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ABSTRACT 

Advanced Receiver Autonomous Integrity Monitoring extends RAIM to multiple constellations and dual frequency, 

with the goal of providing worldwide coverage of vertical guidance for aircraft.  Availability simulations have shown 

that ARAIM based on GPS L1-L5 and Galileo E1-E1a could provide global coverage of vertical guidance.  However 

these simulations rely on a set of assumptions on the measurements.  In this paper we analyze a set GPS and Galileo 

measurements collected in flight.  We characterize the multipath of different signal combinations and compare them 

to the models assumed in the ARAIM simulations.  Using these models we apply the ARAIM airborne algorithm for 

set of constellation – signal configurations. 

 

INTRODUCTION 

Advanced Receiver Autonomous Integrity Monitoring (ARAIM) is a proposed concept that extends RAIM to multiple 

constellations and dual frequency, with the goal of providing worldwide coverage of vertical guidance for aircraft [7].  

Availability simulations [7] have shown that ARAIM based on a nominal L1-l5 GPS-E1-E5a Galileo configuration 

(24 satellites each) would provide global coverage of LPV-200 [7].  These simulations rely on a set of assumptions 

on the new GNSS signals and the behavior of the airborne receiver.  Among others, the availability results rely heavily 

on the following assumptions: 

- when a satellite is above an elevation of 5 degrees, it will be tracked.  It is known however that as the aircraft 

banks, there is the risk of losing track of low elevation satellites. 

- the code noise and multipath is well bounded by the elevation dependent curve defined in [7], which is in 

turn an adaptation of the performance required in [6].  This curve is supposed to bound the code noise and 

multipath of the carrier-smoothed code. 

- it can be assumed that cycle slips are rare enough, so that the error bound on the multipath is almost always 

the one provided by the bound on the carrier-smoothed code 

Previous work has evaluated ARAIM in static receivers ([2], [3]), or using L1-L2 semi-codeless [1].  The main goal 

of this work is to evaluate how the assumptions listed above hold in an ARAIM airborne prototype using L1-L5 for 

GPS and E1-E5a for Galileo, which are signals for which ARAIM is designed (at least initially).  We will also look at 

the performance of GLONASS, as it is, after GPS, the most complete constellation. 

 

Set up and hardware 

For this evaluation, we will use the data collected in the flight test campaign described in [1]. The receiver a (Trimble 

BX935-INS) tracked all the current GNSS constellations, satellites, and signals; in particular GPS, (L1 C/A, L1C, L2 

(semi-codeless), L2C, and L5) and Galileo (E1 and E5a-E5b).  This receiver was flown in a Global 5000 jet owned 

and operated by the William J. Hughes FAA Technical Center.  The two three hour flights included straight and level 

phases, missed approaches, and “figure eights” (to evaluate the impact of banking). 

In our analysis, we will address each of the three above assumptions: first, we will evaluate the noise of the carrier 

smoothed code and compare it against the assumed error bounds.   Then, we will examine how aircraft banking affects 



the reception of the GNSS signals.  We will apply the ARAIM airborne algorithms ([4],[5]) to the L1-L5 GPS and 

E1-E5 Galileo signals to obtain the resulting ARAIM outputs (Vertical and Horizontal Protection Levels, Effective 

Monitor Threshold, and predicted accuracy).  Finally, we evaluate how the pseudorange residuals compare to the 

assumed models, and the effect on the ARAIM test statistics. 

 

MULTIPATH CHARACTERIZATION 

In this section we compare the magnitude of the multipath to the error model assumed in [7].  This model, which only 

needs to apply after carrier smoothing for 100s, specifies an elevation dependent gaussian distribution.  This model is 

adequate only if the corresponding gaussian distribution is an upper bound of the actual distribution.  There are two 

related objectives in this section: verifying the bound for smoothing times larger than 100s and determining how to 

modify the formula for shorter smoothing times.  This last point is important in this prototype because the large number 

of cycle slips prevents long smoothing times.  We do stress that the results described here might be very dependent 

on the antenna installation, the receiver configuration, its performance, and that the amount of data is not sufficient to 

make any definitive claim.  The Appendix includes analyses that, while not directly relevant to our prototype, could 

be useful in other applications.  The analysis performed here only included data from one flight (August 25, 2016). 

