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Abstract

The ability of GPS to provide accurate position and attitude information has led to
many advances in land, marine, and air navigation systems. Recently, research has been
done in the area of automated farm tractors using GPS. Driver assisted agricultural
vehicles have many benefits such as relieving the driver from the tedious task of steering,
increased accuracy, allowing for operation during poor visibility periods such as night,
fog, and heavy dust environments, as well as providing the opportunity for new
agricultural techniques. However, the capabilities of these systems must be increased for
high-speed spraying operation and continuous control through short GPS outages.
Additionally, the ability to accurately control farm implements (rather than the tractor)
will be necessary, in order for automatiéally steered farm tractors to become more
widespread. | |

Various mathematical models that have been used for the control of off-road vehicles
are discussed. It has often been noted that the performance of these controllers decreases
at speeds above 5 m/s (10 mph). A system identification approach is taken to determine
an accurate yaw model in order to improve automatic control at higher speeds and
understand controller limitations due to neglecting the yaw dynamics. Yaw dynamic
models are déveloped for multiple speeds to show the effect of velocity on the model.
The identified yaw model exhibits dominant second order dynamics. Although the model
does not resemble any previously used analytical models, a model which includes a front
tire relaxation length is shown to capture the identified model characteristics. Results
show an improvement of the lateral tracking error (with a decrease in control effort) using

the new system identification model.



Integration of GPS with a low cost Inertial Navigation System (INS) is shown to be
capable of providing continuous control of a tractor on a farm, despite intermittent loss of
GPS measurements. Two Extended Kalman Filters (EKF) are cascaded in order to
accurately estimate all of the biases and states needed for dead reckoning navigation and
control of the tractor through short GPS outages. The cascaded estimation scheme is
shown to have several advantages over a traditional estimation architecture, including
better state and bias estimation. Additionally, models of the error growth due to
integration of sensor noises are developed and shown to adequately predict the dead
reckoning heading and position errors.

Finally, the use of GPS position measurements on a tractor towed implement for
position control of the implement through automatic steering of a farm tractor is
presented. Many farm operations could benefit from the ablhty to control the actual
position of the implement as opposed to the position of the tractor. A 31mple kinematic
model is therefore developed for the implement. A controller is designed and verified on
the experimental system by maintaining the position of the implement on a given path
across the field.

Experimental results are given which verify the ability to extend the cm-level control
accuracy of farm tractors to towed implements, high speeds, and through short GPS
outages. Accurate lateral control of 4 cm (16) of the tractor is performed up to 16 mph,
as opposed to limitations of less than 10 mph for similar accuracies in previous work.
This potentially represents a 60% improvement in the efficiency of thé tractor allowing it
to perform accurate automatic spraying in less time. Lateral control of 4 cm without any
GPS attitude measurements and lateral errors of less than a foot for 20-40 second
complete GPS outages is also presented. Finally, experiments show 10 cm lateral
tracking of a towed implement using direct GPS measurements and the techniques

developed in this thesis.
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“Chapter 1

Introduction

The global positioning system (GPS) has provided the ability to ‘determine a body’s
position anywhere on the surface of the globe. Atmospheric conditions, injected noise,
called Selective Availability' (SA), and other random noise corrupt the positioning
accuracy. However, differential corrections, known as differential GPS (DGPS) can
eliminate most of these errors. In fact, carrier-phase differential GPS has been shown to
provide a positioning accuracy of about 2 cm (16) [Cohen, 1995]. Additionally, a four
antenna Carrier-Phase GPS unit can be used to provide 0.1 degree (zero drift) attitude
measurements in roll, pitch, and yaw without a correction reference station [Cohen,
1994]. The ability to measure position and attitude on vehicles has led to many advances
in land, marine, and air navigation systems.

The farming industry has also seen a rise in the use of GPS for precision agriculture.
GPS, coupled with agricultural systems, gives farmers the abili‘ty to monitor yields in
their fields and apply site specific farming techniques to increase the efficiency and
productivity of every acre of land [Lachapelle, 1994]. More recently, research has been
performed in the area of automated farm tractors [O’Connor, 1996, Bell, 1998 &
Nieminen, 1994] and combines [Cordesses, 1999] using GPS. Automatically steered

! The Department of Defense removed Selective Availability on May 2, 2000. However this did not affect
the work in this thesis because the Carrier-Phase DGPS effectively removed this error source.
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farm equipment has many advantages, including: relieving the driver of the tedious task
of accurately steering the vehicle, operation in low visibility circumstances such as night,
fog or heavy dust, and increasing precision agriculture accuracies. Farms generally
provide an excellent opportunity for the use of GPS because of the openness of the
farming environment, which provides good satellite visibility. A differential reference
antenna can easily be placed at the corner of a farm to provide cm-level positioning
accuracy on a given field. Additionally, automatically steered tractors have much greater
accuracy than human drivers, opéning the door for new farming techniques. A farmer in
South Texas could not use one of his farm hands to do crop cultivating tasks because the
operator could not cultivate for one chainz without plowing up some of the crops [Bevly,
1998]. Currently, some farms are experimenting with reducing crop rows from 30 to 18
inches, where accurate control will be a necessity. To steal a phrase form Tenny Sharpe

at NavCom, “This system turns a farm’s worst driver into their best driver.”

1.1 Tractor Modeling

In order to provide accurate control of a farm vehicle, the handling characteristics
(known as the yaw dynamics) must be well known or modeled. Most previous control of
farm vehicles has been done at tillage speeds (2-3 m/s). However, some farm
applications, such as spraying, require accurate control at speeds greater than 5 m/s.
Comprehensive knowledge of these dynamics will allow a control architecture to perform
accurate control while spraying. Many spraying operations are performed when the crop
is anywhere from 4 inches to 3 feet high. The tractor must be accurately controlled
between the rows (30 inch rows are most common) while spraying to reduce any crop
damage. This thesis assesses the impact of the dynamic steering characteristics of a farm
tractor on automatic lateral control. Particular interest is given to the change in dynamics
at speeds in the range of 12-18 mph where automatic control of farm operations, such as

spraying, would be useful.

2 Chain is a dimension of length equal to 66 feet. Chains are often used in marking field lengths because of
the property that one chain squared equals one tenth of an acre. . The name was derived from farmers
cutting achain 66 feet in length to measure field acreage.
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Previous research has developed automatically steered farm tractors that operate at
low speeds by modeling the yaw rate to steer input as a constant gain [O’Connor, 1996].
It has been shown that the accuracy of the compensator using this model decreases with
increasing speeds [Elkaim, 1997] and this thesis demonstrates instability at speeds above
5 m/s (10mph), for certain control gains. Alternatively, a first order lag between steer
angle and yaw rate (neutral steer characteristics) has been used to model the yaw
dynamics of the tractor [Rekow, 1999]. ‘

Several researchers have modeled the dynamic behavior of heavy farm vehicles
[G.M. Owen, 1982; Crolla, 1983] and construction equipment [R.H. Owen, 1982]. The
goal of these previous models was to characterize the vehicle dynamics for design and
safety evaluations. This thesis further investigates the yaw dynamics of a farm tractor for -
the purpose of increasing automatic control performance at higher speeds. Previous work
for automatic high speed control of a farm tractor‘ neglected the yaw dynamics
[Stombaugh, 1998]. A model from steer input to lateral error may have made it difficult
to observe the yaw dynamics due to the —40 dB slope from the two integrators (one from
yaw rate to heading and one from heading to lateral position). Another paper used a
simple kinematic model and produced a velocity independent control algorithm
[Cordesses, 1999]. It is important to understand the yaw dynamics and the effect they
have on control performance and/or limitations.

The first part of this thesis presents the system identification of a new model for the
farm tractor’s yaw dynamics in order to improve automatic control at higher speeds and
understand controller limitations due to neglecting these dynamics. As speed increases,
higher order models are required to maintain acéurate lateral control of the vehicle.
Neglecting these dynamics can cause the controller to become unstable at the bandwidths
required for accurate control at higher speeds. The yaw dynamic model, which is found
to be dominated by a second order response, is identified for multiple speeds to determine
the effect of velocity on the model. The second order yaw dynamics cannot be
represented by the traditional bicycle model. An analytical derivation shows that the
specific characteristics can, however, be captured by a model consisting of a significant
(non-negligible) relaxation length in the front tire. Experiments confirm the effectiveness

of this new model for accurate lateral control of the farm tractor at high speeds.
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1.2 GPS/INS Integration

Farms provide an excellent opportunity for the use of GPS because of the openness of
the farming environment, which provides good satellite visibility. Although, farms
generally have a very open view of the sky and GPS satellites, many farms are bordered
by barns or foliage, which may cause temporary loss of GPS satellites, or multi-path
errors. Additionally, intermittent communication loss can occur between the reference
antenna and the tractor. In order for automatically steered tractors to gain major
acceptance, the system must not be halted for such outages. Integration of GPS with a
low cost Inertial Navigation System (INS) can help to insure continuous control of a
tractor on a farm. ‘

The integration of inertial sensors with GPS has been given much attention. The
stability of GPS over long periods of time provides a perfect compliment to the short-
term accuracy of inertial units, that can have large errors over longer periods of time due
to bias drifts. Some research has studied the use of updating position estimates with
inertial equipment between low rate (1-5 Hz) GPS measurement updates [Da, 1996;
Gebre-Egziabher, 1998].  Other work has concentrated on utilizing the inertial units
during short GPS outages [Berman, 1998; Masson, 1996]. Additionally, augmentation of
GPS with inertial sensors for land navigation location systems has been studied [Abbot,
1999]. Evaluation of a Fibef Optic Gyro (FOG), similar to the gyro used in this research,
was used for dead reckoning navigation of an indoor robot [Borenstein, 1998]. Land
vehicle navigation using the FOG has also been studied [Allen, 1994]. Fusion of GPS
and dead reckoning systems for autonomous land vehicles was studied in [Schonberg,
1996; Aono, 1998]. A method for estimating vehicle states such as sideslip and wheel
slip using GPS has been developed [Bevly, 2000(a)]. The methodology has been
extended to incorporate INS measurements to estimate vehicle parameters such as tire
cornering stiffness [Bevly, 2001].

Recently a two-antenna system (used for heading) has been integrated with inertial
sensors for a full attitude solution [Hayward, 1999]. GPS velocity measurements were
used to determine vehicle accelerations in order to correct the accelerometer’s roll and

pitch measurements. Because most farm applications occur at constant speed, it is not
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necessary to account for low frequency longitudinal vehicle accelerations. However, off
road vehicles do experience large amounts of higher frequency vibrational accelerations
that can corrupt the accelerometer measurements.

In this thesis, low-cost INS integrated with carrier-phase DGPS is studied for the
control of a farm tractor. An inexpensive dead reckoning system, initialized using carrier
phase differential GPS, provides adequate position and attitude ‘estimation for the
continuous control of a farm tractor during short GPS outages. Arialysis based on the
short-term integration of sensor noise is used to determine the growth of the dead
reckoning heading and position errors over time. The cm-level accuracy of carrier-phase
DGPS allows for precise calibrations of the plant and sensor models in order to improve
the estimation accuracy using the INS system. Additionally an INS based attitude system
is investigated and shown to be a feasible alternative to the multiple antenna GPS attitude
solution for the control of a farm tractor. Results are given which Verify the ability of
INS to provide dead reckoning and attitude estimation for control of a farm tractor.

