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ABSTRACT 

We develop and evaluate a novel method to characterize the user error range error distribution after it 

has been monitored.  This approach enables a simple characterization of the post-monitor distribution 

that accounts for the prior probability of a fault, the nominal errors of the prior distribution and the 

measurement error characteristics.  This approach could enable the reduction of error bounds in current 

systems providing GNSS integrity like SBAS. 

 

INTRODUCTION 

GNSS-based safety-of-life systems like Satellite-based Augmentation Systems (SBAS) are designed to 

provide very reliable position error bounds.  To achieve the required level of integrity, it is necessary to, 

first, characterize the errors that could impact the user position, and second, to determine the effect of 

combined errors at the user level.  In most of these systems, the range errors affecting the user have been 

checked by a set of monitors (either on the ground or on board the satellite). 

In this paper, we develop and evaluate a novel method to characterize the user error range error 

distribution after it has been monitored.  This approach enables a simple characterization of the post-

monitor distribution that accounts for the prior probability of a fault, the nominal errors of the prior 

distribution and the measurement error characteristics.   

In many systems, among them the Wide Area Augmentation System and EGNOS, the generation of the 

corrections and the integrity monitoring of the corrections are two distinct processes.  Typically, the focus 

of the correction generation is to maximize accuracy and availability.  The algorithms used in the 

generation of the corrections include many, potentially complex, features intended to improve accuracy 

under nominal error conditions.  The complexity and volume of the code in the generation of the 

corrections makes it very challenging to build integrity within the generation of the corrections.  For this 

reason, the integrity is checked by a separate process that uses simpler algorithms, and therefore easier 

to analyze and certify.  The purpose of this paper is to provide a simple method to integrate the prior 

distribution of the errors in the final error bound. 

The prior probability distribution of the range error affecting the user has heavy tails, and this is precisely 

why a monitor is needed to guarantee integrity.  This distribution can be determined offline and described 

conservatively by a nominal distribution, where the errors will usually be well characterized by a narrow 

zero mean Gaussian distribution, and a priori probability of fault, which is the probability that the error 

does not follow the nominal conditions. The prior probability of fault can be either bounded based on the 



amount of collected data or read directly from it (still from the offline process).  The integrity monitor can 

be modeled as a noisy real time measurement of the user range error that is then compared to a threshold.   

The method developed in this paper is based on a worst-case characterization of the distribution of the 

error conditioned on the monitor not having tripped.  Once the post-monitor distribution has been 

determined, a Gaussian overbound of the resulting probability distribution is computed.  It is this Gaussian 

overbound that is sent to the user (when the monitor has not tripped). 

After deriving the formulas to determine the user error bounds, we will first evaluate the resulting 

Gaussian overbound for a range of prior probabilities of fault, and second, we will briefly evaluate its effect 

on a dual frequency SBAS. 

 

OVERVIEW FOR THE EFFECT OF MONITOR ON DOWNSTREAM ERROR DISTRIBUTION 

The purpose of this analysis is to derive an overbound of the probability distribution after it has been 

monitored by a ground monitoring system.  Let us assume that the errors follow a nominal distribution 

with high probability, but that there is a residual probability that the error does not follow that distribution 

and can be unbounded.  Without monitors on the ground, it would be up to the user to mitigate the 

possibility of a large error (that is an error that is not within what is expected from the nominal 

distribution).  The effect of a threshold monitor will be to clip the tails of the distribution.  The amount of 

clipping will be dependent on the measurement noise in the ground monitors and the characteristics of 

the prior probability.  In this analysis we provide a model for this effect that can then be used to compute 

the error distribution as experienced by the user. 

 

LIST OF DEFINITIONS 

As a reference, here we include a list of variables and parameters used in this analysis. 

