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Abstract

Great increases in agricultural productivity and profitability can be gained by
increasing the navigational control accuracy of a farm tractor. To maximize accuracy
in the presence of environmental uncertainties, a novel technique for on-line parameter
identification has been developed. This method combines the Extended Kalman Filter
(EKF) and the Least Mean Square (LMS) algorithms and is used to identify key
parameters which describe the dynamics of a farm tractor. This algorithms provides a
15:1 improvement in computational efficiency over the traditional EKF, while offering
comparable convergence rates and noise rejection properties. Experimental data on
a full-sized John Deere tractor shows a 25 percent improvement in lateral accuracy
when using the adaptive controller versus a fixed controller over identical trajectories.

In addition to parameter identification, farmers require formation driving capa-
bility for routine operations. Multiple farm vehicles work cooperatively together to
accomplish a common goal. Several formation driving algorithms were developed for
these varying requirements. An experimental implementation of a fully autonomous
farm vehicle following a human operated lead vehicle demonstrated an accuracy of 10

centimeters in the in-track direction and 10 centimeters in the cross track direction.
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CHAPTER 1

Introduction

As a student in the department of Aeronautics and Astronautics at Stanford
University I am often asked the question “What'’s a rocket scientist doing working
on farm tractors?” The answer is that my chosen field has much to offer today’s
average farmer. The days of the ox jaw scythe are long gone. We are entering the
age of the automated farm. Today’s farmers are employing such technology as radar
crop monitoring [MHQK98] and optical robotic weed control technology [LSG99] in
an effort to minimize operating costs and maximize his profitability. It is therefore
of little surprise that there exists an intense interest in the availability of a highly
accurate method to control farm tractors. There has also been an eager acceptance
of the Global Positioning System for navigation by the agricultural community. This
is due to its’ ease of use, flexibility, potential for extremely high accuracy, reliability
and profitability.

The work presented in this dissertation is an extension of previous work that
combines the previous two ideas and moves towards a practical system that enables
extreme precision guidance for a farm tractor. It attempts to maximize the accuracy

achieved by accounting for the variable conditions encountered by a farm tractor.
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4 CHAPTER 1. INTRODUCTION

1.1 GPS Overview

The Global Positioning System (GPS) is simply the latest, and most accurate in
a long line of radio navigation methods.[PJ96], [KF97], [For91] The system consists
nominally of 24 orbiting satellites. FEach satellite contains an extremely accurate
atomic clock, continually broadcasting radio transmissions towards the surface of the
earth. The data signals transmitted consist of information reflecting from where the
signal was transmitted and also the exact time of transmission for each signal. A user
with the appropriate equipment and know-how can measure the time of arrival for
each signal and calculate a distance to each satellite. From these range measurements,
the user can quickly triangulate their position. This particular practice is known as
“Stand Alone GPS” in reference to the fact that the only user equipment required is
a single GPS receiver. This is the basic service for which GPS was designed and is

still its most common use.

1.1.1 Differential GPS

The accuracy of Stand Alone GPS ranges from on the order of 10 meters to more
than 100 meters.! This accuracy is certainly sufficient, for general navigational uses
such as in general aircraft navigation or a soldier in the field. It is insufficient for

many other applications such as autonomous control of land vehicles or low visibility

!The U.S.D.0.D previously imposed an intentional error, referred to as Selective Availability
(SA), on the signal available to the general public. This was done in an attempt to discourage the
use of GPS as a weapon by enemies of the United States. The net effect of SA was a degradation
of accuracy to approximately 100 meters for non-authorized users. The U.S. military and it’s allies
have always had access to the heavily encrypted signal which yields accuracies on the order of 10
meters. Selective availability was disabled on May 1, 2000 yielding 10 meter performance for civil
as well as military users.
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Table reproduced from [Par96]

lo Error, m (no SA) lo Error, m (SA on)
Error Source Bias Random Total | Bias Random Total
Ephemeris data 2.1 0.0 2.1 2.1 0.0 2.1
Satellite Clock 2.0 0.7 2.1 | 20.0 0.7 20.0
Ionosphere 4.0 0.5 4.0 4.0 0.5 4.0
Troposphere 0.5 0.5 0.7 0.5 0.5 0.7
Multipath 1.0 1.0 1.4 1.0 1.0 14
Receiver Measurement 0.5 0.2 0.5 0.5 0.2 0.5
User Equivalent range error | 5.1 14 5.3 | 20.5 14 20.6
Vertical 1o errors - VDOP = 2.5 12.8 51.4
Horizontal 1o errors — HDOP = 2.0 10.2 41.4

Table 1.1: Standard GPS Error Model

aircraft landings. As a result, various methods have been developed to improve this

accuracy.

Table 1.1 outlines the major contributors of errors to a position solution. Other
than the intentional degradation, the largest contributors to civil accuracy are the
uncertainty in satellite position (in both time and space) and atmospheric perturba-
tions. For two receivers located near one another, the majority of these errors are
common to both receivers. Both receivers measure the exact same Satellite clock er-
rors and nearly identical Ephemeris, Ionospheric and Tropospheric errors. When one
works the problem backwards, in other words, one takes measurements from a known
location, the cumulative effect of all these errors can be directly measured. Once
these errors are known for a specific location they can be applied and subtracted out

from the measurements taken at another nearby location.
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Code Phase Differential GPS

A common method of differential GPS is referred to as code phase differential
GPS (DGPS.) Part of the signal coming down from the satellites is a digital code.
In code phase GPS the time of arrival of a particular bit-front is measured utilizing
two independent receivers. One of these receivers is at a known location and is
referred to as the base or reference station. This base station subtracts the measured
range to the satellite from the expectation for each measurement and relays this error
to the second, mobile receiver. The second receiver, at the unknown location then
applies these corrections to it’s own measurements and thus obtains a significantly
more accurate position measurement than it could alone. In doing this, common
mode errors such as ephemeris and atmospheric errors can be subtracted out, leaving
predominately receiver noise.

Due to fundamental limitations in this technique, the accuracy of this method is
approximately 1 to 2 meters. These limits stem from the receivers ability to track
the incoming signal to higher precision as well as signal noise (especially multipath)
corrupting the measurements.

A significant disadvantage to many applications utilizing this method is the need
for a second receiver to provide reference data. This requirement increases both the
cost and complexity for any system. In many applications, however, the increase in

accuracy more than offsets the increased cost of a reference station.

Wide Area Differential GPS

‘The U.S. Federal Aviation Administration is currently developing the Wide Area
Augmentation System. (WAAS)[EWP+96] This system is a direct assault on the
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requirement of having a physical, local reference station. WAAS consists of a large
number of federally operated reference stations spread across North America. These
stations monitor the transmissions of the GPS signal and feed data into a central
location. At the command center, this information is rapidly processed and the
corrections are curve fit to cover the entire nation. This information will then be
relayed through several geosynchronously orbiting satellites back down to the users.
This method provides a virtual reference station everywhere within the coverage area.
This method is expected to be operational by the year 2002 providing roughly equal

accuracy as local code phase differential methods.

Carrier Phase Differential GPS

The highest accuracy GPS method available today is Carrier Phase Differential
GPS. [PE96] Rather than measuring the time of arrival of the bit front from the
satellite, this method measures the difference in phase in the carrier signal at a given
instant between the reference station and the user. This measurement can be made
to be much more accurate than can the time of arrival measurement from a bit front.
‘This increase in accuracy allows for position accuracy approaching 2 to 3 centimeters.

The difficulty associated with this particular technique is that the initial phase
measurement can only be measured from 0 to 360 degrees. In all likelihood there is
some integer number of carrier signal wavelengths between the user and the reference
station which must somehow be determined in order to make the required measure-
ment. This dilemma is referred to as the integer ambiguity. Several methods exist
for determining these integers ranging from initializing at a known location, a brute

force search of all the possible integer combinations to reducing the search space by
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widelaning or allowing enough time for sufficient satellite geometry change to estimate

the integers.

All of these methods are merely for determining the initialization integers. Once
these have been obtained they can be stored and the relative phase of the two receivers
can be tracked past 0 and 360 degrees. Subsequent measurements then enjoy the
highly accurate precision carrier wave differential GPS offers. As new satellites come
into view, the integer ambiguity can be immediately resolved utilizing the precise

position measurement.

This method also suffers from the requirement of an independent reference station.
To the author’s knowledge no plans currently exist for a carrier phase equivalent to
WAAS. However, with the rapid advancement of GPS technology currently enjoyed,

this requirement becomes a small price to pay for such high accuracy.

The measurement that reflects the 2 cm accuracy is the relative vector from the
reference station to the roving antenna. The absolute position of the roving antenna is
no more precise than that of the reference station. If, however, three or more antennas
are mounted to a rigid body, the relative positions of all three antennas can be very
accurately measured utilizing this technique. With the relative positions of three or
more points on a rigid body known, it is a simple matter of geometry to calculate the
three dimensional orientation (roll, pitch and yaw) of that body. CDGPS attitude
systems can also quickly initialize integers thanks to the fixed and known baselines

between antennas. [Coh92], [BIMG98]
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1.2 The Autofarming Concept

The term “Autofarming” is a general term used to describe a class of techniques
that combine GPS and agricultural vehicles. These applications include things such

as

e Driver Guidance Assistance: This is where the position information is displayed
to the operator who then guides the vehicle. No attempt to drive the vehicle

automatically is made.

e Automatic Row Guidance: In this application straight rows are automatically
driven. The operator then takes over at the end of each row and performs the

U-turns and row approach.

e Automatic Curve Guidance: This is identical to Automatic Row Guidance with

an extension to curved paths.

e Automatic Farming where the farmer is still in the vehicle but the trajectory
planning and steering and vehicle operation is handled automatically. The

operator functions mainly in a supervisory role to assure safety.

e Autonomous Farming where the vehicle is performing tasks without direct hu-

man management.

Each of these requires an accurate measurement of vehicle position. GPS is able to
provide this measurement. Each of these also requires varying degrees of increased
safety. The Driver Guidance Assistance needs only a minor increase to safety over
unassisted operation in the form of making sure the operator keeps his eye on the field

and not the display. Automatic Row Guidance and Farming require a higher level of
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safety awareness. One must be cautious for things such as the operator’s falling asleep
or misunderstanding the operational mode of the controller. This problem is most
similar to an aircraft autopilot flying itself into the ground because the pilot thought
the autopilot was in altitude hold mode rather than rate of descent hold mode.
Autonomous Farming requires the strictest safety procedures. The vehicle must
be at all times aware of it’s position and the position of obstacles around it. It must
also be able to identify what constitutes a dangerous situation and react appropriately

to minimize that danger.

1.2.1 Vehicle Navigation Hardware

The basic component of the vehicle navigation system that will be presented in
following chapters consisted of the GPS receiver. In the work revisited in this thesis
this receiver consisted of a carrier phase differential receiver with a ground based
reference receiver. This positioning system was capable of making measurements to
within 2 cm (1o). This position measurement reflected the position of one of the four
antennas mounted on the roof of the cab. The antennas were mounted on the roof of
the cab to achieve good visibility to the maximum number of satellites.

In a realistic setting it is not the roof of the cab that is to be controlled but
rather some other point, a projection straight down from the center of the rear axle
for instance. Also, because the antenna was mounted so high (roughly 3m above
the ground) very small roll and pitch changes translated into measurable position
changes at the top of the cab when the position of the vehicle itself (measured at
the tires) had not changed significantly. These two factors dictated that some form

of attitude measurement system be utilized. With the measurement of roll, pitch
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Figure 1.1: Vehicle Navigation System Configuration

and yaw a projection from the antenna position measurement to a measurement of
a control point position could be made. In the experimental vehicles utilized in this
work this measurement was made also via GPS. A Trimble Vector system tied to the

four antennas mounted on the roof of the cab provided attitude measurements.

Because there is such a lag between the input (steer angle slew rate) and the output
(vehicle position) it was convenient, from a control system’s point of view, to add a
measurement of the steer angle. This allowed for much more accurate vehicle state
estimation and consequently much tighter control. In the experimental vehicles, this
measurement was achieved utilizing a linear potentiometer fixed between the tractor

frame and the steering joint.

A significant fraction of farm tractors are tracked vehicles rather than wheeled

vehicles. These vehicles steer by developing a speed differential between the left and
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the right tracks. Rather than commanding a steer angle slew rate to generate a steer
angle which in turn generates a yaw rate, a differential speed on the treads is directly

commanded, forgoing the need for a steer angle measurement.

1.2.2 Previous Work_ in Automatic Guidance

To date, most research in Autofarming has focused on the navigation problem.

This problem is expressed as two very simple questions:

1. Where am I? (The positioning problem)
and
2. Now that I know where I am, how do I get to where I need to be?

(The control problem)

Prior to the appearance of GPS, most work attempted to emulate how a human
operator did his job and focused on optical systems for positioning. Various techniques
were tried and implemented using pattern recognition. [T+85], [RS87]. With the
advent of a relatively low cost, zero drift position sensor in the guise of GPS, the
focus has quickly changed to allow this new technology to assist in the problem.
Several groups are concurrently working this type of research. Some notable projects
include Trimble Navigation and their light bar. This bar takes differential GPS
position and interfaces it to a light bar indicator mounted in the cab. This light bar
displays the lateral error from the tractor’s position and that of a preprogrammed set
of rows. The operator attempts to steer so the left /right light remains centered much
as a pilot flying a VOR tries to keep the needle centered. [WB9Sg]

Australia’s Mailer Family and AgSystems Pty Ltd use CDGPS for autonomously
tracking straight rows. [Mai97], [Joh97], [Nas97] This product has resulted in a
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commercial product known as the BEELINE Navigator. This system is an after-
market add-on steering assist that has the capability of tracking a straight row to
within 2 cm. The primary attitude sensor for the BEELINE Navigator is a six-axis
inertial measurement unit. Unfortunately, the inertial system in this product tends

to drift requiring periodic stops to reset the bias estimates.

Japan’s Institute of Agricultural Machinery Department of the Bio-oriented tech-
nology Research Advancement Institution (IAM-BRAIN) have been developing and
comparing different types of positioning and navigation systems. The researchers at
TAM-BRAIN have been exploring the performance of GPS as compared to optical
and magnetic systems. One system uses a combination of buried wires, lasers and
optical tracking techniques to guide a tractor autonomously over the field. [N*97a],
[N*+97Db]

Previous Work at Stanford University originated with Michael O’Connor’s auto-
matic golf cart. O’Connor developed the basic vehicle models and control algorithms
uses for the John Deere / Stanford tractor. In addition he showed that small varia-
tions in roll could induce a measurable position change in the antenna position and
that these could provide potentially destabilizing disturbances unless accounted for
with a leverarm correction. O’Connor also developed and implemented accurate row- .
tracking algorithms on flat terrain. [0’C97] Thomas Bell extended O’Connor’s work
by developing algorithms for arcs, spirals and ultimately arbitrary curves. He also
developed algorithms to provide accurate control over sloped terrain and contours.

[Bel99]
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Figure 1.2: Cultivator Clearance Dimensions

1.2.3 Accuracy Requirements for Autofarming

The critical test of any autofarming system is cultivation. Mechanical cultivation
consists of pulling a cutting blade through the soil between the rows of plants with the
intention of cutting weeds out at the roots. With the high cost and ecologic impact
of chemical cultivation, mechanical cultivation has been on the increase in recent
years. For obvious reasons, mechanical cultivation is a more ecologically attractive
process than chemical. Additionally, with the advent of autofarming systems, the
requirement for highly skilled operators who can precisely guide the tractor through
the rows without removing crop is being reduced. This reduction in operator overhead
strengthens the case for mechanical cultivation. These arguments are only valid if the
autofarming system is accurate enough that it does not periodically wander through

rows of crop and reduce yield.
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With mechanical cultivation, not only is the accuracy of the cultivation pass of
importance, but so is the pass in which the seeds were planted. As shown in Figure
1.2 there is some inherent uncertainty in both the positions of the plants and of the
cultivator. It coule be argued that the two most accuracy critical operations, planting
and cultivation, would be executed under automatic steering. Therefore, the standard
deviation in the plant locations and cultivator locations should be approximately
equal. It can also be assumed that at a single point in the field both these operations
exhibit Gaussian error distributions and are uncorrelated. With these assumptions,
the probability distribution for the spacing between the edge of the cultivator and

the crop can be described by the equation

e” T i (1.1)

p(z) = T

where
o is the standard deviation of a single pass,
r is the row spacing and

w is the cultivator blade width.

Equation (1.1) allows the calculation of the probability of cultivator incursions
(PoCI.) The PoClI is simply the area of the probability curve which reflects an overlap
of the cultivator and a plant. The total probability can be approximated to a great
deal of accuracy by

/ p@)iz + [ p(z)dz =2 / p(z)dz (1.2)

—co r—w —o0

Equation (1.2) was evaluated for 30 inch rows and three different sizes of cultivator
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Probobility of Cuttivator Incursion

Figure 1.3: Probability of Cultivator Incursions

blades and displayed in figure 1.3. This plot illustrates the great benefits achieved by
improving the lateral control from 2.5 cm to 1.5 cm. Though one centimeter may not
appear to be a significant change in the location for a 30,000 pound machine, that
one centimeter means the difference between a PoCI of 0.2% and one of 0.00003%
with a 24 inch cultivator. On a ; mile by ; mile (80 acre) field, this translates into
the difference between 7000 square feet of destroyed crop as opposed to just a single
square foot. Under ideal conditions, 1.5 centimeter accuracy on vehicle control is
certainly possible. With a smooth field, well modeled vehicle dynamics and tight

control 1.5 centimeters is an excellent goal for accuracy.
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1.3 Problem Statement

Agriculture is an industry that operates with high overhead and low margins. Any
technology that could be introduced to improve efficiency can greatly assist in the
reduction of cost and the increase in profitability in the production of food. One such
technology may be the accurate guidance of tractors using GPS. If farmers could guide
their tractors exactly over a designated spot year after year and without the need for
good visibility it could open up other possibilities such as underground irrigation
systems or around the clock operation.

A promising benefit of highly accurate control is the significant reduction of row
overlap. The ability to put the edge of the implement exactly on the edge of the
last row could save a significant amount of time, labor and fuel. By Agsystems’
calculations, a single operation on a 182 Ha (450 acre) field requires effectively farming
204 Ha, an extra 12% when row overlap is not controlled. [Ano99] This translates
into 2.5 extra hours in the field on every run and approximately $4,400 (Australian)
lost every year. This extra money is wasted on every operation and, over the course
of a single season, accrues to a significant amount of money.

Recent work in automatic control of farm tractors [O’C97], [Bel99] has shown
the feasibility of automatically steering of farm tractors. Other recent work has
shown that these controllers are very sensitive to changing conditions. [RBBP99]
The behavior of farm tractors is subject to many influences such as soil conditions,
vehicle configuration, vehicle ballast, implement configuration and others. All these
factors influence the vehicle dynamics in often inconvenient and unpredictable ways.

These changing conditions exhibit themselves as changes in the steering dynamics

of the tractors. The lateral behavior of the tractor can vary quite significantly without
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dramatic deterioration of closed loop performance during straight row operation. This
is simply because the tractor is not moving in the lateral direction. However, when
tracking curved paths, the energy in the lateral states greatly increases. The tractor
must turn to track these trajectories and therefore the lateral behavior becomes more
important. The more accurately these changes can be assessed, the more accurately
the desired trajectory can be tracked.

