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Abstract— In order to obtain protection levels for PPP in 

multipath prone environments, we formulate a coarse threat 

model for urban and suburban environments.  Based on this 

threat model, we determine analytically the limitations a of 

solution separation approach.   In particular, we derive for which 

range of fault rates and fault lag this approach is likely to be 

feasible.  We then describe a solution separation fault detection 

algorithm adapted to this threat model.  Using data collected in 

urban and suburban environments, we evaluate the benefits of 

using up to 3 GNSS constellations and dual frequency in PPP 

combined with an FD algorithm based on solution separation, 

and in particular its ability to protect against measurement 

outliers. 
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I. INTRODUCTION 

Many applications, such as autonomous driving or UAV 
navigation, can greatly benefit from tight guaranteed absolute 
position error bounds.  GNSS Precise Point Positioning [1], 
which until recently was mostly used as a tool to obtain 
centimeter-level accuracy, is emerging as a key tool (or set of 
tools) to achieve decimeter-level high integrity error bounds 
[2,3,4]. 

This paper builds on our previous work [4,5,6] on the 
provision of integrity to PPP using techniques developed for 
aviation.  More precisely, our PPP prototype uses a fault 
detection and exclusion algorithm based on solution separation.  
The principle of solution separation is to run a bank of filters, 
where each filter is fault tolerant to a fault or set of faults.  The 
fault detection statistic is the difference between each of these 
solutions and the all-in-view solution.  In addition to their 
optimality properties [7], solution separation algorithms offer a 
straightforward proof of integrity, and good performance in 
open sky conditions and with occasional outages - when 
combined with an IMU [7].   

In our previous work, we assumed a very simple threat 
model: up to one satellite could be faulted (after removing 
obvious outliers based on the innovation residuals).  In our 

results using real measurements, this assumption did lead to 
adequate protection levels, even in relatively challenging 
environments.  However, such a threat model might not be 
sufficient to guarantee the integrity of the error bound in 
environments where many lines of sight might be experiencing 
large multipath-induced ranging errors.  The problem is 
compounded by the fact that the estimation filter uses 
measurements over time, such that past undetected faults can 
have an effect on the current state estimate. 

The three goals in this paper are: to refine the threat model 
to better account for local threats, to adapt, if necessary, our 
PPP solution separation engine to this threat model, and to 
evaluate the resulting performance using data collected in 
challenging environments (urban and suburban road 
environments). 

II. THREAT MODEL AND NOMINAL ERROR MODEL  

In order to quantify the integrity risk of the position 
solution and its error bound, we need to have a trusted model 
of the nominal errors, and a model of the potential threats. 

The nominal model describes the expected measurements 
when no faults are present.  The faults are, by definition, 
instances where the nominal model is not valid.  Note that we 
may choose to model common (but bounded) faults by 
inflating the nominal error model.  In that sense, the distinction 
between nominal and faulted conditions is arbitrary. 

The most likely fault modes affecting the integrity of the 
position solution are caused by: 

- large code multipath 

- undetected cycle slips 

- non-line of sight signals 

- satellite clock and ephemeris error not captured by the 
precise ephemeris products 

- residual tropospheric delays exceeding nominal model 

- residual ionospheric delays exceeding nominal model 
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Here, we will be targeting integrity risks on the order of 10-
3 to 10-4 per hour, so the faults due to the signal in space and 
the propagation through the ionosphere and the troposphere 
(which are on the order of 10-5 per hour) can be neglected for 
now.  Here, we will therefore focus on the effect of outliers due 
to the environment, which are potentially limited in size (a fact 
that we will exploit).  This is a difference with our previous 
work, where faults could have arbitrarily large errors. 

A. Nominal error model 

 

In the nominal state, the error model is assumed to follow a 
known error model [6], defined by Tables 1, 2, and 3 (second 
column).  For Table 2, the process noise for the multipath state 
and the carrier phase error state are modeled as random. 

