounded parameters), or 

described by an empirical autocovariance function that is difficult to parameterize.   

 

Propagation and observation equations for Kalman filter estimation 

We consider the following propagation and observation equations: 

 

              (14) 

where: 

xk is the state 

yk is the observation 

wk is the process noise 

vk is the measurement noise 
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To determine the Kalman filter equations, we need to assign a covariance to wk and vk.  Let us assume 

that: 

  ~ 0,k kw N Q   

 

To ensure that the covariance estimate is conservative, it is necessary to use bounds on the two matrices 

Qk and Rk.  We will assume that we can determine two matrices such that: 

 

    

This is however not sufficient.  For the Kalman covariance estimate to be conservative, we also need: 

 

 for k<k’ 

This is in general not true.  The question therefore is how to model the error to account for a possible 

temporal correlation. 

 

State augmentation 

If the errors are correlated over time, but the structure is known and can be described as a sum of 

autoregressive models, we can account for the correlation using state augmentation (which consists of 

writing the recursive equation defining the correlation and augmenting the original state with the 

measurement state).  This will be exploited later on in the report. 

As pointed out in [23], it is also possible to account for the (known) correlated noise using a measurement-

differencing filter.   

 

Normalization 

We now assume that the temporal correlation is not exactly known.  To go further, we change the 

notations as follows: 

 

 

where A and B are designed such that the covariance of εk is the identity.  This can be easily achieved 

when we assume that there is no correlation across measurements from different types (code and carrier, 

for example) and from different satellites. 
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Equivalence between Kalman filter and batch approach 

This step is only necessary to develop the method.  It does not imply that we will need to use a batch 

approach.  It is well known that the Kalman filter estimate at the most recent time step is strictly 

equivalent to a batch estimate.  That is, we can write the system of equations (14) from time 1 to n as 

follows: 

    (15) 

where the matrices Γ and Φ are formed with Hk, Fk, Ak, and Bk.  We label C the covariance of ε (C is 

unknown).  We have ε~N(0,C).  

 

Bounding condition 

The condition to have bounded noise is that our model covariance Σ is an upper bound of C: 

       (16) 

(in the semi-definite positive sense).  The next step consists in re-ordering the indices in order to group all 

the measurements from the same type and satellite in the same block.  Because of our assumption of 

independence, this results in a block diagonal matrix: 

 

where p is the number of measurement series (identified by satellite and type).  The condition for 

positivity can then be expressed per measurement series as: 

 

Structure of covariance matrix for a stationary process 

We will now drop the index corresponding to the measurement series, and add an index to indicate the 

size of the matrix (that is, how many time steps are being considered).  For stationary processes, the 

covariance matrix C(n) has the following structure: 
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that is, it is defined by the autocovariance series:  (note again that we are only 

considering one measurement series here).   For this report, we will restrict the search for the bounding 

matrix to stationary processes.   Therefore, it will have a structure identical to C(n), so it is also defined 

by a series, which we will note σk. 

 

Condition of semidefinite positivity of a series (tn) using Fourier transform 

Let us consider a series (tn).  Under some convergence conditions (absolutely summable is sufficient), we 

can define its Fourier transform as follows: 
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This means that the series (tn) is entirely defined by its Fourier transform.  A key result is that the 

associated covariance matrix T(n) (defined like in (17)) is semi-definite positive for all n if and only if its 

Fourier transform is positive for all λ (except for a set of total length 0, which is a condition we should not 

be encountering) [11].  Because f is symmetric and periodic with period 2π, the condition can be written: 

 

Now, because the Fourier transform is a linear operation, the condition for  is given by: 

 

We therefore need our overbound to be such its power spectral density (PSD) (the Fourier transform of 

the autocovariance) bounds the PSD of the actual error process. 

 

Summary of the method 
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1. Obtain the autocovariance of the temporal series, or at least a set of constraints on it, based on 

analysis or empirically 

2. Compute the Fourier transform of the autocovariance (or the family of possible ones), which is 

the power spectral density 

3. Find a power spectral density corresponding to a process that can be easily modeled in a Kalman 

filter and that bounds the original one. 

4. Use state augmentation to model the overbounding process 

 

 

BOUNDING NOISE DEFINED BY A STATIONARY AUTOREGRESSIVE MODEL 

In this section, we derive simple relationships that guarantee that a given autocovariance overbounds 

another one in terms of the process parameters, when the noise (either measurement or process) is 

defined by an autoregressive model of any order with uncertain parameters.  This is an important case, 

because this the most common way of modeling error processes in in Kalman filters.  In particular, we will 

look at the conditions under which the actual process noise can be bounded by white noise, and if so, how 

much we need to inflate the nominal covariance (the covariance of the noise at each epoch).  