 

Carrier leveling 

We estimated the multipath magnitude by performing carrier leveling on continuous arcs of more than 600 s (that is, 

intervals with no data gaps and no cycle slips).  For each arc, we form the difference between code and phase for each 

frequency. For each pair of frequencies we also form the ionospheric free combination.  Figure 2 and 3 show an 

example for GPS L1-L5.  In Figure 2, the aircraft is not moving, which explains the long temporal correlation in the 

code multipath.  We can also observe an instance of a relatively large multipath delay (which occurred when the 

aircraft was static). 

 

Figure 2. Code minus carrier combinations for GPS PRN 27.   



 

Figure 3. Code minus carrier combinations for GPS PRN 3.   

The arc shown in Figure 3 corresponds to level flight, and the temporal correlation appears to be shorter.  In both 

Figures, the trends in the single frequency combinations are due to the ionospheric delay.  From now on, we will only 

study the dual frequency combinations.  By assuming that the code multipath has a mean of zero over the arc, we can 

estimate the code multipath, as well as the carrier smoothed multipath.  This provides an estimate  î t  where i is 

the satellite index, τ is the smoothing time, and t is time.   

 

Smoothed code multipath statistics 

For GPS L1-L5, the formula provided in [8] for the Airborne Accuracy Designator – Model A (AAD-A) [9] is given 

by: 
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where θ is the elevation angle in degrees.  The model used for GPS L1 is the same but without the dual frequency 

multiplying factor.  We assumed the same model for Galileo E1-E5. 

 

For each signal combination and each smoothing time τ, we form the normalized estimated error, that is: 
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and compare the resulting distribution to a unit gaussian.  Only the measurements corresponding to a moving platform 

were kept (a thresholds of 50 m/s was used).  After removing short arcs and removing the low speed data 34365 

samples remained for the GPS L1-L5 iono free combination. 

Figure 4 compares the quantiles of the normalized raw code multipath estimate (τ=1) to the quantiles of a unit gaussian 

for GPS L1-L5. As expected, the quantiles of the sample are above the unit gaussian (blue line) for positive values 

and below for negative values, which means that it is not an adequate bound.  If we look at the results corresponding 

to 100 s smoothing (Figure 5), the quantiles of the sample are well within the quantiles of the unit gaussian, and 

therefore it is well bounded.  The maximum ratio between the sample quantiles and the gaussian quantiles will provide 

the standard deviation of the minimum gaussian that bounds the sample distribution.  In Figure 6 we show this ratio 

for all possible smoothing values between one and 100.  When the line is below one, the error model is consistent with 

the observed errors. 

 

Figure 4.  QQ plot of the estimate of the raw multipath normalized by the error model against a unit gaussian 

distribution for GPS L1-L5 



 

Figure 5.  QQ plot of the estimate of the multipath noise after smoothing for a 100s normalized by the error model 

against a unit gaussian distribution for GPS L1-L5 

 

 

Figure 6. Multipath overbound estimate vs smoothing time (maximum ratio of sample quantile to unit gaussian 

quantile) for GPS L1-L5 



Figure 7 shows the corresponding result for Galileo E1-E5. For these flight tests, the receiver was configured to track 

E5a and E5b, which is not entirely representative, as only E5a will be used in aviation receivers.  There were 37412 

samples.  In this case, the bound almost works for the raw code.  The value for a 100s is very close the one for GPS. 