𝑦 monitor measurement 

𝜀 error under consideration (usually a component of the user range error) 

𝜀𝑡measurement noise 

𝑝 PDF of prior distribution of 𝜀  

𝑝0 PDF of prior distribution under 𝐻0 

𝑝1 PDF of prior distribution under 𝐻1 (impulse at b) 

𝜎𝑐𝑜𝑟𝑒standard deviation of 𝑝0  

𝜎𝑡  standard deviation of measurement noise 

𝛼 probability of 𝐻0 

𝑇𝑀monitor detection threshold 

 



PRIOR DISTRIBUTION 

The prior distribution can be described as the linear combination of two distributions, one for the core 

and one for the tails.  We will assume that the core can be bounded by a Gaussian distribution.  For the 

tails, we can assume that it could be any distribution, for example a delta at a given bias value b.  This is 

expressed by writing 

𝑝(𝑥) = (1 − 𝛼)𝑝0(𝑥) + 𝛼𝑝1(𝑥)     (1) 

With 

𝑝0(𝑥)~N(0, 𝜎𝑐𝑜𝑟𝑒) (hypothesis H0) 

𝑝1(𝑥)~𝛿𝑏 (hypothesis H1) 

 

Figure 1 shows the tail cdf for an example were 𝜎𝑐𝑜𝑟𝑒 = 1 and 𝛼 = 10−5.  In this plot, the bias b is outside 

the range of the x axis.  If the bias was in the range, we would see instead a vertical line dropping down to 

the tail cdf of the core distribution. 

 

Figure 1.  Example prior distribution. The horizontal line starting at around 5 is caused by the bias located 

outside the shown range. 



 

OFFLINE DETERMINATION OF PARAMETERS 

The parameters for this decomposition are determined through an offline process (an example for GPS 

clock and ephemeris errors is described in the references (Walter 2018, Walter 2019, Liu 2022).  In the 

case where an empirical distribution is representative of the errors, one possible approach consists in  

1. Choosing a threshold T.  This threshold separates what is considered nominal and what is 

faulted. 

2. Compute the probability of fault as the fraction of the data that is outside the interval [-T T]. 

3. Gaussian bound the data that is within T (re-normalized so that total probability sums to one) 

Note that even if there are no outliers, it is often the case that the amount of data collected is not sufficient 

to exclude the likelihood of outliers.  In that case, one must estimate the probability of fault (that is, of 

large outliers well outside the core distribution), as done for example in Walter 2019. 

 

EFFECT OF MONITORING 

The distribution of the errors will be modified by the real time monitor.  Roughly speaking, the monitor 

will remove the large errors.  For example, with a monitor without measurement noise, we would naturally 

expect the distribution to be clipped exactly at the monitor threshold value.  However, because the 

monitor itself has measurement noise, the effect will be more complex.  The measurement at the monitor 

can be written 

𝑦 = 𝜀 + 𝜀𝑡 

 

where the error to be bounded is 𝜀~𝑝 (see Equation (1)) and the measurement error is  𝜀𝑡~𝑁(0, 𝜎𝑡). 

 

MONITOR TEST STATISTIC 

The monitor compares the measurement to a threshold 𝑇𝑀.  We note that this threshold does not need 

to be related to the threshold T that was used in the offline process.  If |𝑦| ≤ 𝑇𝑀, the monitor does not 

trip, and the user can use the range error that includes the error 𝜀.  If not, a flag is sent, and the 

measurement is considered unhealthy.   

The choice of threshold will be dependent on the tradeoff between the probability of alert and the 

magnitude of the error (the tightness of the downstream distribution).  It is practical to express the 

threshold as a function of the standard deviation of the monitor measurement under the assumption that 

the error follows the core distribution 

𝑇𝑀 = 𝐾𝐹𝐴𝜎𝑦 

where 𝜎𝑦
2 = 𝜎𝑐𝑜𝑟𝑒

2 + 𝜎𝑡
2. 



DISTRIBUTION TO BE CHARACTERIZED: DOWNSTREAM MONITOR DISTRIBUTION 

We want to compute or bound the distribution of the error given that the monitor test statistic has not 

tripped (given by 𝑝(𝜀||𝑦| ≤ 𝑇𝑀)).  To this purpose, we will compute an upper bound of the tail CDF given 

by 

P(𝜀||𝑦| ≤ 𝑇𝑀) 

 

Derivation of posterior distribution 

We start by writing the Bayes rule that relates the probability of two concurrent events with the 

probability of one given the other 

P(𝜀 > 𝑥||𝑦| ≤ 𝑇𝑀) =
P(𝜀>𝑥,|𝑦|≤𝑇𝑀)

P(|𝑦|≤𝑇𝑀)
 

 

Denominator 

Using the formula of total probability, the denominator can be written 

 