In order to achieve optimal performance, the behavior of the vehicle must be
well understood and well modeled by the control system. In an automotive setting,
these dynamics can be predicted by careful analysis of vehicle mass, geometry, tires
and configuration. For the most part the road conditions do not vary to the degree
with which they do in a corn field?>. These variations affect the behavior of the
vehicle. A skilled driver can usually quickly and effectively adapt to these variations.
Additionally the basic configuration of the tractor must often be changed in order to
maximize the efficiency of the particular daily task. Such modifications include adding
or removing dual rear tires, using differential lock or adding ballast. In addition to the
operator introduced modifications, the soil properties in the field are changing almost
daily. These changes greatly influence the way the tires interact with the soil and the
handling of the vehicle. Any automatic steering system should, somehow, be able to
adapt to the varying conditions encountered in a realistic setting. The vehicle control
system must also be able to adapt to these changes either by pre-calibration or the
ability to learn in the field. In an agricultural setting pre-calibration is not always
possible or practical. With these needs and the accuracy requirements outlined in

section 1.2.3 in mind, one is left with the need for a control system that can monitor

2All due respect goes to those of us who have spent a winter or more driving in the chillier regions
of the world with roads covered by snow and ice
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it’s own performance and optimize itself for changing conditions.
ging

There are two approaches to providing a controller able to adapt to variations in
conditions. The first is an off-line identification and robust control approach.[EOBP96]
This would be undesirable in a practical setting for two main reasons. Operational
conditions can vary over time spans on the order of several minutes as the tractor
moves from one region of the field to another. Furthermore, the time and complexity
of performing calibration runs is not desirable in an operational setting. The farmer
in the field is expecting a turn-key application and he will not tolerate taking an hour

out of every morning to calibrate his tractor.

The second approach to responding to changes in operational conditions is to -
perform system identification in real time. During operation, the system monitors
its own performance and adjusts itself to best fit the observations made. This allows
the control system to calibrate itself during operation without direct user interaction.

This was the approach adopted for this work.

To implement the real time identification, several important physical parameters
were singled out for identification. This approach differs from many classical system
identification algorithms which treat the identified system as a “Black Box” such as
the maximum likelihood and observer/Kalman identification algorithms. A black box
model is one in which signals come in one end and system responses come out on the
other. What goes on internally is of secondary importance as long as the modeled
output matches the experimental response. As a result, it is difficult to incorporate
any a-priori knowledge into the design or extract any physical interpretation from the
system. One can only define very basic system configurations such as the number of

states or the number of inputs. The definition of what these states are or how they
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interact cannot be defined. While this may be an attribute when little is known about
the system itself, this was deemed a liability when work began on this project due
to the relatively detailed knowledge of the basic structure of the vehicle dynamics.
A black box model is also often more apt to fall prey to unmodeled, poorly modeled
or ill-conditioned noise. In addition to this, these models often result in excessive
numbers of unknowns that have little relation to a physical model. These factors
influenced the author’s decision to implement parameter identification over system

identification.

1.4 Major Contributions

The emphasis of this research is to provide the foundation for controlling vehicles
in and out of formation with high accuracy. Consequently, the work was divided into
two areas: Parameter Identification/Adaptive Control and Formation Driving/Co-
operative Control. An introduction to the formation driving problem will be outlined
in chapter 6. In this research the emphasis has been on the specialized application of
GPS guided farm tractors. Much of this work can quite easily be adapted to other

wheeled vehicles or other systems. The major contributions developed are

e The development of a technique to identify a system with both dynamics and an
input deadzone in real time. Originally this was developed in order to control
the actuator fitted to the experimental vehicle. This algorithm however can
immediately be applied to any other system that can be modeled with a similar

structure as presented in section 2.1.
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The development of a technique to identify system parameters in real time with-
out extending the system states in a Kalman filter to include those parameters.
This technique was also further refined to the specialized case of a farm tractor
with position, attitude and steer angle sensors. A general form of this method
is presented in section 3.5. This algorithm provided a significant decrease in
computation complexity when compared to a Physical Parameter - Extended

Kalman Filter (PP-EKF) for the identification of the O’Connor parameters.

The experimental verification and implementation of the LMS/EKF parameter

identification algorithm.

The experimental demonstration of the benefits of using an adaptive scheme

over a fixed controller on a farm tractor.

The determination of a cost / benefit relationship for identifying the O’Connor
parameters. It is shown that the most difficult parameters to identify happen

to be the least critical to identify the most precisely.

The development of algorithms that allow formation driving and co-operative

control of two or more farm tractors.

The experimental verification of algorithms allowing formation driving of two

farm tractors.

The illustration of the ability to hold position to a master vehicle utilizing only
position information from the master vehicle. Both lateral and longitudinal

accuracy utilizing this method were shown to be approximately 10cm.
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e The development of anti-collision algorithms that allow tighter formations than
traditionally allowed by other methods. Traditional anti-collision algorithms
were developed for aircraft applications where vehicles were never allowed to
get near enough to each other that the relative orientation of the vehicle affects
the boundaries. In an agricultural environment the vehicles may need to work
in very close proximity to each other. As a result methods that took the relative

headings of the vehicles into account were necessary.



CHAPTER 2

Vehicle Modeling

The general approach employed for modeling of the tractor in this dissertation was
to break the entire system into smaller, more manageable pieces. The longitudinal
dynamics (forward and reverse) were treated as decoupled from those in the lateral
(left and right) directions. Similarly the steering valve was modeled as a separate

sub-system of the overall steering dynamics.

2.1 Steering Actuator Model

Steering the experimental vehicle was done with a hydraulic actuator driving
the wheel angle. This actuator consisted of a hydraulic valve opened and adjusted
by a pair of push-pull solenoids. An input pulse width modulated voltage induced
current flow through the solenoids and commanded the valve position which in turn
resulted in a controlled flow to the steering cylinders. The resulting mapping from
pulse width modulated signal to steering tire slew rate exhibited a substantial non-
linearity. This non-linearity consisted of two parts both apparent in Figure 2.1. The

first non-linearity exhibited was a saturation in the actuator limiting slew rate at

23
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8400 Steering Valve Calibration Data of 15 FEB 1999

08 ! ! ! ! !
: : : : " :
. . x xxxi x x
06k - oo e P xxx --------- x. . X -
ix
()7 | ................ ................ ................ X ............... ............... .
: : : x :
1 T2 >$<. ............................... -
2 x
T
= X
2 S A a
o 0 <
2
3 : ' : : :
02k R ERERE e R S T R R EIRTEE .
: x
04 ............... x ................................................................ .
? x
0B o % ................................................................ .
x : e
xx xxgxxxxxx
-08 x ! ) 1 | 1
~-300 -200 -100 0 100 200 300

Input Command Byte

Figure 2.1: Steering Valve Calibration Data for the 8400

approximately 0.65 rad/sec (about 37°/sec). The second is a substantial deadzone
encompassing over half the useful range of the valve.

The steering response also exhibited some dynamic response and was modeled as
a slight lag between requested slew rate and the resulting steady state slew rate. This
effect was much more subtle and difficult to calibrate than were the saturation and
the deadzone.

The saturation of the actuator was easily dealt with by including a saturation limit
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Figure 2.2: Deadzone Model Signal Flow

of 0.65 rad/sec to the model. The dynamics and the deadzone were more difficult to
model. The goal of this modeling was to ultimately produce an inverse controller such
that a requested slew rate could be achieved easily The model chosen consisted of
a FIR filter to model the slew dynamics cascaded into a deadzone model (see Figure
2.2). The order of these models was important to simplify the on-line identification of

these models outlined in section 4.1. The estimate of the plant response was evaluated

as
X=wTu
4
m]_(X —bl) if X >by,
(2.1)
=19 ma(X +by) if X <—bs,
0 if —by < X < by.
\
where

W is the weight vector of the FIR. filter,

U is the input vector (off a tap delay line),

X is the FIR filter output representing the dynamic response,

™y, my are the slopes of the upper and lower deadband regions respectively and

by, by are the boundaries for the upper and lower deadband regions.
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2.2 Vehicle Steering Dynamics Model

The vehicle steering model was a modified version of the steering model developed
by Wong[Won93] and further refined by O’Connor[O’C97]. The Wong model accounts
for all tire forces and the vehicle inertia. The O’Connor model simplified the very
complex tire/soil interactions by assuming small lateral tire slips and linearizing the
behavior. This allowed the vehicle dynamics to be modeled as several first order
lags. The O’Connor model assumed the vehicle was moving only about a straight
line and only one lateral dimension (the lateral error) was included. The model
utilized in O’Connor’s work made the slight generalization to planar motion in the
East and North directions. When neglecting the lateral velocity of the control point,

the resulting model was

E=V,sin¥ — Q,p,cos ¥
N =V,cos U + Q,p,sin ¥
¥=Q,
| (2:2)
Q, = —p3Q; +paVrtand
b=w

w=ps(u —w)

Where

FE is the east position of the control point,
N is the north position of the control point,
¥ is the true heading of the vehicle,

2, is the yaw rate of the vehicle,
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Figure 2.3: Vehicle State Definitions

§ is the effective steer angle of the vehicle,
w is the slew rate of the front wheels,
p» is the influence of 2, on lateral velocity,
p3 is the yaw damping,
p4 is the steering effectiveness and
ps is the lag in the steering actuator.

A graphical representation of how these states are measured is depicted in fig 2.3.
A positive heading (¥) was measured clockwise from true north, a positive yaw rate
(€2.) was in the direction of increasing heading and a positive steer angle (6) was in
the direction that would induce the vehicle to turn to the right.

The parameters p, through ps' are referred to as the O’Connor parameters as

they were introduced by O’Connor is his thesis work.[0’C97] Parameter p, can be

1The parameter p; was defined as the derivative of the lateral velocity with respect to small
heading changes. It was theoretically and experimentally shown by O’Connor to be unity. For this
reason it is omitted from this dissertation.
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interpreted as the influence of yaw rate on the lateral velocity. Parameters p; and ps
are the time lag associated with the steering response and the yaw acceleration from
a given forward speed and steer angle respectively. Finally, ps is the time lag inherent

in the steering valve.

These parameters are derived in [O’C97] by analyzing the forces introduced at
the tires. They very compactly encompass the complex interactions between vehicle
and operating conditions. When decomposed, these parameters have the following

physical interpretations:

D2 ~ C
2 (Carl2 + Cafl%) — 2l = ¢) (Corla — Curly)
pP3 =
L,V

 2Cafh (2.3)
Dy =~ —Iz

- 1
Ps Tsteering

where

Cas and C,, are the proportionality constants from tire sideslip to tire force (known as
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Figure 2.5: Tractor Dimension Definition

the tire cornering stiffness, Figure 2.4), these parameters also encompass the tire/soil
Interaction

c denotes the distance from the control point to the center of rotation?,

[; denotes the distance from the front tire to the axis of rotation (Figure 2.5),

[, denotes the distance from the rear tire to the axis of rotation and

I, is the moment of inertia in the yaw axis.

The derivation of these relations are covered extensively in chapter 5 of [O’C97].
Several assumptions are made in order to simplify the analysis. The first assumption
is that only the first order terms of the non-linearities are important. This assumption
includes a small angle approximation for the tire lateral slip angles. When the higher

order terms are neglected, the longitudinal and lateral dynamics can be approximated

2The center or rotation is defined as the point with zero lateral velocity. (i.e. the point who’s
velocity vector is tangent to the trajectory) It is not the point about which the entire vehicle is
turning. Because of tire forces, the center of rotation is not necessarily at the center of mass. In an
imaginary vehicle with infinite tire stiffness and infinite traction, and thus no lateral tire slip, the
center of rotation, as defined here, would be located at the center of the rear axle.
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as decoupled. A second assumption is that the lateral velocity of the entire vechicle
(the difference between the velocity vector and the heading vector) was very small.
It was shown in chapter 3 of [Bel99] that in a practical sense, very little would be
lost in making this assumption. Small low frequency (as compared to the steering

dynamics) lateral velocities could be compensated for by estimating a heading sensor

bias state.

2.3 Vehicle Longitudinal Dynamics Model

On a conventional geared vehicle the ratio of engine RPM to vehicle speed remains
relatively constant for each gear. The factors influencing this ratio are the mechanical
gear ratio, the effective tire radius and the amount of slip the tire experiences in the
longitudinal direction. The amount of slip the tire experiences is in turn dependent
on many more factors including road surface, inflation pressure, normal and tractive
loads, tire composition and construction and many others.[Gil92] To simplify these

complex interactions, the transmission was modeled as
Vo= KglWengine (24)

where

V; is the forward speed of the vehicle,

Kg is the effective gear ratio for gear g and

Wengine 1S the engine speed.

A calibration for the test vehicle is presented in fig 2.6. This calibration was run on

a dry road and with no implement. This calibration will change substantially when
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Figure 2.6: On Road Gear speed Calibration

the tractor is operated while pulling a load on a loose field.

Along with the gearing, there was a certain amount of lag associated with the
engine RPM response. This lag becomes more pronounced in the higher gears when
the engine could transmit less torque to the tires and thus has less accelerating force.

This lag was modeled for each gear as

. 1
Wengine = T_(wcommand - wengine) (25)
g

where
T, is the time lag associated with gear g and

Weommand 1S the desired steady state engine speed.
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Differentiating equation (2.4) and combining (2.5) results in

- 1
‘/:: = _‘—‘/z + ﬁwcommand (2'6)
Tg Tg

for a fixed gear. This yielded a simple input (Weommana) to output (V) differential
equation that could be made to have a very convenient closed form controller solution.

This solution will be presented in section 7.3

2.4 Full Vehicle Estimation Model

The preceding models’ primary use was for the parameter identification methods
presented in Chapter 4. These methods relied on an estimated state. This state was
generated using a Kalman filter that modeled the full planar dynamics of the tractor.
In addition to the states presented in Sections 2.2 and 2.3, there were bias states in
the heading measurement and the steer angle measurement. These inclusion of these
biases is a direct result of the work done by O’Connor and Bell [Bel99] in order to

account for crab angles® induced from side-slopes and asymmetric loads.

3A crab angle is defined as the angle between the vehicle’s heading and velocity. When there is
no sideslip, the crab angle is zero
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The resulting model with inputs ugeer and Weommana 1S

- -
Vesin @ — paQ cos &

E
N Vzcos ¥ + poQ2sin ¥
¥ Q
Q —p3fd +psVzd
X=1|4 | = w + notse (2.7)

W P5(Usteer — W)

Wias 0

Opias 0

] Va | _;lg' (KgWeommand — Vz) |

2.5 Variations in the O’Connor Parameters

In this work the O’Connor parameters characterized the steering dynamics of the

vehicle. they are derived from the physical mechanics of vehicle motion.

For vehicles that remain consistent in their configuration, these parameters can
be estimated with reasonable accuracy once and assumed to remain constant. Farm
tractor and off-road vehicles in general can experience great variations in running
conditions. Furthermore, these vehicles are typically industrial vehicles rather than
personal transportation and are almost always working and consequently experience
a wide range of operating loads. It is reasonable to expect that these factors will

affect the behavior of the vehicle.
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251 P

P, (units: length) represents the influence that a yaw rate has on lateral velocity. It
is the measure of the leverarm fromm the axis of rotation to the control point pro jected
to the ground plane. For a vehicle exhibiting perfect Ackerman steering and no lateral
slip in any of the tires, p, is simply the distance from the mid point of the rear axle
to the control point. With the small rear tire slip assumption made in the O’Connor
model this parameter is very nearly this distance.

The implements pulled by tractors often impose large lateral and vertical loads.
Some of these implements, such as a hitched ripper, resist turning while others, such as
a towed disker, will actually provide a steady state turning torque. These force based
rather than kinematic influences have the effect of moving the axis of rotation. Heavy
implements can also significantly move the center of gravity which also influences the
distance to the control point.

The amount that this axis can move is influenced by how much force the implement
exerts and also how the tractor is configured. For example a hitched ripper will most
likely move the axis of rotation on a well ballasted tractor with excellent traction on

all four tires much less than it wilk on a tractor with less efficient traction.

25.2 P

P; (units: 1/time) is most easily interpreted as the lag associated with yaw rate
changes. This parameter is inﬂuenced> by various factors. One obvious factor is the
moment of inertia of the tractor itself. When a large, heavy implement is attached to
the hitch this can significantly increase the moment of inertial of the vehicle. Another

factor that influences this parameter is the lateral cornering stiffness of the tires. Just
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as in an automobile, stiffer tires offer a quicker, more responsive feel. The stiffer tire
provides a more rigid path for the tire forces to transmit their energy to the main
mass of the vehicle. As a result, lateral tire traction also plays an important role in

the value of ps.

2.5.3 P

This parameter (units: 1/time * length) is often referred to as the steering effec-
tiveness. This parameter is affected by wheelbase length, moment of inertia of the
tractor as well as the cornering stiffness and traction of the tires. It is very sensitive to
weight distribution and traction variations. When the weight of the tractor is evenly
distributed and the front tires are properly loaded they are more able to bite and turn
the vehicle resulting in less lateral slip and making the no slip assumption a more
valid estimate. When lightly loaded, such as when a heavy implement is hitched to
the rear énd, the front tires are less able to grab and provide a turning force to pull

the front end of the tractor around.

2.5.4 P

This is the time lag (units 1/tim) in the steering actuation. This parameter is
arguably the least variable of all the O’Connor parameters but the most difficult
to analyze theoretically. It is primarily dependent on the hydraulic system and the
transport delay of the valve system. There is also a finite amount of inertia in the
valving, hydraulic fluid and the turning mechanics themselves that must be overcome
before a full slew rate is achieved. Despite the fact that it is very slowly varying, as

will be shown in Section 4.4, it is one of the most important parameters to identify.
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This is due to the fact that any error in this parameter can be integrated several

times before the error is detected at either the heading or the position estimates.

2.6 Expected Variation in the Parameters

There exists little experimental data as to the values of several of the contributing
characteristics of the O’Connor Parameters in Equation (2.3). The cornering stiffness,
C, of the tires utilized cannot be tested in the laboratory. The tires used in farm
vehicles are simply too large to fit on the laboratory test equipment. Consequently,
the information available is predominately theoretical, estimations or extrapolations
from experiments on small scale models [CDN71], [Pac72]. In Owen and Bernard,
[OB82], the ratio between the front and rear steering stiffnesses was obtained via
careful modeling. The front tires of the vehicle utilized had the characteristics of
small truck tires and a value of 65093 N/rad (250 Ib/deg) was estimated for these
tires. This estimate and the ratio between front and rear yielded a stiffness of 263756
N/rad (1013 lb/deg) for the rear tires.

The values expected for a John Deere 8400 tractor are as follows. These values

were obtained through a discussion with a Deere engineer and are only approximate.

2.6.1 Forward Speed, Vx

The useful working speed of a farm tractor typically ranges from approximately 1%
m/s (3.35 mph) during precision operation to approximately 9 m/s (20 mph) during

spraying operations. High speed operation (> 5 m/s) is a subject of continuing
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Parameter | min | nominal | max

vz(m/sec) 12 2.5 9
I (m) 175 | 2 5.25
I () 075 | 1 1.25

C.,(N/deg) | 200 | 2000 | 2200
C..(N/deg) | 2000 | 2500 | 3000
T, (kg m2) | 5500 | 6000 | 9000

Table 2.1: Expected Physical Parameters for John Deere 8400 Tractor

research. Preliminary results indicate that the above model is inadequate to capture
the true behavior of the vehicle. The above model greatly simplifies the tire dynamics
which become increasingly more significant as speeds increase. Until a more refined

model of vehicle dynamics is available, the speeds examined will be kept below 5 m/s.

2.6.2 Vehicle Leverarms, [;, [ and c

The vehicle leverarms describe the physical dimensions of the tractor and are
illustrated in Figure 2.5. L; and [, describe how much torque the front and rear
tires introduce for a given lateral load. As the center of gravity moves fore and aft,
these distances change accordingly. The wheelbase of the vehicle does not change and
therefore the sum of [, andl, is constant. The distance to the control point, c, also
may vary with changes in the position of the center of gravity. The location of the
center of gravity is influenced by ballast and implement. During typical operation,

the center of gravity may move fore or aft by as much as 250 mm.
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2.6.3 Tire Cornering Stiffnesses, Ca, and C,,

The cornering stiffness of a tire describes how much side force the tire produces for
a given sideslip angle. This parameter was the most difficult to estimate accurately
as it not only encompasses the mechanical properties of the tires, but the tire-soil
interaction. Conversations with John Deere engineers lead to estimates of 2000 N/deg
for the front tires and 2500 N/deg for the rear. These values were for an unloaded
tractor on dry pavement. Cornering stiffnesses are sensitive to tire load and inflation
pressure. As the load on the tire decreases, traction decreases and the stiffness goes
down. This is important when a heavy implement is hitched to the rear of the tractor
unloading the front tires. With these in mind, the cornering stiffness for the front
tires were estimated to vary from 200 N/deg to 2000 N/deg and the rear tires were

estimated to remain constant at 2500 N/deg.