 

Figure 7. Multipath overbound estimate vs smoothing time (maximum ratio of sample quantile to unit gaussian 

quantile) for Galileo L1-L5 

In order to account for the increased noise when the smoothing time is below 100 s, the multipath error bound in 

Equation (1) was inflated by the time dependent factor: 
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Where: 

t is the smoothing time 

τ is smoothing constant (set to 100) 

α is a parameter set to 0.84 

This functional form was chosen because it corresponds to the variance of the smoothed code if we assume that the 

code multipath is a first order Markov process with correlation α.  The value for α was chosen so that M(1)=3. This 

choice provides a curve that bounds the above results (Figures 6 and 7) with margin. 

Elevation dependence 

In this section we evaluate whether the error model captures the elevation dependence of the smoothed multipath 

errors.  Figure 8 shows the smoothed code error normalized by the airborne multipath error model.  As can be seen, 

the error model appears to account correctly for the elevation dependence for GPS. For Galileo, there seems to be a 

residual dependence left (although it could be due to sampling, as there are few samples). 



 

 

Figure 8.  Quantiles of the normalized smoothed code multipath error divided by the corresponding unit gaussian 

quantile as a function of elevation angle for GPS L1-L5 (left) and for Galileo E1-E5 (right). 

 

IMPACT OF AIRCRAFT BANKING 

In this section, we show the effect of aircraft banking on the reception of the signals.  Figure 9 shows the SNR for L1 

and L5 for corresponding to the “figure eight” patterns (9 were flown).  The repeated pattern can be clearly seen.   

There is a variation of more than 10 dB on from the highest SNR to the lowest, and it can reach 15 dB.  The reduced 

power in L5 is due to the fact that the antenna is optimized for L1. 

 

Figure 9. SNR for GPS L1 and L5 signals during the “figure eight” patterns. 

Figure 10 shows the SNR for GPS L1 L2 semicodeless. The effect on L2 semicodeless is such that low elevation 

satellites are often lost as the aircraft banks (see results in [1]). 



 

Figure 10. SNR for GPS L1 and L2 signals during the “figure eight” patterns. 

This is not the case in L5, although we did see some instances.  In Figure 1,1 we plot the elevation angle of the satellites 

in view as a function of time during the “figure eight” patterns.  The loss of the lowest elevation satellite matches the 

pattern, as evidenced by the plot of the acceleration (the aircraft changes the bank angle side when the acceleration is 

close to zero).  Assuming a coordinated turn, the bank angle was about 25 degrees. 

  

Figure 11.  Satellite elevation angle and aircraft acceleration estimate 

Figure 12 indicates the points where the satellite is lost (in red), the azimuth of the lost satellite, the shape of the 

aircraft, and the location of the antenna on the fuselage (red dot).  It appears that the satellite is only lost when the line 

of sight is obstructed by the wings. 



 

Figure 12.  Figure eight patterns.  The red section of the pattern shows where the satellite was lost. 

 

ADVANCED RAIM AIRBORNE ALGORITHM RESULTS 

In this section, we show the outputs of the ARAIM airborne algorithm described in [4] and [5] for L1 only and for 

L1-L5/E1-E5.  For L1 only, we ran four different configurations: GPS, GPS-Galileo, GPS-GLONASS, GPS-Galileo-

GLONASS.  For L1-L5 we ran two different configurations GPS and GPS-Galileo.  The Appendix shows additional 

results with GPS L1-L2 semicodeless and GPS L1-L2 semicodeless + GLONASS L1 L2. 

 

Horizontal ARAIM: L1 only 

ARAIM with L1 only would be intended for horizontal guidance [7].  The set of ARAIM parameters (which is 

included in the Integrity Support Message (ISM)) specified in Table 1 is representative of and ISM for horizontal 

guidance.  In particular, a Psat of 10-5 and a Pconst of zero is assumed for GPS, which is what is effectively used in GPS 

RAIM now.  