The control algorithm used for the tractor in this thesis is actually independent of
whether or not GPS measurements or inertial measurements are available. This is due to
the fact that the control algorithm only uses the estimates of specific states, and not the
measurements themselves (assuming that the estimator can produce the required state
estimates given its measurements). This flexibility allows for optimization of the
GPS/IN S integration and dead reckoning estimator, without affecting the control ‘
algorithm of the tractor.

Much of the GPS/INS related work is concerned solely with the navigation and dead
reckoning estimation of vehicles [Rogers, 1999; Brodie, 1999; Weisenburger, 1999], and
not control of the vehicle. In this thesis, however, both dead reckoning and control are
needed. This requires estimating states, including sensor biases, necessary for accurate
full state feedback control, in addition to the states required for accurate dead reckoning
and navigation. Estimation of all of these states in one traditional estimator has several
draw backs, including an inability to always estimate certain biases accurately and
degraded dead reckoning estimation.

Therefore, an estimation scheme using two cascaded Kalman filters is developed in

this thesis. A dead reckoning filter estimates the navigation states, including inertial
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(gyroscope and radar) sensor biases using GPS, and provides position and attitude
estimates when GPS measurements are not available. A control filter estimates the
additional states required for control of the tractor, using the corrected sensor
measurements from the dead reckoning filter. The cascaded estimation scheme is shown
to have several advantages over a traditional estimation architecture, including better
state and bias estimation. Similarly, a two stage least square estimation has been shown
to provide better state estimation than an Extended Kalman Filter [Haupt, 1996].
Additionally, separate filters for individual measurements with biases were shown to be
more effective than a single, coupled filter for underwater ranging applications [Johnson,
1989].

The éascaded architecture separates the bias estimation of several of the states.
Separate bias estimation has been studied for decreasing computational requirements, by
using two lower-order estimators [Friedland, 1969]. Properties, alternate derivations, and
the optimality of Friedland's estimator are discussed in [Friedland, 1978], [Ignagni,
1981}, and [Alouani, 1993], respectively. Additionally, the separate bias estimation of
Friedland has been extended to non-liner systems [Caglayan, 1984], time varying bias
models [Tacker, 1972], and to systems with a randomly varying bias [Tanaka, 1975;

Ignagni, 1990]. Additionally, it has been shown that separate bias estimation schemes
can produce a reduced order filter for estimating biases in a system with no sensor noise
[Haessig, 1998].

1.3 Implement Control

As precision agriculture techniques become more demanding, and automated guided
systems become more widespread, the need for accurately controlling a farm implement
becomes inevitable. It is, after all, the implement that is performing the farm task. Many
agricultural operations pull towed implements, in which their position can vary from that
of the tractor (especially on contours and side hills). In order to fully utilize precision
row cropping techniques and automated steering systems, it will become necessary to

accurately control towed implements. For example, some farms will plant crops on
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contoured trajectories using towed planters in' which the planter implement and tractor
positions can differ. In order to accurately control the spacing between two passes, it will
be necessary to control the actual planter position. Later in the crop season, crops
cultivated and harvested with other, often hitch niounted, implements will require
accurate row positioning (especially if cultivated or harvested with an automated system)
in order to prevent crop losses. Other farm areas use underground irrigation lines buried
along the crop rows, called drip tape irrigation, to reduce the amount of water loss due to
evaporation. Control architectures would be beneficial that could guide an implement
through a field without cutting an irrigation line. Currently, markers are used to indicate
where irrigation lines are located and drivers must very slowly and carefully guide the
tractor between the irrigationylines. Itis frequently necessary to control work implements
around permanent obstacles in the field. The ability to directly control an implement
could additionally lead to advances in other farming techniques. Often times precision
‘implements are mounted on the hitch of a tractor, which limits implement size due to the
load on the tractor. By controlling towed implements it may become possible to provide
more effective farm tools. '

Research has studied the control of robotic vehicles pulling trailers [Laumond, 1998
& Chen, 2000] and heavy trailer truck combinations [Chen, 1995]. However, the
majority of these systems are not trying to specifically control the location of the trailer.
There has also been work done on the control of tractor implements, using GPS
measurements, through actuation of the implement itself [Zuydam, 1998]. However,
large actuation forces are required to move sizable towed implements plowing soil, and in
some cases the actuation moves the tractor instead of the implement. Some initial
simulation work has been done on controlling tractor-implement combinaﬁons around a
constant geometry radius [Larsen, 1995]. More recent work has even used GPS to
control a tractor plus an implement [Smith, 1985], although there are no details on the
model and control algorithms. This thesis explores the use of a simple kinematic
implement model, using differential carrier-phase GPS measurements (16=2 ¢m) on both
the tractor and towed implement for specifically controlling the position of the

implement. This control is accomplished through the steering actuation of the tractor.
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1.4 Objectives

In order for automatically steered farm tractors to become more widespread, they
~ must be able to perform accurate control over the range of farm applications. Therefore,
the objective of this thesis was to extend the capabilities of current automatically steered
farm tractors using GPS. These extensions include accurately controlling towed
implements, accurate control at high speeds for spraying, and continuous control through
short GPS outages. Additionally, it was desired to develop new fundamental models and
estimation techniques to provide these capabilities and determine the limitation of

previous models and techniques.

1.5 Organization

This thesis is divided into eight chapters. Chapter 2 describes a system identification
approach of determining the dynamics of the tractor. Identification is performed at
varying speeds for the tractor with single and dual rear wheels. Experimental results are
given showing the improvement in control performance at high speeds for farm
operations such as spraying. This chapter also compares these dynamics with other
popular analytical models used in the control and design of vehicles. An analysis of the
experimentally identified model is performed in order to develop a matching analytical
model.

Chapter 3 discusses the control architecture used for guiding the tractor in this thesis.
The newly developed yaw dynamics described in Chapter 2 along with the steering
dynamics and lateral tractor dynamics are linearized and placed into a state space form.
An LQR algorithm is used to design the control gains for the full state feedback of the
system. Open and closed-loop roots are shown along with simulated and experimental
step responses of the control architecture.

Chapter 4 develops a cascaded Kalman Filter state estimation architecture for
estimating all of the states required for full state feedback. The cascaded architecture
also estimates all of the system biases in order to improve the control and dead reckoning

accuracy of the system. Results are given showing the estimator’s ability to estimate the
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system biases and explicitly integrate the corrected gyroscope reading to produce heading
estimates when GPS measurements are removed.

Chapter 5 evaluates the dead reckoning capabilities of the estimator given in Chapter
4. Error analysis equations are developed based on the integration of sensor noise and are
shown to adequately describe the errors associated with the dead reckoning system.
Simulated GPS outages are created by removing GPS position and attitude from the
system during experimental runs, thus validating the dead reckoning system.

Chaptef 6 develops an inertial sensor based alternative to using multiple GPS
antennas fdr attitude. A yaw rate gyroscope is used in a heading estimator to filter the
noisy heading measurements from the velocity vector of a single GPS antenna. The
heading estimator in conjunction with a low pass filtered accelerometer provide all of the
attitude infomiation necessary to accufatély control the farm tractor. Simulation results
are given showing the importance of the gyroscope for filtering heading measurements as
well as the importance of a measure of roll. Experimental results validate the simulation
study showing accurate control of the tractor without any GPS attitude measurements.

Chapter 7 presents a method for using the GPS guided tractor to control a towed
implement. A GPS receiver is placed on the implement (in addition to the GPS receiver
on the tractor used in previous work) to provide cm-level position measurements of the
implement. A kinematic model for the implement is developed and linearized and added
to the tractor dynamics. The parameters of the implement model are obtained using
system identification techniques and the model is validated. An estimator and contr01
architecture is developed for the tractor-implement combination. Simulated and
expeﬁmental step responses and lateral tracking are performed to validate the models and
control methodology. Experimental results show that the implement can be controlled to
within 10 cm of the desired path on flat terrain. Finally, Chapter 8 outlines the

conclusions of this thesis and presents suggestions future work.
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1.6 Contributions

> Developed a more accurate yaw dynamic model for the control of farm vehicles. The
new model allows an increase in control bandwidth thereby increasing the
performance at higher speeds. Identified how the model and parameters change with
speed and dual vs. single rear wheels. Developed an analytical model used to
describe the yaw dynamics. This new physieal understanding of the model and more
accurate modeling can be used in determining new higher limits on control

performance.

» Developed a cascaded state estimation architecture for estimation of all system biases
and states. The cascaded architecture also provides the ability to dead reckon through
short GPS outages by explicitly integrating the inertial sensors. Analyzed the ability
of the dead reckoning system to provide adequate position and attitude estimates for
control of the tractor during short GPS outages. Experimentally verified the
estimation scheme and dead reckoning error analysis, showing accurate control of the

farm vehicle for short periods without any GPS measurements.

» Analyzed the use of an INS based attitude system as a replacement for the multiple
antenna attitude system. Demonstrated accurate control using only a single GPS
antenna on the tractor and the INS attitude system. Quantified the importance of a

gyroscope for smoothing noisy heading measurements.

» Developed and experimentally validated a method for controlling the position of a
towed implement using carrier-phase DGPS position measurements on the towed
implement. Verified the use of a simple kinematic model for a towed implement and
identified the model parameters for a given implement. Developed the control and

estimation equations to perform accurate tracking of the towed implement.
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Chapter 2

Tractor Yaw Dynamic Modeling

This chapter assesses the impact of the dynamic steering characteristics of a farm
tractor for automatic lateral control. It has been shown that the control performance of
the tractor decreased with increased speeds using previous models [Elkaim, 1997]. A
system identification approach [Ljung, 1987] is used to identify the yaw dynamics of the
farm tractor in order to improVe automatic control at higher speeds and understand
controller limitations due to neglecting the yaw dynamics. Input and output data is
analyzed in order to obtain the dominating dynamics from the input to output. In this
chapter the yaw model is shown to be dominated by second order dynamics. An
analytical model which includes a front tire relaxation length is seen to capture the
characteristics of the tractor’s yaw dynamics. The system identification tools are then
used to identify the parameters of this analytical model with a front tire relaxation length.

The yaw dynamic models are identified for multiple speeds to show the effect of
velocity on the model. Particular attention is given to the change in dynamics at speeds in
the range of 12-18 mph where automatic control of farm operations such as spraying
would be useful. In order to increase the controller performance at these speeds, the yaw
dynamics must be well modeled. The identified modeled yaw dynamics do not resemble
any traditional analytical models. Additionally, the effect of velocity on the closed loop

bandwidth of the controller for a given set of Linear Quadratic Regulator (LQR)
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controller weights is presented. It is shown that the closed-loop bandwidth approaches
the unmodelled yaw dynamics as the vehicle speed increases. Results are given which
show that as the closed loop bandwidth of LQR control weights approaches the regime of
the unmodelled yaw dynamics, the controller can become unstable. This demonstrates
that these dynamics must be accounted for when developing a controller. After obtaining
an accurate model describing the yaw dynamics of the tractor, this model was used to
produce a controller which improved performance and robustness at all speeds. Finally,
results show an improvement of the lateral tracking error (with a decrease in control

effort) using the system identified model.