2.6.4 Moment of Inertia, I,

The moment of inertia along the yaw axis for the tractor alone was estimated to
be approximately 5500 kg m2. This is the minimum value the moment will reach. As
implements are hitched or ballast is added to the vehicle the moment will increase.
The maximum moment was expected to be reached when heavily ballasted and the

vehicle is carrying a heavy implement and was 9000 kg m?2.

2.6.5 O’Connor Parameters Under Varying Conditions

The parameters described in the above sections were assigned reasonable values for
a range of varying conditions and the resulting O’Connor parameters were tabulated

in Table 2.2. To represent the effect of a implement being pulled through the ground,
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Condition [v,,.l I I I | Ca, l Ca, l Clay, , I, ” D2 | D3 | D4
Unloaded 2 2 1 2000 | 2500 0 5500 || -0.3 | 2.1 | 1.45
Transport

Heavy Impl.

... Poor Ballast 9 1225|0.75 | 500 | 2500 0 | 8000 | -0.05|0.17 | 0.28
... Good Ballast | 5 | 2.1 | 0.9 | 1000 | 2500 0 9000 || -0.2 | 0.28 | 0.47

Working

Heavy Impl.
... Poor Ballast | 1.5 | 2.25 [ 0.75 | 200 | 2500 | 2000 | 8000 || -0.05 | 0.85 | 0.11
--- Good Ballast | 1.5 2.1 { 0.9 | 800 | 2500 | 2000 | 9000 || -0.2 | 1.61 | 0.47

Working
Light Impl. 15 2 1 | 2000 | 2500 | 1000 | 6000 | -0.3 | 3.14 | 1.33
Spraying 4 2 1 | 2000 | 2500 0 6500 || -0.3 | 0.89 | 1.23

Table 2.2: Parameter Variations Under Several Operational Condition

a cornering stiffness, C,,, representing the hitched implements lateral torque was
introduced as in [O’C97]. This force acted one meter behind the rear axle. The
steering lag parameter, ps was not tabulated as it is not affected by running conditions.

The resulting parameters in Table 2.2 give a rough expected range for the O’Connor

parameters.

2.6.6 Simulated Performance With Mismodeled O’Connor

Parameters

Several simulations were executed with various combinations of running conditions
outlined in Table 2.2. In these simulations, there existed a mismatch between the
vehicle operating conditions and the modeled state. The combinations simulated are
outlined in Table 2.3

In addition to the mismatched model dynamics, a robust controller designed and



40 CHAPTER 2. VEHICLE MODELING

presented by Elkaim [EOBP97] was included. This robust controller was intended to
be velocity invariant and insensitive to changing conditions. It was designed using the
Observer Kalman Identification (OKID) system identification technique incorporating
data from speeds ranging from 2.25 mph through 6.5 mph and conditions including
unencumbered, pulling a disker and pulling a ripper. All data were combined to
provide a single fourth order best fit model and an robust LQR. controller to utilize

under all conditions.

As expected, when the state of the tractor is well modeled, the performance of the
controller is quite satisfactory. Asshown in Figure 2.7, no errors exceed 5 cm in 10,000
time steps. When the state of the tractor is mismodeled the lateral error distribution
error is significantly wider. One case of mismodeled parameters, Case 3, proved to
be unstable. Even the relative moderate difference between a tractor configured for
spraying and one modeled as empty was enough to significantly reduce the controller
performance. The robust controller performed worse than the mismodeled controller.
This is not entirely surprising as the robust controller was designed to provide assured

stability rather than high bandwidth regulation performance.

The apparent sensitivity of the closed loop controller performance to variations in
running conditions and the expectation that one tractor should be versatile enough to
perform all these operations provides strong support for the utilization of some form
of adaptive control. Recall in Section 1.2.3 improving the accuracy of the closed loop
system from 2.5cm to 1.5cm translated into a 7000:1 improvement in crop losses. (And
arguably farmer happiness) The high level of understanding of the vehicle dynamics
as well as the ability to bound the model parameters suggests the use of parameter

identification over system identification. As will be shown in the following chapters,
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Case | Vehicle State

| Model State

41

| lateral error (1o)

Working, Heavy Impl. | Working, Heavy Impl.

1 Poorly Ballasted Poorly Ballasted 1.5 cm
Working, Heavy Impl.

2 Poorly Ballasted Empty 2.4 cm
Working, Heavy Impl.

3 | Poorly Ballasted Robust OKID [EOBP97] 2.5 cm

Working, Heavy Impl.

4 Empty Poorly Ballasted unstable

5 Empty Empty 1.4 cm

6 Empty Spraying 2.2 cm

Table 2.3: Lateral Performance with Mismodeled O’Connor Parameters

the parameter identification approach was a path that proved to be very successful

in increasing system performance during experimentation.
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CHAPTER 3

Real Time Parameter

Identification Methods

There are many methods of system identification and adaptive control in use
today.[Kel93], [EOBP96], [WW96], [WS85], [Goo82], [Lju87] These methods can
be subdivided into two main categories: On-line (Real Time) and Off-line(Post-
Processing). Off-line system identification is most effectively used for designing a
fixed gain controller for an unknown time invariant system. The system in question
is usually time invariant and latency in the identified model is not a primary concern.
Post-processing the data typically allows for a more accurate model as non-causal
information can be incorporated into the identification process and smoothing filter
techniques can be incorporated. In addition, because these methods do not require
real-time execution, much more computationally complex algorithms can be quite
satisfactorily implemented.

On-line parameter identifications methods, however, are typically more constrained
than off-line methods. On-line identification is often used as an approach to adaptive

control. These methods are advantageous for rapidly changing models where using

43
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a fixed controller design will fail to meet the required performance objectives. Real
time information about the dynamics of the system allows the control system to be
adjusted dynamically in response to changes. These methods must be run in real time
and provide timely information about the dynamics of the system. These constraints
often limit the computational complexity as a solution must be evaluated within the
given time frame. Powerful computers alleviate this problem somewhat. Regardless
of this, it is still often more desirable to require lower processing power.

In the context of the work presented in this dissertation, on-line identification
methods are utilized exclusively. The main focus was to address the issue of the
changing dynamics of farm tractors during realistic operation. These dynamics may
change with time constants on the order of days as different implements are attached
and the overall field conditions change, or on the order of minutes or seconds as local
soil conditions vary and interact with the vehicle.

It is not an extremely bold assertion to say that telling a farmer what he should
have been doing yesterday is of very little value as compared to telling farmer what
he could be doing right now to help optimize his operations. It is therefore necessary
to optimize the operation of an automatic tractor control system in real time rather

than with post-processing type approaches.

3.1 The Philosophy of Parameter Identification

The advantage of parameter identification is that it reduces a large complex set
of unknowns into a small number of (ideally) easily identifiable parameters. For
instance, Sidman [Rov87] reduces a large, complex transfer function associated with

a flexible robot arm to one parameterized by a single parameter, the payload mass.
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‘This type of simplification allows the engineer to incorporate much more physical
intuition and help constrain the form of the model to match the physics of the system.
It also allows for monitoring and bounding of the identified model. If, for inst=ance,
noisy measurements and an extremely bad initial model yielded an estimate of a
parameter that represented the mass of an item to be negative, the error can easily
be identified. To deal with this, the engineer could put constraints on the estimated

mass to discourage divergence.

3.2 The LMS Algorithm

The Least Mean Square (LMS) algorithm was developed in the late 1950”s by
Bernard Widrow and Ted Hoff.[WW096][WS85] This algorithm attempts to minimize
a quadratic cost function, the expected square of the error between predictions and
observations. It is a steepest descent type algorithm where the adaptation is directed
in the steepest direction of the error paraboloid. The strength of this algorithm comes
from it’s computational efficiency. Rather than exactly calculating the gradiemt, it
makes an approximation at every epoch. The price that is paid for this increased
computational efficiency is increased noise in the identified parameters. This moise

may be somewhat alleviated but at the cost of slower convergence.
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3.2.1 Model Updating

The LMS traditional algorithm requires the system to be representable by an

output that is a linear function of an input vector:
G = Xi Wi (3.1)

where
Yk is the model output,
XF is the input vector and

W is the weighting vector each at epoch k (the unknown system impulse response.)

The error is then defined as the difference between the desired model output and
the actual model output. The desired output may be a specified frequency response
if designing a filter or it can be the measured response of a dynamic system if a model

of that system is desired.
er = Yp — Gk = Y& — XfW; (3-2)
Finally, the error surface is defined as

¢=E[ei] (3-3)

The update for the weight vector moves the weight vector down the error surface

by adjusting the weights in a manner consistent with the gradient of ¢ with respect
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to Wk
Wit1 = Wi — uVy, (3-4)

When Vyy, is known exactly this method reduces to Newton’s method [WS85]. The
weight vector simply moves down the steepest part of the error paraboloid at a speed
proportional to the magnitude of the gradient and to the learning coefficient, pu.
The further from the minimum it is, the steeper the gradient and the faster the
convergence. As the weight vector approaches the minimum of the paraboloid the
weight vector is adjusted by smaller and smailler steps asymptotically approaching the
minimum. The difficulty encountered when applying Newton’s method is that Vyy,
is seldom known exactly. It is difficult and computationally expensive to calculate

Vw, exactly. The “trick” of the LMS algorithm is to approximate Vyy,

2 2
OC OFE[e;] _ Oc; Oex 9. X, (3.5)

Vw, = oW, OW.  Oep OW,

By setting
@Wk = —26,‘ka (3.6)

the LMS algorithm estimates the gradient with great computational efficiency. The .
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expected value of Vi, is Vi,

E [ﬁwk] = —2E [e:.X;]
= —2F [yf* X; — Xp XTWi] (3.7)

=V,

This approximated gradient is, as shown above, an unbiased estimate of the true

gradient.

3.2.2 Convergence of the LMS algorithm

There does not currently exist a generalized proof of the convergence of the LMS
algorithm. Despite this, there have been many proofs stating that the LMS algorithm
will undoubtedly converge if specific conditions are met. [WS85], [WW96], [Hay84],
[TJL87] These proofs constrain the spectral properties of the input, measurements
and the speed of convergence. All these proofs illustrate that the more aggressive the
learning rate becomes, the faster the parameters are identified but the less stable the
identification becomes. To show this without generating an inconvenient recursive
equation a change of coordinates in the weight space is necessary. The new space is

translated, as it is in [WS85], to be zero at the minimum of the error paraboloid.

Ve = W — Wy (3.8)
k
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with W being the choice of weights which minimizes ¢.! The update law for the

weight vector in the new coordinate system (assuming W} 1 = W) becomes

Vk+1 = I’Vlc+1 - W;_H
= Wi + 2uer Xy — W} (3.9)

= Vi +2per X

The expected value for the next weight vector is therefore

E [Vig1] = E[Vi] + 2uFE [eXk] (3.10)

= E[Vi] + 2u (E [y X&] — B [Xe XTWL])

The final step in solving for the stability of the LMS algorithm is to allow for some

simplified notation and solve for W*

P = E [yf= X, ]
R=E [X:XT] (3.11)

W* = min¢ = R™'P

!The subscript ¥ on W} is included in Equation (3.8) to account for the possibility of a time
varying minimum.
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Substituting Equation (3.11) into (3.10) yields the following

E[Viy1] = E[Vi] + 26 (P — RE[Wy])
[

Vil +2u (P — RE [Wi — W;] — RWY)

E
E

E([Vi]+2u (P — RE V] — R(R™'P)) 612
E[

Vil — 2uRE [Vi]

= (I — 2uR) E [Vi]

= (I —2pR)*V,

Equation (3.12) shows us that stability is assured if all the eigenvalues of (I —2uR)

lie within the unit circle. This specification is met when

1
——>u>0 (3-13)

Amaz

where Ao is the largest eigenvalue of R. The dynamics of the convergence in each
eigendirection has similar behavior to that of the direction associated with Amaz-
Table 3.1 shows the damping behavior in a single eigendirection as a function of the
learning coefficient. In addition to showing stability, it has been shown that the

weight vector converges to a state that will minimize ¢, the minimum expected error.

The stability of the LMS is constrained by the Amgz, yet the long term rate of
convergence is determined by Ami,. This is not a concern for well behaved systems
with closely matched eigenvalues. Stability and convergence times may become a
problem for systems with a large spread in eigenvalue magnitudes. These systems

exhibit error paraboloids that are very long and narrow. The model of the system
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Stable (Convergent) +>pu>0

Overdamped ;17\ >upu>0
Critically Damped L= 55
UnderDamped T>pu> 5

Unstable (Divergent) + <porp<0
Table 3.1: Damping in the Eigendirections of R for the Weight Vector

converges in a very polymodal fashion. The errors in the steep directions converge
very rapidly and the model state spends a long time slowly moving down the shallow
“valley” of the paraboloid.

The strength of the LMS algorithm lies in its computational simplicity. It arrives
at this simplicity by taking a large number of small steps to converge eventually on
the correct estimate. It is an excellent method for identifying relatively slow moving

parameters but will track rapidly changing parameters poorly.

3.3 The EKF Algorithm

The extended Kalman filter (EKF') is the non-linear version of the Kalman filter2.
Both types of Kalman filters are methods to account for not only the unperturbed
dynamics of the system but also for the uncertainty induced by both environmental
perturbations (process noise) and measurement errors. The EKF follows the same
basic steps as the Kalman filter. However, whereas the Kalman filter is optimal in
generating an estimate of the states in the system, the EKF loses this optimality by

linearizing the measurement correction.[Ste94a] The EKF offers the added advantage

2The linear Kalman Filter is a famous and very well known algorithm to provide optimal filtering
of noisy sensors and process disturbances. If the reader is unfamiliar with the Kalman Filter they
are encouraged to reference [Ste94a].
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of estimating both the system state and the uncertainty of those states at the same
time as the unknown system parameters. This is useful when designing a control
system to take advantage of the latest system model. The cost of this information is
a much larger system to be manipulated.

Many factors may contribute to the non-linearity of the system to be observed. A
few of these factors include fundamental non-linearities in the dynamics, dependence
on unknown parameters and others. This work concentrates on system non-linearities
and unknown parameters.

The EKF requires a state space format. The system to be used is described as

z(t) = f (z,u,w,t)
y(t) = h(z,u,v,t) (3.14)

E [w(@®)w(®)T] = R6(2), E [v(t)u(t)T] = Q5(2), E [v(t)w(®)T] =0

where

z is the state to be estimated,

f is the function describing the dynamics of the system,

u is the system inputs,

y is the system measurement,

h is the function describing each of the measurements in the system,
w is the process noise vector,

v is the measurement noise vector and

d is the impulse function.

The noises, w and v must be zero mean noises. If they have a non-zero mean, the
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noise can be broken into a bias (the DC levels) which are accounted for in f and A

and the zero mean which will be referred to as simply w and v below.

In the discrete time implementation, the actual filtering occurs in two steps. First,
the time propagation step utilizes the previous best estimate of the state, the known
input and the most likely value for the unknown process noise. The equations of
motion are projected forward in time to the time of the measurement. This step
accounts for the finite time between the successive measurements, the movement of

the system and the uncertainty injected by the process noise.

XQ=xP+ [ X ), u(r), B ()], 7) dr

ret (3-15)
PR =B+ [ (F0IPE) + PFT(r) + Q) dr
7%
where
of of
F=2| ,G=2L
97| ., ou| e, (3.16)

P = E (& — Tactuat) " (& = Tactuat)|

There are various methods for evaluating the integrals above. The two most notable
methods are a closed form integration of the continuous equations of motion over the
interval ¢ to £y, or a finite length Taylor series approximation of the integral. With
a zero order hold on the input these yield a linearized system where

X(_) = FkX(+) + Grug
k+1 k (3.17)

P = FePOF +Q,
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The second step of the algorithm is the measurement update. This step results
from linearizing the system about the current estimated state and applying the same

measurement update as the Kalman filter.

_ _ -1
Ky = PIE-}-iHIZ'-i-l [Hk+1PI§+iHIZ‘+1 + Rk-f-l] (3.18)

Xlgi)l = Xlgi_-)l + Ke+1 [Zk+1 —h (XIS-T—)I)]

P/SB = [I - Kk+1Hk+1] Pé;i

This is the step in which the EKF loses its optimality. The update gains are a function
of the system model, which is dependent on the state. Errors in the state estimate
induce errors in the state model which result in a sub-optimal measurement update.
There exist several methods to make the update more optimal, typically by making
multiple iterative updates [KH97], [HKKP95]. Because of their high computational

requirements these methods will not be outlined in this dissertation.

The EKF quite naturally lends itself to physical parameter (PP) identification.

The PP-EKF simply augments the standard states with the unknown parameters (p).

X,
XE=|"F (3.19)
D

During state propagation, the state estimate is propagated in the normal fashion
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while the parameter estimate is held constant

x&) Fi X + Gru
=) k41 kA E kUk
XED =" = (3.20)

~

Pr+1 Dk

Several gradients are then calculated. The actual method for evaluating these gradi-

ents will be discussed in detail in Section 3.4.

F{=—=Gi=5—H = 3.21
™ op -G dp HE Op (3.21)
FE_af(le:auk)l _ Fk F:X1£+)+quk
k = E I =
0X X=xgH 0 P 3.92)
Oh(X, u(ts))
E _
HE = =g o = |He HEXED

From this point on, the PP-EKF algorithm proceeds identically as the EKF described
earlier with F'Z and HF taking the role of F and H.

There are several advantages and disadvantages to using the PP-EKF algorithm.
First, this method offers essentially a variable step size convergence, which results
in relatively rapid initial convergence followed by reasonable noise rejection. This is -
true only with an accurate noise model. A poor noise model causes instabilities and
periodically results in divergence of the estimator. Secondly, the PP-EKF algorithm
is a full state space algorithm. The estimated states can be incorporated readily into
an optimal control scheme. This comes at the cost of implementing matrix algebra

in software or hardware. Lastly, the PP-EKF offers a measure of the uncertainty of



56 CHAPTER 3. REAL TIME PARAMETER IDENTIFICATION METHODS

any state or parameter at every epoch. This results in increased computation and
complexity as these covariances must be calculated along with the system states. The
validity of the covariances on the parameters is often questionable. Often it is very
difficult to provide a realistic disturbance model for the parameters. Consequently,
often the process noises associated with the parameters are hand tweaked until the .
estimator provides satisfactory performance. In doing this adjustment, the covariance

of the parameter estimates becomes a very crude approximation indeed.

3.4 The Keller Method

In his thesis, [Kel93], Keller extensively explores the EKF for physical parameter
identification. Several interesting techniques are explored and developed such as a
recursive algorithm for calculating the gradient of the discrete time state propagation
matrix with respect to continuous time physical parameters. This is particularly
useful in the face of Equation (3.21) and Equation (3.22).

A linear, time invariant, continuous time system of the form

z = Az + Bu (3.23)

can be converted to the discrete form (with sample time T) by taking the matrix

exponential of an augmented matrix.

= exp (3.24)

The ultimate goal is to determine the derivative of the discrete model matrices with
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respect to the continuous model parameters. By differentiating Equation (3.24) one

easily comes to the following equation.

dF  dG AT BT
w | = diexp (3.25)
0 0 p 0 o0

This differentiation is executed by using the Taylor series definition of the exponential

function.

M? M3 M*
exp(M)=eM=T+M+ TRTR TRl (3.26)

Therefore, in order to determine the derivative of e™ the derivative of M™ must first

be determined.

dM? _ & e M)
dp  dp (3.27)
= M + L e + -+ M
dp dp dp

Using Equations (3.26) and (3.27) a recursive algorithm can be defined to calculate

the parameter gradients. First, define the following two matrices.