 

 
GPS Galileo GLONASS 

Maski All 1 All 1 All 1 

Pconst,i 0 10-4 10-4 



Psat,j 10-5 10-4 10-4 

αURA,j 1.0 1 1 

αURE,j 1.0 1 1 

bnom,j 0.0 0.0 0.0 

 

Table 1. ISM settings for L1 (horizontal ARAIM) 

 

Figure 13.  Number of satellites with L1/E1/G1 measurements 

As can be seen in Figure 13 (the number of available measurements per constellation throughout the flight), 

GLONASS and Galileo are, as expected, much weaker than GPS.  Figures 14 through 17 shows the Horizontal 

Protection Level (HPL) as computed by ARAIM for each of the constellation configurations for different elevation 

mask angles (5, 15, 25, and 30 degrees).  These results illustrate how including a second and third constellation (even 

if weak) greatly improves the availability of ARAIM by maintaining low HPLs.  



 

Figure 14. ARAIM L1 Horizontal Protection Levels for a 5 degree elevation mask angle 

 

Figure 15. ARAIM L1 Horizontal Protection Levels for a 15 degree elevation mask angle 



 

Figure 16. ARAIM L1 Horizontal Protection Levels for a 25 degree elevation mask angle 

 

Figure 17. ARAIM L1 Horizontal Protection Levels for a 30 degree elevation mask angle 

 



ARAIM with L1-L5 

 

Figure 18.  Number of satellites with L1-L5/E1-E5 measurements 

 

Neither L5 in GPS nor Galileo had been declared operational when these measurements were taken (and therefore not 

subjected to a performance standard).  Also, as shown in Figure 18, there are very few available measurements with 

both civil frequencies.  The HPL results show in Figure 19 are therefore not surprising, as the HPL is directly impacted 

by the geometry.  In addition, some of the L5 and E5 measurements suffered outages and cycle slips that caused the 

smoothing filter to re-start, and the nominal error bounds on the multipath to increase (following the curve specified 

above).  The cause of these outages is not known, but it might be due to the lower SNR received in L5 (caused by the 

antenna). 



 

Figure 19. ARAIM L1-L5 Horizontal Protection Levels (5 degree elevation mask angle) 

 

In the last set of results, we used an ISM representative for vertical guidance (Table 2).  In this ISM, Pconst for GPS is 

10-4, which requires the receiver to monitor constellation wide faults in GPS.  For this reason, we can only hope to 

obtain finite PLs when both constellations have four or more available measurements, which only happens in the first 

ten minutes of the recorded data. 

 

 
GPS Galileo 

Maski All 1 All 1 

Pconst,i 0 10-4 

Psat,j 10-5 10-4 

αURA,j 1.0 1 

αURE,j 1.0 1 

bnom,j 0.0 0.0 

 

Table 2. ISM settings for vertical guidance 



Figure 20 shows the resulting Vertical Protection Levels (VPL).  The gap between minute 5 and 7 is due to an exclusion 

event when the aircraft was static.  This exclusion was due to a large multipath delay inconsistent with the error model 

(the error model is only needs to be valid in flight). 

 

Figure 20. ARAIM L1-L5 Vertical Protection Level (5 degree elevation mask angle) 

 

TEST STATISTICS 

Here we provide a very preliminary view of the measurement statistics and how they compare with the error model.  

Since the error models are for flight conditions, we removed the data from epochs where the aircraft was static (a 

threshold of 50 m/s was used). 

To this purpose, we collected the maximum normalized solution separation statistic for each epoch, which is written: 
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Although the threshold against which it is computed is variable, it is always larger than 4.46 [5].  Figure 21 and 22 

show the resulting histograms for the different L1 constellation configurations (corresponding to Figure 14), and for 

L1-l5 (corresponding to Figure 19).  In both cases the test statistics are below one, although there is more margin in 

the L1 case (probably due to the use of the residual ionospheric delay bound, which is conservative in nominal 

conditions). 



 

Figure 21. Histograms of maximum normalized solution separation statistics for L1 only 

 

 

Figure 22. Histograms of maximum normalized solution separation statistics for L1-L5 

 

Projecting errors in the parity space 

In this work, we did not use a truth position.  We can however assess the error model by projecting the measurements 

onto the parity space and examining the resulting residuals.  Figure 23 shows the empirical cdf of the sum of the square 

of the measurement residuals normalized by the standard deviation of the pseudorange (which is the norm squared of 

the measurements projected onto the parity space).  For comparison, we include the cdf of a chi-square statistic.  We 

can see that, except at very low probabilities, the magnitude of the errors appears to be well bounded by the model.  

