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Abstract 

We develop and evaluate a new type of estimator designed for applications with error model uncertainty – and more 

specifically where the error model uncertainty is defined following the Advanced RAIM framework).  We first establish a 

theoretical lower limit on the achievable state estimation error bound and use this limit to bound the distance to optimality 

of the proposed estimator.  For requirements on integrity and continuity on the order of 10-7, and prior fault probabilities of 

10-4 (values typical for ARAIM), we find that the error bounds obtained in this type of estimator are within 20% of the best 

possible achievable bounds for critical geometries. 

 

1. INTRODUCTION 

Fault detection and exclusion are key functions for positioning algorithms meant to provide high integrity error bounds or 

simply accurate positions in the presence of faulty measurements.  It is well known that least square estimators are not 

optimal when the error model includes the possibility of faults affecting the measurements, as it is the case in RAIM for un-

augmented GNSS, or radionavigation signals in cluttered environments.  A least square estimator (or even a linear 

estimator) that includes an unbounded fault will result in an unbounded position error.  To limit the growth of the position 

error, the effect of that measurement must be mitigated.  This is the objective of fault detection and exclusion (FDE) 

algorithms.  As indicated by their name, most available FDE algorithms are structured so that detection and exclusion are 

two distinct steps, after which a linear unbiased estimator (most often a least squares filter) is used (Lee et al,  (1996), 

Blanch et al, (2010), Joerger et al, (2016), Blanch et al, (2017) ).  This approach works very well in many applications and is 

the basis for the standard approaches in RAIM and Advanced RAIM.  It is however not guaranteed to be the best approach.  

The purpose of this paper is to develop estimators that are not constrained by this structure and to evaluate their potential 

benefits. 

In our previous work (Blanch et al, (2021)), we described an estimator and its associated protection level that merges the 

fault detection and fault exclusion functions.  A key contribution was the derivation of a protection level (PL) with an 

analytical proof of both integrity and continuity (or probability of alert) for the proposed estimator, which is non-linear.  

The estimator was applied to GNSS data collected on the ground with artificial faults and evaluated using a service volume 

model.  Preliminary results suggested that this approach may improve upon the classical paradigm of FDE in at least three 

ways:  it provides a better worst-case performance (in terms of protection level -50% reduction in typical ARAIM scenarios), 

it has a simpler logic, and the position solution tends to be smoother over time.  The purpose of this work is to continue the 

development and evaluation of this new class of estimators as described below. 

One of the methods to evaluate an estimator is by comparing the achieved PLs to those of an optimal estimator, or if not 

known, to a lower bound on the achievable PLs.  We will therefore start by casting the search of the estimator as an 

optimization problem.  This problem appears to be a very complex mini-max problem, for which there are no obvious 

solutions.  (It is precisely this fact that has resulted in a very rich RAIM literature: if there was one known optimal solution, 

there would be no need to approach the problem from different angles.)  We will use this formulation to develop lower 

bounds on the achievable performance of the optimal estimator.  These lower bounds are a function of the geometry of the 



problem, the nominal error model, and the fault error models.  These lower bounds on the PLs will allow us to evaluate the 

performance of our proposed estimators. 

In the second section, we will simplify and generalize the approach we developed in Blanch et al, (2021). The key to the 

proposed approach was that rather than focus on a point estimate, we focus on estimating a region in space. It is relatively 

straightforward to design a region that contains the true position with high probability by using the principles of solution 

separation fault detection algorithms (Brenner, (1995), Blanch et al, (2010)).  The difficult part is to design it such that it 

does not grow without limits when a fault is present.  In Blanch et al, (2021), we showed that this can be done by carefully 

defining the region shape as a function of the measurement residuals in the case of a linear measurement equation and a 

Gaussian error model. 

In the last section we evaluate the PL obtained in the second section against the lower bound established in the first section 

(which is a lower bound on the best PL that could be achieved by any estimator) for a set of representative integrity and 

continuity requirements. 

 

2. MEASUREMENT MODEL 

We consider the linear measurement model: 

y Gx = +       (1) 

where 

y is the vector of measurements 

x is the state to be estimated 

ε is the measurement error 

We note that this model can encompass scenarios where y, x, and ε refer to measurements, states, and measurement 

errors over time.  (Equation (1) would be the batch formulation.) 