TABLE I.  INITIAL STATE UNCERTAINTIES 

Parameter 

Initial 

Sigma 

(meters) 

Tropospheric Wet Delay 0.1 

Float carrier phase ambiguity 100 

Code phase multipath 2 

Carrier phase error state 0.05 

Differential code bias 20 

Frequency-Dependent DCB 1 

 

TABLE II.  PROCESS NOISE SETTINGS 

Parameter 

Initial 

Sigma 

(meters) 

Faulted 

Process 

Noise (m) 

Tropospheric Wet Delay 0.0022/36

001/2 

0.0022/36

001/2 

Carrier phase error state 0.01 1 

Code phase multipath 0.2 10 

Differential Code Bias 0 0 

Frequency-Dependent DCB 0 0 

 

TABLE III.  MEASUREMENT NOISE SETTINGS 

Parameter 
Nominal 

Sigma (m) 

Faulted 

Sigma 

Pseudorange 2 10 

Carrier phase 0.03 1 

Doppler 0.05 0.5 

Differential Code Bias 0 0 

Frequency-Dependent DCB 0 0 

 

B. Threat model  

The faults are defined using a very simple model as 
follows: we assume that up to all measurements from one 
satellite (we well refer to these are as a measurement series) 
can transition from the nominal state to a faulted state at a rate 
Rfault, and that the fault will persist during Tfault.  (Many of the 
derivations below are valid assuming that Tfault represents a 
mean value of the fault duration, but we will assume for 
simplicity that they last no more than Tfault).  In airborne 
applications, Rfault is in the order of 10-5 and Tfault in the order 
of 1 hour.  For the application we are considering, we expect 
that Rfault will be much higher, and Tfault somewhat lower. 

A faulted state means that the measurements follow a much 
more conservative error model defined the third column in 
Tables 2 and 3.  These values are a very coarse estimate, but 
they do reflect the potential effect of non-line of sight 
measurements that we have observed in the data. Compared to 
our previous approach (where errors could be unbounded), this 
allows us to provide finite (though large) error bounds on the 
position instead of infinite error bounds in cases where there is 
not enough redundancy. 

C. Outlier rejection based on measurement residuals 

As with many practical Kalman filter implementations, the 
estimator performs checks on the measurement residuals to 
exclude outliers.  These outliers are removed iteratively to 
reduce the possibility of large outliers affecting the detection of 
other outliers (because they can drag the solution significantly).  
It is important to reduce such false alerts in particular for the 
carrier phase measurements, where a test trip implies a re-
initialization of the ambiguity.  The exclusion of outliers will 
reduce the rate of faults that must be mitigated or protected 
against by other means.  However, given our threat model, it is 
very difficult to provide an estimate of the effect of the outlier 
rejection on the fault rate.  The amount of mitigation will 
depend on both the type of faults and on the strength of the 
geometry.  For example, cycle slips (and more generally, step 
faults) will likely be detected under a strong state solution, but 
they might not if there is not enough redundancy, or too much 
measurement noise. 

It is for this reason that we must assume that some of the 
faults will not be detected, and must be mitigated through other 
means.  In our case, we expect the solution separation 
algorithm to mitigate the remaining threats. 

D. Fault probabilities, fault rates, error persistence  

In our previous papers, we assumed a fixed probability of 
fault for each measurement series, and we made the 
assumption that it was sufficient to monitor faults that affect 
only one of the series at a time. This approach is well adapted 
to airborne receivers where the threat model is well 
understood.  It is also a first good guess, for other applications. 
Here, we re-examine this assumption and consider a model that 
is slightly more sophisticated. 