We do point out that this is only a sanity check, since we have very few data points. 



 

Figure 23.  GPS-Galileo L1-L5 sum of squared residuals and comparison with chi-square cdf 

 

 

SUMMARY 

From a data set collected by an airborne receiver, we have characterized the multipath for different signal 

combinations.  The error bound assumed in ARAIM simulations appears to be sufficiently conservative when the data 

has been smoothed for at least 100 s.  For shorter smoothing times, or no smoothing, the multipath error can be larger.  

For this reason, we adjusted the error model as a function of time. An ARAIM airborne algorithm was applied to the 

data for two frequency combinations: L1 only and L1-L5. For L1 only (which is representative of Horizontal ARAIM), 

the results illustrate the benefits of including a second and third constellation (Galileo and GLONASS).   Although, 

there are still few satellites with L5/E5 signals, we could still compute the ARAIM Protection Levels, even using the 

ISM parameters for vertical guidance.  Finally, both for L1 and L1-L5, the collected data is consistent with the error 

models. 
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APPENDIX: ADDITIONAL MEASUREMENT STATISTICS 

In this Appendix we include data that while not directly relevant to our goals, could be of interest in other 

applications. 

 

Data availability 

Except for very brief outages, L1 CA was almost always available whenever a GPS satellite was in view.  This is 

also the case for GLONASS L1.  In Tables A1 to A3 we show the availability of data relative to L1 for GPS, 

GLONASS and Galileo. 

 
L1 CA 

code 

L2 C L2 semi-

codeless 

L5 

N. satellites 19 11 18 8 

http://www.gps.gov/policy/cooperation/europe/2016/working-group-c/
http://ec.europa.eu/growth/tools-databases/newsroom/cf/itemdetail.cfm?item_id=8690


data avail. 

relative to L1 

CA  

100% 97.7% 94.3% 97.7% 

Table A1.  Data availability for GPS on 8/24/2016 flight test. 

 
L1 code L2 semi-codeless 

N. satellites 15 15 

data avail. relative to 

L1 

100% 89.7% 

Table A2.  Data availability for GLONASS on 8/24/2016 flight test. 

 
E1 code E5 

N. satellites 15 15 

data avail. relative to 

L1 

100% 99.2% 

Table A3. Data availability for Galileo on 8/24/2016 flight test. 

These tables and Figure A1 shows already that the availability of dual frequency measurements is not representative 

of what would be expected of a nominal system. Either there are too many lost measurements (case of L2 

semicodeless), or there are not enough satellites (case of Galileo).  This will directly impact the ARAIM outputs.  

We note that Galileo provides the strongest relative availability. 

 

 

 

Figure A1. Number of measurements in view for L2. 

 



Raw code multipath error distributions  

From the results of the carrier leveling process (the black curve in Figures 2 and 3) we can characterize the statistics 

of the dual frequency code multipath.  Figure 4 shows the raw error distribution for GPS L1-L5 (58873 samples).  

Although the core seems well behaved, this empirical distribution contains outliers as large as 22.4 m. 

 

Figure A2.  Code multipath estimate for GPS L1-L5 iono free combination. 

Table A4 gives a summary of the raw distribution for each of the signals. Each of the entries corresponds to the 

quantile of the corresponding histogram.  One can see that, in this data set, the multipath is roughly twice as large as 

in GPS, which is what is expected from the difference in chipping rate.  We also remark that the multipath in the 

Galileo signals is much smaller (the receiver was using both E5a and E5b, which is not representative of an aviation 

receiver, where only E5a will be used). 

