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ABSTRACT

Direct Position Estimation (DPE) is a promising solution to enhance sensitivity and robustness of GNSS receivers. At a glance,
it involves directly solving for the position, velocity, and time (PVT) without the intermediate steps of computing observables.
This was seen, both theoretically and experimentally, to be outperform two-steps positioning in many challenging situations. On
the other hand, signal integrity is a major concern in safety-critical applications and there is a need to investigate how integrity
of DPE solution can be measured. This article discusses a possibility, leveraging on existing integrity algorithms for two-steps.

INTRODUCTION

Global Navigation Satellite System (GNSS) is the general concept used to identify those systems that allow user positioning
based on a constellation of satellites. The term therefore includes GPS, Galileo, GLONASS, or Beidou systems. These systems
rely on the same principle: the user computes its position by means of measured distances between the receiver and a set of
visible satellites. These distances are calculated estimating the propagation time that transmitted signals take from each satellite



to the receiver. Then, these distances are used to obtain user position by means of a procedure referred to as multilateration.
Despite its known vulnerabilities [1], GNSS is the technology of choice in most of the applications requiring positioning
information.

The proposal of new techniques for GNSS receiver design is blooming due to the advances in digital signal processing
devices, which allow increased computational complexity at faster rates [2]. Recently, fundamental modifications to the con-
ventional receiver architecture were proposed. Here we refer to those approaches that not only substitute certain parts of the
receiver by more sophisticated algorithms, but those which entail an essential modification of the receiver’s operation. A
promising architecture integrates code/carrier tracking loops and Navigation Solution in a single step. This is the basis of
the so-called Direct Position Estimation (DPE) concept introduced in [3]. Initialization of a DPE-enabled receiver involves
an rough initial PVT (position-velocity-time) solution, which can be extracted from already implemented two-steps modules.
Then, DPE involves the optimization of a cost function over the PVT space, with this cost function taking baseband samples
instead of pseudorange observables. These samples can be either at pre- or post- correlation stage. In this context, there are
several contributions in the literature aiming at efficiently implementing the optimization problem. Certainly, the area is gaining
momentum, showing the potential of such approach.

This paper leverages on DPE results to investigate and analyze the potential of the architecture in terms of integrity moni-
toring. Inclusion of Receiver Autonomous Integrity Monitoring (RAIM) in DPEs framework has never been explored and we
provide here some discussion and way forwards. In safety-of-life applications, the integrity of the estimates becomes critical
[4]. RAIM algorithms check the consistency of the navigation solution by inspecting the residuals of the PVT algorithm. That
is, the residual errors in the range observations are computed upon subtracting an estimation of the ranges to the observed
ranges. Note that this is straightforward in the context of a Least Squares based conventional receiver (likewise for Kalman
filter based PVT solutions), but should be carefully thought within DPE since no observables are computed. Conversely, DPE
seems a natural way of implementing RAIM since it already operates in the position-domain. In this paper we explore integrity
monitoring by exploring alternatives in the use of position-domain techniques. We investigate how to provide integrity using
and exploiting the DPE architecture. We will start by reviewing the basics of a DPE receiver. Then, we will discuss a RAIM
algorithm, popular in the context of two-steps receivers. Leveraging on it, we will propose a method to assess integrity in a
DPE scheme. This method, although based on popular integrity techniques, need to be specifically redesigned for the DPE
architecture. We carry out a simulation study showing integrity results to detect faulty satellites and compare it to two-steps
solutions. This paper aims at providing a seminal look into this promising area.

Summing up, DPE provides enhanced positioning capabilities. These features were analyzed both theoretically and exper-
imentally in the literature. The main research question we aim at addressing here is whether integrity monitoring can benefit
from this enhanced architecture. We believe the research in this paper can lead to innovative avenues and open some room for
further research.