Here we will assume that each measurement series as a 
fault rate Rfault.  The probability that a fault occurs anytime 
within an interval T preceding the current time is given by: 
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( )fault occurs within interval of length 

1 faultR T

fault

P T

e R T
−

= − 

 (1) 

A fault will affect the position solution if it lasts long 
enough to be included in the position solution.  We define: 

- Tfault the mean length of a fault and  

- Tfilter the period beyond which a measurement will not 
have an impact on the solution 

Without modification, in a Kalman filter the time T will 
increase indefinitely.  As a consequence, within this model, the 
probability of having a fault is guaranteed to affect so many 
time series that it will not be possible to obtain a fault free 
subset with sufficient probability.  To prevent this from 
happening, there are at least two approaches.  One consists in 
using a batch approach instead of a Kalman filter.  In this 
approach, any measurements older than a fixed T are not 
included in the solution.  This way we are guaranteed that any 
fault occurring to measurements older than T will have no 
impact on the state estimate.  A second approach was described 
in [6], and it consisted in keeping two estimation filters running 
in parallel that re-initialize at an interval of length Tfilter, where 
the re-initialization is staggered every Tfilter/2.  This way, the 
receiver can always use one of the state estimates that has 
converged, and the state estimate will not be exposed to faults 
that have happened before Texp.  More details on this approach 
can be found in [6]. 

E. State probability 

With this model, the probability that a fault in one 
measurement series i affects the state estimate at a given time 
is therefore given by: 

( ), ,fault i fault i fault filterP R T T= +    (2) 

For this paper, we will also assume that the probability of 
having a fault in one satellite measurement series is 
independent of the others.  As a consequence, the probability 
that two measurement series are affected is given by: 

( )

, ,

Prob fault in  and  measurement series

fault i fault j

i j

P P=
 (3) 

This formula can be generalized to an arbitrary number of 
measurement series. 

F. Probability that multiple faults affect the state estimate 

over a finite period  

The previous calculation describes the probability that a 
state estimate at a given time is affected by a fault, and this will 
be useful later when we evaluate the integrity risk contribution 
of the fault modes that are actively monitored.   

However, we also need an upper bound of the contribution 
of fault modes that are not monitored over a given exposure 
time.  We could derive this probability from the state 
probability and the required time to alert, but that turns out to 
be exceedingly conservative.   

Instead, to compute such a bound, we consider the 
probability of having q simultaneous faults at any point during 
a given exposure time Texp.  To go further, we compute the rate 
of such faults. The rate of a multiple fault is given by (see 
Appendix B): 

1

,

1, , ,

1
i

q i

q

composite fault k

rk k fault k filter

R P
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=
+

    (4) 

The average length of such a fault (as it affects the filter) is 
given by: 
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The probability that the fault affects the state estimate in 
the interval [0 Texp] is the probability that it appears anywhere 
in the interval [-Tcomposite Texp].  Therefore, the probability of the 
fault impacting the exposure interval is given by: 

1

exp

, ,

1, , ,

1
i

q i

q

fault composite fault k

rk k fault k filter

T
P P

T T=

 
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 + 
  (6) 

 

For the case where all the faults have the same rate and 
duration, we have: 

exp

, 1q

fault composite fault

fault filter

T
P P q

T T

 
= + 

 + 

 (7) 

 

Now let us consider all such composite faults.  There are 

n

q

 
 
 

  of them, where n is the number of satellite measurement 

series.  The probability of having q or more simultaneously 
affecting our state estimate is given by: 

( )

( )
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 simultaneous faults affecting state estimate 
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A fault detection algorithm monitoring up to q-1 
simultaneously faulted satellites (in the sense that they have 
been affected in the past Tfault+Tfilter) would not necessarily 
detect faults affecting q or more satellites.  For this reason, the 
above formula represents an upper bound of the integrity risk 
contribution from the modes that are not monitored.   

For example, let us consider a situation where: 

2

, 10 /fault iR hour−=  



120fault filterT T s+ =  

exp 1 hourT =  

n = satellites 

The probability of having two simultaneous faults (q=2) 
impacting the state estimate over the exposure time Texp is, 
using Equation (8), 3.0*10-4.This means that if we have an 
integrity target of 10-3, it would be sufficient to monitor the 
single faults.  For an integrity target of 10-4, it would not be 
sufficient.   