 

Error model 

In this work, we are looking for techniques that have a guarantee of performance, both for continuity and integrity.  This 

necessarily means that we need to place limits on the uncertainty of the error model.  A fully uncertain error model would 

allow state estimation errors that are both unbounded and undetectable.  

One way to describe the uncertainty is by constraining the state error models to a set of hypotheses Hi that form a partition 

of the set of possible measurement errors and states.  Each hypothesis may correspond to a different error 

characterization, and even the addition of new states.  In addition, we assume that the error model follows one of 

hypotheses Hi with known probability pi: 

In the case of RAIM and ARAIM, a hypothesis corresponds to the addition of a new state: 

i iAb = +  

where Ai is a known matrix, bi is a vector of unknown biases with arbitrary entries, and η is Gaussian bounded, which means 

we may treat it as: 

( )10,N W −  



The case Ai = 0 is the fault free hypothesis H0.  Each of the other hypotheses corresponds to a range of error models 

spanning all the possible values of the added fault bias bi. 

 

3. LOWER BOUNDS ON ACHIEVABLE ESTIMATOR PERFORMANCE 

Our goal in this section is to develop a lower bound on the achievable PL.  After defining the objectives and constraints of 

the optimization problem, we will cast the search of the estimator as an optimization problem.  Then, after deriving a key 

decomposition of the estimator, we will establish that any PL that meets the requirements is above a certain limit.  

 

3.1 Probability of loss of integrity 

The probability of loss of integrity can be expressed as the probability that two events happen:  

• the position estimate exists, that is, f(y) is defined 

• the position error exceeds a known limit L.  In this paper, we will focus on the error in one coordinate (we will note 

e the corresponding vector).  

The first condition means that we need to specify a region   in the space of measurements where the function f is 

defined.  (As an example, in the case of RAIM for fault detection,   is the set of measurement vectors that result in the 

test statistic to be below the detection threshold.) We will label ε our not-to-exceed probability of loss of integrity.  The 

integrity requirement can be expressed as: 

( )( ),TP f y e x L y −         (2) 

 

3.2 Probability of Alert 

The probability of alert is the probability that no state estimate is deemed safe.  With the definitions above, it is simply the 

probability that f(y) does not exist, or equivalently, that the vector of measurements y does not belong to the region  .  If 

we label α our upper limit on the probability of alert, the constraint can be expressed as: 

( )P y         (3) 

3.3 Estimator search 

We can now formulate the search of the estimator f and the region   as the following minimization problem: 

minimize L  

subject to 
( )( )

( )

,TP f y e x L y

P y





−   

 
     (4) 

Even for simple threat spaces (for one fault hypothesis), the search of the optimal estimator f is an open problem. 

 

3.4 Estimator decomposition 

We start by stating a general property of the estimator f, where the only assumption we make that its estimate must be 

independent of the reference frame.  Any such estimator f will have the following decomposition: 



( ) ( )T

LSf y s y f Py= +      (5) 

where: 

( )
1

T

LSs WG G WG e
−

=  

( )
1

T TP W WG G WG G W
−

= −  

Equation (5) states that the estimator f is the sum of the least squares estimate and a function of the measurement 

residuals.  We will be using the fact that the first term and the second term are uncorrelated (this is a well-known property 

of the least-squares error and its residuals).  In the rest of this section, we provide a proof for (5).   

Let us perform a change of variables as follows: 

x x x = +       (6) 

 

In the new frame, the measurement equation is:  

( )y Gx G x x y G x  = + = +  + = +      (7) 

 

Because we have only changed the frame, we must have: 

( ) ( ) Tf y f y e x = +        (8) 

 

This equation expresses that the estimate in the new frame must be equal to the estimate in the old frame translated by 

x .  Combining Equations (7) and (8), we obtain: 

( ) ( ) Tf y G x f y e x+  = +       (9) 

 

In other words, if we displace the state by ∆𝑥 and everything else stays the same, we expect the estimate to be displaced by 

the same amount.  Let us consider the following decomposition of the errors: 

1 ˆ
LSy W Py Gx−= +       (10) 

where ( )
1

ˆ T T

LSx G WG G Wy
−

= .  Combining Equation (9) and (10) we obtain Equation (5). 