P(|𝑦| ≤ 𝑇𝑀)= P(|𝑦| ≤ 𝑇𝑀|𝐻0) ∙ (1 − 𝛼) + P(|𝑦| ≤ 𝑇𝑀|𝐻1) ∙ 𝛼 

 

For the first term, we have 

P(|𝑦| ≤ 𝑇𝑀|𝐻0)=1-2𝑄 (
𝑇𝑀

𝜎𝑦
)  

where 𝜎𝑦
2 = 𝜎𝑐𝑜𝑟𝑒

2 + 𝜎𝑡
2 and Q is the tail CDF of a normal distribution.  For the second term, it is 

conservative to assume that  

P(|𝑦| ≤ 𝑇𝑀|𝐻1) ≈ 0 

 

because this only inflates the probability (although not by much). 

 

Numerator 

For the numerator, we proceed the same way by writing 

 

P(𝜀 > 𝑥, |𝑦| ≤ 𝑇𝑀)= P(𝜀 > 𝑥, |𝑦| ≤ 𝑇𝑀|𝐻0) ∙ (1 − 𝛼)+ P(𝜀 > 𝑥, |𝑦| ≤ 𝑇𝑀|𝐻1) ∙ 𝛼 

 



For the first term, we have the inequality 

 

P(𝜀 > 𝑥, |𝑦| ≤ 𝑇𝑀|𝐻0) ≈ P(𝜀 > 𝑥|𝐻0) =𝑄 (
𝑥

𝜎𝑐𝑜𝑟𝑒
) 

 

It may be possible to refine this and exploit the detection threshold for the core distribution, but we will 

not be doing it here.  The second term is given by 

 

P(𝜀 > 𝑥, |𝑦| ≤ 𝑇𝑀|𝐻1(𝑏)) = 𝐻(𝑏 − 𝑥)𝑄 (
𝑏−𝑇𝑀

𝜎𝑡
)    (2) 

 

where H is the step function. 

 

This is because, conditioned on 𝐻1(𝑏), the two probabilities are independent and  

 

P(𝜀 > 𝑥|𝐻1(𝑏)) = 𝐻(𝑏 − 𝑥) 

P(|𝑦| ≤ 𝑇𝑀|𝐻1(𝑏)) = 𝑄 (
𝑏 − 𝑇𝑀

𝜎𝑡
) 

 

Maximization over range of biases 

The product in Equation (2) is dependent on the fault bias b.  To compute the worst-case tail CDF, we 

maximize it over all possible values of b.   Because the first term is a step function that becomes one at x 

and the second one is a decreasing function of b, we have 

 

max
𝑏

P(𝜀 > 𝑥, |𝑦| ≤ 𝑇𝑀|𝐻1(𝑏))  = max
𝑏

𝐻(𝑏 − 𝑥)𝑄 (
𝑏−𝑇𝑀

𝜎𝑡
)= 𝑄 (

𝑥−𝑇𝑀

𝜎𝑡
) 

 

An upper bound of the numerator is then given by 

 

max
𝑏

P(𝜀 > 𝑥, |𝑦| ≤ 𝑇𝑀)=𝑄 (
𝑥

𝜎𝑐𝑜𝑟𝑒
) ∙ (1 − 𝛼)+ 𝑄 (

𝑥−𝑇𝑀

𝜎𝑡
)  ∙ 𝛼 

 



Considering the lower bound on the denominator and the upper bound on the numerator, we get the 

following upper bound on the tail CDF of the posterior distribution 

 

max
𝑏

P(𝜀 > 𝑥, |𝑦| ≤ 𝑇𝑀)

P(|𝑦| ≤ 𝑇𝑀)
≤

𝑄 (
𝑥

𝜎𝑐𝑜𝑟𝑒
) ∙ (1 − 𝛼)+ 𝑄 (

𝑥 − 𝑇𝑀
𝜎𝑡

)  ∙ 𝛼

(1-2𝑄 (
𝑇𝑀
𝜎𝑦

)) ∙ (1 − 𝛼)

 

 

This upper bound is a right CDF overbound of the user range error distribution.  The left CDF overbound is 

identical.  For this reason, it can be used in the convolution of the different error sources when computing 

the user position error. 

 

Figure 2. Upper bound on the post monitor distribution for 𝜎𝑐𝑜𝑟𝑒 = 1 ,𝛼 = 10−5, 𝑇𝑀 = 7.07, and 𝜎𝑡 = 1. 