In Figure 1 we plot this probability with a fixed 
Tfault+Tfilter=120s and n=10 for a range of fault rate values and 
number of simultaneous faults.  In addition, we plot a notional 
threshold value of 5 x 10-5, below which we can assume that 
the faults won’t need to be monitored.  For a given rate, only 
the values of q with a value below the threshold will lead to an 
algorithm with the potential of meeting the integrity 
requirement.  

Similarly, in Figure 2 we keep a constant rate of 0.1/hour 
and vary the fault persistence.  Each of the lines corresponds to 
q, the number of simultaneous faults.   

From these few examples it becomes clear that 
guaranteeing low integrity risk values will require the active 
monitoring of many fault modes, even for moderate fault rates.  
For large fault rates and long fault persistence times, this 
approach appears to be impractical.  For example, from Figure 
2, we can see that a rate of 10-1/hour and Tfault+Tfilter=15 
minutes would require the active monitoring of all modes 
composed of up to 4 simultaneous faults.  For our 
implementation, we assumed a rate of 10-2/hour, which means 
that for a target 10-4 per hour, at least two-out subsets need to 
be monitored. 

 

Fig. 1. Probability of q simultaneous faults over an interval of 1 hour for 10 

satellites as a function of the fault rate per hour.  

 

 

Fig. 2. Probability of q simultaneous faults over an interval of 1 hour for 10 

satellites as a function of the fault persistence.  

G. Protection Level Equation 

The previous subsection has determined the depth of 
subsets that need to be monitored.  A set of protection level 
equations was described in [4].  Techniques to lower the 
computational load were described in [5].  For this paper we 
chose the simplest form, which is given by: 
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where: 

( )i  is the standard deviation of the position error in the 

coordinate of interest 

N is the number of subsets 

PHMI is the integrity risk per sample (after removing the 
contribution of the modes that are not monitored).  We will 
assume that there are 3600 samples in one hour, such that 
PHMI = 10-4/3600 = 2.7 10-8.   

Pfa is the false alert per sample.  If we target a probability of 
false alert per hour of 10-3, then per sample we have Pfa =10-

3/3600 = 2.7 10-7.   

For the implementation shown in the next section we have: 

( ) 2 4120
10 3.3 10

3600
fault fault fault filterP R T T − −= + =    

All these values are at this point notional.  They only 
represent a first estimate, both for the requirements and the 
fault rates.   

 



III. IMPLEMENTATION IN A MULTI-CONSTELLATION PPP 

PROTOTYPE 

A complete description of our prototype has been described 
before [4], [5], [6].  The estimated states include the position, 
velocity, receiver clock biases, tropospheric delay, carrier 
phase ambiguities, multipath error, receiver differential code 
bias, and broadcast orbit and clock error.  A key element of the 
algorithm developed for solution separation is that the term 
including relativistic effects, solid tides (among other terms), 
which is computationally expensive, is computed once using 
the all-in-view (AIV) solution as an input.  Precise clocks and 
orbits were from the Center for Orbit Determination in Europe 
(CODE) for all constellations (IGS MGEX product).    We 
used the IGS satellite antenna phase center offsets and 
variations.  Ionospheric TEC maps were also from CODE. 

We consider two GNSS data sets, one representing an 
urban environment and a suburban one. The data sets are 
described in Table 4. 

TABLE IV.  DATA SETS SUMMARY  

 Urban  Suburban 

Receiver NovAtel OEM 

7500 

Trimble BX 940 

Amount 
and date 

20 minutes of 
driving data on 

March 1, 2018 

15 minutes of driving data in 
July 2019 

Signals GPS (L1 C/A -L2P 
semi-codeless), 

GLONASS (L1 

C/A-L2P) at 1 Hz 

GPS (L1 C/A -L2P semi-
codeless, L5), GLONASS (L1 

C/A-L2P) at 1 Hz, Galileo 

(E1/E5) 

Truth NovAtel OEM729 
with tactical-grade 

IMU with forward 

and reverse 

processing 

Provided by the Natural 
Resources Canada Canadian 

Spatial Reference System 

Precise Point Positioning 

(CSRS-PPP) service 

 

A. Results for the suburban environment 

This data was collected in roads with heavy foliage, such 
that the masking angle was above 25 degrees.  However, we 
did use three constellations, which results in about 10 satellites 
in view most of the time.  We did not have a truth reference for 
all time steps (the IMU measurements were not integrated in 
the RTK solution). 