DIRECT POSITION ESTIMATION

To contextualize the contribution of this article, we briefly comment on the operation of standard (two-steps) receivers and
DPE schemes. The baseband operation of legacy GNSS receivers is depicted in Fig. 1. First, the receiver needs to detect
which are the visible satellites and obtain a rough estimate of the time-delay and Doppler-shifts of those satellites [S]. This
initial operation is referred to as acquisition, and it can also be seen as an open-loop processing of the data. Once the rough
estimates are obtained, the receiver can start operating in tracking mode. The goal is then to obtain fine measurements of the
time-delay, Doppler-shifts, and carrier-phases of the satellite signals (typically implemented in a closed-loop architecture) for
the sake of more accurate estimates of the user’s position. Standard GNSS receivers typically compute the user position from
the time-delay estimates. Although other position related parameters can yield position estimates, for instance carrier phase
measurements that yield to more precise position estimates. The most widely adopted positioning technique is in fact a two-step
approach. In a first step, the time-delay or time of arrival (TOA) of the signal transmitted by each in view satellite is estimated.
This process is typically performed by correlating the received signal with a locally generated replica. In a second step, the
position of the receiver is computed upon taking into account the geometrical relation between the set of estimated TOAs and
the user position. The resulting trilateration problem is typically solved by a Least Squares algorithm. Note that in this process
the receiver also needs to estimate the receiver clock bias that represents the offset between the receiver time and the GNSS



time. Two-steps positioning has established itself as the de facto technique for GNSS receivers. This is due to its modularity,
re-use of well-known receiver blocks, and, importantly, notable performance over the years. The two-steps technique will be
referred to as the conventional approach in the sequel.

On the other hand, we find DPE, a receiver architecture in which PVT is computed directly from the sampled signal, avoiding
the intermediate calculation of observables (refer to Fig. 2). Intuitively, one can see the DPE approach as the inverse process
of the conventional approach in what concerns the relation between the user position and the time-delays. Consider some
observations with the carrier wiped off. On the one hand, the conventional approach estimates the different time-delays from
the maximum of the correlations of the satellites in view, in a individual way. On the other hand, DPE defines a set of candidate
positions, determines the associated time-delays with the positions, and computes the energy found at the different correlation
signals, in a joint manner. Then the tentative position that maximizes the global energy is selected through optimization of a
cost function. DPE was seen to provide advantageous features, compared to two-steps. Receivers based on this approach are
able to enhance tracking of satellites and deliver PVT under challenging scenarios such as multipath propagation or weak signal
and fading conditions. Contrary to two-steps architectures, DPE approach has the ability to use (and extract useful information
from) weak signals, cope with signal blockages, allowing fast recovery and even operate with low satellite coverage [6]. It
was shown that direct-positioning improves estimation lower bounds [7, 8], turning out that under certain scenarios there is an
increase in sensitivity for DPE in the order of 10log(M) dB, M being the total number of used satellites.
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Fig. 2. Receiver flowgraph for a DPE GNSS receiver.

INTEGRITY REQUIREMENT AND MEASURES

This section discusses a particular integrity monitoring solution within two-steps receivers and then proposes a methodology to
extend the technique to DPE-enabled receivers.



The objective of an integrity monitor is to make sure that the probability that the position error exceeds a certain limit (the
Vertical Alert Limit (VAL) for the vertical coordinate and the Horizontal Alert Limit (HAL) for the horizontal coordinates)
and there is no alert is below the allowed Probability of Hazardously Misleading Information (Pgmp). The design of the RAIM
algorithm consists in deciding two elements: which position fix to choose, and when to declare an alert as a function of the
measurements. Deciding when to declare an alert is equivalent to the determination of a region where the measurements are
deemed to be consistent. This is referred to as the integrity requirement.

In addition to the integrity requirement, there is the continuity requirement, we must make sure that the probability that the
monitor declares an alert is bounded. In this paper, we will only limit the alert probability under nominal conditions (Hg). This
requirement ensures that a given service will be available with a certain probability, and also that once the operation has started,
that it will not be interrupted during the operation.

The protection level is a measure of the integrity that allows the receiver to operate without knowing the Alert Limit (AL).
Ideally, it is defined as the Alert Limit for which the integrity risk is exactly Pyyy. In practice, only an upper bound is achieved,
which is conservative. In any case, if VPL < VAL and the consistency check passes, the operation (an approach for example)
is said to be available.