2.1 Commonly Used Physical Yaw Dynamic Models

Figure 2.1 shows a schematic of the traditional bicycle (TB) model. The model
does not include roll, as with a real bicyc]c, but simply get its name from the half (or two
wheel) vehicle schematic in Figure 2.1. All vectors and angles in the figure are drawn to
illustrate positive sign conventions. It is important to note that this sign convention
associates positive forces with negative slip angles (o) as shown in the linear tire model:

F,=-C,0,

2.1
Fyr = —Carar ( )

The front and rear cornering stiffnesses (Cor and Cy,, respectively) are taken as positive in
this convention. Simple Newtonian principles can be used to derive the lateral dynamics
of the bicycle model shown in Figure 2.1.

> F,=ma,=m(V, +V,r)=F, +F, =-C,a, -C,0,

(2.2)
Y M, =1i=aF,-bF, =-aC,a, +bC,0,
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Figure 2.1 Schematic of the Bicycle Model.

The front and rear tire slip angles, for small angles, can be approximated as:

V, +
o, z—6+( - ar]
vV

x

(2.3)
_ Vy —br

’ |4

X

o

Collecting terms results in the state space representation of the vehicle’s lateral dynamics.

. ~Cor ~Cor _ Cab—Cyra C,
Vil_| ™™ Vx +2( y ) Vilal 7 s 2.4)
; Corb—Cya ~Copa’~Cprb r Cora

1.V, 1.Vy 1,

This linear model is often used in the control and estimation of highway vehicles and

is only valid for small slip angles, small steer angle inputs, and within the linear range of
the tire model described by Equation (2.1). The above state space model can be
rearranged to produce the second order traditional bicycle (TB) yaw rate model shown in

Equation (2.5) [Dixon, 1996].

Chapter 2. Tractor Yaw Dynamic Modeling ‘ 13



LC,C,

aC s+
) r(S) - mVx - . (25)
6(s) Ls*+ col, +mc, T —_Clex -
mV, mV

where:

a = distance from the front axle to the CG

L = wheel base length

C,,C,, =front and rear tire cornering stiffnesses
m = vehicle mass

I, = yaw moment of intertia of the vehicle

V. =forward velocity

¢y =Cy +C,,

¢ =aC, —bC,

¢, =a’C, +b’C,,

A special case of the bicycle model is created when the understeer gradient is equal to
zero (known as neutral steer). For neutrally steering vehicles, the above bicycle model
simplifies to the neutral steer (NS) model given below:

r(s) _ aCy
5(s)

2.6
Izs+c—2 0
|4

This model represents a first order lag from steer angle to yaw rate as was used in
[Rekow, 1999]. |

A simple kinematic (SK) model which assumes the yaw rate is directly propbrtional
to the yaw rate has been used to model ‘some off road vehicles including a combine
[Cordesses, 1999]. This model is derived by assuming no side slip (or lateral velocity) at
the tires and can adequately model the vehicle at low speéd, low frequency maneuvers.

The SK model is given in Equation (2.7) below:

ris) Ve @.7)
o(s) L
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2.2 System Identification of the Yaw Dynamic Model

A system identification approach was used to improve control (especially at
higher speeds) of the John Deere 8400 tractor discussed in Appendix A. Figure 2.2
shows a schematic of the equipment used to collect the data for the system identification.
The tractor uses a linear potentiometer to measure the steering wheel angle while an
electrically actuated steering valve is used to provide a steering slew rate when the tractor
is operating under closed loop control. A Motorola 68HC12 microprocessor interacts
with the steering valve and potentiometer and communicates with the master computer
via a serial bus. A delay in the steer angle measurement was discovered and
quantification of this delay was performed (as discussed in Appendix B) in order to
account for this effect. A sampling of measurements was taken directly into the computer
analog to digital converter to verify the results obtained from the HC12. The master
computer runs the control and estimation algorithms at a 10 Hz updafe rate using a Lynx
real time operating system; measurements for the system identification were taken at 20
Hz. A KVH fiber optic gyroscope (FOG) was used for sensing yaw rates. Although off-
road vehicles are subject to large amounts of mechanical vibrations, the non-mechanical
FOG can provide excellent yaw sensing under these conditions. The 1o sensor noise of
the FOG is 0.44 deg/s. A more detailed analysis of the FOG noise can be found in
[Gebre-Egziabher, 2001(a)].

Fiber
Optic
Gyro

v

S Linear
A/D 2 Potentiometer
CPU Running
Lynx RTOS at *5
20 Hz
Port (9600 baud) HC12

Figure 2.2 Schematic of Data Acquisition for System Identification.
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Figure 2.3 shows a schematic of an off-road vehicle including the center of gravity
(CG) of the vehicle. The wheel base length (L) as well as the distance from the front and
rear axles to the vehicle CG (a and b, respectively) is shown in the figure. A system
identification approach was decided upon to identify the characteristics of the yaw

dynamics from steer angle () to yaw rate (r=y ) for the tractor at different velocities.

Steer angles were commanded by the Deere 8400 driver while running at various
constant speeds on a dirt rbad, paved highway and tilled field. Because it is important to
get a good range of input frequencies, special care was taken in providing the input signal
to the steer angle to excite the yaw dynamics. The input to output data was the steer
angle to yaw rate (measured from the FOG). The mean was subtracted from the data in
order to remove any biases present. Once the input/output data was obtained, several

model types were utilized to determine the best model type to be used to fit the data.
N

Figure 2.3 Schematic of a Farm Tractor.

A Box-Jenkins model shown in Equation (2.8) [Ljung, 1987], provided the best model fit

of the experimental data.
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B(q) C(q)
k) = o)+ k (2.8)
0= 4@ Pt D™

where: r = yaw rate
0 = steer angle input
€ = noise
B(q), C(g), D(q), A(q) are polynomials (of the shift operator, g) describing the
transfer function between the inputs and output
For a few data runs, the Box-Jenkins model could not adequately fit the data. For these
data sets, an ARMAX model fit was used. The ARMAX model fit is similar to the Box-

Jenkins fit4 shown in Equation (2.8) with the constraint that A(g)=D(q) [Ljung, 1987].

2.2.1 Identification with Single Rear Wheels

Figure 2.4, shows a typical spectral analysis in magnitude and phase (empirical
transfer function using MATLAB’s ETFE command) of the experimental input to output
data. The figure also shows the second order identified (ID2) fit of the input-output data.
The noise in the empirical transfer function above 10 rad/s is due to the lack of input
signal at those frequencies. In the 8400 tractor, it is quite difficult to input steer angle
rates above 10 rad/s. However, this input range wés sufficient to capture the second order
peak at 6 rad/s shown in the figure.

Figure 2.5 shows the modeling errors from various order fits. Also shown are the
errors from model fits with one zero in the numerator. The increase in model errors from
model fits above second order (N>2) is due to the model attempting to fit the high
frequency noise, which sacrifices the fit of the actual second order dynamics seen in

Figure 2.4.
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Figure 2.5 Model Errors vs. System Identified Model
Order for No Zeros and N-1 Zeros for Single Rear Wheels.
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Because the zero did not increase the accuracy of the model fit, a second order fit,
with two time delays, was used to model the tractor yaw dynamic data. The second order
fit was of the form:

R(k) =——2——K———~8(k) 2.9)
q +Yq+A

The variables K, 7, and A are simply constants that describe a transfer function with two
poles and no zeros.

Figure 2.6 shows an example run (at 4 m/s) along with a simple gain (IDO), first
order (ID1), and second order (ID2) identified model fits. The first and second order
models were determined using the Box-Jenkins model fit. The ID1 fit assumes the model
is of the form of the neutral steer vehicle model given in Equation (2.6). The gain for the
zero order model was calculated using least squares to fit the IDO model shown in
Equation (2.10).

y=K,$é (2.10)

As seen in Figure 2.6, the phase lag is quite apparent at the higher frequency inputs.
Additionally, the resonance peak of the system at 6 rad/s can be seen in the data at about
t=30 seconds.

Figure 2.7 shows how the frequency response of the ID2 model changes for different
velocities for data runs at 2, 4, 6, and 8 m/s. It is important to notice the increasing phase
lag with increasing speed below 5 rad/s. This shows that compensators with a closed
loop bandwidth below 5 rad/s will become more oscillatory at higher speeds if these

dynamics are not taken into account.
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Figure 2.7 1ID2 Model Frequency Responses vs. Velocity for V=246,
and 8 m/s for Single Rear Wheels.

2.2.2 Identification with Dual Rear Wheels

As an additional verification, the yaw dynamics of the tractor with dual rear wheels
(which are often used to increase traction) were also identified. Analytically, the addition
of dual rear wheels has the effect of doubling the rear cornering stiffness. Therefore, the
identified model with duals should be predicted by doubling the analytical model’s rear
cornering stiffness and determining if the same trends exist between the analytical and
identified model with single and dualé. ,

Figure 2.8 shows the modeling errors from various order fits. As with single rear
wheels, a second order model with no zeros is a good choice of the model fit. Figure 2.9

shows how the frequency response of the ID2 model changes for data runs at 2, 4, 6, and

8 m/s with dual rear wheels.
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2.3 New Yaw Dynamic (NYD) Model

Once the model form was determined, several experimental runs were performed over
the range of vehicle speeds in order to determine how the parameters of the ID2 change
with velocity. The natural frequency (®,), damping ratio (£), and DC gain (Rss) were
calculated for each of the yaw dynamic transfer functions. Figure 2.10 shows the changes
in the parameters from the ID2 model versus velocity for these various experimental runs
together with a least squares fit of the data. This figure is an attempt to fit the system
identified model to the form described by the traditional bicycle model in Equation (2.5).

An important parameter in describing the turning response of a vehicle is. the
understeer gradient. Methods for experimental measurement of the understeer gradient

(K,;s) are based on the following definition [Gillespie, 1992]:
6 =513%+Kysa, @.11)

where R is the radius of turn and aq, is the lateral acceleration. Alternatively the
understeer gradient for the tractor can be estimated from the steady state yaw rate (ry)
versus forward velocity (V) by rewriting Equation (2.11) to form:
ro=K$=— 5 2.12)
L+K,V,
Fitting the steady state response versus velocity resulted in an understeer gradient of 1.4
deg/g, which, as shown in Figure 2.10, gives approximately the same steady-state yaw
rate response as a neutrally steering vehicle over this speed range. A least square fit was
used to solve for the understeer gradient as well as the wheel base length (L) in Equation
(2.12). Although the wheel base length can be measured directly, solving for L provides
some validity to the fit. The resulting wheel base length was 3.06 m which is within 5%
of the actual wheel base length (2.95 m). Note that Equation (2.12) does not account for
effects sﬁch as roll steer or camber effects. However, the fact that the solution of the
wheél base length is close to the actual wheel base, demonstrates the validity of the form
given in Equation (2.12)
The overall model fit of the tractor yaw dynamics is described by Equation (2.13).
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K 0}
= n ) 2.13
r(s) s +20lw, s + o (s) @13

where:

VX
L+K,V;

R=

(2.14)

The values for K, m,,and{ are a function of velocity and are determined from a least

squares fit of the ID2 models. The natural frequency (w,) was fit using a first order
polynomial and the damping ratio ({) was fit using a second order polynomial. These
polynomial fits are a function of velocity as seen in Figure 2.10 for single rear wheels.
These ensemble best fits of the ID2 data are used to from the new yaw dynamlc (NYD)
model for the 8400.