1dM™ 1d
n= —7 = —— MM == |—M"!

D n! dp n! dp [ ] n! | dp M +M dp

_dMCon My (3.28)
dp n n
Mn

Cn = 1 = %Cn—l
n! n

1 [dl\/[ d]\/["‘l]

The matrix derivatives are then calculated using the dc2d algorithm outlined in Table

3.2.
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1. Form the matrices:

A B

Mz[o 0

]T, dM — [dA dB] T

0O O

where T is the sample time.
2. Initialize the recursive values:

C=1I,D=0,dexzpM =0, n=1
3. Repeat the recursion:

D =1(MD+dMC)

C=+iMC

dexpM = dexpM + D

n=n+1

until satisfactory convergence is reached. The derivatives % and %f— are then
extracted from dexpM using Equation (3.27).

Table 3.2: The dec2d Algorithm
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With an efficient method of calculating the matrix derivative, the PP-EKF can
easily be used to identify unknown parameters. Even with this easy and efficient
method of calculating the matrix derivative, evaluating it at every epoch may be
prohibitively expensive. As an alternative, the gradients defined in Equation (3.21)
are calculated only periodically and assumed to remain linear or constant in the
interim. The gradient updates are estimated by projecting the linearized gradient
forward with the changing parameters. The model derivatives are then approximated

by

Fi) = Fr + FE(pr+1 — Dr)
Giy1 =~ Gk + G (Pr+1 — Pr) (3.29)

He = He + H,’:(Pk-;-l — Pk)

Keller’s method is a set of approximations to make the PP-EKF algorithm less
computationally intensive. It offers nearly identical convergence as the traditional
PP-EKF algorithm at a lower cost. Unfortunately it also suffers the same limitation
on noise model accuracy. Keller’s method must also periodically recalculate all of the

parameter gradients.

3.5 The LMS/EKF method

The Least Mean Square / Extended Kalman Filter is a blend of the EKF and the
LMS algorithms. This method attempts to identify the system parameters without
extending the number of states in the filter to include the unknown system parameters.

It exists as a traditional Kalman filter, implemented with the most current estimates
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of the parameters, running in an inner loop with an LMS filter running as an outer
loop to identify the unknown model parameters. This method has the advantage
of making a full state estimate available for control with only a modest increase in
computational and storage demands.

At each epoch the LMS/EKF algorithm begins with a standard Kalman filter.
The parameters are not included in the state and it is assumed that the observation
matrix is independent of the parameters. The dynamic model is therefore expressed

as

Xi+r1 = F(pe) Xe + G(pr)uk
(3.30)

Zryr = HX

The Kalman filter yields an estimate of the state after the time update, X ,S—) and
after the measurement update, X ,£+). These estimates are then used to generate an
expected change in the measurement and compared to the measured change. The

error is thus
€ = (Zk - Zlc—l) - H(.X,g—) - X,gi)l) = AZk — HAXk (331)

The cost function to be optimized is simply the expected power contained in this

€rror.
J=E ['¢] (3.32)

As shown in Section 3.2 this cost function can be minimized in a manner similar

to Newton’s method using an approximated gradient with respect to the interesting
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parameters. The LMS parameter update equation is the update equation utilized for

the parameters in the LMS/EKF method:

oJ
Pk+1 = Pk — #% (3.33)

The derivative can be approximated and expanded using the chain rule

8J 9J OBe OA(Xk)

8(AXy)
Opr O OA(X:) Ope —26 H

3.34
e (3.34)

The evaluation of Q(g;—):") may be approximated by many methods such as a Euler or

Trapezoidal integration.

3.5.1 Practical Computational Advantages of the LMS/EKF
algorithm

The LMS/EKF algorithm can offer significant computational advantages over a
traditional PP-EKF. System models are represented in state space format. These
models are represented as matrixes and storage of the state transition matrix is an
O(N?) proposition, where N represents the number of states to be stored. A PP-EKF
augments the system with parameter estimates increasing the size of the matrix and
consequently, the memory requirements. The more dynamic states in the system,
the faster augmentation of these states consumes memory. The LMS/EKF algorithm
does not augment the entire system, rather it carries the state estimates in parallel
to the parameters. Consequently, the only additional memory required is enough to
store the parameters themselves.

In addition to increased storage requirements, the augmentation of states induced
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by the PP-EKF algorithm (and avoided by the LMS/EKF algorithm) greatly increases
the computational requirements of the estimator. The increase in computation is
even more dramatic than the increase in the storage requirements. If the parameter
estimates are in the continuous time domain and the estimator is implemented in the
discrete domain a continuous to discrete (¢2d) conversion must be implemented. This
c2d conversion is often realized through a matrix exponential, an O(NN?3) operation. In
addition to the c2d operation, several matrix multiplications (also O(/N?®) operations)
are required of the state transition matrix at each epoch for the time update. In light
of this, it is clear that keeping the number of states in the estimator to a minimum

ylelds significant returns in terms of required computer power.

3.5.2 A Simple LMS/EKF Example

To illustrate the LMS/EKF algorithm it will be demonstrated on a simple spring
mass system. The input to the system is a commanded velocity on the mass on the
left as illustrated in Figure 3.1. The resulting dynamic equations are

Z=r(y—x)+B(y—1I)
(3.35)

y=u

where
k =k/M and
B=b/M.



3.5. THE LMS/EKF METHOD 63
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Figure 3.1: Spring mass system used in LMS/EKF example

In matrix form this system becomes

z 0 1 0| |z 0

d

Z |E| = |—r —B sl ||+ |B|u (3-36)
y 0 0 0] |y 1

The measurement of x and y are available resulting in an observation matrix of

100
H= (3.37)

0 01

At each epoch a linear Kalman filter is run based on the system in Equation (3.36)

yielding X,g:_)l and X, ,Ei)l The error is then generated

e:l:
= | | = 2k — 2 — HXG), — X5 (3.38)

y
€kt1

The gradients with respect to x and B can be approximated by a simple trapezoidal
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integration:
d(AX) At gl L ox
ok 2 \ 8r X0 7 Bk IXIEH
[ A
2
= (@ — =) + @ — =) |az
0
(3.39)
oax) A foX, - ax
ap 2 \ 88'xh " 9 X
At
2
= (2uk — ) - a'c,(j’) as
0

Integrating this and the observation matrix into the update equation results in

the update for both parameters

. . At
Rerr = R+ 2 (W55 — =) + P - 2f))
2 (3.40)

Brs1 = B + 2/"'/34% (2uk - j’/&j-)1 - i:l(:—))

It is important to note that € is not utilized at all in the identification. This is
due to the fact that x and 8 have no affect on the dynamics of y in this example.
There are no degrees of freedom to adjust that will minimize €Y.

A simulation of this algorithm was run and compared to the performance of an
EKF'. The results are plotted in Figure 3.2 The performance of the LMS/EKF filter

was comparable to that of the EKF at a computationally lower cost.
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CHAPTER 4

Vehicle Parameter Identification

Methods

In order to provide the most accurate possible control of a wheeled vehicle through
steering inputs alone, the dynamics of the vehicle must be accurately known. There
have been several excellent approaches at providing fixed models for the dynamics of
a farm tractor. [0’C97],[EOBP97], [Owe82] These methods approach the problem of
varying parameters as either a calibration problem or a robust control problem. There
are obvious disadvantages to using a pre-calibration approach. While this provides
excellent identification, it is tedious and impractical in an agricultural application
and cannot account for local variations. A robust control requires little user effort
but yields sub-optimal control. The ideal system would have exact knowledge of the
dynamics at any given moment without requiring extensive user interaction. The
methods that are described below attempt to realize this ideal as well as possible.
These methods break the various sub-systems of the farm tractor up into relatively

independent systems and address them separately and independently.

67
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Steering Controller

Motorolla 68HC12 Electro—
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Steer
Angle
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Figure 4.1: Steering Actuator

4.1 Steering Actuator Identification

The actuator on the John Deere test vehicles was a rather complex system. As
shown in Figure 4.1 it consisted of a pair of hydraulic cylinders mounted between
the axle and the steering knuckles. These cylinders adjusted the steering angle and
were actuated by a pair of electric solenoids. Pulse width modulated (PWM) currents
were driven into one of the two solenoids which opened a hydraulic valve allowing a
controlled rate of fluid flow resulting in a slew rate at the wheels. A microcontroller
serially connected to the control computer was used to generate the PWM signal.
As a result, the overall system input was an integer (-255 — +255) generated by
the control computer and the system response was a roughly proportional slew rate
at the front wheels. The hydraulic steering system installed was of relatively low

cost. Its low quality performance displayed a significant deadzone in the input /
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output characteristics of the actuator system (see Figure 2.1). In addition to the
deadzone, there existed relatively complex dynamics associated with the input to
output response. These inexpensive units are expected to have significant variation
from unit to unit. In a mass production setting, without some kind of parameter
identification method, large variations would likely lead to degraded overall system
performance.

Deadzone characteristics were identified in real time with the LMS algorithm. This
algorithm was first presented in [RJP98]. In general, it breaks the non-linearities up
into piecewise linear regions and identifies them separately.

For the purposes of the remainder of this section the basic system model illustrated
in Figure 2.2 and Equation (2.1) will be used. The steepest descent method of the
algorithm required a definition of an error paraboloid. If this surface were simply the
overall error squared, the inclusion of the deadzone would make for a very complex
error surface with many local minima. The piecewise linearity of the system make
the error surface becomes much more manageable.

Consider any series of inputs that result in an output that resides in the upper
portion of the deadzone. Also, assume the model parameters were fixed, as they
would be if the model were already in its optimal state. The error surfaces could then

be expressed as

™
i

y—§=y-—mWTU -b) (4.1)

where
€ is the instantaneous error in the output estimate,

y is the measured response of the system,
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QOutput

my

Input ,—bz

Figure 4.2: Deadzone Parameter Definition

¥ is the predicted response based on the most current model estimate and known

input U,
m is the deadzone slope as shown in Figure 4.2,

W is a vector of the FIR filter gains representing the dynamics of the system and

b is the deadzone breakpoint.

Two error surfaces are defined to take advantage of the piece-wise linearity of
the system. The first model (¢(*)) represents the system when a positive output is
achieved and the other surface (¢(~)) matches the system with a negative response.
Both systems share the same dynamic FIR filter, W.

It is the intention to minimize the expected mean squared error. This must be

done independently with both error surfaces. To do this first square the upper error

surface:

g0 2 miWIUUTW + (mib1)? + 2 [ymib, — (ymy — mib )WTU]  (4.2)
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Then, take the expected value of e:

¢ = E[e’] = E[y®] + miWTE[UUTIW + (mub1)? — 2m,;WT (E[yU] + mq1b, E[U])
(4.3)

To simplify notation, introduce the autocorrelation of cross-correlation matrices of U -

as

R = E[UUT]
(4.4)
P = E((y + mi5,)U]
Making the appropriate substitutions in Equation (4.3) yields
¢ = E[y?] + m2WTRW + (m.b,)? — 2m,WTP (4.5)

Equation (4.5) shows that ( is quadratic in all the parameters. A simple differentiation

yields the slope with respect to the FIR filter dynamic model
Vw = o 2m2RW — 2m, P (4.6)

If the excitation signal is real, then R can be inverted [WS85] and this equation can

be easily solved to yield the optimal weights for the FIR model

w=Lpip (4.7)
mh

The optimal states for the deadband parameters may also be obtained in the same
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manner as for the dynamics. Remembering that
WU =X (4.8)
the gradient with respect to the deadband slope is
Vm, = 2(m1b2 +mE[X? — WTE[yU] — 2mb, E[X]) (4.9)
and the gradient with respect to the upper deadzone breakpoint is
Vi, = 2mi(myby — m E[X]) (4.10)

Setting both these gradients equal to zero and solving for m} and b} yields the optimal
deadzone parameters

E[Xy]
E [XZ] —(E [X])2 (4.11)
b = E[X]

*—
m; =

This provides the optimal solution for each of the parameters in the upper portion
of the deadzone. The derivation for the lower portion of the deadzone follows exactly

as above with the appropriate parameter substitutions.

It is useful to notice that the magnitudes of the dynamic weights for the FIR filter
and the deadzone parameters are interrelated. This is most easily seen in Equation
(2.1). A scalar coefficient can be factored out and arbitrarily redistributed between
both sets of parameters. An additional constraint is therefore needed. This constraint

comes from a normalization of the FIR filter. This provides a relatively static gain
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setting for both the dynamics model and the deadzone model.
The utility of this optimal solution is somewhat limited. One must know a great
deal about the input and output characteristics of the plant in order to recover these

optimal parameters. The LMS algorithm readily lends itself to this application.

4.1.1 Actuator Parameter Gradient Estimation

The gradients expressed in Equations (4.6), (4.9) and (4.10) can be approximated
by utilizing the LMS algorithm. To do this the model must be broken into three
regions: positive measured output, negative output and zero output. The latter
region provides no output excitation and therefore cannot be utilized for identification
purposes. The prior two regions can individually be used to identify the portion of
the model corresponding to the appropriate output region.

If the output is known to be in the upper band of the deadzone, i.e. it has resulted
in positive measured output, then the gradient with respect to the weights can be
approximated as

= 0e®* e 8y 8X

= — = — 2
V= e agoxow el (4.12)

It is quite easy to show that for the upper deadzone case, the expected value of the

gradient estimate is the true gradient

~

E [vw] = —2m, E [eU] = 2m2RW — 2m,P =V, (4.13)

Equation (4.13) shows that the estimate of Vy is unbiased. As a result the estimate

of W is also unbiased.
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Similar methods as above are employed to estimate the gradients with respect to
the deadzone parameters. For an output in the upper deadzone region
_ 0e? e 9§
t Ot 8,2,7 6m1
E [V“/'ml] =2 (b E [y] + mib? + my E [X?] — WTE [yU] — 2m;5, E [X]) = Vi,

Vo = 2eWTU

o _0e20e 0f _
" 5e 85 0b,

E [ﬁ,,l] = 2my (E [y + miby] — mE [X]) = Vs,

—2677?.1

(4.14)

Using the gradient estimates in Equations (4.12) and (4.14) the parameters may

easily be updated each epoch

Wit = Wi + 2uwermi (U
My g+l = Mg + 2ﬂm16ka (415)

brk+1 = b — 2up e &

For outputs that are known to be in the lower deadband zone, the updates are

nearly identical to those in (4.15) with m, replacing m,; and b, replacing b,.

4.1.2 Actuator Model Stability

The convergence rate and stability of each of the parameters is controlled by

the character of the inputs and the learning coefficient, u. A large value of u will
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yield rapid convergence but may drive the algorithm to instability, or at the least be
overly sensitive to noisy data and provide a large amount of random walk about the
minimum. On the other hand, a small learning coefficient will provide little random
walk and ensure stability but yield very slow learning and poor tracking performance

for non-stationary systems.

To determine the bounds for the learning coefficient associated with the dynamic

model a change of coordinates similar to the one put forth in Section 3.2.2 is proposed
VW =W -W; (4.16)

The expected value of the next weight vector is
E [V = (I —2pwm?R) E [VV] (4.17)

For the purpose of this analysis, m can be either the upper or the lower deadband
region dependant on which region the output lies in. It can now be seen that the
expected value of the weight vector at any iteration can be calculated from any prior
error (provided the output remains entirely within either the upper or lower deadband

regions for the duration between sample £ and sample &k + n.)
E V] = (I —2uwm®R)" V¥ (4.18)

From this equation the interrelation between the learning coefficient and the character

of the inputs (manifesting themselves within R) can be seen. For stability, each
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eigenvalue of (I — 2uwm2R) must be less than 1. This puts the constraints

0 1
<Nw<r

Ama:

(4.19)

on the learning coefficient.
A similar approach is taken to reveal the stability requirements for the deadband

slope.

V*=m-—m" (4.20)
E[Via] = (1 —2um (¥° + E [X?] - 20E[X]))" V" (4.21)
0<pm< ! (4.22)

B + E [X2] — 2bE [X]

For the deadband width,

Vb=b—-b" (4.23)

E[V2.] =0 —-2um?)"V (4.24)
1

O< up < W (4.25)

A small note of caution for the actual implementation of this algorithm is in order.
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As illustrated above, the only time the actual identification takes place is when an
output is measured. When no output is measured, one can make no inferences about
the intermediate parameter, X. Because no information about the internal state of the

system can be made, identification can only be done during times of output excitation.

4.2 Vehicle Steering Dynamics Identification

In a field environment, the main vehicle control is the steering wheel. The operator
typically selects a constant speed to maximize the efficiency of the current operation
and steers the tractor around the field to complete the day’s ob jectives. It is therefore
apparent that a thorough understanding of the vehicle’s steering dynamics is necessary
for accurate control. A complication to this is the fact that the steering dynamics of -

the vehicle are very dependent on vehicle configuration and operating conditions.

4.2.1 O’Connor Parameter Identification

There are many possible methods to identify the parameters in Equation (2.7).
The method presented here is a two step method utilizing a standard Kalman filter
to estimate the states of the system, and the LMS algorithm (utilizing the estimated
states) to estimate the parameters. In doing this, a large and very non-linear EKF is
avoided.

The first part of the algorithm is to generate state estimates using a standard EKF
based on the states in Equation (2.7). If the Kalman filter is not using the “optimal”
values, there will be a mismatch in the dynamics of the filter and the dynamics of

the system. The mismatch will cause a serial correlation in the innovation. The



78 CHAPTER 4. VEHICLE PARAMETER IDENTIFICATION METHODS

information provided by this correlation is leveraged to back out a better estimate of

the parameters.

In the experimental vehicle, measurements of position, heading and steer angle

were available. The observation vector was therefore defined as

(4.26)

> & 2 W

- =

The dynamics of the system manifested themselves as differences between subsequent

measurements. The error was therefore defined as

Ep = = (2t — zg—1) — C (X,g_) — X,(:)l) = Az — Az (4.27)

where
Z was an unbiased measurement vector,

C was the observation matrix

(4.28)

o O o

o
o o - o
— o
o o o o
o o o o
o = o o
(e o o o
@ o o o
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and X,g_) and X, ,£+) are the estimates of the state at time step k before and after the

measurement update. The components of the X vector are
T
X=[E N ¥ Q § w] (4.29)

with the same state definitions as in Equation (2.2).

With these definitions, the performance cost function may be defined as the ex-

pected power of the error
J = E [Te] (4.30)

If the identified parameters accurately represent the system dynamics, the error will
contain only system noise and introduce no bias. [Ste94b] When the parameters are
misidentified, there will exist a strong correlation between the system input and the
error in the prediction of state movement. It is this correlation that is used to adjust

the model to best fit the system.

If each component of € were independent, an independent minimization of each
component would yield an overall minimization of J. The components of £ are
not independent in this case but they are also not strongly coupled together. If

the gradients of the errors are calculated as in [Kel93] with nominal values of p =
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T
[—0-2, 3.5,1.8, 1,7] the results are

aEE’N

Op2
OeEN

Ops
Oef:N

Opa
OtV

Ops

= —0.14Q2 — 0.02895 — 0.001865w — 0.0001667u

= —0.0034952 — 0.000435 — 0.000021w — 0.00144u

= 0.00436 + 0.00026w + 0.000022

= —0.000022w + 0.000022u

2e¥
Op2
0e¥
Ops
2e¥
Op4
0e¥
Ops

= —0.0127Q — 0.001726 — 0.000085w — 0.00615u
(4.31)

= 0.0160 + 0.0010w + 0.000092u

= —0.000091w + 0.000092u

Ol
dps
Oe®
dps
ol
Aps
Oel

— =0.016w + 0.016%
Jps

As shown in Equation (4.31), each parameter in the model has a strong primary
affect on either one or two specific errors and a much weaker influence on the others.

To aid in the identification the weak cross couplings were assumed to be negligible.
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I IPz,Pslp:;lPsl

e® | X
eV 1 X
[ ¥ XX
g° X

Table 4.1: Primary Parameter Influences on Measurement Errors

81

Table 4.1 illustrates which errors are primarily influenced by the various parameters.

