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ABSTRACT

This paper investigates twechniquesto reduce the computational load of running multiplaufatolerant Kalman filtersn
order to provide integrity. Thesapproactes arethen exploited in the implementation of a solution separation integrity
monitoring algorithm in a PPP Kalman filter solution. We evaluate the techsmicgieg GNSS data colled in static and
drivingconditions. In our scenarioghese techniques lead toomputational load reductions of at leag0%at the expense
of protection level degradations @bout50%

INTRODUCTION

Until recently Precise Point Positioning (PPP) techniques [1] have mostly been used to provide high actheaeyis a
growing interest irtranslating the benefits of PPP to integrégd enabling itapplicationto safety criticabpplications in rail,
automotive, maritime, and even air navigation [2],,[l], [5] In [5], we demonstrated how techniques developed for aviation
applied to PPP can produce metferel protection levels in automotive and aviation sadgos. This was achieved by
implementing an integrity monitoring algorithm based on solution separation, akin to the one used to aAalyaeced
RAIM performance [6], to the PPP Kalman filter solution.

The principle of solution separation is to runanii of filters, where each filter is fault tolerant to a fault or set of faults. The

fault detection statistic is the difference between each of these solutions and the-@kw solution. In addition to their
optimality properties [7], solution sepatian algorithms offer a straightforward proof of integrity, and good performance [5].
However, they can also be expensive in terms of memory and processing time, because they require the receiver to compute
a bank of filtergor a processomputationallyequivalent to a bank of filtersas in [11}. In the worst casehe computational

load will be proportional to the number of filters.

In [5] we showed that it was possible to dramatically reduce the cost of running the bank of filters: dependindfitierthe
complexity(that is, the number of estimated statesyje could run 20 to 50 additional filters for the cost of one. This was
obtained by exploiting the fact that, in PPP, many of the elements in the computation (error models, corrections, etc) are
common tothe all filters so that it is sufficient to compute them once for the-ialview filter. Also, all the measurements

are linearized with respect to the ali-view position solution, which further simplifies the subset solution filters.

The godof this paper is tantroduce andinvestigatetechniquesto reduce even further the cost of the solution separation

for Kalman filter solutions. When the number of states is large (larger than 50), which is the expectation in a RPP multi
frequency user algorithm, tire areat least two steps that areomputationaly expensivethe determination of the Kalman

gain and the determination of the new error covariance

Thefirst technique under investigation consists in using a set of suboptimal filters for the subset solutions (instead of the
optimal filter), whee the Kalman gain for each subfilter is derived from theralliew and does not require a full matrix



inversion. The second techniquihat we will evaluate is the consolidation of faults into a few subsets. This is another type
of suboptimal subset sotion that has already been evaluated for snapshot solutions in Advanced [RAIMSI.

For the experimerdl evaluation, we will use owequential PPP filteimplementation [5], whichis based on a simple
extended Kalman filter with estimated parametemprising the receiver position, clock biases for each constellation in use,
a tropospheric delay, and float ambiguities for each tracked carrier phase-fieqakency measurements are incorporated
from GPS, GLONASS, Galileo, and BeiDou. The precisendricibck estimates are drawn from th€S MGEX analysis
centers.

SUBOPTIMAL SUBSET SOLUTIONS: FIRST APPROACH

For the approach outlined here, we only consider the measurement update step of the Kalman filter. Foirtivéeall
filter (indicated by the index 0), we hattee following Kalman filter equations:
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Where X,;, 4 is the a posteriorstate estimate, Eﬂu is the a priori estimateGis the observation matrixyV is the inverse

of the measurement noise matriy,is the vector of measurements, arﬁt(ﬂ)Jt 41s the error covariance of the a posteriori

state estimate. We have:
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) is the error covariance of the a priori estimate.