—_ NYD(K_=13 deglg) | P

L - NYD(Kus=O) .......... DU D g . .......... ........ i

o

0 1 2 3 4 5 6 7 8 9 10
Velocity (m/s)

Flgure 2.10 ID2 Data and Best Fit (NYD) Model Parameters vs. Velocity
for Single Rear Wheels.

Figure 2.11 shows the changes in the parameters from the ID2 model versus velocity
for multiple experimental runs with dual rear wheels. As with the single rear wheels

shown in Figure 2.10, this figure is an attempt to fit the system identified model to the
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form described by the bicycle model in Equation (2.5). Fitting the steady state response
versus velocity now results in an understeer gradient (K,,) of 7.5 deg/g. Although the
pole location characteristics can not be described by the bicycle model, the change in the
understeer gradient can be predicted by the bicycle model. Table 2.1 lists the data used to
produce the NYD model fits seen in Figure 2.10 and 2.11 for single and dual rear wheels,

respectively.
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Figure 2.11 ID2 Data and Best Fit (NYD) Model Parameters vs. Velocity
for Dual Rear Wheels.

Table 2.1 Model Parameters for the NYD Model.

Parameter Single Rear Wheels Dual Rear Wheels
L (m) 3.0567 3.0647
2
K, |7 0.0023 | 0.0134
m
®, (rad/s) ‘ 0.0613V_ +5.9548 0.1301V, +6.5095
¢ 0.0036V? +0.0436V, +0.1458 ~0.0038V? +0.1079V, +0.0374
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Model errors are taken to be the RMS errors between the actual and model yaw
rates. Because all biases (averages) have been removed from the data, all errors and yaw
rate outputs can be assumed to be zero mean. | Because data runs performed at lower
speeds have less yaw rate output, it was desired to normalize the errors according to the
amount of output for a given run. The model errors were therefore normalized by

dividing the RMS errors by the RMS of the yaw rate output as shown below.

RMS{R 1 = R} x100%

Normalized Errors =
v RMS {Ractual }

(2.15)

Figures 2.12 and 2.13 show the modeling errors.from the ID2 and NYD models for single

and dual rear wheels.
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2.4 Bicycle Model with Tire Relaxation Lengths

No choice of physical parameters for the TB model given in Equation (2.5) can
capture the dynamics seen in the system identification of the tractor. Reproducing the
understeering behavior of the tractor with the traditional bicycle model results in damping
that decreases as speed inéreases. Clearly, the identified system exhibits the opposite
behavior. Previous research in agricultural wheeled vehicles has suggested that a
relaxation length of the tire contributes to an increase in yaw damping at higher speeds
[Crolla, 1982 & Owen, 1982]. The relaxation length (o) is the amount a tire must roll in
order to generate the steady state slip angle at the tire (0g) . A first order model due to the
tire relaxation length can be used to described the slip angle (o) dynamics as shown

below in Equation (2.16).
b =Ye(q, —a) (2.16)
(o]

A side slip angle at the tire is required to generate a side force at the tire. Under a simple
linear tire model, the lateral force at the tire is proportional to the slip angle (as shown
previously in Equation (2.1)). This proportionality constant is known as the tire cornering
stiffness. The authors in [Owen, 1982] use the relaxation length to develop the following

tire relaxation (TR) model for a tractor:

- . e ]
% 0 -V o ar ~ O
v, : x m m v, .
- ~c,a ~c b
.r =l 0 0 A Cor " -V, |6 2.17)
o 1, I, o, p .
a, Vo, alo, -V,(/o, 0 a, o

/o, -=blo, 0 -V./o, |

where
b = distance from the rear axle to the CG
V, =lateral velocity of the vehicle at the CG
o0, =front and rear tire side slip angles
o ,,0, =front and rear tire relaxation lengths

Cor,Cor = front and rear tire cornering stiffnesses
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Figure 2.14 shows how the frequency response of a vehicle modeled by Equation
(2.17) changes with velocity from 2 m/s to 8 m/s. The specific parameters used in the
models in this thesis are given in the preceding section in Table 2.2. Alternatively,
estimates of model parameters for a similar vehicle (loader backhoe) can be found in
[Owen, 1982]. In order to obtain similar changes in damping versus velocity, a tire
relaxation length of 1.4-1.7 times the tire radius was used. This is approximately two to
three times what has been observed by other researchers for passenger cars [Loeb, 1990].
Additional research has found that a second order slip angle model (as opposed to the
first order model shown in Equation (2.16)) was needed to accurately describe the tire
dynamics [Heydinger, 1991]. It is important to note that at higher speeds, the amount of
time necessary for the tire to travel the required distance to create a slip angle decreases.
This decreases the effect of the tire relaxation parameter at higher speeds and for smaller
diameter tires, explaining why relaxation léngth is neglected in most passenger car
models where speeds of concern are typically over 15 m/s. As seen in Figure 2.14, this
model correctly shows the increase in damping at higher speeds as seen in the NYD

model in Figure 2.10 for single rear wheels and Figure 2.11 for dual rear wheels.
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Figure 2.14 TR Model Frequency Response vs. Velocity for V,=2,4,6, and 8 m/s.
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A simplification of the tire relaxation model can be made by assuming only a tire

relaxation length at the front tire. This results in the front tire relaxation (FTR) model
given below in Equation (2.18).

A
: mv. mv,
Y c. b —c, b?
pole| fe ar
L. Thy,
I o, alo,

—CW' 7
v, 0
~C . a
o ri+| 0 |6 (2.18)
I, o -V,
-V 1o, L7 o
: f

As seen in Figure 2.15, the FTR model also exhibits the similar increase in damping

at higher speeds.
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Figure 2.15 FTR Model Frequency Response vs. Velocity for Vi=2, 4, 6,
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2.5 Physical Model Parameter Identification/Selection

Because the understeer gradient was obtained for single and dual rear wheels, it is
possible to solve for the cornering stiffnesses as a function of CG location. The
understeer gradient for single rear wheels can be described using the front and rear axle

weights (Wr and W,) and the front and rear cornering stiffnesses as shown below
[Gillespie, 1992].

e Ve W@ _ (O (2

’ ;;_.‘;;—r. Cof or Cor B Cor (-19)

Similarly, under the assumption that adding dual rear wheels doubles the rear cornering

stiffness, the understeer gradient for dual rear wheels is given as:

b L—b
Kduals = (I)’n - (T
v Coy  2Xc, (2:20)

Equation (2.20) assumes that each of the dual rear wheels have the same effective
cornering stiffness. This may not be true if the tires are different or if the lateral forces
are not taken up evenly on each tire. The front and rear cornering stiffnesses can then be
solved (by solving Equation (2.19) and (2.20) simultaneously) as a function of CG
location (b). Figure 2.16 shows the solution of the front and rear cornering stiffnesses as
a function of the CG location. It is important that these cornering stiffnesses are the total
cornering stiffness at the axle, and not the value of the cornering stiffness per tire. The
location of the CG of the tractor was estimated to be approximately one meter in front of
the rear axle (b = 1 m). Therefore tire cornering stiffnesses associated with this CG
location were chosen. This corresponds to nearly the same rear tire cornering stiffness
that was observed for a similar size rear tire in the loader backhoe example given in
[Owen, 1982]. The FTR model was compared using tire cornering stiffnesses associated
with various CG locations. However, there was little difference observed in the FTR

model’s pole locations as a result of varying the CG location.
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Figure 2.16 Front and Rear Tire Cornering Stiffness vs. Tractor CG Location.

An estimate of the vehicle’s yaw inertia can be made knowing the vehicle mass and
CG location using the following approximation given in [Garrott, 1988].
I, =mXaxb (2.21)
The selected tire cornering stiffness along with the other model values are given in
Table 2.2. The values for the front and rear tire relaxation lengths were approximated
such that the models matched the observed (ID2) data. It is interesting that the best fit for
the FTR model required the front tire relaxation length to decrease for the case with dual
rear wheels. It is uncertain if this effect is due to adding the dual rear wheels, or a change
in tést conditions for data taken with dual rear wheels. As mentioned previously, data
runs with single rear wheels were taken on paved highway, dirt road and tilled field.
However, data with dual rear wheels was only taken on a paved highwéy after the vehicle
had been shipped. Tire pressures may have been altered during shipping, which could

also change the tire relaxation length.
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Table 2.2 Parameters Used for the Physical Models.

Parameter Units Single Rear Wheels ‘Dual Rear Wheels
1.1874 0.9779
or(FTR Model) m (1.7 x front tire radius) | (1.4 front tire radius)
0.8382 0.8382
0r(TR Model) m (1.4 front tire radius) | (1.4 xfront tire radius)
, 1.3513 1.3513
0: (TR Model) m (1.4 x rear tireradius) | (1.4 xrear tire radius)
Co N/deg 49,370 2x49,370
Cor Nideg 22,941
a m 1.95
b m
L m 2.95
m kg 9,500
I, kg-m’ 18,525
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2.6 Comparison of Models

Summaries of the physical models and system identified models are given in Table

2.3 and Table 2.4, respectively. The parameters given in Table 2.2 were used for all of the

physical models.
Table 2.3 Summary of Physically Derived Models.
Model Name M"‘?"l, Equation Number Model Order
Abbreviation 4
Simple Kinematic SK 2.7 0
Neutral Steer NS (2.6) 1
Traditional Bicycle TB (2.5) 2
Bicycle Model with :
Front Tire Relaxation FIR (2.18) 3
Length Only
Bicycle Model with
Front and Rear Tire TR 2.17) 4
Relaxation Lengths
Table 2.4 Summary of System Identified Models.
R(s
Model Model Form( 6&;} Model Order
IDO Ky,
ID1 Ky
Ts+1

D2 Equation (2.13)

NYD Equation (2.13) & Table 2.1
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Figure 2.17 shows how the poles and zeros of the various models change with
changing velocity. The model with front and rear relaxation lengths has apprdximately a
complex pole-zero pair cancellation. As a result, a bicycle model which only considers a
front tire relaxation length can closely capture the dynamics of the tractor. This can be
seen by the fact that the remaining complex poles of the model with only a front
relaxation length have similar characteristics to the éomplex poles of the identified
model. This makes physical sense, as the forces at the front tire generate the yaw moment
on the tractor. Note that the poles and zeros of the bicycle model fail to even qualitatively

describe the identified behavior.
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Figure 2.17 Pole-Zero Plot of Various Models at 4 m/s (regular) and 8m/s (bold).

Figure 2.18 shows how the FTR model’s dominant second order characteristics
change versus velocity (solid lines). The model was simulated with a white noise input
and then a best fit second order system was used to model the input/output data of the
third order FTR model (in order to get the approximate second order fit of the natural

frequency and damping ratio). The figure also contains the actual parameters of each of

Chapter 2. Tractor Yaw Dynamic Modeling 34



the ID2 models for a given velocity as shown previously for single and dual rear wheels
in Figures 2.10 and 2.11, respectively. The FTR model for single rear wheels (Figure
2.18a) and dual rear wheels (Figure 2.18b) can also be compared with the NYD system
identified model fits in Figures 2.10 and 2.11, respectively. There is incredible agreement
between the NYD and FTR models. It is interesting to note that the experimental
damping ratio goes from 0.2 to 1.1 for singles and 0.2 to 0.9 for duals as predicted by the
FTR model. The FTR model also predicts the steady state yaw rate versus velocity quite
well. However, this is not surprising since the physical model parameters were chosen to

produce a vehicle with the same understeer characteristics seen in the NYD model.
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Figure 2.18a ID2 Data and FTR Model Figure 2.18b ID2 Data and FTR Model
Approximation vs. Velocity for Single Approximation vs. Velocity for Dual Rear
Rear Wheels. Wheels.