 

Figure 2 shows the resulting tail CDF bound (in orange) for an example with 𝜎𝑐𝑜𝑟𝑒 = 1, 𝛼 = 10−5, 𝑇𝑀 =

7.07, and 𝜎𝑡 = 1.  The effect of the monitor is to reduce the tails.  A smaller 𝜎𝑡  will result in a bigger 

reduction. 

 



GAUSSIAN BOUND ON POSTERIOR DISTRIBUTION 

From the previous section, we have the upper bound on the posterior distribution 

𝐹(𝑥) =
𝑄(

𝑥

𝜎𝑐𝑜𝑟𝑒
)∙(1−𝛼)+ 𝑄(

𝑥−𝑇𝑀
𝜎𝑡

) ∙𝛼

(1-2𝑄(
𝑇𝑀
𝜎𝑦

))∙(1−𝛼)
    (3) 

To find a gaussian overbound of this tail CDF, we first compute the point β at which F is equal to 0.5.  This 

represents the smallest bias for which there exists a Gaussian tail CDF overbound of F.  The Gaussian 

overbound is computed by centering the Gaussian bound at β 

𝜎𝑜𝑏 = max
𝛽<𝑥<𝐿

𝑥−𝛽

𝑄−1(𝐹(𝑥))
     (4) 

 

 

Figure 3. Upper bound on the post monitor distribution for 𝜎𝑐𝑜𝑟𝑒 = 1 ,𝛼 = 10−5, 𝑇𝑀 = 7.07, and 𝜎𝑡 = 1 

with Gaussian overbounding tail CDF (in red) 

Note that we must choose an upper bound of the interval over which the maximization is performed in 

(4).  This range should be chosen so that the residual probability is negligible even after the convolution 

of several error sources.  For example, for a target of 10-7, making sure that we maximize everywhere 

𝐹(𝑥) ≤ 10−10 would be sufficient.  



For some parameter combinations, the distribution F(x) is bimodal (in the sense that there are two maxima 

in the PDF).  If this is the case, an intermediate unimodal distribution can be generated (if a rigorous 

Gaussian overbound is desired, as in the sense of Blanch 2018.) before computing the Gaussian 

overbound. 

 

LIMITATIONS 

The proposed range error model is designed such that the user can compute position error bounds using 

the Gaussian overbound (or the bimodal distribution).  This will usually require that the error distributions 

for different error sources are independent of each other.  In our case, this will mean that we assume that 

both the prior distributions and the monitor measurement noise are independent across satellites.  This 

will mostly be the case for ground monitors, but it will not necessarily be the case for applications like 

autonomous integrity monitoring, where the distribution of 𝜀𝑡 for the different range measurements will 

be very dependent. 

 

EXAMPLE APPLICATION: DUAL FREQUENCY SBAS 

As an example, we examine the case of dual frequency SBAS with the clock and ephemeris algorithm as 

described in Blanch 2011, (in the threshold version).  In this algorithm, there is an effective monitor 

threshold for each user range error, and an effective measurement noise.  The range error bound is 

computed based on the integrity allocation and is derived to protect the range error only.  Here we 

compare the baseline performance between the error bound as derived in Blanch 2011, and the one 

proposed here. 

The design of the monitor is the same in both methods.  The only change is in the derivation of the 

overbounding standard deviation.  For the proposed method, we assumed that the prior distribution of 

the correction errors had a core sigma of 0.50 m and a prior probability of fault 𝛼 of 10-4.  The bounding 

distributions did require a small bias (as pointed out above), but because it was below 10% of the sigma 

overbound, it was deemed negligible (at least for this analysis).  Figures 4 and 5 show the 99.9% percentile 

of the resulting VPL over a day computed using MAAST (with a 2 by 2 user grid, sampled every 5 minutes) 

for the baseline method and the proposed method.  A 24 satellite GPS constellation was assumed.  The 

proposed method shows error bounds that are reduced by almost 30%. 



 

Figure 4. Vertical Protection Levels in dual frequency SBAS for a baseline clock and ephemeris bounding 

algorithm  

 

Figure 5. Vertical Protection Levels in dual frequency SBAS for a clock and ephemeris bounding algorithm 

using the proposed bounding method. 
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