In the two-step process, the measurements y are the pseudorange measurements resulting from the tracking process. In
most cases, they are also carrier smoothed. In this paper, we will limit ourselves to the pseudorange measurements based on the
code, for the sake of simplicity. The position solution is then obtained using the usual least squares iteration. In most RAIM
algorithms, the analysis is performed assuming that y are the pseudorange measurements linearized around a neighboring
location. The position solution is then given by the least squares position solution as defined in [4]

%= (GTWG) " GTWy (1)

where G is the geometry matrix, and W is the diagonal matrix whose entries are the inverse of the variance of the nominal
errors

The threat model in RAIM can be defined as a set of hypothesis ; that form a partition: the error model follows one of the
hypotheses #; and only one. Each hypothesis H; has a certain probability p; and can be modeled with the addition of a new
unknown state, as described in [4], in addition to the position coordinates and the receiver clock. For example, single faults
are characterized by the addition of an unknown bias in the pseudorange of the affected satellite. In this paper, we will limit
ourselves to scenarios with single faults only.

All RAIM algorithms are to a certain extent equivalent [4]. The differences arise from the choice of test statistic, and the
approximations and upper bounds used to compute the integrity risk or, equivalently, the protection level. Since the goal of
this paper is to compare the two-step positioning and DPE with regard to integrity, it was decided to choose and algorithm that
would be easily adapted to DPE. This is the case of the RAIM algorithms based on solution separation. Solution separation
algorithms are easier to apply in situations where errors are non-Gaussian, have optimality properties, and the generalization to
multiple faults is straightforward and transparent. The idea in solution separation is to compare the all-in-view solution x, with
the subset solutions x; that are fault tolerant to the faults included in the threat model (and cannot be neglected). If all tests
pass, the measurements are deemed consistent and a PL is computed. x( and x; refer to the PVT solution for the all-in-view
case and when the i-th satellite is excluded, respectively.

In order to apply a solution separation algorithm we need the distribution of the difference between the all-in-view position
and a subset position solution, and the distribution of the position error for the all-in-view position solution and each subset
position solution. These distributions only need to be characterized or bounded under nominal conditions, not under faulted
conditions.

For this paper, we will use a very simple version of the solution separation algorithm based on [ref], both for the two-step
positioning and DPE. The description is given for one coordinate only (for example the vertical). Here are the main steps of the
algorithm:



1. For each hypothesized fault ¢, compute the position solution x; that is fault tolerant to fault <. This includes the fault free
which is indexed by O.

2. Compute xg — x; and, for each coordinate (East, North, Up), compare to a pre-defined threshold T;

3. If all tests pass, compute the PL using the formula:

PL = mzax {Tl + KHMIUi} (2)

where o; is the standard deviation of xy — x; and Ky is determined by the integrity allocation to fault mode 4, as shown in
[4]. The threshold Ti is given by:
Ti - Kfai Oss; (3)

where o, is the standard deviation of the difference xg — x; under nominal conditions K¢, is determined by the false alert
requirement [4]. In case one of the tests fail, exclusion can be attempted. The exclusion function consists in finding a subset of
the measurements for which the consistency checks do pass.

As mentioned above, the RAIM approach adopted in this article is the solution separation algorithm. This approach is based
on the comparison of the all-in-view solution x and the subset solutions x;. Therefore, the algorithm can be applied in a similar
way to DPE approach, the main difference being that the solutions x( and x; are obtained with DPE algorithm rather than the
conventional Least Squares solution in (1).

COMPUTER SIMULATIONS

Computer simulations are performed in order to assess the performance of two-steps positioning and DPE with RAIM algo-
rithms. The simulations are performed for Galileo OS E1 signals. We consider the presence of 7 satellites in view. All the
satellite signals are received with a carrier-to-noise-ratio of C'/Ny = 60 dB-Hz.

The two-steps and DPE receivers operate in open-loop configuration, meaning that the signal is processed in a snap-shot.
The received signals are coherently integrated during 10 ms. The front-end filter bandwidth is of 4 MHz. The sampling
frequency is set to fs = 50 MHz. However, in order to obtain fine time measurements, the received signal has been interpolated
with a factor 10 in order to obtain a a time resolution of ¢/( fs * 10) = 0.6 meters.