 

 GPS L1 –L5 GPS L1 – L2C GPS L1 –L2 

semicodeless 

GLONASS L1 – 

L2 

Galileo L1 –L5 

Standard 

deviation 

1.1 m 1.3 m 1.1 m 2.2 m 0.7 m 

68% 0.9 m 1.0 m 1.0 m 1.6 m 0.6 m 

95% 2.0 m 2.2 m 2.1 m 3.4 m 1.3 m 

99% 3.3 m 3.6 m 3.2 m 5.2 m 2.2 m 

99.9% 8.0 m 10.2 m 6.5 m 18.9 m 3.7 m 

99.99% 13.5 m 18.2 m 13.1 m 59.6 m 6.4 m 

maximum 22.4 m 29.1 m 27. 4 m 72.1 m 6.5 m 

Table A4.  Quantiles of the multipath estimates for each dual frequency combination 

 

Elevation dependence  



Figures A3 through A6 show how the statistics of the code multipath depend on the elevation angle. This 

dependence is particularly strong for low elevation angles in GLONASS. 

 

Figure A3. Code multipath statistics as a function of elevation angle for GPS L1-L5 

 

 

Figure A4. Code multipath statistics as a function of elevation angle for GPS L1-L2C 



 

Figure A5. Code multipath statistics as a function of elevation angle for GPS L1-L2 semicodeless 

 

 

Figure A6. Code multipath statistics as a function of elevation angle for GLONASS L1-L2 semicodeless 

 

Signal to noise (SNR) ratio dependence 

The dependence on SNR (which was taken to be the minimum of the two signals) appears to be much weaker than 

the elevation angle dependence, as can be seen in Figures A7 to A9. 



 

Figure A7. Code multipath statistics as a function of SNR for GPS L1-L5 

 

Figure A8. Code multipath statistics as a function of SNR for GPS L1-L2 semicodeless 



 

Figure A9. Code multipath statistics as a function of SNR for GLONASS L1-L2 semicodeless. 

 

Temporal correlation 

We now examine the temporal correlation of the code multipath.  As can be seen in Figure A10, it takes the 

decorrelation constant is on the order of 15 s (that is, it takes about 15 s for the decorrelation to reach 1/e). However, 

the decorrelation does not appear to be exponential:  after an initial large decorrelation after one sample (to 0.5), the 

decorrelation slows down. 

 

Figure A10.  Temporal correlation of code multipath 

 



Statistics of carrier smoothed multipath error normalized by error model 

 

Table A5 provides a set of metrics on the statistics of the normalized residuals for each combination. Each entry 

corresponds to the containment of the sample distribution for a given percentile divided by the corresponding unit 

gaussian containment. If the sample distribution were exactly gaussian, then all entries would be one; if the sample 

distribution has a smaller containment, the ratio is smaller than one. As can be seen, the model appears to be 

sufficiently conservative. 

 

 GPS L1 –L5 Galileo E1-E5 GPS L1 – L2C GPS L1 –L2 

semicodeless 

GLONASS L1 – 

L2 

Standard 

deviation 

0.5  0.5 0.5 0.7 

68% 0.2  0.2 0.2 0.3 

95% 0.7  0.7 0.8 1.1 

99% 1.1  1.4 1.4 1.9 

99.9% 1.7  1.9 2.1 3.3 

99.99% 2.3  2.5 2.5 3.8 

maximum 2.4  2.6 2.9 3.8 

TableA 5. Quantiles of the normalized smoothed code multipath error 

 

ARAIM with GPS L1-L2 semicodeless 

 

Figure A11.  ARAIM outputs for GPS L1-L2 semicodeless.  The peaks are due to the loss of L2 semicodeless. 



In this case, there were no exclusions.  The histogram of the solution separation statistics is shown in Figure A11.  It 

is compatible with the assumed error model. 

 

Figure A12.  Histogram of normalized solution statistics. 

 

GPS L1-L2 semicodeless - GLONASS 

 

Figure A13.  ARAIM outputs for GPS GLONASS L1-L2 semicodeless.  The peaks are due to the loss of L2 

semicodeless. 

 

 