The FTR model does not completely match the system identification model shown
previously. The largest discrepancy occurs in the natural frequency of the yaw dynamics.
However, this discrepancy can be considered quite small with respect to uncertainties in

the analytical model parameters as well as errors from unmodelled dynamics using the
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simple second order yaw model. An exact analytical model that describes the system
identified model may be very difficult to obtain. This is in part because the actual vehicle
is comprised of complex dynamics which cannot be captured exactly by the simple linear
analytical models given above. Because the analytical models are comprised of many
parameters which are generally not well understood (such as the tire relaxation length or
cornering stiffness), a system identification approach is necessary.

Additionally, the frequency responses of the analytical model (using only a front tire
relaxation length) and the system identified model are compared at 2, 5, and 8 m/s for the
case of singles (Figure 2.19a) and duals (Figure 2.19b). As seen in Figure 2.19b, the
system identified model and analytical model for the tractor setup with duals agree very
well. Again there is a slight discrepancy in the natural frequency as mentioned previously
with Figure 2.18. However, since the models are intended for use in closed-loop control,

the impact of this difference is minor.
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Figure 2.19a Frequency Response Figure 2.19b Frequency Response
Comparison of the FTR and NYD Comparison of the FTR and NYD
Models at V,=2,5 and 8 m/s for Single Models at V,=2, 5, & 8 m/s for Dual Rear
Rear Wheels. Wheels.
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Figure 2.20 shows the modeling errors from several models for varying forward
velocities of 2, 5, and 8 m/s. It is important to note that the amount of error will greatly
depend on the frequency content of each data set. For example, the errors associated with
a constant gain fit (IDO) will be significantly less for a run that has more low frequency
content than for a run with a larger range of frequency content. The SK model exhibits a
noticeable decrease in modeling performance as speed increases. This is because the SK
model neglects understeer effects of the vehicle which become more pronounced at
higher speeds. Finaliy, Figure 2.21 shows the modeling errors for the various models for
Single and dual rear wheels. These errors are the average errors over all data runs from
each model type. It is easy to see that the best fit second order model for each data set
(ID2) has the lowest modeling errors. However, the NYD and physical FITR models are
quite good. In fact, the difference between the ID2, NYD and FTR models is within the
noise of a reduced order model of this fidelity. Additionally, the NYD and FTR models
have almost 300% and 400% better modeling performance than the TB and SK models,

respectively.
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Figure 2.20 Yaw Rate Modeling Errors for Various Model Types at
V4=2,5 and 8 m/s for Single Rear Wheels.
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Figure 2.21 Yaw Rate Modeling Errors for Various Model Types
Averaged Over all Data Runs for Single and Dual Rear Wheels.

2.7 Experimental Control Results

- The control input is a pulse width modulated (PWM) signal to a hydraulic valve
that controls the steering slew rate of the front tires. The NYD model described by
Equation (2.12) must be augmented with additional states and biases resulting in a twelfth
order estimator. The estimator is comprised of two cascaded filters in order to estimate
_ all of the states and biases correctly and is presented in Cbhapter 4. A linear quadratic
regulator (LQR) described in Chapter 3 was used to control the lateral error (y) of the

tractor with the control point at the vehicle CG (I, =0). The following weighting

matrices were used in designing the LQR feedback gains in order to compare the control
accuracy of various models at high speeds. ;
oy =diglo, 0, 0 O O Q]
=diagll 0 0 0 0 0] (2.22)
R,=0.1
Specifics about the LQR weights and control algorithm are given in Chapter 3.
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Figure 2.22 shows how the closed loop bandwidth (given from the dominant

eigenvalue pair of A-Bx K op,) of the system changes with speed and changing R, (Qx

remains constant at the values shown in Equation (2.22)). This figure shows that the
LQR weights of the controller must be decreased as speed increases in order to maintain
the same closed loop bandwidth. Therefore, if the lateral dynamics identified earlier in
this chapter (occurring at 6 rad/s) are not modeled, a restriction must be placed on the

bandwidth of the controller in order to ensure stability.
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Figure 2.22 Resulting Closed-Loop Bandwidth vs. Velocity Using LQR.

Controllers for the tractor based on the simple kinematic (SK), first order (ID1), and
new yaw dynamic (NYD) models were implemented on the experimental system. The
tractor was given a line trajectory to follow and time was given to allow the bias
estimations to settle. Figures 2.23-2.25 show the lateral error and control effort for
experimental runs at 5 m/s using an SK model (used in [O’Conner, 1996]), ﬁrst order
(ID1) model (used in [Rekow, 1999]), and the higher order model developed from system
identification (NYD). The LQR weights shown in Equation (2.22) were used in these
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runs. As seen in Figure 2.23, the SK model controller is unstable at 5 m/s. Stability of

the SK model was recovered when the LQR weights were decreased (lowering the closed

loop bandwidth). However, lowering the bandwidth of the controller will lead to a

decrease in control performance. The ID1 model is stable (Figure 2.24). However, the

effect of the unmodelled dynamics can easily be seen by the large limit cycle in the

control effort. The performance of the controller using the NYD model is shown in

Figure 2.25. The controller improvement from using the NYD model is quite apparent

even at 5 m/s. Note that a small improvement in the 16 control accuracy results in

significant benefit in precision agricultural applications [Rekow, 2001].

controller using the NYD model for a run at 16 mph (8 m/s) is shown in Figure 2.26.
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Figure 2.23 Experimental Run Using an SK Model at 5 m/s.

Finally, the
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Figure 2.24 Experimental Run Using an ID1 Model at 5 m/s.
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Figure 2.25 Experimental Run Using the NYD Model at 5 m/s.
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Figure 2.26 Experimental Run Using the NYD Model at 16 mph (8 m/s).

2.8 Coriclusions

This chapter has presented a system identification of a large farm tractor for the
purpose of increésing lateral control performance at higher speeds. Second order yaw
dynamics (occurring at approximately 6 rad/s), as well as the dependence of these
dynamics on velocity, were found using the system identification approach. The system
identified (NYD) moc_lel did not resemble the characteristics of the traditional bicycle
model or any other physical models proposed previously for the control of farm tractors.
A physical model which considered a front tire relaxation length was shown to capture
the characteristics of the NYD model. For high speed operations such as spraying,
knowledge of these dynamics was shown to be important in improving the lateral control

performance of the tractor.
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Additionally it was shown that blindly applying LQR weights to the tractor without
accounting for the yaw dynamics can produce an unstable controller. However, simpler
models, such as the kinematic model, can be used for control at the expense of requiring
controllers with a lower bandwidth. Therefore, simpler models, requiring a lower
controlier bandwidth, will have a reduced disturbance rejection capability, thereby
decreasing the control accuracy of the system. A more thorough tradeoff analysis of the
control accuracy versus model type for various closed-loop bandwidths should be
completed. This would allow a control designer to decide whether the higher order yaw
dynamic model is necessary or if a simpler model, with a lower bandwidth controller,;
would’ be sufficient for specific farm applications.

Because the physical models depend on many parameters, such as tire cornering
stiffness and tire relaxation length, which are difficult to obtain, an experimental system
identification approach may be the best way to obtain accurate parameters for such
vehicles. A possible avenue for futufe work is to determine if the model parameters
(including the tire relaxation length) change with field conditions, tire ballast, and weight
distribution. If it is determined that any of the parameters in the FTR model do indeed
vary, some type of real time system identification could be used to capture the changing
dynamics. Alternatively, some type of robust control analysis may be used to provide a
controller that is impervious to the changes in the yaw dynamics. However, bounds on
changes in yaw dynamics must first be known, through the system identification used in
this chapter. Knowledge of the yaw dynamic model discussed in this chapter will
ultimately lead to an increase in performance, productivity, and robustness, in

automatically steered farm vehicles.
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Chapter 3

Control Algorithm

This chapter discusses the control architecture used for guiding the tractor along a
line. The equations required for full state feedback of the tractor are first given, followed
by the weighting matrix used in the LQR algorithm for designing the feedback gain. The
method for utilizing the algorithm to track a straight line is presented. Simulation and
experimental step response results are presented for the full state feedback of the tractor.
It is shown that the linear control architecture can be used to control the tractor about a

line, within 3 cm (16), for small lateral and heading errors.

3.1 Lateral Dynamic Controller Model

3.1.1 Hydraulic Steering Valve Model

The farm tractor is controlled through the actuation of an electro-hydraulic steering
valve. The input to the steering valve is a Pulse Width Modulated (PWM) voltage signal
that controls the amount of hydraulic flow to the stéering valve. The valve characteristics
are very nonlinear and include a dead-band region as characterized in [O’Connor, 1997]
and identified on line in [Rekow, 1998]. Identification of the steady state slew rate

versus input voltage was used to invert the nonlinear characteristics of the steering valve.
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The remaining steering valve dynamics from the control input (&) to steer angle are then

described by the linear transfer function:

o(s)= ———K—”—(—I—L—u(s) =

2
Is*+ds

where: K,=Valve Gain
I,=Valve Interia
d,=Valve Damping
- 1,=Valve Time Constant

KV
s(T,s+1) u(s)

3.

The above transfer function represents a first order lag between input and steering slew

rate (&), plus a pure integrator from slew rate to steer angle (8). The values for the

steering valve model in Equation (3.1) were found using a system identification approach

similar to the approach taken to model the tractor yaw dynanﬁcs in Chapter 2.

Identification of the dynamics and nonlinear steady state characteristics of the valve are

presented in Appendix D. The resulting parameters for the for the valve model, as well

as physical constraints due to steer angle limits and actuator saturation, are given in Table

3.1

Table 3.1 Parameters of the Steering System.

Parameter Value
K, 1.0
T, 0.1053 s
O 0.8 rad
S, 0.85 rad/s
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3.1.2 Lateral Position Model

A state space full state feedback algorithm was used to control the lateral error (Vex)
of the tractor shown in Figure 3.1. The control point (CP) and Center of Gravity (CG) of

the vehicle are shown in the figure.

N i

t=1 §

Figure 3.1 Schematic of the Lateral Dynamics for the Tractor.

The dynamics of the lateral error (ye;) as shown in Figure 3.1 are described by:
Vo =V sin@,,) +V, = 1% Jeos(y,,) (3.2)
where: I, is the distance from the control point to the CG of the vehicle

Because V,>>V,, lateral velocities at the CG (V,) due to vehicle sideslip are
neglected. The effect of neglecting Vy will be discussed in Section 3.4. Constant or
slowly varying lateral velocities will be estimated in the form of a crab angle using a
Kalman filter in Chapter 4. Therefore, only the lateral velocities due to transients are
neglected. .