 

3.5 Lower bound on the achievable protection level: formulation 

We will start by formulating the result of this section. Any solution (f, L) to the problem (4) is such that: 

1 1

,0,
,

1
max 2 2

2
ss ij

i j
i j

Q Q L
p p

   
− −

   + +
 +          

   (11) 



Where 

,0.ss ij is the standard deviation of the solution separation between the all-in-view least squares solution and the 

least squares solution that is fault tolerant to the fault hypothesis i and j [6]. (This is the least squares solution that 

adds bi a and bj as fault states) 

Q is the tail cdf of a normal distribution, that is ( )
21

2
1

2

t

x

Q x e dt


+
−

=   

The maximum is taken across all pairs (i,j) of fault hypotheses 

It is significant, (and perhaps counterintuitive) that the lower achievable PL is related to the fault tolerant filter to the 

combination of two faults rather than the fault tolerant filter to one fault only.  There is also a second lower bound that is a 

more direct consequence of (5): 

1

0

0

2Q L
p

 
−  +

 
 

      (12) 

 

 

3.6 Lower bound on the achievable protection level: proof  

The proof for the inequality (11) is based on the design of fault hypotheses that meet certain criteria.  We start by 

combining Equations  (2) and (3) to obtain: 

( )( )qP f y x L  −   +      (13) 

Writing the formula of total probability and expressing the fact that each of the terms must be bounded by the sum, we 

get: 

( )( )|q i

i

P f y x L H
p

 +
−        (14) 

(recall that pi is the prior probability of hypothesis Hi) 

We now re-write (14) by using Equation (5) and the measurement Equation (1), the estimation error under Hi is given by 

(note that we have dropped the subscript ‘LS’ to lighten notations): 

( ) ( )1T T T

i if y e x s s Ab f W Py −− = + +     (15) 

The first term is distributed as ( )( )1

0, T TN e G WG e
−

 and independent of the remaining ones. For this reason, Equation (14) 

implies: 

( )( )1 |T

i i i iP s Ab f W Py L H −+       (16) 

with 2i

ip

 


+
=  

At this point, we are dealing with points in the parity space, so it is convenient to perform the usual change of variables: 



1z UW Py−=  

so that ( ),i i n pz N Rb I −
where p is the length of x and 1

i iR UW PA−= . 

Let us now consider the regions Ωi defined by: 

 

( ) | T

i i iz s Ab f z L = +       (17) 

 

According to Equation (16) we have 

( )| 1i i iP z H   −       (18) 

In the following steps we will place constraints on bi and bj so that 
i j   .  The idea here is to get the two regions 

close enough to each other so that they need to overlap.  To achieve this, we first solve the problem: 

( )min |i jP z H    

( )| 1i i jP z H  = −       (19) 

 

The solution to this is given by the Neyman-Pearson lemma.  There exists a constant c such that: 

 

 
( )

( )
|

|
|

i

i

j

p z H
z c

p z H

  
 =  

  

      (20) 

 

Using the expression for the distribution of z conditioned on Hi or Hj and after some algebra, we deduce that there exists K 

such that: 

 

|
j j i iT

i

i i j j

R b R b
z z K

R b R b

 − 
 =  

−  

     (21) 

This means that the region Ωi is defined by its projection over the unit vector j j i i

i i j j

R b R b

R b R b

−

−
.  The constraint in (19) gives us 

the equation: 

 

( ) ( )| 1 1
T i i j j

i i i i i

i i j j

R b R b
P z H Q K R b

R b R b


 −
  = − = − −
 −
 

   (22) 

Similarly, we have: 

( ) ( )| 1
T i i j j

i j j j

i i j j

R b R b
P z H Q K R b

R b R b

 −
  = − −
 −
 

    (23) 

 

We now set this probability such that ( )|i j jP z H   .  We get the second equation: 

( ) ( )1
T j j i i

j j j

i i j j

R b Rb
R b K Q

Rb R b
−

−
− 

−
    (24) 



 

Combining (22) and (24), we get the constraint on bi and bj  

( ) ( )1 1

i i j j i jRb R b Q Q − −−  +      (25) 

To recapitulate, we have found a constraint on bi and bj such that ( )|i j jP z H    no matter the shape of Ωi and Ωj.  