 

Fig. 3. Path corresponding to the sub-urban scenario 

Figure 4 shows three time series corresponding to the dual 
constellation case (GPS+GLONASS): 

- The position error (blue) 

- The protection level derived from the nominal model 
only (red) 

- The protection level computed using the solution 
separation algorithm described above  

We can see that, although the nominal error bound covers 
the position errors, the margin is sometimes thin.  In contrast, 
the protection level appears to offer a larger margin.  However, 
the protection levels are rather large.  Figure 5 shows the same 
scenario using Galileo in addition to GPS and GLONASS.  
The protection levels are still high due to the large number of 
cycle slips, but they have been significantly reduced.   

 

 

Fig. 4. Position errors, nominal error bounds (red), and protection levels with 

two constellations (GPS and GLONASS) 

 

Fig. 5. Position errors, nominal error bounds (red), and protection levels with 

three constellations (GPS and GLONASS) 

 



B. Results for the urban scenario 

Figure 6 shows the path followed by the vehicle in the 
urban scenario and Figure 7, a summary of the measurements 
collected and used by the filter in the urban environment.  This 
represents an extremely challenging GNSS environment, 
where the cycle slips are constantly occurring and the number 
of measurements drop to zero in several occasions.  It is 
therefore clear that the measurements do not follow the 
nominal model at the assumed rate.  Still, we wanted to test 
whether our approach helps determine the trust in each of the 
position solutions. 

 

Fig. 6. Path corresponding to the urban scenario. 

 

Fig. 7. Overview of GNSS measurements for the urban scenario. 

Figure 8 shows the position error, the nominal error bound, 
and the protection level (as with Figures 4 and 5 in the 
suburban scenario). 

We can see that, in many instances, the error exceeds the 
protection level derived from the nominal model only (close to 
10% of the time).  In contrast, the protection level derived from 
the solution separation covers the observed errors.  As pointed 
out, the threats affecting the solution are much worse than what 
is assumed by the algorithm and we therefore would not expect 

it to meet the desired integrity figures, but it appears to add 
some protection to the user. 

 

Fig. 8. Position errors, nominal error bounds (red), and protection levels. 

For the final version of this paper, we plan to process a larger 

number of data sets. 
 

IV. SUMMARY 

In this paper we examine whether multi-constellation 
GNSS combined with fault detection techniques can help 
mitigate the effects of multipath and non-line of sight 
measurements on precise point positioning.  In order to obtain 
protection levels for PPP in multipath prone environments, we 
develop a coarse threat model for urban and suburban 
environments.  We then design a solution separation FDE 
algorithm adapted to this threat model. 

We briefly evaluate the benefits of using up to 3 GNSS 
constellations and dual frequency in PPP combined with an 
FDE algorithm based on solution separation, and in particular 
its ability to mitigate multipath in urban and suburban driving 
conditions.  In the suburban scenario, we find that the nominal 
model generally covers the position errors, from which we 
deduce that the algorithm would be tolerant to undetected 
faults in up to two satellites. We also find that adding a third 
constellation (Galileo) to the solution strengthens both the 
accuracy and the protection levels by more than 50%.  In the 
urban scenario, which was very challenging, we find that the 
protection levels help protect the user against large position 
errors. 
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APPENDIX  

A. PPP filter  

 