Other researchers, including [Cordesses, 1999], have used a kinematic model which
assumes no lateral velocities due to sideslip. For a kinematic model of the vehicle, the

point at the center of the rear axle will have no lateral velocity. Because the kinematic
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model assumes no tire side-slip, the velocity vector must be along the direction of the
tire. Therefore there is assumed to be no lateral velocity at the tires and thereby no lateral
velocity of the vehicle between the rear tires.

It is important to note that the dynamics of the system change by moving the control
point (thereby changing Icp) [Bell, 2000]. The system becomes non-minimum phase
(contains a zero in the right half plane) for a control point located behind the CG
(assuming the lateral velocity at the CG is zero). All of the work done in this thesis

- placed the control point for the tractor at the CG of the vehicle (I, =0). As mentioned

previously, the CG for a farm tractor is highly variable, but in this thesis was assumed to
be constant. Chapter 7 will discuss the direct control of a towed implement, where the
control point shifts to the implement. Setting the control point at the CG, neglecting the
lateral velocity at the CG, and assuming small heading errors, the lateral dynamics are

described by:
Vor =ViW.., ' (3.3)
The remaining dynamics necessary for full state feedback control are the yaw
dynamics (from the new yaw dynamic (NYD) model developed in Chapter 2) and
steering dynamics given in Equation (3.1). The yaw dynamics (from Equation (2.13))
defined about a reference trajectory and the steering dynamics (Equation (3.1)) are then

rewritten into the following form,

l.I‘ferr = —zgwnli/.err - a):werr + KR(O:(S (3'4)
S=115+K”u (3.5)
T T

v v

The parameters of the yaw dynamic model were given in Table 2.1 Equations (3.3-3.5)
can now be placed into the state space form shown below in Equation (3.6) for the lateral
control states ( X _):

X,=AX,+Bu (3.6)

where:
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The poles of the sixth order system described by Equations (3.3-3.5) are shown in
Figure 3.23 and the poles of the discretized system sampled at 0.1 seconds are shown in
Figure 3.2b. The poles consist of three integrators (one from the steering dynamics and
two from yaw rate to lateral error), two complex poles from the yaw dynamics, and one

real pole from the steering dynamics.
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Figure 3.2a Continuous Open Loop Roots  Figure 3.2b Discrete Open Loop Roots
for the Lateral Tractor Model. Sampled at 0.1 Seconds (10 Hz).

3.2 Control Law

The linear lateral dynamics can then be used to calculate the LQR control gains for

the control law:

u=—K X 3.7
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e
where: X, =|:j‘zm v, v ¥ o 6}
(Note: The ~ denotes estimates). Methods for calculating y,, and ¥, from a

reference are given in Section 3.3. All other estimates come from the Kalman Filter
estimation method described in Chapter 4. The LQR compensator gain matrix (K.) was
solved at each time step (by solving the Riccati equation in real time) using the fdllowing
control state weighting matrix (Qx) and control input weighting value (R,) [Stengel,
1994]:
Ox =diagld, O, O O Q5 Ol
=diagl 0 0 0 1 0]
R,=0.1
The LQR control algorithm is an “optima

(3.8)

3

control algorithm that optimizes the cost

function:

J.=> XI0, X +u"Ru (3.9
subject to the control feedback constraint given in Equation (3.7). It is important to note
that only the relative values of the LQR weighting matrices are important. The weighting
matrices can be normalized with respect to any variable or state. If they are normalized
to give a cost function that is unitless, then the units of each weighting value are the
reciprocal of the square of the units of the weighted state.

The selected control weighting values given in Equation (3.8) were found
experimentally by “hand tuning” until satisfactory performance was obtained. The above
compensator results in a closed loop bandwidth (given from the dominant eigenvalue pair

of A, —B,xK_) of about 1 Hz at 2 m/s (the bandwidth changes as a function of velocity

as discussed in Chapter 2). Since we are concerned about controlling the lateral errors
(). Qy was set to one. Additionally, Os was set to one to penalize steer angle. Reducing
the amount of steer angle adds some damping to the system. Table 3.2 lists the control

gain vector for Os=1 and Q=0 at forward velocities of 2, 4 and 8 m/s.
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Table 3.2 Control Gains for Selected Velocities.

Qs Vi (m/s) , K
2 [2.75 9.03 097 023 395 0.23]
0 5 [2.44 12.70 221 036 651 7.74]
8 [2.25 | 16.04 3.69 049 7.74 0.81]
2 [2.65 9.85 1.04 025 496 0.45]
1.0 5| [240 1293 224 037 7.00 0.67]
8 [2.22 16.13 3.72 050 8.06 0.83]

Figure 3.3 shows the closed loop roots of the characteristic equation (continuous and -
discrete) of the system for the cases of Qg1 and Q0. It is interesting to notice that
only the integrator poles are altered from the open loop system to the compensated

closed-loop system. The added damping using Qs=1 can also be seen in Figure 3.3.

6 T T T T & 1

08

061

047

o] 02

: : ; . X :

oF - g( O R & [ Of ezl
: : : ; %

o) -02

I | STRSRTP
-4t

. ; i ; ; ; 1 . PR ; il . ,
:iZ -10 -8 -6 ~4 -2 0 -1.-08 06 -04 -~02 0 02.. 04 06 -08 1

Figure 3.3a Continuous Closed-Loop Roots Figure 3.3b Discrete Closed-Loop Roots
for the Lateral Tractor Model. Sampled at 0.1 Seconds (10 Hz).
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3.3 Simulated and Experimental Line Tracking

The majority of experiments performed in this thesis were line tracking experiments.
A desired line trajectory is defined by a desired position and heading as shown in Figure
3.4, |

N A

Desired
Trajectory

3\; err
(ErNp)

(EdeyNdes)

-
E
Figure 3.4 Schematic of a Desired Trajectory.

The heading error is simply the difference in the desired heading (y,,,) and the
estimated heading (). |
l/’)-err = l)l? —l//des (3'10)

The lateral error of the tractor is the distance from the control point of the tractor to the

desired line and can be found by:

5., =(E, ~E,.) costw )~ (%, —N,, Jsin(w,,) 3.11)

The estimates for the vehicle heading and position (ET,IVT,I/?) are from the Kalman
Filter estimation algorithm discussed in Chapter 4.

Figure 3.5 shows simulated step responses at 2 m/s for one and two meter initial

offsets for the cases of Us=1 and Qs=0. The tractor model (including the NYD model

from Chapter 2, actuator saturation, steer angle limits) was simulated assuming full state

feedback. The position of the tractor was simulating using the nonlinear equations:
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E. =Vsin¥) (3.12)
N =V_cos(y)

The increase in damping caused by setting Qs=1 can be seen is the step responses.
Additionally, by penalizing the steer angle (), the system avoids the nonlinear saturation
function of the steering actuator as well as the nonlinear position kinematics for large
heading errors. However when the tractor remains in the linear region, the step response
of the system using Qg1 is better in terms of step response time. A more classical
nonlinear feedback architecture (such as feedback linearization) could compensate for the
nonlinear errors due to linearization and saturation when the errors from the desired
trajectory are large. However, for small heading errors and steer angles (such as those
encountered when tracking typical farm trajectories), the linearized LQR algorithm works

quite well.

— QT
o Qg0

Figure 3.5a Simulated 1 m Step Response. Figure 3.5b Simulated 2 m Step Response.

Finally, Figure 3.6 shows a typical experimental step response and the tracking
capabilities of the real system at 2 m/s using the LQR weighting matrices given in
Equation (3.8). The cascaded Kalman filter given in Chapter 4 was used in conjunction
with the LQR full state feedback because measurements of all the states are not available
in the experimental system. The simulated step response of the tractor, assuming full
state feedback, is also shown in the figure. It has been shown that the tractor can be
controlled along various other trajectories such as arcs, curves, and spirals. Methods for

control along these other trajectories can be found in [Bell, 1999].
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Figure 3.6 Experimental vs. Simulated Step Response.

3.4 Effect of Neglecting Sideslip

As discussed in Section 3.2, lateral velocities at the CG due to vehicle yaw dynamic
transients are neglected (partly due to historical reasons [O’Conner, 1997; Bell, 1999;
Rekow, 2000]). This section is an attempt to look at the effect of assuming that these
velocities are negligible. An analytical (the FTR) model that includes the lateral velocity
at the CG was developed in Chapter 2. This model could be used for control. However,
in practice this would require the estimation of an additional unmeasured state. - Future
work should conduct a more thorough investigation of neglecting the lateral velocity and
weigh the tradeoffs of a more complicated estimator (increasing the order of the estimator
by one).

The FTR model developed in Chapter 2 is given again below.
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; my, mV, m r
¢ c, b —c, b* = Cpe@ Yy 0
Vo= L Yy |+ 0 |6 (3.13)
o IZVx IZVx IZ o _—Vx

! Vo, alo; -V, /o, L7 o,

The parameters of the FTR model are given in Table 2.2. The lateral dynamics

(including the lateral velocity at the CG) for small heading errors are now defined as:

).)err = VXWerr + Vy (3 14)

Equations (3.13-3.14) and (3.5) can be placed into the state space form shown in

Equation (3.6) where the state vector is now defined as.
x,;[& v YV, oa 8 §}T
The linear lateral dynamics using the FTR model can then be used to calculate the
LQR control gains for the control law given in Equation (3.7). Again the compensator
gain matrix (K) is solved using the LQR algorithm. The same control input weighting
value (R,) and the control state weighting matrix (Qx) given in Equation (3.8) are used.

However, the FTR model requires the following two additional state weighting

parameters to solve for the LQR control gain:

Q, =0, =0 | (3.15)

¥y
The FTR tractor model with the steering actuator model in Equation (3.1) (including
actuator saturation, steer angle limits) was simulated assuming full state feedback. The
position of the tractor was simulating using the following nonlinear equations, which

include the lateral velocity at the CG:

E =V sin(y) + V, cos(y) (3.16)
N =V, cos(y) =V, sin(y) '

Figure 3.7 shows simulated one meter step responses at 5 m/s for the controllers using
the FTR and NYD models. The control algorithm using the NYD model (presented in
Section 3.3) neglects the lateral velocity at the CG while the control algorithm using the
FTR model (presented in this section) includes the lateral velocity. Note that both control

algorithms were simulated on the system using the FTR model and included the lateral
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velocity. In the simulated response, neglecting V, causes the simulated response of the
NYD controller to be more damped and does not produce the “optimal” (optimal in terms
of an LQR controller design) step response as does the FTR controller. However
experimental step responses (which neglected the lateral velocities) were not‘seen to be

over damped, but rather did produce typical LQR design step responses.

1.2 T T T T T T T T I
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Figure 3.7 Comparison of Control Algorithms on the FTR Model for a
Simulated 1 m Step Response at 5 m/s.

Figure 3.8 shows the lateral velocities (Vi andV, ) as well as the integrated lateral

position (y) from each of these lateral velocities for the above simulated step response.

As seen in the figure, the V y term dominates as was assumed in simplifying Equation

(3.2) to form Equation (3.3).
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Figure 3.8 Comparison of the Significance of the Two Different Lateral
Velocity Components for a Simulated 1 m Step Response at 5 m/s.