Subsefilter solutions

In this paper we will consider probability faults of%Hhd 10* per hour. For an integrity of TQer hour, this means that we
need to compute the solution separation statistic of all one out subsets in the case®@ntiotwo out subsets for 19[8].
The subset filter Kalman filter equations (indexedkpgre similar to the alin-view ones:
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The only differencevith respect to the alin-viewis that we only use a subset of the available measurements to update the
state estimate. One of the most onerous steps in this process is the computation of the covariance as written in Ejuation
. As can be seen, we need at least twatrix inversions, where both matrices améy n with n being close to a 100. (We
note that the geometry matrix is often as large, so a matrix update formula will not aotisly reduce the computational
load).



Thefirst approach consisti® using a suboptimal filter fdéﬁlt 4 instead of the optimal one defined above. More precisely,

we define it as follows:
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Where the matrix SS':)H[ 41S no longer given by Equatio®). Instead, we attempt to find a matrix that will result in a

reasonable estimator but that is cheaper to compute. One possible approach is to compute this matrix as if the prior of the
estimatedstates was given by the prior of the-ailview filter:
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The advantage is that this matrix can be obtaimégthout a full matrix inversion. We have:
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. For example, in the one out case of our PPP filter, the rank of this matrixi®4an write:
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The use of this formula can speed up the calculatioS&ﬁl‘ 4 because thenatrix to invert is usually much smaller than the

whole covariance matrixStandard matrix inversion algorithms require around Z2/Basic operations,sthe computational
load is significantly reduced (from almost a million to less than a hundred).

Thenew Kalmargainis given by:
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Where we hae highlighted what has alreadyeencomputed in the alin-view filter.

Newsubsefcovariance

As opposed to the optimal filter, the covariance after the update is not giveSE@(. 4+ Instead, it is given by:
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SUBOPTIMAL SUBSET SOLUTIONS: SECOND APPROACH

The second approadan be described much more succinctlycdmsists in grouping the féts so that we do not need to run

as many filters. For example, instead of running a filter for a fault in satedlitet another one for a fault in satellijewe run

a filter that is fault tolerant to both andj. This will result in a weakeolution position, and therefore larger protection

levels This second approach can be considered a suboptimal subset solution approach because each fault is accounted by a
suboptimal filter For this paper, the groups were formed based on the PRN number, which is mostly equivalent to a random
grouping with regard to geometry.

DATA AND PROTECTION LEVEL CALCULATION
We used two types of GNSS data: onesotlid by a static receiver and one collected by a receiver installed in a car.
The GNSS data d¢etted in nad conditionssdescribed in [5] and briefly summarized here:

A Receiver: NovAtel OEM 7500

A 1 Hour Driving Data on March 1, 2018

A GPS (L1 C/A2P semtodeless), GLONASS (L1-CZR) at 1 Hz

A Truth positions provided by NovAtel OEM729 with tactiralde IMU with forward and reverse processing
Specifically, we choose the open sky conditions.
The static GNS8orresponded to the following conditions:

A ReceiverTrimble NetR9

A 6 hours of static data on November 7, 2018 at Stanford

A GPS (L:C2W), GLONASS (H1ZP)at 1 Hz

A Truth position from IGS station solutions

The error models arand the protection level calculation is also described in [5]. It is a straightforward adaptation of the
ARAIM algorithm described in [G] a Kalman filter solution.The algorithms were run in MATLAB in a R@h@ows10, 64
bit OS with Intel®Coret i7-8700KCPU@3.GGHZ3.70GHawith 16.0 GB RAM

EXPERIMENTAL RESULTS
Baselinevs suboptimal subset Kalman filter

The baseline results ugke optimal subsets as described in Equatiénh The suboptimal Kalman filter subset solution was
implemented as described in Equati¢hl). Figuires 1a) and b) show thaubset solutiongorresponding to thebaseline
approach and the suboptimal Kalman filter approadiWe can observe a degradation in the accuracy of the subset position
solutions, and also in the covariances (not plotted heFéayures 2 through 4 show the protection levels for both the baseline
and the suboptimal approach, as well as the ratio between the (tight side plot)
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Figure 1 a) and b). Subset position solutionshfebaseline results (a), and the suboptimal subset solution (b)
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Figure 2 PL for the &tic scenario with one ouleft side plot) and ratio between suboptimal and baseline (right side plot).
Run time wa$045 s and011 s(for baseline anduboptimalrespectively.



