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Abstract 

Recently a new technique for characterizing the noise processes affecting oscillators was 
introduce2 [ZI [2/. This technique minimizes the difference between the estimates of several 
different variances and their values as predicted by the standard power law model of noise. The 
method outlined in this paper makes fwo signvicant advancements: it uses exclusively time domain 
variances so that determinisfic parameters such as linear frequency drifl may be estimated, and it 
correctly fits the estimafes using the chi-square distribution. These changes permit a more 
accurate fim'ng at long time intervals where there is the least information. This technique has 
been applied to both simulafed and real data with excellent results. 

I. Introduction 
Stochastic noise processes are the dominant source of imprecision in high-performance 

oscillators. Better information about these noise sources leads to an improved understanding 
of the estimated stability of the oscillator. Furthermore, information about the level of 

. contribution from each noise type can improve their theoretical description. Some of these 
processes are well understood (thermal noise, shot noise, etc.), but many are not adequately 
described by theory. For some processes, when they are understood, there is greater 
potential for their subsequent reduction. Rudimentary stability analysis of an oscillator is 
fairly straight-forward. However, placing confidence limits on the stability estimates requires 
detailed knowledge of the noise types affecting the precision. The processes being 
characterized are stochastic, and therefore we can only provide a rough statistical analysis. 
Additionally there may be many contributing noise sources that can have a tendency to 
obscure one another. Thus there has been a scarcity of good data on the precise contributions 
of individual noise sources. Recently a new method in noise analysis was introduced. This 
method, called multi-variance analysis [I ] ,  is capable of providing precise measurements of 
dominant noise sources. 

Before examining the details of this new method, we must first understand how noise 
affecting oscillator precision is measured. The output of an oscillator can be represented by 
[31 [41 

Vo and vo are the respective nominal amplitude and frequency of the output, ~ ( t )  and q(t) are 
amplitude and phase fluctuations respectively and Vl(t) is additive noise. Provided E and V1 
are much smaller than Vo, the instantaneous frequency of the oscillator output can be written 



The instantaneous fractional frequency deviation from nominal may also be defined 

It is the stability of the output frequency that is of primary concern. Stochastic processes that 
affect this stability will appear in y(t). Another useful quantity is the phase deviation, in 
units of time, 

This quantity,'the time integral of y(t), is a measure of the time deviations of the oscillator. 
Averaged values of y(t) can be obtained by differencing two phase measurements and 
dividing the result by the time interval between the measurements. 

The effects of these noise processes manifest themselves in both x(t) and y(t). This 
paper is concerned with the characterization of these effects rather than their physical cause. 
Examining the disturbances to y(t) is one of the more common means of characterizing the 
frequency stability of an oscillator. One method is to look at the power spectral density 
(PSD) of y(t). It has been observed that the PSD of y(t) often has integer slopes when 
plotted on a log-log graph. Empirically, five slopes are commonly observed. This has led to 
the standard power law model which may be written [3] [4] 

where a is an integer that runs from -2 to 2 and the hds  are the noise intensity coefficients. 
The five noise categories are respectively white phase modulation, flicker phase modulation, 
white frequency modulation, flicker frequency modulation and random walk frequency 
modulation. 

This model adequately describes most of the observed noise processes. However the 
frequency domain'is not necessarily the best place for analysis. Forming a PSD estimate 
from data discretelv sam~led  in the time domain can lead to biases and distortions. 
Additionally the da& is often affected by systematic effects such as frequency offset and 
linear frequency drift that, if not properly estimated and removed, will also distort the PSD 
estimate. 

The process y(t) is not the most convenient measure because it is not possible to 
measure the instantaneous frequency. Instead the frequency measurement takes place over 
a finite time interval 2. Also the measurement of y(t) often involves some dead-time. This 
causes a reduction in the amount of information obtained. Therefore, the frequency stability is 
more easily specified through the characterization of x(t) in the time domain. 



11. Time Domain Variances 
The most common time domain measure of oscillator stability is the Allan (or two- 

sample) variance. For the process x(t) it is defined by 

2 I 
0, (z) = -([x(t + 2z) - 2x(t + z) + x(t)12) 

2 z2 

The angle brackets denote an ensemble average or expected value. The Allan variance was 
chosen because it forms a convergent measure of the fractional oscillator stability as a 
function of time interval. It is possible to define other variances that meet this criterion. A 
less familiar measure is the Hadamard variance with binomial coefficients [5]-[a]. I will use 
a renormalized version given by 

This measure is convergent for a > -5, unlike the Allan variance which is convergent for 
oc > -3. Thus it would be possible to use the Hadamard variance to probe for noise beyond 
random walk frequency modulation. Perhaps the most important feature of the Hadamard 
variance is that it is unaffected by linear frequency drift. This makes it an excellent tool for 
investigating noise types whose signatures are similar to and often confused with linear drift. 