Identification of p,

The parameter p; can be interpreted as the influence of yaw rate on the lateral

velocity. This parameter manifested itself primarily in two states, E and N, requiring

two measurements to be used for identification. The error cost equation used for

identification of p, was
JEN _ eENT _EN

=& &k

where

E
EN €k
oy N
€k

Calculating the gradient of JZ¥ with respect to p, yields

OJEN  JJEN 9PN aA X enTOAX,
= 3 EN > = -2 —
Op2 O OAX, Op2 Ip2

(4.32)

(4.33)

(4.34)
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To a first order trapezoidal approximation

% 5 (+) F(+)
0A X, At | - —cos ¥ - —cos ¥, "
LAPONidl 0152 k l Ql(c-:)l k-1

Sl B A (4.35)
Op2 2 sin \I/,(:') sin \Il,(:)l

From this result, Newton’s method can be used for updating p,

P2 = P2 + paAt [:-:fcv (Q,(:') sin U + O sin \ff,(i)l) —ef (Q,(:') cos TP + O cos \ii,(ct)l)]

(4.36)

Identification of p; and p4

D3 is the inverse of the time constant associated with the lag between the actual
yaw rate and the steady state yaw rate while py defines the yaw acceleration achieved
from a given forward speed and steer angle. The gradients of €¥ with respect to ps3

and p, were calculated as follows:

d (ef)? _ 8 (ef)® 9e¥ oA, — » OAT,

ps Oey OAF, Op; k Ops3 437
N ot : (4.37)

d(ef)” _ 9(ef)” oe} OAD, _ _, 40AY;

Op4 Oeg A, Ops * Ops

Again using trapezoidal integration

6p3 4 k k—1
(4.38)

aA‘ik Atz *(_*.) “(_{..)
dps 4 Vz(ék +5’°‘1)
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Resulting in update equations of

At? /2 ~
D3 = D3 — [H34Ep 5 (Q,(:') + Qf:)l)
(4.39)

At? o -
P4 = Py + U3 4Ek TVz (5/(c+) + 5&)1)

Identification of ps

The parameter ps represents the lag between the actual steer angle slew rate and
the steady state rate. This parameter manifests itself mainly in the steering angle
error, €. The gradient is

9el®  0el® 0el OAS, QEJBA&

= = = — 4.40
Ops 98 NS, Ops * Ops (4.40)

The trapezoidal integration is slightly different is this step due to the addition of the
zero order hold on the input. The input, u, is held constant throughout the epoch

and therefore needs no averaging.

A A
Bps - 4

(669 + 062 20 o
Leaving the final update equation as

At? )
Ps =Ps — #56i—2— (w,(:) -l-w,(:)l - 2uk_1) (4.42)
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4.2.2 Stability Of Parameters

The characterization of the requirements for stability on the identified parameters
is an important part of the identification process. The stability of each of these
parameters is determined by the learning coefficient, x, and the nature of the inputs.
Because the nature of the inputs is constrained by the guidance requirements, the

main engineering design consideration is the learning coefficient.

Stability of p»

Begin by defining the change of coordinates for this parameter

and examine the update equation

Vi =Dojt1 — D5 = V? +2ua Atel (fo) sin \If,(:') + Q,(ct)l sin \If,(:;)l) ( )
4.44

—2usAtef (Q,(:') cos \If§c+) + cht)l cos \Il,(ct)l)

Using the trapezoidal approximation and assuming small time steps, ef and &V can

be approximated by

~ At + . .
ef = AE;, — AEy = - (Qf:') sin \Ilfc‘) + Q,(c'i)l sin \Iffct)l) VE? 4 noise

~ At
el = ANy — AN =~ —5 (Q,(:') cos \Ifff) + Qgt)l cos \IIE:)I) VP + noise

(4.45)
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combining these equations and taking the expected value of the next parameter error

yields
E[VP2] = (1 — meA2Ry) VP (4.46)

where
2 2
R,=F [(Q,(f) cos \Iff:') + in)l cos \I!fct)l) + (fo) sin \If,(:') + QS:)I sin \Iff:)l) ]

As before, this places the following constrain on u»

0< #2—Azt—2 < R% (4.47)
Stability of p; and p,
The change of coordinates used in this section will be
pea |P3| _ (P (4.48)
D4 Dy

Utilizing the update equations from above, the parameter error updates as

(+) (+)
A2 (¥ + T

‘/kp_i’lp“ = ‘/k3,4 +ﬂ3,4‘—2 k k=1 6;;1’ (4.49)
50 +6ih),

The error can be approximated as

- At? T .
ef = AV — A, ~ — [(Qﬁ*’ +2) (@0 + 5,23)} VP +noise  (4.50)
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and the expected value of the next parameter error can be expressed as

A 4
E VRN = (I - #3,4%33,4) ViEepe (4.51)
where .
b B (Q,‘;‘) + ij:’l) (fo’ + Q,‘:)l) (6,(;” + 5,(cf)1)
3,4 — , 2
(267 + 7)) (58 +6) (667 +689)
therefore, the stability limits for p3 4 are
Att 1
< —_— < —_— .52
0< u3q 6 < (4.52)

where M- is the largest eigenvalue of R34. The matrix R34 is solely a function
of the rates of change in the states. When there is little change in the states, the
eigenvalues of R34 become very small. This may lead one to believe the best time to
identify p; and ps would be when the vehicle is nearly stationary. As will be shown
in Section 4.6 this would be a bad idea. At low speeds, the sensor noise overpowers

the identification process so that little effective identification can be achieved.

Stability of ps

The change for ps is
VP = ps — p (4.53)
Utilizing the update equation, the parameter error updates as

At?
Vi =V~ #5'2—6{ (wx(c+) +wD) - 2uk—1) (4.54)
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The steering angle estimate error may be approximated as
5 2 ALy ) s :
€p = Abp — Adp = e (wk +wp] — 2uk_1) VP + noise (4.55)
and the expected value of the next estimate can be expressed as
5 At4 5
EVin] = (1-ns—5Rs | V2 (4.56)

where
2
Rs=F [(w,(:') + w,(ct)l - 2uk_1) ]

indicating that the stability limits for us are

At 1
0< 2t « 2 4.57
<m e < (4.57)
As with the steering deadband identification, one must constantly excite the dynamics
in order to identify them reliably. Unfortunately, many tractors spend much of their
time driving in straight lines. When the vehicle is driving in a straight line the

learning coefficients should be made relatively small (or turned off) in order to keep

the identified parameters from wandering.

A Caveat: When this algorithm is used for adaptive control of the vehicle there -
arises a danger of divergent behavior when the estimate of ps is larger than the actual
value. A larger estimate causes a bang-bang type of behavior in the control input.
This greatly increases the value of R5 causing a subsequent decrease in the stability
limits in Equation (4.57). A better approach to identifying ps is to constrain the

value of Rs by applying the signum function to the inputs and to utilize the update
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equation
Ds =Ps — uss,‘iAthsgn (@,(f) + C:l,(:)l - 2uk—1) (4.58)
This change results in a new expression for Rs
Rs=E [sgn (w,(c+) +wf) — 2uk_1) 2] =1 (4.59)

This minor change produces a more consistent stability range for us and can increase

the robustness of the identification of ps dramatically.

4.3 Vehicle Longitudinal Dynamics Identification

To control the position of a tractor reliably in formation with another, both the
steering dynamics and the longitudinal dynamics must be understood. The difficulty
associated with a farm tractor is that the amount of tire slip varies a great deal
during operation. Fortunately, the longitudinal dynamics of a farm tractor may be

quite simply and reasonable accurately modeled utilizing Equation (2.6).

4.3.1 Longitudinal Parameter Identification

When Equation (2.6) is discretized for a time step of At seconds, the time update

equation is

‘/:z:,lc-f-l = ¢I/z,k + Kg (1 - ¢) Weommand (4'60)
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-
where p =e =

A good measure of performance is the difference between the measured value of
Vzx and the predicted value. The approach is to use the same methods as presented
in Sections 4.1 and 4.2. Actually calculating the error is slightly more difficult in this
case as there is no direct measurement available. The error used is the difference in

state estimates after and before the measurement update

£k = Ait, /AE? + AN? - V) (4.61)

This error is different than the error in 4.2.1 since there is no direct measurement of
velocity unlike the other states in that section. There is, however, a very accurate

measurement of position which can be easily differenced for an estimate of velocity.

The gradient of the error with respect to x, can be calculated quite easily by

. -+, . 3
assuming that %/;T- is small and using the chain rule.

e 9e2 9 VLT

= =26 (1-¢"%) n 4.62
3ng 88 a,Vz(_) 3h:g Ek e Weomnmand ( )
This produces in the update equation:
_At
o = g = 2ptnek (1 — €5 ) Weommana (4.63)

It is very difficult to determine a learning equation with respect to 7 that has rea-
sonable form to analyze stability. As an alternative, the stability with respect to ¢ is
relatively straightforward to analyze. Also, it is quite easy to see that stability in ¢

assures stability in 7 as it is a simple function of 7. For these reasons, the parameter
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¢ is directly identified and 7 is inferred from it. The gradient of the error with respect

to ¢ is
02 0e2 de OVSP )
= ——— = 26; ( KgWeommand — V41 (4.64)
O¢ Oe 31/;(’,:) o¢ ( )
Resulting in the update equation
¢=0¢ — 2.u'¢51c (V;;;(,:)_1 - /‘ngcarnmand) (4-65)

4.3.2 Longitudinal Parameter stability

As in the previous sections, the clearest way to express the stability of the identifi-
cation of the longitudinal parameters is to use a change in coordinates to be centered

on the optimal estimate of k. For the effective gear ratio, the translated state will be

V™ =Ky — Ky; (4.66)

and the update equation will be
‘/l:il = I/Ic’cg - 2uK8k (1 h ¢) Weommand (4.67)
The error can be approximated as

Ep ~ (1 - ¢) wcommandv;:g (468)
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which yields an expected value for the next parameter error of

E[Vis] = (1 —2u (1 — ¢)* Re) V¥ (4.69)
with Rx = E [w2,,,manal- From this, the stability limits for u, can be easily determined
0< (4.70)

SH S e

The analysis for the stability of ¢ is similar to the other parameters. First, define

a coordinate transformation:
Vo = ¢ — y; (4.71)
the update equation will then be
Vﬁil = Vlc¢9 — 2p4Ek (V:(Z) - ngwcommand) (4.72)
with an approximation for the error as
e ~ Vi (VD = Kotocommand) (4.73)
substituting Equation (4.73) into (4.72) and taking the expected value yields

E[Vin] = (- 2uyRe) (4.79)
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2
with Ry = E [(Vz('*,;) - ngwwmmand) ] from this, the stability is

1

7 (4.75)

0< py <

Because «, is effectively a gain factor from engine RPM to ground speed, the ground
speed need not constantly change in order to identify this parameter. The time lag
parameter 7, (identified through @#,), on the other hand, must be exercised through

varying ground speed to be correctly identified.

4.4 Vehicle Parameter Identifiability

Just as observability is important in state estimators, identifiability is important
in identification algorithms. Grewal and Glover [GG76] and Reid [Rei77] illustrate a
method of quantifying the identifiability of a parameter using the derivatives of the

Markov parameters of the system. The Markov matrix is formed as:

CB
CAB
M= | CA’B (4.76)

CA2n—lB

For purposes of this discussion, the identifiability will be defined as the derivative

of the norm of the singular value decomposition (SVD) of M with respect to the
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parameter. The more identifiable a parameter is, the less sensitive the parameter
estimate is to noise and disturbances.

As will be shown in Section 5.2, several of the experimental vehicle parameters
proved relatively difficult to identify. This proves to be only a minor inconvenience
if one takes into account the sensitivity of the system to accurate estimates. The
sensitivity is defined as the derivative of the norm of the SVD of the Controllability

matrix with respect to the parameter. The Controllability matrix is defined as:

C=| 4?B (4.77)

A™"1lB

The difficulty of identification (defined as the inverse of identifiability) is plotted
versus the system sensitivity is shown in Figure 4.3. The parameter values used to
generate this graph were reasonable values reflecting the dynamics of the experimental
vehicle.

In this graph, the further to the right the parameter is, the more important it is
to accurately identify the parameter. The higher the parameter is the more difficult
it is to accurately identify. In the experimental vehicle the more difficult parameters

to identify are also the least important to identify accurately.

Ps, the lag in the steering response, proves to be the factor most important to

be identified accurately. The overall system is very sensitive to variations in this
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Figure 4.3: Parameter Identification Cost Trade off with p, = —0.2, p3 = 3.5, ps = 1.8
and ps = 1.7
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parameter. This is to be expected. The lateral dynamics of a farm tractor consist of
basically a series of integrations between the input slew rate and the output position.
Any change in this parameter is going to be integrated several times. P is also very
identifiable. This is due to its close proximity to the input and one of the sensors.
The steering angle and slew rate can be very accurately estimated and consequently,
ps can be accurately identified. As will be shown in Section 5.2 the estimate of Ds
can quickly converge to a very smooth estimate

P;, the damping in the yaw response, is significantly more difficult to identify.
This is due to the inability to estimate accurately the yaw rate of the vehicle. This
system is very insensitive to yawing accelerations. It takes a large change in steer
angle and consequently a very large slew rate to induce a substantial acceleration in
the heading of the vehicle. It is very difficult to incur much energy in the Q state.
In addition to the low power in the primary state, there is no direct measurement of
the yaw rate. The estimate of the yaw rate comes from differentiating the position
data twice, the heading measurement once and integrating the steer angle. The result
is a very poor signal to noise ratio in the yaw rate. The identifiability of D3 can be

substantially improved by adding a yaw rate measurement (see Figure 4.4.)

4.5 Parameter Identification Computation

In farm tractor steering parameter identification the LMS /EKF algorithm offers
substantial computational saving over the traditional PP-EKF. Table 4.2 illustrates
the computational requirements at each time step for each method. The LMS /EKF
algorithm requires significantly fewer operations. This is due to two primary features.

First, the PP-EKF algorithm requires the gradients of the discrete time models with
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Figure 4.4: Parameter Identification Cost Trade off with Yaw Rate Measurement

| PP-EKF | LMS/EKF | Improvement

Filter Setup 210,271 9,551 95.5 %
Time Update 5,766 1,743 69.8 %
Measurement Update 6,844 2,865 58.1 %
Total | 222,881 ] 14,159 | 93.6 %

Table 4.2: Floating Point Operations Count for PP-EKF and LMS/EKF Algorithms
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respect to the continuous time parameters be calculated every epoch. The LMS/EKF
algorithm approximates this calculation during the parameter update step. Secondly,
the PP-EKF algorithm extends the states to include the parameters. Matrix multi-
plication is an O(N?3) operation. Every parameter that is added to the state vector
substantially increases the computational requirements. The LMS/EKF algorithm
foregoes this extension to the states by identifying the parameters in parallel with

the states rather than concurrently.

4.6 Parameter Identification With Realistic Paths

The ability to identify accurately the dynamic parameters is strongly dependent
on the ability to excite important states enough to provide a strong signal to noise
ratio. A large signal to noise ratio usually results in a good parameter estimate. It
is usually not possible to decrease sensor noise. Typically, in order to improve the
signal to noise ratio, the dynamics of the system must be energized. This energizing
of the states is often achieved through adding a small amount of random noise or
dither into the input. The effect of this dither is to increase the energy in the system
at the cost of reduced controller accuracy.

During simulation it is possible to achieve exact knowledge of all states resulting
in an infinite signal to noise ratio. In a realistic setting this is much more difficult.
There are, however, certain trajectories that increase the energy in the various states
and, conversely, other trajectories with little energy associated with these states.
Identification of when these conditions occur will indicate optimal times to identify
parameters without adding undesirable dither.

Equations (4.36), (4.39) and (4.42) show which states need to be energized for
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Figure 4.5: Signal to noise ratio for tractor yaw rate, 2

strong identification. P, and p3 require a large signal to noise ratio in Q (yaw rate),
P4 requires a large signal to noise ratio in § (steer angle) and ps requires a large signal
to noise ratio in w 4+ u (slew rate and control input.)

A series of simulations to characterize the signal to noise ratios for various trajec-
tories were run. These simulations included lateral control along arcs ranging from
10 meters in radius to infinite radius (straight lines) and heading control to a square
wave input oscillating between +/- 20 degrees at frequencies ranging from 0 Hertz
to % Hertz. The resulting signal to noise ratios between the state estimates and the
error in those estimates is shown in Figures 4.5, 4.6 and 4.7.

As expected, the signal to noise ratio for 2, the yaw rate is proportional to the
forward speed of the tractor and inversely proportional to the radius of the turn.
There is also a resonant frequency that varies with speed between approximately %Hz
and iHz.

The signal to noise ratio for the steer angle, §, is insensitive to speed but also
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Figure 4.6: Signal to noise ratio for tractor steer angle, §

dependent on the reciprocal of the turning radius. The frequency behavior of the
signal to noise ratio in ¢ is very similar to that of the yaw rate. It also displays a
resonant frequency on the order of é of a Hertz in this parameter configuration. It
is clear that a turning radius of zero meters would provide the best signal to noise
ratio. Obviously, a real wheeled vehicle could never achieve a turning radius of zero.
The best signal to noise ratio is therefore achieved when the steered wheels are hard
against their stops. Unfortunately, at tight angles the linearization of 2 in Equation
2.7 with respect to § becomes less ideal. (€ is actually a function of tand .) Neglecting
the non-linearity at extreme turn angles will cause a bias is the estimate. This can
be easily dealt with by using a non-linear estimator.

The signal to noise ratio for the slew rate, w, plus input signal proves to be very
sensitive to velocity. This is most likely due to the increased effect of field disturbances

on the heading and position. It is only slightly dependent on arc radius.

These Figures indicate that the best signal to noise ratios and consequently the
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Figure 4.7: Signal to noise ratio for tractor slew rate, w

best parameter identification conditions are achieved while the vehicle is actually
turning. The tighter the turn the better. Unfortunately a farm tractor typically
spends a great deal of time driving down very straight rows. This is not a problem
for identification of ps which relies on the signal to noise ratio of w + u which is
insensitive to the straightness of the trajectory. As will be shown in Section 5.2 in
Figure 5.14, ps can be reliably identified during straight line operation as well as
during turns.

As becomes apparent in this section and will also be shown in Section 5.2, P2, D3
and ps require turning to be accurately identified. This difficulty is most reasonably
addressed by realizing that despite the fact that farm tractors typically spend the
majority of the time driving straight rows, these rows are of finite length and the
tractor must eventually turn around. Usually, the vehicle is required to turn around
at the end of the rows within one or two times the implement width. As a result, the

ideal time to identify parameters p, — p, is during these tight, end-of-the-row U-turns
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or during curved paths. It is during these U-turns and curve paths that there is
enough excitation and diversity in the states that a reasonable signal to noise ratio is

reached and, consequently, reasonable identification can be expected.
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CHAPTER 5

Simulation and Field Tests

5.1 Simulation

5.1.1 Actuator Identification

A simulation of the actuator identification algorithm was run. This simulation was
run on a system with a simple first order lag for dynamics, a reasonable deadband
and no sensor noise. The truth system is represented in Figure 5.1. As an initial guess
the dynamic model was assumed to be a simple pass-through system with the output
exactly matching the input. A simple, open loop random input was provided for
system excitation and the resulting learning curves are presented in Figures 5.2 and
5.3. Figure 5.3 shows the convergence of the Hamming distance which is the norm of
the difference between the estimated weights and the optimal weights (obtained from
a dimpulse call to MATLAB.)

The simulation presented is fairly typical of the expected performance of this
particular algorithm and system. The identification of the deadband parameters relies

heavily on an estimate of X, the output of the dynamics. Therefore, the deadband

103
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Figure 5.1: Truth system for Actuator Identification Simulation
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Figure 5.3: Dynamics Estimate Convergence for Actuator Identification Simulation

?

parameters do some initial searching until the dynamic model settles down and begins

to reflect the dynamics accurately.