Since ( )| 1j j jP z H  = − it follows that we must also have 
i j   .  Let us now choose a point z in 

i j  .  For 

such a point we have (by definition) ( )T

i is Ab f z L+   and ( )T

j js A b f z L+  .  This means that we must have 

2T T

i i j js Ab s A b L−        (26) 

This inequality is true if the constraint (25) is met.  To find the largest lower limit on L, we solve the optimization problem: 

( )max T

i j j js Ab A b−    

Subject to ( ) ( )1 1

i i j j i jRb R b Q Q − −−  +     (27) 

 

We are now very close to our goal.  Let us rewrite (27) with 

0

0

i

j

A
A

A

 
=  
 

,
i

j

b
b

b

 
=  
 

, ( ) ( )1 1

i jK Q Q − −= +  

We get 

max Ts Ab  

Subject to 2T Tb A PAb K  

This is a straightforward optimization problem (for example, it can be solved directly with a Lagrange multiplier for the 

constraint).  The solution is given by 

( )
1

max T T T Ts Ab K s A A PA A s
−

=     (28) 

It turns out that the term in under the square root is the standard deviation of the solution separation between the all-in-

view least squares estimator s and the least squares estimator fault tolerant to A, sA (Blanch et al, (2010), Joerger et al, 

(2016)), that is:  

( ) ( )1max
TT

A As Ab K s s W s s−= − −     (29) 

(The Appendix includes a derivation that makes the link between these two expressions more apparent.)  This concludes 

the proof of (11). 

The proof for (12) is more straightforward.  For any z we have: 

( ) ( )( )0 0| , | ,T T

LSP s L z H P s f z L z H   +      (30) 

If we now integrate over z, we get: 

( ) ( )( )0 0 0| |T T

LSP s L H P s f z L H   +       (31) 

This inequality results directly in the lower bound (12). 



4. ESTIMATOR DESIGN 

In the previous section, we have established a lower bound on the achievable performance of an estimator meeting the 

integrity and continuity constraints expressed by (4) under the error model described above.   In this section, we describe 

an estimator that meets those constraints and that appears to achieve a performance relatively close to the bound 

established above (Equation (11), at least for typical requirements (the values of α and ε). 

The principles of the design of the estimator are the same as the ones described in Blanch et al, (2021).  The main idea 

consists in focusing on the design of a function that defines a region in the state space instead of a point estimate.  That is, 

we will define a function ( )y y  

The region ( )y must:  

• exist or not exceed a certain size with probability 1 - α (that is the continuity requirement)  

• contain the true value of the state with probability 1 - ε 

Compared to [6], we both simplify the approach and generalize it.  Because of the new formulation, the Protection Levels 

are slightly reduced. 

 

4.1 Fault tolerant position solutions 

As in [6] and as suggested by the expression on the lower bound on the PL, a key element in the design of the estimator is 

the set of fault tolerant estimators ( ) ( )ˆ i
x y  corresponding to each of the fault modes Hi, and also those tolerant to any two 

fault hypothesis i and j, which we will denote as ( ) ( )ˆ ij
x y .  In most applications, these fault tolerant estimators will be least 

squares estimators, but they don’t need to be.  The only thing we need is that the probability of the estimation error 

exceeding a limit be calculable.  For example, for a least-squares estimator (and the assumed error model) we know that: 

( ) ( )( ) ( )( ) ( )ˆ ˆ ˆ, | | 2
i i i

i i i i iP x x K x K H P x x K H Q K    − + = −  =
 

   (32) 

where i is the standard deviation of the position error associated to the estimator ( ) ( )ˆ i
x y (whose expression is known and 

given in Blanch et al, (2010) ) (to simplify the notations, x now denotes one single coordinate).  

 

4.2 Building blocks for region Γ 

For each pairwise combination of fault modes i and j (this includes single hypotheses as well since i = 0 corresponds to the 

fault free hypothesis), we define the regions: 

( ) ( ) ˆ|
ij

ijD L x x x L = −       (33) 

(We add the prime symbol to stress the fact x in the definition above does not refer to the true value of the state). Because 

of (32), we have: 

( )( )| 2ij i

ij

L
P x D L H Q



 
 =  

 
 

     (34) 

4.3 Combining the blocks 



For a given fault hypothesis Hi, any of the regions ( )ijD L would be a good candidate as a building block for our region Γ.  