10
E K\\
3 5
©
A
0 SN —
0 0.2 0.4 0.6 0.8 1
10 r Baseline
T s Suboptimal Subsets
= s (TOF
g 5t
<]
z
0 T T,
0 0.2 0.4 0.6 0.8 1
10 x\
£ \———\____
o 5
pes )
" W
0 0.2 04 0.6 0.8 1

Time [hours]

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1
Time [hours]

Figure 3 PL for the drivingcenario with one oufeft side plot), and ratio between suboptimal and baseline (right side plot).

Run time was 319 s /29](lsaseline/suboptimal).
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Figure 4 PL for the static scenario wittvo out (left side plot), and ratio between suboptimal and baseline (right side plot).

Run time wad.2100 s /6100 ghaseline/suboptimal).

The improvement in execution speed wa®dest, as we only saw &% reduction in execution timr the one out case
and a 50% reduction for the two out cas# is possible however that a more significant benefit may be observed in real time
code (the prototype we use is implemented in MATLAB, which is very well suited for matrix operations).

Siboptimal subsets: faulgrouping

In this section, we evaluate the protection levetsulting from the fault grouping technique. The grouping of the faults was
not optimized. Figures 5 through 7showthe resulting protectin levels for group sizexf 2, 3, 5 and 10 faultsUp togroup

sizes of 3the degradatiorappears tdbe acceptable.



East [m]

3 4 5 6

10 : = ; : . —l:osilion Error 2

— 2

- =’ _ 15
E 4 £ En
= 1
£° 5 2
= 05

0 A 0

0 1 2 3 4 5 6 0 1 2 3 4 5 6
2 : T T . T
2

iy 1.5 h\\W\/ —3
£ z = i
= 2 4 —_ —
[=]
k= ]
= 05

o _— P . L L . .

0 1 2 3 4 5 6 0 1 2 3 4 5 6

Time [hours] Time [hours]

Figure 5.PL for the static scenario witiheout (left side plotfor each of the grouping options (1 is the baselisad ratio
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groupings.
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groupings.

As in the first approach, the execution speed improvement in the one out casea@dastin our MATLAB implementation,
but it is significant in the two out caséor groupings of size two, we obsena improvement of 70% in run time

Forming fault groups with sizes larger than 3 leanlsery large protection levelsThe protection level degradation due to
fault grouping $ not negligiblén any of the casedut it may be acceptabléor groupings of two faultsespecially given the
potential reduction in computational load.able 1 summarizes the results of our simulations for the two out case.

Table 1Run tine improvemenfor the different techniques and corresponding performance degradation



Algorithm Decrease in run time compared to baseline | Ratio of protection levels (max and
median)

Baseline solution 0% 1 1
separation

Suboptimal filter 49% 2.23 1.65
Fault grouping (2) 70% 1.54 1.29
Fault grouping (3) 81% 2.07 1.39
Fault grouping (4) 85% 2.44 1.60
Fault grouping (5) 88% 135 2.30

SUMMARY

We havedescribed and investigatetvo techniques to reduce the computational loada§olution separation algorithm for
Kalman filter position solutions. Both techniques consist in using suboptimal filters in the subset filters instead ¢iftaé op
filters. Weapply these techniques ia solution separation integrity monitoring algorithm in a PPP Kalman filter solwitbn
data collected in road conditions. The results suggest that, although the use of suboptimal filters does increase ttierprotec
levels¢ and therefore degrade performance the degradation may be acceptable given the potential computional load
savings
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