A new variance is introduced, which I call the alternate difference variance. It is 
defined by 

Figure 1. The Allan, Hadamard and alternate difference variances 
are plotted as functions of a (ha= 1, r = I )  

Its chief advantage is that it is 
affected to a greater degree by 
noise with a below 0 although 
it too is only convergent for 
a > -3. 

Table 1 shows the 
functional dependence of each 
variance on the different noise 
types. In addition Figure 1 
plots these three variances as 
functions of a. Notice that for 
a > 0 all three variances have 
similar responses, although 
the Hadamard variance is 
slightly above and the alter- 
nate difference variance is 
below the Allan variance. At 
a = 0 the variances are equal 
by definition. For a < 0 the 
three begin to diverge. 



All three of these variances have difficulty distinguishing between white phase and 
flicker phase noise. To aid in this resolution the modified Allan variance was created [4]. It 
exploits the different dependencies of these two noise types on system bandwidth Cfh). Just 
as the modified Allan variance was created from the Allan variance it is possible to create the 
modified Hadamard variance and the modified alternate difference variance from their 
respective variances. 

The time domain variances, as for the PSD, can only be estimated from the observed 
data. The noise processes will each have some underlying true variance that is unknown to 
the observer. We use the discretely sampled data of finite length to estimate this true 
variance. If we have N points each separated in time by TO, so that xk = x(kzo + to) ,  the 
estimate of the Allan variance is given by 

The A specifically denotes the fact that this is only an estimate. This estimate has a specific 
uncertainty associated with it. Clearly as m approaches N fewer points will be included in the 
estimate and it will have greater uncertainty. For each specific noise type it is possible to 
calculate the variance of the variance estimate [4] [9] [lo]. Similar estimates and 
uncertainties of estimates can be calculated for each of the other variances. 

Table 1. The Functional dependencies of the three variances under the assumption fh r>> 1 



111. Multi-Vai-iance Analysis 
The multi-variance method combines the power law model with the output of several 

variance estimates. Thus many observations with different variances must all agree within 
the predicted responses of the power law model. This greatly simplifies the analysis, as all of 
these observations are used to estimate the five noise intensity coefficients. A single- 
variance technique separates noise contributions by their differing dependencies on z. The 
multi-variance method exploits those z dependencies in addition to utilizing different 
responses of each variance for each particular value of z. Thus the multi-variance method 
gains more resolution over analysis with a single variance. This powerful new technique was 
introduced recently by Vernotte et al. [ll [21. 

The estimates used in previous work [I] [ 2 ] ,  correspond both to the time domain 
(Allan and modified Allan variances) and to the frequency domain (Band-pass and High-pass 
variances) [6]. The frequency domain variances are a powerful analytical tool, but, as 
previously mentioned, they are more susceptible to biases and distortions. Systematic 
effects such as frequency offset and drift, if not properly accounted for, will also bias the 
spectral density estimates. We are interested in finding both the frequency offset and linear 
drift in our analysis of the time series. In order to correctly form the PSD estimate these 
effects must be subtracted from the time series. Often a least squares fit is performed on the 
data to estimate these parameters. Unfortunately, the noise is non-white. Non-white noise 
also has linear and quadratic components which will yield biased estimates and incorrect 
confidence limits on those estimates [4]. When these false estimates are used to detrend 
the data, some of the noise contribution will be subtracted out as well. A better approach 
would be to incorporate these systematic effects in the fitting process, or to estimate the 
parameters after the fitting process, so that the noise types will be known and can be 
correctly taken into account. 

I have chosen to implement the multi-variance technique using exclusively time 
domain variances. The five variances used in this analysis are the Allan and modified Allan 
variances, the Hadamard and modified Hadamard variances, and the alternate difference 
variance. This change leads to a more robust estimator and allows systematic errors such as 
linear frequency drift to be solved for as part of the fit. The frequency offset is estimated after 
performing the fit when we have better knowledge of the noise shape. In the fit routine I 
present here, I use the five variances at different values of z, to fit six parameters: the fivs 
noise intensity coefficients and linear frequency drift. 

IV. Chi-Square Probability Distribution 
Standard least squares fit methods return the maximum likelihood solution for 

estimates that are distributed normally. However, the variance estimates used in oscillator 
noise analysis follow a chi-square distribution. Therefore fit routines using the standard least 
squares method will not yield the best solution, particularly when the estimates have few 
degrees of freedom. Figure 2 shows the chi-square distribution for two different values of the 
number of degrees of freedom (v). It is evident from this figure that for low degrees of 
freedom the distribution is quite different from a normal distribution. 