However, this would lead to an unbounded size in case of a fault (see [6]).  Instead, for each i, we are going to consider the 

intersection of ( )ijD L over the indices j: 

( )i ij

j

D L =       (35) 

Using the fact that ( ) ( ) ( )P x A B P x A P x B    +  , we get: 

( ) ( )( )|i i ij

j

P x H P x D L       (36) 

To be fault tolerant to any of the fault hypotheses, we define Γ as the union of the i .  That is: 

i

i

 =        (37) 

The probability of loss of integrity is bounded as follows: 

( ) ( ) ( )( )|i i i i ij

i i j

P x p P x H p P x D L =           (38) 

This is a key bounding result because it allows to compute the probability of loss of integrity.  In the case of our Gaussian 

model (Equation (34)), we have: 

( ) ( )| 2i i i i

i i j ij

L
P x p P x H p Q



 
 =      

 
 

     (39) 

4.4 Size of region Γ 

Let us now examine the size of Γ.  Let us choose two points a and b in Γ.  There must be two indices i and j such that ia  

and 
jb .  By the definition (35), we have ( )i ijD L  and ( )j ijD L  , therefore ( )ija D L and ( )ijb D L .  

According to (33), this means that 2a b L−  , and that the size of Γ is less than 2L.  It is very important to note that the 

size of Γ, is bounded under all the hypotheses.  If we therefore choose our estimate to be the midpoint of Γ , then L will 

correspond to the protection level. 

 

4.5 Probability of Alert 

With this approach, the probability of alert coincides with the probability that the region Γ is empty.  Under hypothesis Hi, 

the probability that Γ is empty is bounded by the probability that the point 
( )ˆ i

x is not included.  This probability is bounded 

as follows ([6]): 

( )( )
, ,

ˆ | 2
i

i i

j ss i ij

L
P x H Q



 
   

 
 

       (40) 

where , ,ss ij i is the standard deviation of the solution separation ( ) ( )ˆ ˆi ij
x x− (as given, for example, in Blanch et al, (2010)).  

The total probability of alert is bounded using the same decomposition as for the integrity (Equation(38)). We get: 



( )( )
, ,

2 i

i j ss ij i

L
P y p Q



 
 =   

 
 

       (41) 

In the general case, we have the upper bound: 

( )( ) ( ) ( )( )ˆ2
i

i ij

i j

P y p P x D L =          (42) 

 

4.6 Protection Level Equations 

Using Equation (39) and (41), sufficient conditions for the protection Level L are given by: 

, ,

2

2

i

i j ij

i

i j ss ij i

L
p Q

L
p Q







 
  

 
 

 
 

 
 



 

      (43) 

These equations slightly improve the PL as compared to Blanch et al, (2021) when considering the Gaussian error model.  

However, the biggest change is that these two equations can be generalized to other error models using the expressions 

(38) for the integrity and (42) for the continuity.  

 

4.7 Summary of method to compute the protection level L and the estimate x̂  

1. Compute subset solutions and sub-subset solutions ( ) ( )ˆ ˆ,
i ij

x x and their associated standard deviations (as well as 

solution separation deviations) 

2. Determine L as the maximum of the solutions to Equations (43): this is the protection level 

3. Determine Γ using Equation (37) 

4. Find the center of Г this is the estimator ( )f y  

 

4.8 List of exclusion candidates and list of fault modes 

As pointed out in Blanch et al, (2021), the above equations are well adapted to the situation where the list of exclusion 

candidates coincides with the list of fault hypothesis.  There are however scenarios where the list of exclusion candidates is 

a subset of the fault hypotheses that need to be monitored.  This is typically the case when the probability of alert 

requirements is less stringent than the integrity risk requirement.  In this paragraph, we generalize the approach to include 

this case in a more efficient way than in [6].   

To do that, we first add a few more degrees of freedom to our construction of Γ.  We define J as the set of indices 

corresponding to the subsets that are in the list of exclusion candidates [9].  We define  

( )i ij ij

j

D L =  for i J  

( )i ij ij

j J

D L


 = for i J  

Using the same arguments as before, we have: 



( ) ( )| 2 2
ij ij

i i i i i

i i J j i J j Jij ij

L L
P x p P x H p Q p Q

   

   
 =     +    

   
   

     (44) 

We now examine the size of Γ.  As before, if two points a and b are in Γ, there must be two indices i and j such that 
ia  

and 
jb .  If i or j are in J, then we have as before ij jia b L L−  + .  However, if neither are in J, we only have that for any 

k in J:  

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆik k jk k

ik jka b L L x x x x−  + + − + −     (45) 

This inequality will enable the bounding of the size of 
i j  under hypothesis Hk.  Following an approach similar to the 

ones we user in Blanch et al, (2021), the requirement on the protection level L can be written as 

,
2 2

ij ij i ij

i i

i J j i J j Jij ij

L L T
p Q p Q 

   

   −
+    

   
   

     

, ,

, , , , , ,

2 2 2
ij ij i ij i ij

i i i

i J j i J j J i J j J i Jss i ij ss i ij ss i ij

L L T T
p Q p Q Q p

       

     −
+ + +     

     
     

       (46) 

We note that to solve these equations, we must also determine the thresholds 
,i ijT .  For the details on a practical approach 

to determine them we refer the reader to [6].  