The fact that experimental step responses using the NYD controller were not over
damped as seen in the simulations may be due to mis-modeling of the CG location. The
CG location of the tractor can vary depending on things such as tire and nose ballast.
Nose ballast is changed depending on the farm application to compensate for towing
heavy loads. For the work in this thesis the front of the tractor was ballasted with twenty
100 pound lead weights. This may have caused the actual CG location to shift forward
from the modeled CG location. Mis-modeling the CG location of the vehicle can have
the same effect on the control of the tractor as neglecting the lateral velocity (or adding a
fictitious lateral velocity). This is because positive tractor yaw rates will add lateral
velocity in front of the CG and deduct lateral velocity behind the CG. This effect can be
seen in the [,y term in Equation (3.2). Therefore the vehicle will experience a greater
or lesser lateral velocity at the modeled CG location than at the actual CG location.

Figure 3.9 shows the step response of the NYD controller (which neglects the lateral
velocity at the CG) for various mis-modeled CG locations. Notice that the NYD
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controller with a CG location modeled 0.5 m behind the actual CG location produces the

same step response as the FTR controller which includes the lateral velocities at the CG.
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Figure 3.9 Comparison of Step Responses at 5 m/s Using the NYD
Controller with Mis-Modeled CG Locations. A Negative CG Location
Error Corresponds to Modeling the CG Behind the Actual CG Location.

3.5 Conclusions

This chapter has described the use of a full state feedback algorithm for regulating the
tractor about a line trajectory. The lateral dynamics of the tractor, which include the
second order yaw dynamics from Chapter 2, and the dynamics of the steering valve, were
used for the full state model. An LQR algorithm was used to select the feedback gains of
the system. The open and closed-loop roots for the tracfor were shown as well as
simulated and experimental step responses for the control algorithm. The model and
algorithm were shown to be effective in tracking straight line trajectories. The effect of
neglecting lateral velocities as well as mis-modeling the tractor’s CG location were also

discussed.
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Chapter 4

Cascaded State Estimation

The full state feedback algorithm utilized in Chapter 3 requires the estimation of
several states because direct measurements of these states are not available. Additionally,
states must continue to be estimated if GPS measurements become unavailable (due to
some type of temporary GPS outage or communication loss with the references station).
Integfation of GPS with a low cost Inertial Navigation System (INS) can help to provide
continuous control of a tractor on a farm through these short outages. The cm-level
accuracy of carrier-phase Differential GPS allows for precise calibration of the sensor
models in order to improve the accuracy of the dead reckoning system. This includes
accurately estimating the gyroscope and radar biases which requires the addition of two
more states to the tractor estimator. Two additional measurements are added to the
estimator for these sensors (the radar velocity and the gyroscope yaw rate). Once the
estimator is modified to incorporate these velocity and yaw rate measurements, and their
corresponding biases, the state estimates can be used to control the position of the tractor.
The control algorithm presented in Chapter 3 is independent of the estimation algorithm,
which allows for optimization of the GPS/INS integration and dead reckoning estimator,
without affecting the control algorithm for the tractor.

This chapter develops a cascaded estimation algorithm for estimating all of the biases

and model states for full state feedback and dead reckoning of the farm tractor through
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short GPS outages. First a conventional (one stage) estimation scheme is presented. This
type of estimation scheme has several drawbacks including sensitivity to model errors for
bias estimation and dead-reckoning as well as increased computational requirements due
to the size of the matrices involved. Additionally, the states for position and velocity are
not highly coupled to the tractor dynamic states, allowing for separation of the estimators.
For these reasons, the state estimation is divided into two cascaded estimators. The first
is a dead reckoning (or navigation) estimator which calibrates all of the inertial sensor
biases while GPS is available. The dead reckoning estimator continues to provide
position and heading estimates during periods without GPS measurement by specifically
integrating inertial measurements when GPS measurements are not available. This
provides the ability to maintain continuous control of the vehicle through these GPS
outages. The second estimator is used to estimate the additional states needed for the full
state feedback algorithm discussed in Chapter 3. Bias estimates from the dead reckoning
estimator are used to correct the sensor measurement used in the second estimator. An
Extended Kalman Filter (EKF) is then used to update each of the estimators (either
simultaneously or at independent update rates). Results are given showing that the
cascaded estimation technique provides better estimation of the vehicle states, especially
during a GPS outage, over a conventional estimation scheme. Results are also given
which verify the ability of the estimation algorithm to estimate all of the system biases

and provide heading estimation through a 30 second GPS outage.

4.1 Tractor Dynamics and Estimated States

The schematic of the farm tractor in general East-North coordinates is shown in
Figure 4.1. The position of the tractor, at any point along the centerline of the tractor can

be described by:
E, =V, sin(y) +(V, =y, Jeos@y)
N, =V, cos(y)— (Vy -yl )sin(v/)

where [, is the distance from the point along the centerline of the vehicle to the CG.

.1
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Figure 4.1 Schematic of a Farm Tractor.

Again, as discussed in Chapter 3, the lateral velocities at the CG due to transients are
neglected (Vy= 0) and [, is set to zero in the work in this thesis. However, slowly
varying lateral velocities due to vehicle “crabbing” will be estimated in the form of a
heading bias.  In this thesis, crab angle refers to the constant (or slowly varying)
differehce between the vehicle’s heading and direction of travel (known as vehicle
sideslip).  Vehicles experience lateral velbcities or sideslip due to yaw transients.
However, crab angles can occur from traveling on sloped terrain, tires getting caught in a
furrow, or pulling a heavy implement. Additionally; an apparent crab angle can occour
from misalignment of the heading sensor. Therefore, these slowly varying lateral
velocities are treated as a bias. Note that GPS measurements obtained on the roof of the
tractor must be translated through a “lever arm” to the CP [Bell, 1999]. This requires full
attitude (roll, pitch, and ya\,v) of the tractor(as shown in Equation (6.20-6.21)).

The tractor yaw dynamics (given previously in Equation (3.4)) are described by:

W ==200, -0y + K08 (4.2)
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The values for K,,w,,and{ are functions of velocity and determined from a least

squares best fit of the system identification data in Chapter 2. The steering valve

dynamics from the control input (1) to steer angle are described by:

5’=:—1-S+KV u (4.3)
T T

v v

where the control input () is a pulse width modulated (PWM) voltage to an electro-

hydraulic valve used to steer the front wheels. The values for K,,,d,,and I, that describe

the steering dynamics were determined using system identification techniques similar to
the techniques used to obtain the yaw dynamic model in Chapter 2.
The model dynamics in Equations (4.1-4.3) are of the form:
X = f(X)+Bu (4.4)
In order to utilize linear state space control and estimation techniques [Franklin, 1998],
Equations (4.1-4.3) must be placed in the form:

X =AX +Bu

Y =CX 4.5)

4.2 Regular Estimation

The control input is a PWM signal to a hydraulic valve that controls the slew rate of
the steer tires. The seventh order model shown above in Equations (4.1-4.3) must be
augmented with five additional states (four biases, and velocity) resulting in a twelfth
order estimator. Six of the states, given in Equation (3.6), are needed for the full state
feedback algorithm discussed in Chapter 3. The remaining states are needed to estimate
biases, positions, and velocity in order to improve the accuracy of the control

architecture. The estimated states are (denoted by a /):
. ~ soa s o2 21t
X =[ET N, 7, ¥ & W, v ¥ V. 6 6 6b:l

where:
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ET = tractor east position
N 7= tractor north position
V, =forward velocity

y = heading

|y = yaw rate

Y/ = yaw acceleration

"

vy =heading bias or "crab angle

0 =steer angle

0 =steering slew rate
é p, =Ssteer angle bias

g}, = gyro bias

1, =radar bias
Because the dynamics described in Equations (4.1-4.3) are nonlinear, they must be
linearized about an operating point at each time step in order to place the dynamics in the

form shown in Equation (4.5). This is done by solving for the Jacobian (J) at each time

step such that:

X =JX+Bu+w (4.6)
9. K
ox ox,,
J=|: :
where: ¥, ¥,
c AN~ M

w = zero mean random process noise vector with covariance, 0,

The biases and velocity of the tractor are assumed to be constant. However, they are

modeled as a first order Markov process such that:

[Vx V, & Sb]r = Whigs
where wp;,s is a zero mean random process (white) noise vector.
Modeling the biases in this way prevents the estimation of these states from “falling
asleep” by providing persistent excitation to the Kalman filter as seen in Equations (4.10-
4.11). The estimated process noise values used in this thesis are shown in Table 4.1.
Many of these estimates were selected by previous researchers to provide adequate

filtering performance [O’Connor, 1997; Bell, 1999; Rekow, 2001]. The process noise
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used for the bias states were “tuned” to provide the estimator with an observed adequate

tracking to filtering characteristics.

Table 4.1 Assumed Process Noise Covariance for Each State.

State Covariance State Covariance ((52)
E 0.1 m* § - 0.0 (rad/s)*
N 0.1 m* v, 0.01 (m/s)*
v 0.01 rad? 5, 1.0x10°° rad®
v 0.1 (rad/s)? 8b : 1.0x107° (rad/s)?
vV 0.1 (rad/s?? r 1.0x10™ (m/s)?
5 0.01 rad? W 1.0x10™ rad?

The observation matrix (C) is described by:
Yeus =CX +0 (4.7)

Wh ere: Y — [E gPS N 7(‘}PS l// GPS IV gyro eradar 5 pot Y

medas

v = unknown sensor noise vector (6x1) with covariance, R,
The sensor noise values were obtained by taking the covariance of static sensor data. The

sensor noise values used in this thesis are give in Table 4.2,

Table 4.2 Assumed Sensor Noise Covariances.

Measured State Sensor : Covariance (62)
E GPS 9.0x10™ m
N GPS ~ 9.0x10*m
4 GPS \ 1.745%107 rad
v FOG 6.0x107° rad/s
S Linear Potentiometer 1.5x107 rad
V. Radar 1.4x107 m/s
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Note that there are four sensor biases (used to define the observation matrix) such that:

v =y +y,

6" =6+9,

eradar = Vx + rb (4‘8)
=yt

The resulting linearized state matrices (linearized about a desired heading, W) are
shown below along with the state divisions that will be made in the cascaded estimation

scheme in the preceding section.

B
1

0 0 0 Veos(w,) 0 0} 0 0 sinw,) 0 0 OfE][ o0
0 0 0 —Vsin(y,) 0.0{ O 0 costy,) O 0 OfN, 0
000 0 000 0 0 o o of, 0
000 0 00i 1 0 0 0 0 ofy 0
000 0 0 0i 0 0 0 0 0 0fg, 0
$ol000 0 ooio o 0 0 0 oyl 0 |
000 0 00} 0 1 0 0 0 Ofy 0
000 0 0 01-a? -2, O Km 0 O]y 0
000 0 00i 0 0 0 0o 0 ofv, 0
000 0 0010 0 0 0 1 ofs 0
000 0 0.0y 0 0 0 0 —ITV 0} 6 ‘K/TV (4.9)
000 0 0 0l 0 0 0 0 o 0]l6)| o |
(100000 0i0 00 0 0]
010000000000
000101000000
Y ooy S e [omm———————— X+v
0000101100000
0010000i0100°0
0000000001 0 1]

The Extended Kalman Filter (EKF) is comprised of a measurement update and time

update [Stengel, 1994], which is performed at each time step (k). The measurement

update is described by:

L, =p,cTcpc” + Rv)~1

X, =X, + Ly (Ymeas —CX ;) (4.10)
where: L = Kalman Gain Vector
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P = State Estimation Covariance Matrix
C = Observation Matrix
R, = Sensor Noise Matrix
I = Identity Matrix
X= State Estimate Vector
A simple Euler Integration time update is described by:
Xt = Xp + 4Ky @11
T .

where: & =discretized Jacobian (J) at each time step
Qy~=discretized process noise matrix A
X is calculated from nonlinear Equations (4.1-4.3)

The process noise matrix (Q,) was taken to be a diagonal matrix, which assumes no
correlation for the process noise of any of the states. Although the process noise of some
states are correlated in reality, this approximation provides good filtering characteristics
by the Kalman filter. The values of each diagonal were the process noise covariance of
the corresponding state as listed in Table 4.1. Similarly the sensor noise matrix (R,) was
taken to be diagonal using the sensor noise values in Table 4.2.