As explained above, we consider scenarios with single faults scenario. For this purpose, we introduce a fault in the range of
one of the satellites. The range error introduced spans from 0 to 400 meters.

In Figure (3) we show the impact of a faulty satellite in the position error for the all-in-view solution xy. The position
error of the conventional approach, in blue dashed line, increases linearly with the introduced error, as expected from the LS
algorithm. The position error for the DPE approach however, in green solid line, behaves in a different way. The position
error is equal for both approaches until a fault magnitude of 75 meters takes place. After 75 meters, the position error of DPE
decreases slowly until roughly 140 meters, increases with a peak again at 175, and vanishes permanently after 225 meters. This
behavior can be explained after observing the autocorrelation function of the Galileo BOC(1,1) signal, in Figure (4). The first
minimum of the position error, at 140 meters, coincides with the range of the secondary lobes of the BOC(1,1) signal.

From the figure we can appreciate that DPE is naturally more robust to faults than the two-steps approach. For low mag-
nitude faults, the DPE position error starts decreasing as soon as the autocorrelation function of the faulty satellites separates
from the global maximum of the cost function. Once the fault magnitude is high enough, the faulty signal does not impact the
solution and DPE becomes virtually unaltered by the faulty satellite.

We check now the RAIM algorithm in the scenario with one faulty satellite described above. Figure (5) illustrates the
position error and the fault detection probability with respect to the fault magnitude. The position error is represented on the
left of the y-axis and the fault detection probability on the right of the y-axis. For a fault magnitude of 10 meters the faulty



300 T T T

= = = Two-steps Position Error|
= DPE Position Error
250 o7
4
’
s
4
s
200 F . . . . ’ 4
'
— 7’
9 '
5 .,
7’
_§ 150 F S g
@ ’,
(e} 7
o ,
7
100 [ Pt : 1
7’
s
’
4
50 1
0 i i f i ;
0 50 100 150 200 250 300 350 400

Fault magnitude

Fig. 3. Position error for Galileo E1 with respect to the fault magnitude
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satellite is detected with both approaches in the same way. For the two-steps approach, the detection probability stays for the
remaining values of fault magnitude. For the DPE approach, however, no faults are detected around 140 meters and from 250
meters onwards. This values are in line with range errors where the position error is low in the all-in-view solution, as observed
in Figure (3).

Once a fault is detected, the procedure is to exclude a satellite until a subset of satellites that satisfy the integrity test is
found. In Figure (6) we present the position error after applying the fault detection and exclusion algorithm. It appears from the
Figure that the detection of faulty satellites is successful for both algorithms and that the position error remains below 5 meters.
However, for the cases where the DPE algorithm is a slightly impacted by the faulty satellite, the corresponding position error
is not large enough to be detected. This is the case of fault magnitude values equal to 140, 250 and 300 meters. Nevertheless,
the position error remains below the protection level.
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Fig. 5. Fault detection for Galileo E1 with respect to the fault magnitude
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Fig. 6. Fault detection and exclusion for Galileo E1 with respect to the fault magnitude

CONCLUSIONS

This paper compares the solution separation RAIM algorithm for DPE with the conventional two-steps solution for an open-
loop receiver structure. The DPE RAIM algorithm is based on the two-steps approach, being the position estimator the only
difference. A single fault scenario has been considered. For the all-in-view solution, the DPE approach is more robust to faulty
satellites and becomes virtually unaffected when the fault magnitude is larger than half the autocorrelation function width. The
fault detection is successful for both approaches. However, the natural robustness to range errors of DPE makes it difficult to



detect faulty satellites when the position error is small. For large fault magnitudes, the DPE performs in the same way as the
least-squares approach.

The RAIM algorithm for DPE discussed here is based on an existing one for two-steps. The results show that improved
RAIM DPE algorithms can be designed. The design of such algorithm could be based on the consistency of the DPE cost
function in the presence of faulty satellites.
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