 

 

5. EVALUATION OF THE ESTIMATOR 

The benefits of a preliminary version of the proposed estimator compared to a standard approach have been demonstrated 

in [6] both with real GNSS data and in availability simulations.  Our goal here is to evaluate the proposed estimator against 

the lower bound established in the first section.  Let us first look at the order of magnitude of a solution to the equation 

that sets the PL (Equation (43)).  It is very often the case (especially with critical geometries with respect to availability) that 

is dominated by one term.  With this assumption, we can write that 

1

,
max

2
ij

i j
i

L Q
p


−  

 
 

      (47)  

Based on Equation (11), we can define a simpler lower bound on the achievable PL 

1 1 2 2

,0. 0
, ,

max 2 max 2low ss ij ij
i j i j

i i

L Q Q
p p

   
  − −   + +

= = −   
   

   (48) 

(The second equation is a consequence of the relationship 2 2 2

0 ,0,ij ss ij  = + (Blanch et al, (2010)).)  It is also often the case 

that, for critical geometries,  
,0,ss ij ij  (because the second term dominates).  With these approximations, we have: 



1

1

2

2

i

low

i

Q
pL

L
Q

p



 

−

−

 
 
 

 +
 
 

 

Let is now look at typical values 710 −= , 710 −= , 42 10ip −=  (projected Galileo prior probability of constellation wide 

fault (ARAIM SARPS draft, (2021)).  With these values the PL for the proposed estimator is within 20% of the lower bound 

on the achievable PL.  The margin is further reduced if we add the effect of the dilution of both integrity and continuity due 

to temporal exposure (Milner et al, (2020)).  As a point of comparison, the standard approach provides PLs that are 90% 

larger than the lower bound (we deduce this from the fact that the PLs are almost twice as large as the ones obtained using 

the proposed estimator).   

Figure 1 shows the trace of the PL in one coordinate obtained with the proposed estimator, the corresponding lower 

bound, and the baseline H-ARAIM algorithm for an H-ARAIM scenario with the settings described in Blanch et al, (2021). We 

can observe the effect predicted above for the PL values:  the lower bound is relatively tight (especially compared to the 

performance of the baseline algorithm). 

 

Figure 1 Trace of the error bound L, the corresponding lower bound Llow, and the L computed in a standard FDE algorithm 

6. SUMMARY 

In this work, we generalize and evaluate the design of a new type of estimator designed for applications with error model 

uncertainty. The approach is designed with the Advanced RAIM framework for the error model, but it can be used in more 

general settings.  To evaluate the approach, we first establish a theoretical lower limit on the achievable state estimation 

error bound for any estimator.  We then use this lower limit to bound the distance to optimality of the proposed estimator.  

For requirements on integrity and continuity on the order of 10-7, and prior fault probabilities of 10-4 (values typical for 

ARAIM), we find that the error bounds obtained in this type of estimator are within 20% of the best possible achievable 

bounds for critical geometries. 
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APPENDIX 

To see how the solution separation comes in the problem (27), we first remark that 

( )
TT

As Ab s s Ab= −  for any b     (49) 

This because the estimator sA is fault tolerant to Ab.  In addition, because both and s and sA are unbiased estimates of the 

state x, we have (without loss of generality, we will assume that W is the identity to lighten the notations) 

( ) ( )
T T

A As s s s P− = −      (50) 

Re-writing (27), we get: 

( )max
T

As s PAb−        

Subject to 2PAb K       (51) 

Applying Cauchy-Schwarz to the vectors PAb  and As s− , we get the upper bound on the objective function: 

https://doi.org/10.33012/2021.17954


( )
T

A A As s PAb s s PAb K s s−  − = −     (52) 

So we see how the solution separation appears.  Now, because ( )
1

T T

As s sA A PA A P
−

− = (this can be obtained using the 

matrix inversion lemma Blanch et al. (2017b), it is in the span of PA, which means that equality is achieved for a certain b. 