The mechanics of performing a fit on chi-square distributed variables are similar to 
fitting normally distributed variables. One 2ossible source of confusion is that least-squares 
fitting of data with normally distributed noise is often referred to as chi-square fitting. This is 
because the cost function (parameter to be extremized) is chi-square distributed (the sum of 
the squares of normally distributed variables). I define a new fitting routine, for chi-square 



distributed variables, in which 
0.2 the cost function wiil have a 

0.18 different distribution. I have 
termed this tvue of fit x i -  . . 

0.16 square Ptting. 
h The variance estimate .f: 0.14 
2 contains both stochastic and 

0.12 deterministic effects. It is the 
stochastic conhibution which 
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O.m place as p u t  of the fit. They 

do not have to be estimated 
o and subtracted before the 

O lo- l2 l4 l6 20 variance estimates can be 
X' formed, as in the case of the 

Figure 2. The chi-square probability distribution is plotted for two frequency domain measures. 
different values of the number of degrees of freedom (v). The ver- After the fit, when the SY s- 
tical lines indicate the mean value or 50% point tematic effects have been es- 

timated, they can be sub- 
tracted from the raw data and this detrended version can be refit for comparison. 

In order to perform the fit we must construct our chi-square variables. Just as in the 
case of the PSD, the expected value of the kth variance at time interval zi can be treated as 
the sum of five noise contributions 

The functions .@:(zi) are the known functionai dqendencies for a specific noise type (see 
Table 1). The uncertainty for each noise type o [,@,(zi)] is also calculable [lo] and can be 
used to construct the variance of the variance estimate 

This variance of the variance estimate permits us to calculate the number of degrees of 
freedom for that variance estimate [4] 

The number of degrees of freedom is important for two reasons: the definition of o w  chi- 
square variable depends explicitly upon it and it determines the shape of the probability 
distribution. 



With the number of degrees of freedom and the fit function in hand we have only to 
subkact off the systematic effects to create our chi-square variable. It is defined in the 
following manner [4] 

Dm(zi)  is the contribution from deterministic effects on the variance estimate. xii is a 
random variable that is distributed according to the standard chi-square distribution. 

Figure 2 shows the standard chi-square distribution for two different degrees of 
freedom. It is evident that although the expected value of x:,~ is vti ,  the estimate is more 
likely to be found at the diskibution peak that occurs at v, - 2. For small degrees of freedom 
this is a significant difference. The estimates of the variances at longer values of 2 are formed 
with fewer data points and consequently have lower degrees of freedom. Thus the most 
likely estimate will be biased below the true value of that variance. Xi-square fitting correctly 
accounts for this effect. 

Another result apparent from Figure 2 is that the distribution is skewed about this 
maximum likelihood point. The estimate is more often found to the right of the peak than to 
the left. This can be corrected by multiplying the cost function by an appropriate factor when 
the estimate is found to be to the left of the peak. Also chi-square distributed variables have 
zero probability of being zero or negative. The variance of a chi-square diskibuted variable is 
twice the number of degrees of freedom. Thus, lower degrees of freedom lead to narrower, 
steeper peaks. Putting these ideas together leads to the following definition of the cost 
function. 

Now it is 52 that must be minimized. It is a non-linear function of the five h,'s and any 
deterministic parameters we choose to include. One must remember that not only is x:,~ a 
function o f ,h ,  but v,, is as wezll (note that xLi is also a function of v,,;). The deterministic 
parameters are found only in x,,~ . The minimzation of 52 can be accomplished in nearly the 
same fashion as for a non-linear least squares problem. 

Non-linear fitting routines require initial values of the parameters being fit. They 
attempt to step from one set of values to a better set in an effort to minimize the cost 
function. The fitting routine described in this paper is not excessively sensitive to the initial 
guesses. It will converge to the same solution as long as the initial guesses are roughly of 
the right order of magnitude. It has been observed that it is better to overestimate the 
magnitude of the parameters and have the routine shrink their value down than to start at too 
small of a value and try to have it grow out to the correct solution. Thus, to initialize this 
routine, assume that certain variance estimates .are caused entirely by one noise source. 
Because we know the functional dependencies of the variances on the noise sources we can 
then estimate the noise intensity coefficients. The same can be done for deterministic 
parameters. This insures that the guesses are exaggerated but not exceedingly distorted. 