 

First order model 

Let us consider a simple first order model: 

  with   2 20, 1k N     

The PSD can be computed analytically. It is given by (note that we have switched to frequency): 

 

Figure 1 shows the resulting curve for two values of α.   
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Figure 3. PSD for an AR(1) process 

If, for example, we wish to bound an AR(1) process (or a class of them) by white noise, then we need to 

inflate the blue line (which represents the white noise) until it bounds all the points of the red curve.  Since 

we have the PSD formula for both, we can derive the inflation factor. We need: 

 for all values of f 

It is sufficient to bound at f=0.  We get the simple condition: 

      (18) 

This very simple result provides a rule of thumb to inflate the white noise model when the error is actually 

temporally correlated and we have a bound on the correlation. 

In some cases it might be better to assume some correlation (and therefore add states to the propagation 

and observation equations, as mentioned before), because it can result in smaller error bounds.  In this 

case, the condition is: 

 for all values of f (19) 

These results are remarkable because they provide a method to order different error models. 

 

Autoregressive model of any order p 

Let us consider an autoregressive model of order p: 
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The PSD of an autoregressive model of order p is given by: 
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Just as for the first order model, if we consider another autoregressive error process (defined by p’, '

k , 

and '

  ).  A sufficient condition for this second error model to bound the first one is that: 

  

2 '2

'
2 2

1 1

1 1 '
p p

j fi j fi

k k

i i

e e

 

 

 

  

 



  
    (22) 

 

Bounding processes with unstructured temporal correlation 

The same principle can be applied for an arbitrary stationary process with a known PSD.  It is sufficient to 

find an autoregressive model (white noise, first order, etc) whose PSD bounds our target PSD.  This seems 

easy in principle.   

The problem here is that obtaining the PSD of a given process from data is not a trivial problem (this is a 

problem that is treated extensively in signal processing textbooks).  There are several ways of approaching 

this problem.  One is by computing the periodogram, which is essentially an empirical PSD.  Another one 

consists in computing an empirical autocovariance and then computing the PSD of the process by taking 

its Fourier transform.  In all these approaches, the problem tends to be that the estimates of the PSD 

become less accurate at low frequencies.  This is due to fundamental sampling limitations.  For this reason, 

the approach taken often consists in fitting a known parametric model (AR(k) where k is the degree).  This 

in particular allows us to introduce known features in the model (like for example that the noise is 

expected to be decorrelated beyond a certain lag). 

Finally, we stress that we have only treated the covariance propagation problem here.  For non-gaussian 

effects, we would first need to develop multivariate Gaussian overbounds of the temporal error series.  

Techniques to bound multivariate random variables have been developed (for example in [22]).  Once we 

have a bounding distribution that is a stationary gaussian process, we can apply the techniques described 

here. 

 

EXAMPLE: FIRST ORDER ERROR MODEL REPRESENTING GPS CLOCK AND EPHEMERIS ERRORS 



As an example, we show how this method could be applied to the determination of an error model for 

GPS clock and ephemeris errors.  Please note that this is a very incomplete analysis and it is only shown 

here to illustrate the method. 

Figure 4 shows the autocorrelation function of the clock and ephemeris errors of two GPS satellites 

(derived from the analysis of 9 years of data).   

 

Figure 4. Autocorrelation function of the clock and ephemeris errors for two GPS satellites 

Let us suppose that we would like to develop a first error model that we could use for all GPS satellites, 

for estimation filters using up to 12 hours.  Because we are interested in the effect on a user, we will focus 

on the radial + clock error process. Also, we only need to be concerned with the autocorrelation between 

-12 and 12 hours.  In Figure 5, we show a first order fit of the autocorrelation function between -12 and 

12 hours for three GPS satellites.   

 

Figure 5. First order fit of the autocorrelation function between -12 and 12 hours of the radial + clock 

component for three GPS satellites 



These processes are characterized by: 0.93, 0.94, 0.96      (and a variance of one).  In Figure 6 

we show the corresponding PSD, as well as a process that bounds all three error models.

 

Figure 6.  PSD corresponding to the three examined GPS satellites as well as from the bounding process 

(black curve) 

The bounding process is defined by: 0.94   and 2 1.3  .  Because the PSD of this process bounds the 

PSD of the three considered GPS satellites, it can be used conservatively for all three satellites. 

 

SUMMARY 

In this work, we have first described a method to determine simple temporal error models that account 

for temporal processes that are either uncertain or complex, developed a simple set of bounding criteria 

for first order processes, and, finally, demonstrated how to apply the method for the determination of a 

first order process bounding GPS clock and ephemeris errors. 
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