This identification system can also become sensitive to false estimates of the dead-
band. To increase the robustness of the algorithm one may constrain the deadband
parameters. Two suggestions on how to do this is to enforce positive slopes (my2 > 0)
as well as non-overlapping breakpoints. To demonstrate this idea a simulation run is
presented in Figures 5.4 and 5.5. In this run the dynamics were initialized to have a
pass through gain of -1 resulting in an output of the same magnitude but opposite
sign as the input. As the figures illustrate, the algorithm did very poorly for the
first several hundred iterations. During this time, the dynamics vector existed in a
region with a very small gradient and exhibited a random walk type behavior until

it correctly identified the approximate sign of the true output. The hard constraints
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Figure 5.4: Deadband Learning curves for Actuator Identification Simulation with
Poor Initial Guess

of the deadband parameters were regularly encountered until this point. As soon as
the appropriate sign of the dynamics was obtained, the system moved into a mode of
geometric convergence and correctly identified all parameters. When the deadband

system constraints were removed, the systém diverged on every simulation executed.

5.1.2 Tractor Identification

In an effort to gain a better understanding of the behavior of the parameter
identification algorithms several simulations were run. The first evaluation was a
comparison between the traditional EKF and the LMS/EKF algorithm outlined in
Chapter 4. This simulation was run under MATLAB. For simplicity, the system

input was simply generated by a LQR controller tracking a square wave reference on
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the heading. Figures 5.6, 5.7, 5.8 and 5.9 illustrate the convergence of the estimated

parameters for both methods with and without sensor noise.

Both methods have little problem identifying the unknown parameters under noise
free conditions. Both converge to an unbiased estimate of all four parameters. The
estimates produced by the LMS/EKF algorithm have slightly more noise when the
estimate is far from the true value than that of the EKF for comparable convergence
rates. Also, due to the more limited tuning parameters, the LMS /EKF algorithm may
exhibit a more slowly decaying mode than does the EKF. This is hardly surprising
given that the LMS/EKF algorithm yields a coarser estimate of the gradient than
does the EKF. When the parameters have converged, the noise rejection between the
two methods is nearly indistinguishable. The advantage of the LMS /EKF algorithm

comes into view when one realizes the extra cost of calculating the EKF gradient as
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Figure 5.8: Short Term Comparison of EKF and LMS/EKF parameter identification

performance on simulated tractor with sensor noise
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compared to the LMS/EKF algorithm.

When the simulation is run with process and sensor noise, both algorithms exhibit
biased estimates of the parameters. This bias is due to a strong correlation between
the noise and the control input when running in closed loop mode. This bias is

decreased when the signal to noise ratio is increased.

5.2 Experimental Results

The LMS/EKF algorithm was implemented on the experimental tractor. The
vehicle was configured with a six row, hitched cultivator. This implement was very
heavy and considerably altered the vehicles’ handling characteristics!. The tractor
was driven repeatedly over the 6 pass curved paths shown in F igure 5.11 and the
identified parameters were allowed to converge. During the data collection pass for
the adaptive controller, the parameters were still free to adjust. Despite the freedom
to adjust, the parameters in the data collection pass were well converged as evidenced
by the fact that only negligible variations in the parameters were observed during the
data collection.

The performance of the adaptive system was then compared to the performance
of a fixed controller using the parameters identified by O’Connor [O’C97] over the
same trajectory. The performance of both systems over each pass is compared in
Table 5.1. A histogram of the overall distribution of lateral errors is presented in
Figure 5.12 throughout the entire trajectory. There is a mean bias that is identical

in both the fixed and adaptive controllers’ performances. This is believed to stem

1The handling of the tractor changed so much that the author nearly drove the tractor into an
irrigation ditch on transport to the test field because the steering had become so ineffective!
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Figure 5.10: Experimental Vehicle with 6 Row Cultivator Attached
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Figure 5.11: Curved Path System Identification Trajectory
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Fixed Controller Adaptive Controller
Row Number | Mean (cm) | Std. Dev. (cm) | Mean (cm) | Std. Dev. (cm)
11240 5.08 3.17 3.46
21216 3.81 1.59 2.78
31 3.00 4.38 3.88 3.46
41283 3.91 1.38 2.74
5| 2.15 4.63 3.88 3.11
6235 4.26 1.39 3.00
Average | 2.48 | 4.35 | 2.55 | 3.10

Table 5.1: Lateral Error Comparison On Curved Trajectory

Occurances (%)

Lateral emr, m ’

Figure 5.12: Curved Path System Identification Performance
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from the fixed horizon regulation method that was identical on both systems. There
is also a directionally dependent variation exhibited by the adaptive estimator. This
is attributed to a small bias in either the heading or the steer angle measurement

which was compensated for in the fixed controller but not the adaptive.

The lateral error distribution shown in Figure 5.12 for the adaptive system is both
narrower and more regular than that of the fixed system indicating less searching by
the regulator due to poorly modeled dynamics. Both Table 5.1 and Figure 5.12 show
a 25% improvement in the lateral error distribution. It is also important to note
the larger number of outliers in the non-adaptive control data. It is likely it is these

outliers that will cause a problem with crop loss or higher probabilities of collisions.

In addition to the above mentioned experiments, a series of parameter convergence
experiments were run. In these experiments, the vehicle was configured with single
wheels and no implement. The parameters and learning coefficients were set to various
initial conditions and the vehicle was run over a figure 8 trajectory as shown in Figure

5.13.

Parameters p, and ps showed excellent convergence while p; and ps exhibited less
desirable convergence. The root cause of this was believed to be the trajectory chosen
for this experiment. The long, straight sections injected little energy into the yawing
rate and steer angle which are required by p; and ps. The turning effectiveness p4
could only be identified at the end of the rows during the u-turns. Despite this, Figure

5.14 illustrates a slow trend towards a definite region for the estimate of p4.

The yaw damping estimate, p; was much less well behaved. There appeared no
overall trend nor any preferred value for this parameter estimate. This was due to the

fact that this parameter was approximately twice as difficult to identify (as discussed
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Figure 5.13: Figure 8 Sysid Trajectory used in Parameter Estimation

b

previously in Section 4.4) coupled with the lack of the ability to introduce significant

yaw rates resulting in very little energy in this mode.

Another clue to understanding the difficulty in identifying p; and p4 is in Equation
(2.7). There are two states that can be though of as inputs to the angular acceleration,
the yaw rate, Q, and steering angle, §. These two states have an extremely strong
correlation at low frequencies. This strong correlation makes it difficult to resolve
each input’s contribution to the total angular acceleration and therefore to evaluate

the appropriate correction to the two parameters.

This problem of resolving the parameters contribution to the angular error is
further confounded by the trajectory chosen for this identification run and the physical
constraints on the machine itself. Good identification is achieved with a strong signal
to noise ratio. This requires large changes in steer angle between epochs in order to

induce large angular accelerations. For a perfectly tracked trajectory with constant
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Parameter Estimates — Data of 5 Nov 1999
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Figure 5.14: Learning Curves from Data of 5 Nov 1999
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speed and constant radius, from (2.7):

£ _ Eta’né (5.1)

ps £
It is apparent from Equation (5.1) that, without angular accelerations, only the ratio
of p; and py can be identified. Achieving large angular accelerations requires large
changes in steer angles. Large changes in steer angles require very large slew rates,
rates not necessarily achievable by the hydraulic system in a practical tractor. This
would also require very curvy, jerky trajectories which are not of particular usefulness
in a real world setting. The trajectory chosen for this identifaction consisted of very
smooth arcs and straight lines. The vehicle spent the vast majority of the time
commanding very small slew rates.

The only large slew rates occured on the transitions between the lines and arcs.
During these transitions, some identifaction whas achieved. Once the initial transient
slew had been completed and the vehicle was well estabished on a constant radius or
a straight line, the signal to noise ratio for parameters p; and p, would drop along
with the slew rates resulting in the parameter estimates to wander.

One possible solution to the angular excitation delemma is implied in Figure 4.3.
The system is least sensitive to variations in parameter p;. This parameter could
possibly be estimated and held fixed. This would help resolve the contribution of

errors in py to the angular acceleration estimate.
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Formation Driving
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CHAPTER 6

Introduction

Formation driving is simply the concept of two or more vehicles holding a position
relative to each other. This is an integral part of co-operative vehicle control in which
multiple vehicles are working together to accomplish a common task. An example
of this would be a combine harvesting grain and an autonomous tractor pulling into
formation to allow the combine to unload grain while continuing to harvest. A second
example would be a lead vehicle pulling a plow and a second vehicle following closely

behind seeding the freshly plowed furrows.

6.1 Classes of Similar Problems

There has been much work on the autonomous control of aircraft and spacecraft for
the purpose of formation holding. [OPH98|, [ZC95], [GB96] These references address
the problem of maintaining the relative position of moving vehicles using GPS.

Differential GPS is particularly well suited for formation / station keeping appli-
cations. Typically in these applications the absolute position of the group is not as

important as the relative position of the participants with respect to each other or
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some other datum.

One such application is the formation flying of aircraft. Close formation flying
is necessary during mid-air refueling. Military aircraft also often fly in formation
during long cross-country movements. Conventional autopilots are not sufficient to
accomplish these applications safely and it is a very demanding task. Pilots often
relate stories of finding themselves “drenched in sweat” following a night refueling.

An auto pilot that could hold formation would greatly assist in this task.

Accurate relative position regulation of vehicles could greatly assist in the imple-
mentation of large baseline antennas. The beam pattern of array antennas is a direct
function of the baseline distances between array elements. The longer the baseline,
the higher the directivity of the antenna. Physically attached antennas have practi-
cal limits. The ability to mount array elements on separate vehicles and accurately

control their relative positions could add considerable flexibility to antenna designers.

Squadrons of aircraft could benefit from accurate relative position regulation. The
efficiency of an aircraft wing is a function of the aspect ratio, the ratio of wingspan
to the average chord. A long, skinny wing is more aerodynamically efficient than a
short stubby wing. Unfortunately, it is very difficult to provide the strength required
to support a long wing and still maintain a light wing. A group of aircraft flying
wingtip to wingtip could increase the effective aspect ratio of the group wing planform
as a whole. Each aircraft would increase the wing efficiency of the others without

increasing the structural integrity required for any of them.
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1939 Early Concepts-GM Futurama at World’s Fair (NY)
1950s & 60s Electronic Highway Experiments by GM and RCA

1964 GM Futurama II at World’s Fair (NY)

1960s & 70s Experiments by Ohio State University

1970s Personal Rapid Transit and Automated Guideway Transit
1986 PATH program founded by Caltrans and UCB

Reproduced from [Tom94]
Table 6.1: Automated Highway System History

6.2 Previous Work in Formation Driving

There has been much work in the area of automotive formation driving in an
area referred to as “The Automated Highway”. The goal in this work is to take the
human operator, and the slow reflexes associated with them, out of the driving loop.
With a computer driving, it is thought that much tighter spacing (as little as several
meters) can be safely maintained. The typical expectation in these applications is
that there exists something embedded in the roadway, such as magnets, to provide -
lateral guidance. The resulting research typically focuses on the longitudinal control
of the vehicles and the interaction between vehicles. [Ben91], [Var93], [HMNS91]

The Automated Highway System (AHS) concept is over sixty years old. Its histo-
ry is summarized in Table 6.1 [Tom94]. In 1986 the California Partners for Advanced
Transit and Highways program was founded by Caltrans and the University of Cal-
ifornia at Berkeley. These researchers envision an automated highway system with
platoons of vehicles speeding down the highway with just a few meters of spacing.

Longitudinal control is achieved through a complex controller that attempts to
model the entire vehicle drive train. This model accounts for variables such as engine

torque curve and brake non-linearities, changes in road grade and wind gust drag.
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The controller used is a smoothed form of sliding mode control [HTV94]. This com-
plex model is required to achieve the controller bandwidth required for such tight

formations.

When driving in platoons, often each vehicle only senses the distance, speed and
acceleration of the vehicle directly in front of it. The longitudinal controllers of each
of the vehicles following the platoon leader must exhibit string stability [AH97]. If a
velocity disturbance enters one of the leading vehicles the following vehicles must not

allow this disturbance to amplify from one vehicle to another.

This controller was tested in using a four car platoon on the carpool lanes of I-15
in San Diego. The first car in the platoon accelerated and decelerated manually while
each of the following vehicles maintained automatic speed control. The accuracy of

these controllers has been shown to be about 20 centimeters.

Lateral control in the PATH program is achieved with magnetic markers buried in
the road. These magnets are sensed by a pair of magnetic field sensors, one on each of
the front and rear bumpers. The magnetic field measurement yields both a position
and heading measurement relative to the lane. This system was chosen because of
its ease of maintenance and robustness to varying road conditions. Additionally, the
polarity of these markers can be utilized to encode information such as a preview of
road curvature.

Each platoon of vehicles is assumed to be in a single lane. In the PATH program
there is no lateral control dependent on adjacent vehicles to the sides. It is assumed
that the vehicles alongside will maintain good lane position and not wander into the

wrong lane.

Recently, there has been some initial work on formation driving for military and
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agricultural vehicles by ITT industries. [FCA99] This system expands the role of
the GPS base station to a master tracking and control station. This base station
tracks the positions of each vehicle and commands each slaved vehicle with an ap-
propriate state. This centralized architecture has some significant advantages. The
foremost is the ability to globally optimize the trajectories of all vehicles rather than -
each vehicle attempting to predict the actions of the others and optimizing it’s own
actions accordingly. (Similar to the mini-max problem from game theory.) This tech-
nique concentrates the computation required to a central point, greatly increasing

performance requirements for the master station.

6.3 Problem Statement

It is a small stretch of imagination from one vehicle working autonomously in a
field to multiple vehicles working together in concert to accomplish a common task.
One such example would be the harvesting operation (figure 6.1.) Several combines -
may be driving in formation, each one swath over from the others. This would
allow each combine to skip one or more swathes, reducing u-turn requirements and
requiring less headland, while the other vehicles fill in the gaps. Meanwhile, another
set of vehicles pulling grain carts would wait just out of the way of the combines.
When the combine bins are full, the grain cart vehicle would pull up alongside the
combine, allowing it to unload on the move, and a loaded grain cart would return to
a central collection point to unload. This cycle would repeat for each vehicle until
the field is fully harvested.

Harvesting of cotton may also benefit from have multiple vehicle cooperation.

Often, agricultural vehicles are not capable of turning around within the width of the
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Figure 6.1: A Combine Unloading Grain Into a Grain Cart Pulled by a Tractor in
South Texas

vehicle. This leads to either shifting from forward to reverse once or more times or
skipping several rows on the first pass and coming back later to fill in the gaps. A
lead vehicle may desire to skip several rows to allow faster turn around at the end
of each row and have a following vehicle harvest the skipped rows (figures 6.2 and
6.3.) It would be even more desirable if only one operator was necessary to oversee

the automatic operation of these vehicles.

There are several problems that need to be addressed before these futuristic ap-
plications can be realized. The first problem is how to determine where each vehicle
needs to be going to at any given time. This problem is fairly easily solved when
all the vehicles are autonomous. One must simply pre-map the trajectories for each
vehicle and ensure the field requirements are met and there are no conflicts. This
process becomes considerably more difficult when there is a lead vehicle controlled by

a human operator. Humans are unpredictable. It is an exercise in futility to attempt
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?

Figure 6.3: A Pair of Cotton Pickers Cooperating to Harvest Cotton in California’s
Central Valley
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to predict, with any degree of certainty, the actions of a human operator. The fol-
lowing vehicles must therefore be capable of following the lead (master) vehicle with
little or no a-priori knowledge of the trajectory to be followed.

This latest requirement in turn requires another important feature: conflict res-
olution. The “optimal” trajectory may minimize the time or distance required to
acquire a station but it may also direct the vehicle directly through another. Obvi-
ously a collision would be undesirable. A sacrifice of system speed and efficiency may
be necessary to ensure system safety. This requirement is very similar to the conflict
resolution requirements for aircraft in free flight. One strategy to detect and resolve
conflicts is to provide a protected “no-fly zone” around the vehicle [TPS98]. This is
simply a region around a vehicle in which other vehicles are forbidden to enter. The
complexity increases when two vehicles work in very close proximity to each other
such as in the combine and grain buggy example above. A simple no-fly zone would
exist as a circle or a box around each vehicle large enough to ensure that no matter
what the relative orientations of the two vehicles there would be no conflict. When
the two vehicles are working closely together they may have to violate any such zone
in order to accomplish the prescribed task. It is therefore necessary not only to take
the relative positions of the two vehicles into account but also the relative orientations

to allow safe, close proximity work.



CHAPTER 7

Formation Driving Algorithms

When neglecting the danger of vehicle collisions, formation driving is a relatively
simple task with the vehicle described in Part I. The problem of keeping station

becomes one of data communications and generating a desired position.

7.1 Dynamic Models

The dynamics of each individual vehicle do not change when one goes from single
mode control to formation control. The type and amount of information the slave
vehicles must estimate, however, does change. The slave vehicle must also estimate -
the master vehicle’s state to a limited degree. The primary information regarding the
master vehicle that the slave must estimate is relative position, heading and speed.
The heading and speed can accurately be estimated from position data alone. For this

reason the only sensor requirement for the master vehicle is a GPS position receiver.
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7.1.1 Estimator Model

When working in tight formation, typically the master vehicle attempts to drive
in a straight line at constant speed. This influences the design of the estimator by
allowing the slave to guess the rate of change for the master heading and speed to

be zero with only a small disturbance covariance. The slave estimator used in this

research has the states

E, = Vessin Uy — poS) cos U
N, =V, cos U, + pofds sin Uy
¥, = Q,
Qs = —psQ; + paVis tan s,
s = ws
(7.1)

ws = ps (u — wy)

- 1
Vs = ;‘ (ngcommand - ‘/xs)
g

E'm =Vensin¥,,
Nm = Vimcos ¥,,
¥, =0
Ve = 0

where

(-)s refers to a slave state,

(-)m refers to a master state,

E and N refer to a vehicles East and North position,

¥ refers to a vehicle heading,
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2 refers to a vehicle yaw rate and

¢ and w refer to a steer angle and slew rate.

The master heading and velocity states are included in the slave’s estimator to
allow for master vehicle maneuvering. The slave vehicle estimates these states as
simple random walk states. This induces a lag in the state estimate but relieves the

requirement of including additional measurements on the master vehicle.

7.1.2 Regulator Model

With these states, a regulator to maintain slave position can be designed. It is the
relative position of the slave vehicle that is of interest. The coordinate transformation
from an East / North reference station centered frame to a Right / Forward master

vehicle centered frame is

Y. cos¥,, —sin¥,, 0| |E,—E,
X;| = |sin¥,, cos¥,, 0| |N,— N, (7.2)
v, 0 0 1} (¥, — T,

With the assumption of constant speed and straight line paths being driven by the

master vehicle, the equations of motion for the slave vehicle in the master vehicle
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coordinate frame are

Y, = Viysin ¥, — p2§2s cos ¥,
X, =Viscos U, — Vi + paQssin U,
U, = Qs — QO =~ €
Qs = —p3Q + psVis tan s (7.3)
5 = ws
ws = ps (u — ws)

1

‘./::s = —- (ngcornmand - V;:s)
Tg

The preceding equations are identical to Equations (2.7) (save for the ofiset V,, in
X,). As a result, a controller identical to a controller developed for the East / North

coordinate frame can be immediately implemented.

7.1.3 Sensor Network and Communications

It was the goal of this research to produce a system which safely executes for-
mation driving without adding unnecessary sensors. For this reason, only position
measurements were made on the master vehicle, no attitude or wheel angle measure-
ments were made. The addition of attitude and wheel angle measurements would
increase the accuracy of the master vehicle estimate and alleviate much of the lag in
the estimates. Though untested, the accuracy with these additional sensors could be
expected to be comparable to a stand alone vehicle with identical sensors, approxi-

mately 2 - 3 cm in position and 0.1 degrees in heading.