V. Results 

Va. Simulated Noise 

The method outlined in this paper was first tested against simulated data. With real 
data there is no way of knowing the true parameters. The routine might consistently 
converge on the wrong answer without our knowledge. It is therefore crucial to test routines 
such as this one with computer simulated data with a known truth model. Correctly 
simulating power law noise can be a difficult task. It is not enough for the noise to have the 
correct shape (e.g., 110, but it must be distributed about that shape in the correct fashion. 
The criteria by which simulated noise is judged and generated is beyond the scope of this 
paper. There are, however, several good references on the subject [I I]. The noise generated 
for the truth models used in this analysis came from a routine described in [12]. 

The routine is able to 

Various magnitudes of the noise intensity coefficients and linear drift were simulated 
in combination. There are many combinations in which the contribution of a noise of a certain 
type is overwhelmed by other noise sources. Also, some noise types may not be observable 
because a sufficiently long data record was not taken or because the sampling rate was not 
sufficiently fast. These effects cause such noises to fall below the limits of measurability. 
Unless one takes an inordinately large amount of data, and none of the noise types 
completely obscure each other, it will not be possible to precisely determine each noise 
intensity coefficient and each deterministic parameter. Thus the routine is not always able to 
resolve each parameter. Obscuration effects are also discussed by Vernotte et. a1 [ I ]  [2]. 
When one of these situations occurs, it is important to determine that the parameter has not 
been well estimated. In these cases, the confidence limits on the estimate are orders of 

fit the data very quickly. It of- 
ten takes more time to form 
the estimates than to fit them. 
Tbe one drawback is that the 
calculation of the variance of 
the variance estimates is very 
time intensive (roughly an 
hour for N on the order of a Q thousand). Fortunately these lor 
values need only be calculated 0 
once and then can be stored 
for subsequent use. When 
taking data, one can attempt 
to take the same number of 
points from run to run. 
Clearly, an area that warrants 
further investigation is finding 
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mations would permit faster variance. The 90% confidence limits correspond to the fit results. 
calculation and more flexibility The dashed lines represent the true noise levels and the dash dot 
in data taking. line is the m e  contribution from frequency drift. 



magnitude larger than the estimate itself. Thus the routine correctly identifies those noise 
types that have little or no contribution and weights them accordingly. When a noise type is 
observable, this routine is often capable of correctly estimating the values to within 10% or 
better. 

Table 2. Best fit coefficients and parameters for the simulated data. 

For one particular example of simulated noise, Table 2 lists the estimated parameters, 
uncertainties, truth model and percent error. Notice that for the two absent noise types 
(flicker phase and white frequency) the estimated parameters are low and the uncertainties 
are high. For the noise types that were present, the parameters were well estimated. The 
comparatively large error for the white phase coefficient is a result of not sampling often 
enough. This can be seen in Figure 3. More estimates at shorter time intervals are 
necessary to better resolve this parameter. The fit variance is in excellent agreement with 
both the estimates and the true variance within the observed time intervals. 

Unfortunately, the con- 
fidence intervals on the 

Figure 4. This plot shows the Hadamard variance estimates and fit 
values from the raw rubidium data. Again the error bars 
correspond to 90% confidence limits obtained from the fit. 

parameter estimates are 
excessively large. They are 
nearly a factor of five too large 
in the example of Table 2. 
Some of this error is because 
the xi-square residuals of the 
fit are treated as though they 
are chi-square distributed. 
While this is a reasonable 
approximation, more study 
needs to be done on the true 
statistics of the residuals to 
obtain better, stricter esti- 
mates of the uncertainties. 
Another factor is that the dif- 
ferent variances are not sta- 
tistically independent. Prob- 
ably the best way to place 
reasonable confidence limits 
on the parameter estimates 
would be through computer 
simulation. By simulating 



many data sets in the region of the predicted 
parameters, one could obtain a better feel for 
what the real confidence limits might be. 

This routine is particularly adept at 
picking out small values of linear drift even 
when completely buried in the noise. Notice 
in Figure 3 that the last data point has a 
large uncertainty and occurs where the linear 
drift level is still below the random walk fre- 
quency contribution. Yet the routine still 
estimated the drift Darameter to better than 

Table 3. Best fit coefficients and parameters 10%. If the s e c o h  difference method of 
for the rubidium oscillator vs. AT1 data estimating drift [4] [13] had been applied to 

this data, it would have obtained a value of 
-0.015. That method is incapable of estimat- 

ing drift when it is so far buried in the noise. For larger relative values of linear frequency 
drift, the second difference method yields estimates comparable to, and sometimes better 
than, those found with this routine. 