The measurements used in the EKF are single and dual 
frequency code and carrier phase measurements along with 
single frequency Doppler measurements.  Continuity of L1 
carrier phase measurements is significantly better than that of 
L1/L2 measurements.  Using L1-only measurements in 
addition to dual frequency measurements leads to much 
smoother covariances and protection levels over time that do 
not jump up upon loss of L2 measurements.  The L1 
measurements require ionospheric delay estimates.  In this 
case, IGS TEC maps are used for both code and carrier 
measurements.  However, the filter could be further simplified 
by only using L1 carrier phase measurements, not including an 
ionospheric estimate, and adding more process noise to the 
carrier phase error state due to the temporal changes in the 
ionospheric delay.  L1 Doppler measurements are included for 
a more direct measurement of the receiver velocity.  The code 
and carrier phase measurements are modeled as follows: 

   

Dual frequency carrier phase: 

                     (10) 

Dual frequency code phase: 

               (11) 

Single frequency carrier phase: 

 (12) 

Single frequency code phase: 

 

(13) 

where  

- satellite position provided by external precise orbit 
product 

- estimated receiver position 

- estimated receiver clock bias 

- satellite clock offset provided by external precise 
orbit product 

- tropospheric mapping function 

- estimated delta tropospheric delay 

- carrier phase wind-up 

- estimated float carrier phase ambiguity 

- estimated multipath delay on the signal 

- estimated receiver differential code bias per signal 
(shared across SVs) 

- GLONASS signal frequency channel number from -7 to 
6 

- estimated frequency-dependent GLONASS 
differential code bias per signal (shared across SVs) 

- ionospheric delay/advance 

- Other modeled effects.  This includes relativistic 
effects, solid earth tide modeling, satellite antenna phase center 
offset and variation, ocean loading, modeled tropospheric 
delay, and any other desired range models. These are strictly 
modeled and not estimated.  



- other unaccounted for errors  

Receiver differential code bias states have been included to 
accommodate the inclusion of single frequency measurements.  
For non-GLONASS constellations, one signal is assigned as 
the reference, and a constant DCB is estimated for every other 
signal.  There is no process noise added to the DCB state.  For 
GLONASS, a frequency-dependent DCB is included for each 
signal to account for local delays that are a function of the 
satellite frequency channel. 

B. Fault rate of composite faults 

We demonstrate the formula for two faults.  The general 
formula can be deduced by induction.  Let us consider two 
events 1 and 2, with rates R1 and R2 and mean time to detect m1 
and m2. In order to determine the rate of the combined fault, let 
us consider the probability that the fault appears in an interval 
Δt.      

We define Pi as the probability that event i is present at a 
given time.  We have the relationship: 

i i iP R m=     (14) 

There can be three mechanisms for the composite fault to 
appear: 

- fault 1 was already present and 2 starts in the 
infinitesimal interval Δt, or 

- fault 2 was already present and 1 starts in the 
infinitesimal interval Δt 

- both faults 1 or 2 appear in the interval Δt 

 

The probability of 1 and 2 appearing in the interval Δt is 
therefore: 

 ( )

( )( )1 2 2 1 1 2

event 1&2 appears in 0,P t

PR t P R t R t R t



=  +  +  
  (15)  

To obtain the rate, we divide this expression by Δt and 
make it go to 0: 

( )( )1 2 2 1 1 2

12 1 2 2 1
0

lim
t

PR t P R t R t R t
R PR P R

t →

 +  +  
= = +



   (16) 

Using Equation (14), we can write: 

12 1 2 2 1 1 2 1 2

2 1

1 2

1 2

1 1

1 1

R PR P R PP PP
m m

PP
m m

= + = +

 
= + 

 

  (17) 

To compute the mean fault duration of the composite fault 
m12, we consider the probability of having 1 and 2 at a given 
time. Using Equation (14) again, we have: 

12 12 12P R m=     (18) 

Combining Equations (17) and (18), we get: 

1

12

1 2

1 1
m

m m

−

 
= + 
 

   (19) 

 

 

 

 