The communications network consisted of a three way radio link configured as in
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Figure 7.1: Radio Modem Communication Configuration
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Figure 7.1. The radio modem hardware was capable of a master-slave configuration
allowing one central modem master to communicate with several periphery modem
slaves at once. Unfortunately, modem slaves could not communicate directly with
each other. The modem master was mounted in the slave vehicle. When the slave
- vehicle received a differential correction from the reference station, the data packet
was routed to the master vehicle as well as the slave vehicle positioning software.
When the master vehicle received the differential correction it routed this information
to the positioning software. When position solutions were available for the master
vehicle, they would be transmitted in their raw state over the same radio network
back to the slave vehicle. When master vehicle positions were received by the slave

vehicle, they would be routed to the control software.

7.2 Formation Lateral Position Regulation

7.2.1 The Carrot on the Stick

The simplest method for formation position regulation is to point the nose of the
vehicle at the desired position and drive towards it. This position is defined by an
offset from the master vehicle, in master vehicle co-ordinates, that defines the desired
position of the slave in master vehicle coordinates. This offset is expressed as a right
offset and a forward offset. The mapping of this offset from master vehicle coordinates

to east / north coordinates is accomplished by the following transformation

Ed _ Emaster + Ccos \I’master sin \I’master Ari_qh.t (74)

N, d N, master —sin \Ilmaster Ccos ‘I’master A forward + Alead
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Figure 7.2: Carrot on the Stick Geometry

This absolute desired position is then transformed by Equation 7.3 into the relative
co-ordinate frame to calculate state error. A problem arose when the slave vehicle was
longitudinally very close to the desired position. When this occurred the slave vehicle
had to move the nose of the vehicle through a large arc to track a small amount of
lateral deviation. To alleviate this situation a A..q was added, as shown in Figure 7.2,
which, for desired heading calculations, effectively moved the position to track several
meters forward and allowed a smoother trajectory. This lead was added only to the
desired position tracked by the heading controller. The lateral sensitivity is inversely
proportional to the lead added. The longitudinal controller was still regulating about
the desired point. Ultimately, the controller is still tracking the desired point, just

the calculation of the desired heading is slightly modified.

In this mode, the main control criteria was the heading error measured with

respect to a vector from the slave vehicle to the desired position. The regulator used
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for lateral control was based on the linearized heading dynamic model

ﬂi:s 0 1 0 0 T,

Q s 0 —p ‘/xs 0 Qs
- 3 P4 w (7.5)
Os 0 0 0 1 O

w s _O 0 0 ——psd g ]

The feed-forward reference state that was generated to regulate the heading was

Ureg | |tan™ =g
Q. 0
o/ (7.6)
Sres 0
| Wrer | | 0 |

During position acquisition, this method has an interesting behavior. The slave
vehicle points its nose towards the appropriate point as the master vehicle is moving
forward. This causes the slave vehicle typically to fall behind the master vehicle
and gently acquire the correct heading as it falls into line behind the master. This
translates into a large region in which the station point can be safely acquired without

danger of collision.

7.2.2 The Virtual Tether and Line, “Tractor on a Stick”

The goal in this approach was for the slave to maintain a fixed position with
respect to the master in master vehicle coordinates. Simply put, an operator would
see the slave in the same position relative to his vehicle at all times. This position is

calculated utilizing Equation (7.4) without the Ajeaq. When the slave was far away
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from the desired station point, the Carrot on the Stick technique was used. When
the slave vehicle was sufficiently close in the lateral direction, a line was generated
passing through the desired point and in the same heading as the master vehicle.
The slave vehicle then maintained control about this line which was updated as the
master vehicle moved along. The regulator utilized for this control was based on the
lateral controller originally developed by O’Connor [O’C97] and based on the lateral

position dynamic model. The lateral position dynamic model used was

Y, 0 Vas =2 0 0 | |Y¥; 0
o, 0 0 1 0 0 | |o, 0
Q| =10 0 —ps pVae O | |Q|+]0]u (7.7)
ds 0 0 0 0 1 85 0
_cbs_ _0 0 o0 0 —ps IRES | Ps |
The reference state used for regulation was
Y, Aright
v, 0
Q=1 o0 (7.8)
or 0
S B

7.2.3 The Cookie Crumb Trail

The most complex technique is the Cookie Crumb Trail. This technique is used

when the relative position of the two vehicles is not as important as the relative
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ground track of the two vehicles. In this approach the trajectory of the master vehicle
is emulated as closely as possible (perhaps with an east/north translation included).
In this method the master vehicle positions are used to generate a pair of splines of
east and north positions versus pseudo-arclength. The pseudo-arclength is defined as

the sum of the Euclidean distances to a particular coordinate pair

Sk = Sg—1 + \[('nk —ng—1)? + (ex — ex—1)?

(7.9)
S =20
The trajectory coordinates are then parameterized by a cubic spline
n(s) = Anj + Buk(s — sk) + Cn(s = 5¢)* + Dng(s — si)’° (7.10)

e(8) = Aek + Bei(s — sk) + Ce(s — s£)? + Do (s — si)3

As the master vehicle moves along its trajectory more points are added to the spline.
The slave vehicle then follows the curve in the same manner it would on a pre-defined

curve. [Bel99]

7.2.4 Lateral Formation Control Along Arcs

The algorithms presented in Sections 7.2.1 and 7.2.2 assume a. straight line tra-
jectory for the master vehicle. When an arc is traced out by the master vehicle, the
proper reference state must be fed forward into the controller in order to accurately
track the desired slave trajectory. The methods for calculating these reference states
for an arc are presented in [Bel99]). The calculation of these reference states, shown

in Equation (7.11), is assisted by Figure 7.3.
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Desired L ocation

Figure 7.3: Geometry for Arc Formation Driving Reference State Generation
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Ps;ref = \/(pm - Aright)z + A_zfo'rwa.rd

A forward

Usref =¥ + B =", +tan™!
s,ref /3 m pm—Aright

Qs,ref = \Ifm
(5s,ref = tan™! _P3_ = tan~! ps >

Pabs y 223 \/(pm - Afight) + A_zfarwa.rd
Ws ref = 0

(7.11)

The difficulty in using this type of reference state is that it relies on full master

vehicle state access. The only measurement available to the slave vehicle during

experimentation was position. All other states must be estimated. This forced the

heading measurement to be essentially a differentiation of the position and the yaw

rate to be a double differentiation of the position. Using a Kalman estimator this

resulted in a very noisy estimate of these states. An alternative would be to use

zero reference states on the Q through w states and add an integral to the lateral or

heading error. The reference state from Equation (7.6) becomes

—~ - — -

U,er tan~! Igvj:—f\f.:— + 0;
Qer| 0

Sres 0
| wrer] | 0 ]

‘ifi = L (\I’s - \Ifref)
Ty

(7.12)
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and the reference state from Equation (7.8) becomes

Y.+Y; rAright
v, 0
Q. = 0
. ) (7.13)
W 0

. 1
Yi= — (Arighe — Y5)
Ty

This integral control had the affect of fooling the regulator into thinking the
desired lateral position or heading was at a different position than actually desired.
The addition of yaw rate sensors to both vehicles would alleviate this problem and
reduce the need for this type of integral control. Master vehicle yaw rate information
would provide much more accurate master vehicle heading information allowing a

better projection of the reference position.

7.3 Formation Longitudinal Position Regulation

The basic behavior of the vehicle in the longitudinal direction was that of a first
order lag between the input velocity and the actual velocity. This allowed for a very

simple regulator to be designed. Recall that

1

dje = ;(wcomma.nd - we)

Vzs = Kw, (7'14)

lzv:rm—‘/:z:s
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where

Vzm and V;; were the master and slave vehicles,
K was the effective slave gear ratio,

w,. was the slave vehicle engine speed,

7 was the lag in the engine response and

[ was the longitudinal error in the slave vehicle position.

The desired longitudinal response was a simple, second order decaying system.

The dynamic equation for this system was
[+ 2w, ¢l + w2l =0 (7.15)

where wp, and ¢ were the natural frequency and damping coefficient of the regulator’s

response.

Combining Equations (7.14) and (7.15) yields the required commanded engine

speed for a given time

1
Weommand = e (‘/zs — 2wnlT (Vem — zs) — wf;rl) (7.16)

"This algorithm works very well when the gear ratio is exactly known. The difficulty
in tractor control is that this ratio is anything but constant. Factors such as tire size
and tire slip conspire to change the effective gear ratio from the mechanical ratio.

When the incorrect value for & is utilized, the following steady state error in the
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longitudinal position occurs:

[=0& Vi =Vim

We = 0 Weommand = We

(7.17)
V;:s = Rle
K—kK
= lss = T Wess
W T

Equation (7.17) shows that the steady state longitudinal error is directly propor-
tional to the error in the estimate of the gear ratio. To combat this steady state
error, an integral controller command was added to the command from Equation

(7.16) resulting in a final control input of

1
Weommand = — (1/::5 - 2wnc7' (‘/zm — ‘/:cs) — wﬁrl) + w;
"1 (7.18)
G = ——1
Tw

To constrain integrator “wind up” during periods of acquisition, saturation limits -

were set on the integral state during the experimental verification of the controller.

7.4 Formation Driving Trajectory Types

It has been the custom of the autonomous tractor research group at Stanford to
break trajectory types into several basic trajectory primitives. [Bel99], [0’C97] To
date these primitives have included points, lines, are, spirals and arbitrary curves.
Formation driving requires new primitives for successful execution. These trajectory

components include:
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e Acquire Point: A point, typically further behind the master vehicle than is
ultimately desired, to which the slave vehicle moves to allow a smoother final
acquisition of the desired point. This point is considered successfully acquired
when the slave vehicle state converges sufficiently close to the desired state
(as opposed to the formation point which is acquired only when the operator

signals.)

e Formation Point: A point or state relative to the master vehicle about which
the slave vehicle is to regulate its position. Several methods for defining these
positions are outlined in Section 7.2. The criteria for successful completion of
these points occur only when a human operator in the master vebicle signals

(via. the radio modem) accordingly.

e Hold Point: A point at which the slave vehicle attains a position and heading,
halts and waits to be summoned. This point also requires a signal from the

master vehicle to signal successful completion.

A typical trajectory set is illustrated in Figure 7.4. In this sequence, the combine
is considered the master vehicle and the tractor pulling the grain buggy is the slave.
The grain truck is parked in a known location. The sequence begins as the tractor
heads for the acquisition point (1) and then smoothly pulls into formation (2.) The
combine then begins transferring grain to the buggy. When the buggy is full the
tractor breaks formation (3) and heads to a point (4) that will allow enough room
to stabilize heading and pull up next to the road tractor-trailer and stop at a hold
point(5.) The tractor then unloads the grain buggy onto the tractor-trailer and when

complete, heads to another holding point (6) to await the next unloading cycle.
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(1) Acquirepoint
for smooth formation
enwy
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Figure 7.4: A Typical Trajectory Set to Transfer Grain from a Combine to a Grain
Truck Using Formation Algorithms
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CHAPTER 8

Collision Avoidance

One cannot address the issue of multiple autonomous vehicle working in proximity
to each other without asking the question “How do we keep them from hitting each
other?” This is the same question that those working on the free flight concept for
air traffic management must ask themselves. In this scheme, each aircraft goes about
it’s business in the most efficient way for that vehicle alone until a possible conflict
is identified, hopefully well ahead of time. Obviously, not even a computer can very
practically keep track and predict the actions of every airplane in the sky. Instead,
each aircraft has two zones around it. The first, larger zone, is the alert zone. When
another aircraft enters this zone, each aircraft must monitor the other aircraft for
possible conflicts. The second, smaller zone is the Protected, or No Fly zone. Under

no circumstances is another aircraft to be allowed to pierce this protective bubble.

8.1 Fuzzy Logic

Fuzzy logic is the recognition that world is not black and white. In the world

we live in, very rarely do we encounter bivalence in “truth.” Rather, the truths
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Figure 8.1: Fuzzy Kanizsa Square

and falsehoods we encounter are to a matter of degree. For instance, in classical
mathematics or in a computer’s CPU z = y is either 0 (100% false) or 1 (100% true.)
There is no ambiguity. In fuzzy logic, the truth of something may take on a value
in the continuous spectrum between 0 (completely false) and 1 (completely true.)
Indeed, seemingly competing states, such as A and not A, can both be true to some
degree at the same time. A set of examples from the current discussion would be the
danger of two vehicles colliding and the occurrence of that collision. The collision
itself is a bivalent state, either the vehicles have made contact or they have not. The
danger of collision is more of a fuzzy concept. The danger ranges from low when the
vehicles are very far apart to very high when there is no action left that either vehicle

can take to prevent a collision.

Human cognition works very differently than the real world to computer interface.
Consider the Kanizsa square [Kan76] in Figure 8.1. We, as humans quickly recognize
a square framed by four circles. The computer this dissertation is being prepared on

interprets Figure 8.1 as a series of bits. Even though there are no defined boundaries



8.1. FUZZY LOGIC 147

or even complete shapes, these shapes are mostly there. We, as humans, are happy
to accept that these shapes are what they are despite the fact that in a strict sense,
none of these shapes exist. In a crisp logic world, there are no circles and no square.
The vague shapes in Figure 8.1, not having well defined boundaries, do not meet
the criteria for either circles or squares. The borders of the circles to not extend all
the way around in a continuous arc and the square does not even have borders. In
contrast to this we, as humans living in the fuzzy world, are able to extrapolate what
we know we should see without any well defined rules or training.

This difference is philosophy has been called the “Aristotle vs. The Buddha” by
Kosko [Kos93] or the prophet of A OR not A meets A AND not A. In the Aristotelian
view, A is mutually exclusive with not A. Either A is true or it is not. In the Buddhist
view, everything is true or false to varying degrees. Figure 8.2 illustrates this. In fuzzy
logic, for certain values, both A and not A can be active to a certain degree at the

same time where in crisp logic, they cannot.

8.1.1 Fuzzy Membership Functions

The functions that map values to fuzzy truths are referred to as Membership
Functions or Fuzzy Sets.[Zad65] Some common membership functions are presented
in Figure 8.3. These are by no means the only functions possible. Any function is .

admissible as a membership function provided it meets the following criteria:
e The function describes a vague concept. (Excellent or Rancid)

e The function admits the possibility of partial membership (The service was

good to the degree .7)
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e The degree an object belongs to the described set varies from 0 to 1.

8.1.2 Fuzzy Rules

An excellent application for fuzzy logic is to translate vague, human world concepts
into a mathematically precise, computer ready rule system. An example would be a

tipping algorithm. [JG97]

If SERVICE is POOR or FOOD is RANCID then TIP is CHEAP
If SERVICE is GOOD then TIP is AVERAGE

If SERVICE is EXCELLENT or FOOD is DELICIOUS then TIP is GENEROUS

Excellent service and Delicious food can both have varying degrees. A set of fuzzy
rules like this one is often referred to as a “Fuzzy Inference System.” Because in
fuzzy logic everything is true to a degree all rules are “fired” and evaluated at every
instance. Each rule contributes to the result depending on how true the antecedent
is. The more true the requirements are, the more heavily weighted that rule’s output -

is. This process is briefly outlined in Table 8.1.

8.2 The No Fly Zone

The case for multiple farm tractors working together shares many similarities
with free flight. Although the potential for loss of life and property is much reduced
in the agricultural setting, the results of an accident would certainly be extremely
undesirable. The agricultural case can be thought of as a simplified case of free flight.
‘There are (most likely) fewer vehicles in the area of interest alleviating the need for a

protected zone. Unlike aircraft in free flight, however, often agricultural vehicles are
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Step 1 Fuzzify Inputs:The first step is to evaluate how true each
input is. This step is essentially mapping the inputs to
a value between 0 and 1.

Step 2 Apply Fuzzy Operator:This step is the application of the
evaluation of the antecedent.

Step 3 Apply Implication Method:In this step, each rule is e-
valuated and an output command along with some def-
inition of how much weight to give that command is
generated.

Step 4 Deffuzify: The final step is to take all the outputs gen-
erated and take some kind of weighted average of the
output’s command dependent on the weights associated
with each of those commands.

Table 8.1: The Fuzzy Inference System

required to drive in close formation. This necessitates the need for a protected zone
that is a function of not only the spatial separation, but also the angular separation
of the vehicles. A vehicle may (and often must) approach much closer to another
with matching headings than it can safely do so with a heading at a right angle to

the other.

8.3 The Fuzzy Box Controller

A logical approach to defining the no fly zone is simply to define a box around
the master vehicle. This box should be large enough to ensure no collisions yet small
enough to allow for tight formations. This type of box simply attempts to keep the
slave vehicle out of the forbidden region. Figure 8.4 defines the dimensional notation
to be used.

The approach taken in this controller is to use a LQR regulator the majority of
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the time and only use the fuzzy controller for conflict resolution. A separate fuzzy
system determines which control law should be used. When no conflict is detected, the
LQR regulator receives complete control authority. As a conflict becomes more and
more imminent, the fuzzy regulator receives more control authority until a conflict is

completely true and the fuzzy regulator has complete authority.

Fuzzy Sets and Rules

There were several sets to describe and predict an imminent collision. These

included
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TOO CLOSE LONGITUDINAL Based solely on the relative longitudinal posi-

tion of the slave vehicle.

TOO CLOSE LATERAL Based on the relative lateral position of the slave

vehicle.

CLOSE LATERAL Similar to TOO CLOSE LATERAL but further out from

the master vehicle.

ON RIGHT/LEFT and POINTING RIGHT/LEFT these sets define which side

of the master the slave is on and in what relative directions they point.

These sets were used to generate a COLLISION IMMINENT set which was

COLLISION IMMINENT = TOO CLOSE LONGITUDINAL and [TOO CLOSE
LATERAL or (CLOSE LATERAL and ((ON RIGHT and POINTING LEFT) or
(ON LEFT and POINTING RIGHT))) ]

Simply put, this rule is just “a collision is imminent if the slave is already in the
no-fly zone or if it’s near it and pointing towards it.”

Relative velocities are not accounted for in this particular rule set. It was assumed
that the convergence of the two vehicles would not be so aggressive that the distance
traveled between time intervals would be a significant fraction of the total separation
distance. To account for large relative velocities, the boundaries can be expanded to
envelop the extra distance closed under nominal braking (AX = %i)

Once an imminent collision was detected, the fuzzy controller would then take over

and dictate a heading and a relative speed for the slave. This controller was designed
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Commanded Slave Heading
Relative Slave Position
relative heading | ON LEFT | ON RIGHT

LEFT -3 0
CENTER -z z
RIGHT 0 z
Commanded Slave Speed
LEFT 1 0
CENTER -3 3
RIGHT -1 1

Table 8.2: Fuzzy Controller Conflict Resolution Commands for Desired Point on Right
side of Master

to move the slave vehicle out of danger as quickly as possible. The commands for
each situation are tabulated in Table 8.2. This table describes the case when the
desired slave position was on the right hand side of the master vehicle. The relative
headings are referenced with the master vehicle heading defined as zero. When the
desired slave position was on the left hand side, the entries in Table 8.2 were simply

mirrored.

The weight of the linear (LQR) and the fuzzy controllers’ votes was dependent on
the fuzzy evaluation of the collision imminent function. With a zero evaluation, the
linear position regulator took over completely. With a unity evaluation the fuzzy an-
ticollision controller had complete authority. With an evaluation somewhere between

zero and one the two controllers shared authority proportionally.
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8.4 The Dynamic Fuzzy Box Controller

The dynamic box is very similar to the standard box controller with the dimensions
of the box as functions of the relative heading between the master and the slave. This
is done to account for the possibility of the slave approaching closer to the master
when the headings match than when they are at right angles. Each of the four box
dimensions (L ~ L4p) shown in Figure 8.6 is parameterized as a simple function of

the relative heading
X =A+BcosVU,+ Csin¥,. + Dcos2¥,, (8.1)

where X is one of the four box parameters, L;__4,
The coefficients, outlined in Table 8.3, are selected to fit constraints put on the
closest approach allowed at each of the four main compass points (in relative heading.)