Also, notice in Figure 3 that the last point dips well below the true variance or even 
below the contribution just from the random walk frequency noise.' For this point the number 
of degrees of freedom is predicted to be 3.135 and the value of the chi-square variable 
corresponds to 0.731 or right near the distribution peak. Thus the estimate has less than one 
third the value of the true variance. Because of the scarcity of data for this time interval, the 
variance estimate is not very good. If the chi-square distribution were not correctly applied to 
this case, one would obtain an overly optimistic prediction of the stability. 

Vb. Rubidium Data 

The routine was also 
tested on real data from an 
EG&G rubidium oscillator. lo" I 7  

This oscillator was measured : : 

against ensemble time (AT1) 
at NIST [14]. The raw data lod i 
was fit reasonably well by this 
routine. Because of the large 
drift that was present in this 109 9 

oscillator the Hadamard vari- 
ance is a good measure of the m* 
stability, Figure 4. Unfortu- 10.12 

nately it can be observed that 
the fit values lie outside the 
90% confidence limits for some l o - c ~  
of the estimates. Such an 
effect could have a number of . ~ . . . . .  . . . . - 

causes: noise that does not ,,.,, - 
follow the standard power law 10.7 10.6 10.5 104 

model, environmental effects f 
or other deterministic effects Figure 5. The power specnal density of the panially detrended data 
such as periodic modulation of is plotted as a function of Fourier frequency. The diurnal 
the data. Because the most variation is clearly visible. 
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QUESTIONS AND ANSWERS 
Questim I imagine it is hard to estimate drift in the presence of random walk. They start 
looking the same. I am wondering if I have not seen anybody do this, but can you imagine a 
way to estimate drift from random walk, and remove it that would not automatically bias the 
variance low. That would at least give some deviation . . . . 
T Walker, Stanford Universiw I can imagine a way that would work. I think a slightly better 
way to implement it, rather than subtracting the drift the way I do, would be to actually detrend 
the data after every step. This would be wmputationally impossible or not worth doing but 
if you actually detrend the data as you go along, optimize that way rather than subtracting, 
there is cross terms that can get in there. But you can expect from random walk frequency 
that the last point will be biased low because you essentially have only degree of freedom, or 
something very low that will be biased very low. What you have to realize . . . . 
Questioner: Just because it is Chi-Square? 

T Waker: Well I think that the statistics for the Allan variance estimate is almost worthless 
for just one estimate. You really do not have enough information to say anything meaniful 
about what the stability is. 

Questioner: Why bias low? 
T. Walker: Well it could be high but is more likely to be found at that. 
D. Allan, Allan's Time: It is interesting to look back at classical statistics for these low 
frequency processes. They turn out to be incredibley sensitive to low frequency. In fact they 
diverge but we know they diverge as a function of a number of samples and if you look at that 
independence you can get estimates of some of these low frequency properties for the very 
low frequency components; ie: one cycle per data length. The standard deviation is a very 
good measure and it is sensitive to the number of samples and the kind of parallel processes. 
I wonder if we could exploit this some to help us. It is a measure we have kind of forgotten, 
that has information in it. 

T Walker: I think that you wuld, providing you have a model, like this, where you assume 
the noise type. You certainly can do a lot with the statistics in analyzing what you are seeing. 
H. Fliegel, The Aerospace Cmporation: I may be wrong. I am trying to remember something 
from a long time ago. I wonder if it is mathematically even possible to separate linear drift 
from random walk. The only way I ever thought it might be handled is through the arc sine 
law. If you have a fantastic amount of data, then the number of zerocrossings you get from 
a pure random walk is predictable. You could use that to estimate roughly where your line 
should go. I do not know if that is practical. 

T Walker: Right, it is probably not practical and I think what .you are saying is correct. What 
I attempted to do in this, is use some of the information by fitting them at the same time. 
Then you do have some information on each level. You may be able to subtract them again. 
You need to detrend the data after you find the drift and verify that has been correctly done. 

R. M g ,  USNO: I just want to compliment you on a fine and interesting paper. It is ,lot 
very often that we get comments from the people that ask question;. What I would like to 
know, what are your plans for the future, what are you going to do now? 

T. Wdker That is a perfect question. I am a graduate student at Stanford right now and 1 
am finishing up my thesis, hopefully in the spring. I actually do not have plans beyond that. 



I am working on the gravity B project, and I may be wntinuing with that. I definately would 
like to stay involved with some of this work. I already see some things that aiuld potentially 
be done in extending this. So I would have to say my plans are not set. If anyone has any 
offers for plans, 1 would gladly accept them. 
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