In Table 8.3, the parameters

1
« Z (Ll,s + L2,s + Ws)

B=3 (Lus— La,) (32)

1
Y= 1 (L1,s + Lys — W)

are used for notational simplicity due to their obvious repetition. These coefficients
vield a no fly zone as illustrated in Figure 8.7. This figure was generated using
arbitrary parameters of L) = Ilm, L, = 1lm and W = 1m for both vehicles.

This rather complex exclusion zone makes a constrained optimization very diffi-
cult. A simulation to find the optimal trajectory from an initial condition that would
pass through the no-fly zone in an unconstrained case was run using MATLAB’s op-

timization tool box on a Sun Ultra workstation. This simulation was run for two days
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Table 8.3: Dynamic Box Dimension Coefficients

and over 300,000 candidate trajectories were evaluated. No solution was found that
minimized the cost function while meeting the constraints. This simple experiment
gives strong support to the idea that alternative methods of trajectory generation
must be sought. These solutions may come in the form of more elegant optimization

algorithms or alternative optimization criteria.



156 CHAPTER 8. COLLISION AVOIDANCE

0.8

e
o

Controller Authority
e
’'S

0.2

[}

1 1 ' 1 1] L
0 0.2 0.4 0.6 0.8 1
Fuzzy Collision Imminent Evaluation

Figure 8.5: Fuzzy and Linear Controller Authority versus Collision Imminence

i( = —le ) >

N N
sY T E [ E—> \
A§ L ] L] prd §
N | &
Nl - e\

N\ 8 X
VS C ] LII 3 s
N \
N \
7 Aliiiinnnininoiaaneasasaeansy

Figure 8.6: Dynamic Box No Fly Zone Dimensions



157

8.4. THE DYNAMIC FUZZY BOX CONTROLLER

....... ......,Y,..,.,.,......,.....,,..,...,..........v...n5
. AT f .
“\ // : :
\\ //m :
N : 1
|1 [~
\\\ ////
4O
- N ~
m A L/L ¥\
: : : L
) L i 1 'l 5
g 8 8 8 °© 8 8 8 g
N~ - - o7 f
Bop 'Bujpeay aajjeles
E
............................... 0 g
v K 8
s [o]
e, //// ......... a
. At
S L
AN 5
=

........

S /A/////////M%z

,,”?//////%”%ﬁ%/

7 7 Kal
[=] Q o (=] [ Ne]
&2 787
Bep 'Bujpeay aAjje|es

-5 _s5

front position, m

right position, m

.I.j./ ..... . ............................. . ....... .Y\\...G
; N - ]
” NS rd
: ™ o o <
. ||
. //// \\.\\ E
; - B -
: B 16
: Q
“ {o ¢
m 2
. [~ |
. [~ 11
: m AN 7 m
: : AN | : :
— i HE L~ i i H
o (=] (=} Q o (@] (=] o 04
QO wn (] wn w o wn o
N T - ! i N 9
Bap ‘Bujpesy) eaje)a)
B R R I P SN RERREE tn
. [Pt y.4 /.
L L 7 N
- L yA N
L 7 N
L 1
L 411 . . . I~
T : I
“ : <
: : =]
..... . 0%
N . Q
. . et
. . L
: : Rl
; ;
A I
: ya ~
LN  —
i i n n i i n n i 0
[Zo] [Te) ~ -
°oN - To gy

w ‘uopysod juoy)

Figure 8.7: Dynamic Box Dimensions



158 CHAPTER 8. COLLISION AVOIDANCE



CHAPTER 9

Formation Driving Experimental

Results

A series of experiments were conducted to verify the validity of the formation
driving algorithms. These experiments consisted of the slave vehicle used in the

adaptive control experiments following a master vehicle.

The master vehicle was operated manually and only measured GPS position. No
velocity, attitude or wheel angle measurements were made. This was done in an
attempt to verify the concept that tight formation could be held using master vehicle

position only.

The slave vehicle had the capability of both automatic steering and fully automatic
speed control, including automatic transmission engagement and gear selection as well
as automatic throttle. A more detailed description of the vehicle configurations is
available in appendix A. During the experimental runs, GPS position, GPS attitude
and steering wheel angle measurements of the slave vehicle were made available to

the controller.

159
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Figure 9.1: Trajectories driven with slave vehicle maintaining position 5 meters to
the right of the master vehicle

9.1 Position Regulation Performance

A series of trajectories were driven somewhat at random by a human operator
in the master vehicle. For the first trajectory, shown in Figure 9.1, the resulting
formation position errors are shown in Figure 9.2. When outside of the linear control
region, the slave vehicle used “carrot on a stick” control, aiming the nese of the tractor
directly at a point slightly in front of the desired final relative position. Longitudinal
control was regulated directly about the desired point. When sufficient convergence to
the desired point was achieved, control was switched over to tight control mode using
the “tractor on a stick” method and lateral and longitudinal control were maintained
about a line centered on the desired location. While in tight control mode, both

lateral and longitudinal accuracy were maintained to approximately 10 cm.

When the master vehicle executes relatively sharp turns the slave vehicle cannot
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Figure 9.2: Formation position errors for desired position of five meters to the right
of the master vehicle
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Figure 9.3: Trajectories driven with slave vehicle maintaining position ten meters to
the rear of the master vehicle

maintain position lock. This is because the turning master vehicle translates the de-
sired location too quickly, much as a sprayer arm swings around when a sprayer is
turned. Without prior knowledge of the trajectory of the master vehicle it is unrea-
sonable to expect the slave vehicle to maintain a tight lock on position throughout a

severe turn.

A second set of data illustrates the performance with the slave vehicle following
ten meters to the rear of the master vehicle. The trajectory driven is shown in Figure
9.3 and the position errors are shown in Figure 9.4. The same control algorithm was
used as with the previous case. Not surprisingly, the performance of the system did
not change significantly. Again approximately 10cm accuracy was maintained in both

the lateral and longitudinal directions when in tight control mode.
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Figure 9.5: How Small Heading Errors Translate Into Large Linear Errors with Large
Leverarms

Bell discusses a lever-arm concern in position estimation when there exists a non-
trivial angular uncertainty. [Bel99] The uncertainty of the location of a point pro-
jected from a known point grows linearly with the length of the projection when the
angle of the projection is uncertain. There exists a parallel problem in formation
driving where the exact heading angle of the master vehicle can only be estimated.
As the distance between master vehicle and desired relative slave position grows so
does the error and consequently the uncertainty of the absolute slave position as mea-
sured in the navigation frame. A lever-arm of 3.5 meters and heading uncertainty of
0.5 degrees is sufficient to induce as much uncertainty in the position as the CDG-
PS position uncertainty. A five meter lever-arm requires a master vehicle heading
measurement of better than 0.3 degrees to offer similar performance. The accuracy
in heading during experimentation was obtained using only master position informa-

tion. Heading accuracy of about 5 degrees was achieved for the master vehicle. This
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is undoubtedly a major contribution to the accuracy of the overall system.

It is also interesting to note that 11 cm accuracy was predicted by O’Connor
in his thesis [0’C97] for a single vehicle with CDGPS position only. A significant
improvement to this was made with the addition of a low cost ($50) steering angle
sensor. With the steer angle sensor, expected performance improved to just over 4
cm in lateral accuracy. The addition of an accurate measure of attitude also made a
significant improvement to overall system accuracy with or without the steering angle
sensor. Accordingly, it is not unreasonable to assume very similar advantages accrue
with the addition of these sensors to the master vehicle. This would allow for a more
accurate master vehicle state estimate and consequently a more accurate reference

position to provide for the slave vehicle.

9.2 Collision Avoidance Simulations

Several hundred simulations of the fuzzy anticollision algorithm were run. These
were run under MATLAB and began with the slave vehicle at a random location
and with a random heading relative to the master vehicle. The slave vehicle was
not allowed to begin directly on top of or in front of the master because these initial
conditions were deemed unreasonable and unlikely. The simulation was then started
and the trajectory of the slave vehicle in relative coordinates was tracked. Some of
these trajectories are shown in Figure 9.6. In this figure, the meshed region represents
the exclusion zone and the solid lines represent individual trajectories of the slave
vehicle in master vehicle relative coordinates.

Several general behaviors of the overall system controllers were noticed. Due to

controllability issues at zero slave vehicle velocity, the slave was constrained to positive
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velocities. It was allowed to slow to very low speeds. When the slave was in front of
the master vehicle it simply slowed down greatly and waited for the master vehicle
to catch up and pass it. It then would acquire and lock on to the desired point quite
quickly.

A second behavior noticed was when the slave vehicle was on the opposite side
of the master from the desired location and close behind. There existed a conflict
between the linear controller trying to get to the desired location and the fuzzy con-
troller attempting to prevent a collision. Each controller was commanding a different
direction and each with nearly identical authority. The tractor would slowly drift aft
of the master vehicle and towards the command point until reaching the centerline of
the master vehicle. At the centerline, both controllers would once again agree on a
direction to turn and the slave would quickly move to the side of the master vehicle
and acquire the desired point.

The most interesting and important behavior to note is that no vehicle collisions
were observed. Over one thousand simulations were run each from a random initial -
state and no collisions were detected. Furthermore, in each of these simulations the

slave vehicle successfully acquired the desired location.
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CHAPTER 10

Conclusions

10.1 Conclusions

This thesis contains the working model for extending the accuracy and capability
of automatically guided vehicles. To accomplish this, several important contributions

were made to the field.

e An algorithm that will identify and compensate for both deadzone and dynamics
in an actuator was developed. This algorithm was applied to an experimental

vehicle and shown to satisfactorily compensate for system deadzone.

e A parameter identification algorithm that does not require the extension to
the number of states to a Kalman filter was developed. This algorithm was
presented in both a generalized form and a specific algorithm to identify the
O’Connor parameters in a farm tractor. In the farm tractor case this algorithm
maintained a stable parameter estimate where a comparable Extended Kalman
Filter became unstable and diverged. The developed algorithm also required

94% fewer computational operations than did the EKF.

169
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e Experimentally verified the stability of the LMS/EKF algorithm on a farm

tractor.

Experimentally showed the benefits of using an adaptive control scheme over a
fixed controller. As the operating conditions vary the vehicle dynamics change
and the control system must identify and compensate for these variations. This
improved the accuracy of the experimental tractor from 4.35 cm to 3.1 cm. The
performance increase may be negligible for certain operations such as tillage but
may become quite valuable when every centimeter counts such as in a drip tape
irrigation setting and cultivating. This improvment represents an approximate
improvement of 100:1 in the probobility of a cultivator incursion. (See Figure

1.3.)

Quantified the difficulty and importance of accurate identification of each of the
O’Connor parameters on an experimental system. It was illustrated that the
steering actuator lag and steering effectiveness are roughtly twice as important
to identify well than yaw damping or leverarm variation. Consequently, the

identification efforts should be focused on the prior two parameters.

Developed algorithms to allow formation and cooperative control of two or more
farm vehicles. The ground path that was required for the slave vehicle was a
function of the desired operation to be executed. Consequently, several reference

position techniques were developed to cope with the various requirements.

Developed new formation trajectory components. Prior to this research, work

was focused on defining trajectory components for individual vehicles. The
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prior components could be combined into very complex and general trajecto-
ries. New complimentary formation driving trajectory components were added.
With these components added, a slave vehicle may act independently or in

co-operation with one or more vehicles.

e Experimentally demonstrated effective speed and longitudinal position control
on a farm tractor for formation work. The accuracy of this control was ap-
proximately 12 cm while transmitting only master vehicle position to the slave

vehicle.

e Experimentally demonstrated effective lateral position control on a farm tractor
under formation control. The accuracy of this control was also approximately

12 cm while transmitting only master vehicle position to the slave vehicle.

Two important conclusions can be drawn from this work. First, effective adaptive
control of farm vehicles is not only important but practical. Adaptive control can be
implemented with no additional sensors over those necessary for reasonably accurate

automatic control in the first place.

The second important conclusion is that formation driving of vehicles can be
practical. Furthermore, formation control can be achieved with no a-priori trajectory
information. This allows one human operator to control multiple vehicles effectively

to increase efficiency.
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10.2 Future Work

Any worthwhile research usually raises more questions than it answers. As the fun-
damental questions begin to be answered, questions about the details spring up. Sim-
ilarly, as new capabilities are developed, new applications become apparent. Thank-
fully, this work was no exception.

This research has been very exciting to work with as it has immediate and highly
visible contributions to make to the agricultural community. There has been a great
deal of interest in autofarming in general and we have only begun to scratch the

surface of capabilities. Some areas that hold promise are listed below.

e High Speed Control The model used in this and previous work has been de-
veloped and specialized to a specific system and operating regime. Typically
the work revolved around rubber tired vehicles driving relatively slowly. Ongo-
ing research has illustrated that the simplifications made for low speed driving
do not necessarily hold at higher speeds. Further understanding of wheel and
soil interactions must be attained and modeled to allow practical high speed

autofarming.

e Implement Control To a farmer, the location of the tractor itself is typically
of secondary interest to the location of the implement in the ground. There is
significant difficulty in accurately and robustly measuring implement position.
The sensor must be accurate enough to justify implement control over simple
vehicle control yet robust and rugged enough to survive the harsh environments

expected.
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e Path Planning In its current manifestations autofarming systems can only ac-
complish either straight line control with operator u-turns or they require highly
trained people to program their trajectories. There is much work to do in with
path planning before a farmer can simply load in a map of the field into the
computer and have the tractor automatically generate the optimal trajectory

to accomplish a set task.

e Adaptive Control Though this dissertation has dealt substantially with the is-
sues involved with adaptive control, there is still much to be done. Only one
method of adaptive control has been presented, it may prove beneficial to com-
pare or utilize other adaptive control schemes. Additionally, the factors in-
fluencing vehicle performance such as vehicle configuration and soil conditions
have been passively identified. It may prove highly beneficial to quantify these
affects and feed forward that information into the estimator to allow better

initial parameter estimates.

® Real Time Disturbance Identification There are certain operating conditions
that could significantly benefit from real time disturbance identification. One
such condition is when the vehicle is running at a shallow angle relative to pre-
viously set furrows. As the vehicle is driving the front wheels fall to the bottom
of the furrows. As the tractor moves forward this tends to pull the nose of the
tractor in the same direction as the furrows and consequently off course. The
controller senses this happening and tries to compensate by gradually increasing
the steering up the side of the furrow. Eventually a great enough steer angle is
achieved that the front wheels climb over the ridge between furrows and over-

shoots the desired trajectory because the front wheels now have too much steer
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angle. This cycle repeats itself over each furrow. It is thought that this type of
disturbance has a narrow frequency content and that a feed forward steer angle
command at the right amplitude, frequency and phase could greatly increase

the disturbance rejection performance of the system.

Other Vehicle Types More than rubber tired, front wheel steered vehicles exist
on the farm. Articulated and tracked vehicles could also greatly benefit from

autofarming.

Anticollision Algorithms When there are many vehicles working closely there
exists a real possibility of collision. The algorithm presented in this dissertation
is only one of many possibilities. There are no guarantees that the presented

algorithm can prevent all collisions.

Different “No Fly Zone” shapes There existed a problem with the rectangular
no fly zones where the slave vehicle got “stuck” in an undesired location where
the LQR controller and fuzzy controllers exactly canceled each other out. Other

shapes for the no fly zone, such as an elliptical zone, may alleviate this problem.

Multiple slave vehicles In this work only one slave vehicle was used in formation
work. Many farm operations require the choreography of multiple vehicles and
mutiple types of vehicles to accomplish a common task. These vehicles must

compliment each other and any automatic control must take this into account.

Eztension to Other Areas Farms may not be the only place where this technology
could contribute. Construction sites may greatly benefit from the extremely

high accuracy and flexibility offered by automatic steering. The smart highways
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of the future may also benefit from implementing lateral as well as longitudinal

formation control to improve safety margins.

10.3 Closing

Automatic control of farm vehicles utilizing CDGPS has already been shown to be
possible. With surprising speed, these techniques are being adopted into the industry
and shown to be practical, affordable and beneficial. Autofarming will improve the
efficiency of the farm and reduce overall operating costs. Adaptive control of these
tractors will further improve the accuracy and reliability of these systems. It will
allow for more flexibility while maintaining high standards for precision. Similarly,
formation driving will allow multiple vehicles to co-operatively accomplish a common

task in a more efficient manor.
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APPENDIX A

Vehicle Configuration

This research used two full sized John Deere tractors. The first was a model
7800 and the second was a model 8400. Both of these tractors shared substantially
the same sensor and control configuration with the only exception being the fully

automatic throttle and transmission control on the 8400.

A.1 John Deere Model 7800

The first test vehicle employed was a John Deere model 7800 tractor. The test

vehicle is shown in figure A.1 and had the following characteristics:
e 145 hp turbo charged in-line 6 cylinder diesel engine

19 forward speeds with gearing to 22 MPH

Four wheel drive

Lockable rear differential

Adjustable ballast

177
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Figure A.1: John Deere Model 7800 Test Tractor

e 14,300 pound unballasted gross weight

e Length of 173 inches, axle width of 110 inches and height of 116 inches

A.2 John Deere Model 8400

A second test vehicle, a John Deere 8400 was obtained to allow formation driving.
This vehicle is shown in figure A.2. This vehicle has a fully computer controlled
transmission and throttle allowing a very simple interface to the transmission. The

test vehicle also had the following characteristics:
e 225 hp turbo charged in-line 6 cylinder diesel engine

e 16 forward speeds with gearing to 22 MPH
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Figure A.2: John Deere Model 8400 Test Tractor

Four wheel drive

Lockable rear differential

Adjustable ballast

18,700 pound unballasted gross weight

PowerShift transmission

Length of 207 inches, axle width of 118 inches and height of 120 inches
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Figure A.3: John Deere Model 8400 Test Tractor Antenna Configuration

A.3 Sensor and Actuator Hardware

The foundation of the sensor system was the carrier phase differential GPS (CDG-
PS) hardware provided by the IntegriNautics Corporation. This hardware consisted
of a ground based reference station and a mobile positioning unit. The overall system
accuracy measured from the reference station to the mobile antenna was approxi-
mately 1 to 1.5 cm (1o) horizontally and 2 to 3 cm vertically. The reference station
transmitted GPS corrections to the tractor through radio modems at 38,400 baud.

Attitude measurements were provided by Trimble N avigations TANS Vector. The
antennas were mounted on the four corners of the cab roof (see figure A.3). The front
right antenna signal was split and routed to the positioning and attitude systems. The
Vector provided 10Hz measurements of roll, pitch and yaw to within approximately
0.1 degrees.

Steering angle measurements were made with a linear potentiometer mounted
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Figure A.4: John Deere Model 8400 Test Tractor Steer Angle Sensor
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by
|

Figure A.5: John Deere Model 8400 Test Tractor Guidance Computer

between the steering knuckle and the axle (figure A.4.) This sensor was excited and

sensed by a Motorola 86HC12 which communicated serially to the guidance computer.

The guidance computer consisted of the computer shown in figure A.5. This
computer was operating under the Lynx real-time operating system and mounted

inside the tractor’s cab.

Throttle commands were generated by emulating a foot throttle with a D/A board
hooked into the foot throttle wiring harness. Shift and gear selections were made by

interfacing with the tractors armrest controller and CCD bus.
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Figure A.6: Formation Driving Master Vehicle Test Tractor

A.4 Formation Driving Master Vehicle

The master vehicle used for formation driving experiments was a small 4000 se-
ries tractor shown in figure A.6. This vehicle was configured with an Integrinautics
CDGPS receiver and a radio modem. Due to modem communication restrictions,
the reference station would send corrections to the 8400 slave vehicle and they would
then be relayed to the master vehicle as described in section 7.1.3. Once a master
vehicle position was available it was transmitted to the slave vehicle over the same

radio modem. During all experiments, the master vehicle was under manual control.
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