The addition of the radar and gyroscope biases is used to improve the accuracy of the
dead-reckoning system. Integration of unknown biases results in a parabolic growth of
positioning errors. The radar bias comes from the fact that the radar sensor has a bias
offset which is dependent on ground conditions. The heading bias is used to solve for
any bias in the heading sensor or vehicle heading (known as a “crab angle” or sideslip)
that can occur from pulling heavy equipment or tillage on sloped terrain. On sloped
terrain, the crab angle reverses sign as the roll angle due to slope changes sign (which
occurs when the tractor reverses direction in the field) [Bell, 1999]. Estimation of the
crab angle is necessary to provide information about the difference between the vehicle
heading and direction of travel. Estimation of the steer angle bias is used to improve the
control performance. State estimation of the forward velocity is required for use in the
model as seen in Equation (4.1) and because parameters in Equation (4.2) are a function

of velocity. All of the biases and velocity are assumed to be slowly varying.
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4.2.1 Shortcomings of the Regular Estimation Algorithm

This section presents a few of the problems associated with the regular estimation
algorithm presented in Section 4.2.1. These shortcomings will lead to the motivation
behind the development of the cascaded estimation architecture described in the next
section.

The tractor is equipped with differential braking which gives the ability to add a
heading disturbance to the system by braking one side of the tfactor. In the following
experiment, the bias estimator is allowed to remain on even after GPS measurements are
no longer available. Figure 4.2 shows that the bias estimator will still try to estimate the
bias without GPS as mentioned in the previous section. This is because in theory the
gyroscope bias is still observable without GPS measurements through the steering angle.
However, uncertainties in the model as well as unknown disturbances on the tractor will
create large errors in the bias estimation when GPS attitude measurements are not
available (as seen in Figure 4.2). Because the steering wheels remain straight (which,
according to the model, should result in no yawing of the tractor) the estimator believes
that the yaw rate, resulting from the brake disturbance acting on the tractor, is a change in

the gyroscope bias and not an actual yaw rate.

GPS Turned Off

Gyro Bias Estimate (deg/s)
1\ )

Brake Disturbance
R L

-10

0 10 20 30 40 50 60 70 80
Time (s)

Figure 4.2 Gyroscope Bias Estimation from the Regular Estimation
Scheme. Brake Disturbances are Added After a Simulated GPS Outage.

Chapter 4. Cascaded State Estimation 67



Figure 4.3 shows another run where a brake disturbance is being added to affect the
tractor heading once GPS has been removed. Even though the tractor heading has
changed, the estimated heading remains constant. This is due to the fact that the EKF
integrates the heading from the model through the wheel angle as described by Equation
(4.2) (which remains constant) instead of from the yawr gyroscope because the sensor

noise is less on the steer angle sensor.
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Figure 4.3 Actual vs. Estimated Heading with the Regular EKF
Estimation Scheme. Brake Disturbances are Added After a Simulated GPS
Outage.

Finally, Figure 4.4 shows the gyroscope bias estimate without estimating the steer
angle bias. Because a steer angle bias results in a constant yaw rate, as seen from
Equation (4.2), a bias in the steering angle is also seen as a constant yaw rate offset by the
model. Similarly, any other model errors in the system can lead to incorrect estimates of
the sensor biases. The regular Kalman filter can be used to try and estimate both the steer
angle and gyroscope biases. However, the Kalman filter can struggle to correctly
estimate both biases together and can even become unstable trying to estimate both biases
if correct disturbance covariances (Q,) are not used. Any unknown bias in the steer angle
sensor or effective steer angle will result in an error in the yaw rate estimate, which will

in turn lead to an error in the gyroscope bias estimate. It is more desirable to estimate the .
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sensor biases with respect to the reference measurements (GPS in the case of this work)
as opposed to a reference provided by the model to ensure the most accurate estimates of
the biases. For these reasons, it is necessary to utilize two separate cascaded estimators

in order to accurately estimate all of the states.

0.10
gyro yaw rate gyro bias estimate
005+ 44h - b oSN S -
2 0.00
3
b
8 005 4 - (L
R I | T | | T
steer angle
-0.15 M T T . r r
0 20 40 60 80 100 120
’ Time (s)

Figure 4.4 Estimation of the Gyroscope Bias with No Estimate of the Steer

Angle Bias During a Straight Line Tracking Experiment. Average Yaw Rate

and Steer Angle Should Equal Zero. Therefore the Sensor’s Bias is Equal to
the Sensor’s Average Value for the Straight Line Tracking Experiment.

4.3 Cascaded Estimation Algorithm

Separating the estimation into two filters allows for estimation of all of the states in
order to improve both the dead reckoning system as well as the control system. Figure
4.5 shows a block diagram demonstrating the almost “natural” separation of the filters.
This natural separation could also be observed by the number of zero elements in the
state matrices, and almost complete independence of the two sets of states in Equation
(4.12). The first filter provides accurate positioning with dead reckoning estimation
when no GPS measurements are available, by estimating biases in the IMU while GPS is
available. The second filter uses the corrected IMU plus the steer angle measurements to

provide the additional states for control of the tractor. Furthermore, the use of a separate
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estimation technique allows for estimation of both the steer angle and gyroscope biases.
As mentioned previously, these two biases cannot be estimated together in the Kalman
filter. Separating the estimators also allows for the two filters to be run at different
speeds. As will be seen in the following chapter, the accuracy of the time update depends
largely on the sample rate. Because the yaw rate and velocity measurements (from the
gyroscope and on-board radar, respectively) are continuously available, they can be
sampled and integrated forward at higher sample rates in order to increase the dead

reckoning accuracy.

- Estimates of
GPS Position &
Velocity
Yy ] pommemmmfmmmmmmeme-
INS . \
e Radar =
Estimate Tractor Model |ea-2
¢ Gyro
\
! Estimates of
) stimates o
Dead Reckoning Filter K Tractor States
' Control States Filter Y

l LQR Control |—————

Figure 4.5 Block Diagram of the Cascaded Estimation Architecture.

Substituting the available rate measurements (used as inputs) into Equations (4.1) and
(4.2) (with Icp=0) results in the dead reckoning (or kinematic) equations:
E, = (V" ~r, )sin(y)
NT =( Vx"‘d"’ — ¥, Jcos(y) (4.12)
y=y -g,
where V*“ andy®™ are the radar and yaw gyroscope measurements. The dead

reckoning estimated states are:

X1=[ET Ny n v g Wb]T
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The remaining dynamics used to estimate the states necessary for control are the tractor
yaw dynamics (4.3), the steering dynamics (4.4), and velocity. The control estimated
states are:

The dynamics in Equation (4.12) can be linearized about the operating point at each time

step by solving for the Jacobian (J) such that:

X, =J, X +Bu+w, (4.13)
of df;
ox) oxp,
where: J = : :
In . Un
dx; oxy,

As with the regular estimation scheme, the biases and velocity are modeled as a first
order Markov process. Equations (4.12) linearized about a desired heading (W) and

placed in the form shown in Equation (4.13) are:

0 0 -sin(y,,) rcost) O Ofe siny,,,) 0
0 0 —cosWy) —rnsiny,) O 04" cos(Y ) 0

i 2|00 0 0 o of B | o oV

1700 0 0 0 10|V o 1fygee |TM 4.14)
00 0 0 0 ofé 0 0
00 0 0 0 ofv, 0 0

Because the yaw and steering dynamics are linear, the control states (X3) can be placed

directly into the state space form:

X, =AX, +Byu+w, (4.15)
where
0 1 0 0 o ofv 0
-0} -2%wm, 0 Kuw, 0 Oy 0
) 0 0 0 0 0 ofv. 0
=9 0o o o i o|s|f] o ™ (4.16)
0 0 0 0 -% of 6| | K%
0 o o 0o o o9 0
The observation matrix (C) is described by:
Y =Cx, +v
meas; 11 1 (417)
Ymeasz = C2x2 + v2
where: Y s, = [EGPS Nops  Wors ]T
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A A |

v; and v; are sensor noise vectors (3x1 each)
Because the estimation of the biases associated with the yaw rate and velocity
measurements are in the dead reckoning filter, the biases must be compensated for in

order to utilize the measurements in the control filter as shown below.

. i O
'I/meas =y 8s

4.18
Vmeas = meda" - rb ( )
The observation matrices for each of the filters are:
1 00 0 0.0
C,=|0 1.0 0 00
0 00101
C1 =0 (3x5) if GPS is not available ' 4.19
1 00 00
C,={0 1 0 0O
0 0101

It is important to note that setting C;=0 forces the Kalman gain (L) to become zero, such
that the measurement values (Y1) have no effect in the estimation during the GPS outages.

The dead reckoning estimator is updated using the EKF Equations (4.10-4.11) given
previously. The X in the time update of the EKF (Equation 4.11) is calculated using the
nonlinear Equations (4.12). The control estimator uses thé same time update equations
presented in Equation (4.10). However, because the control estimator is a linear filter,
the time update is described by:

X =P, +Tu

R =080 +0, 420

where: @ =discretized State Matrix A;
I'= discretized input matrix B,
Qy=discretized process noise covariance matrix

The same process and sensor noise values given in Table 4.1 and Table 4.2 are used to
- form the process and sensor noise matrices, Q,, and R,, respectively. When no GPS

measurements are available, the EKF uses the time update step (Equation (4.11)) to
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integrate forward and estimate all ten states from the remaining available measurements
(velocity, yaw rate, and steer angle).

A simulated step response for tracking a line was performed with realistic sensor
noises. Four biases (steer angle, heading, yaw gyroscope, and radar of 0.1, 0.2, 0.3 and
0.4, respectively) were added to each of the measurements. The convergence of the bias

estimation of the four biases to their true values can be seen in Figure 4.6.
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Figure 4.6 Estimation of All Four Biases During a Simulated Straight
Line Tracking Run with an Initial Lateral Step Input of 1m.
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4.4 Experimental Results

The dead reckoning system was implemented on a John Deere 8400 tractor (see
Appendix A). The tractor was given a line trajectory to follow in order to validate the
cascaded estimation scheme. The majority of the experimental runs were performed at
about 2 m/s (4.5 mph). No Euler angle compensation of pitch and roll for the gyroscope
yaw rate was performed in this work. Fields were assumed to be level such that the
vehicle yaw rate was equal to the yaw rate in the inertial frame. Additionally, if the
tractor is controlled along a side slope (about a position defined on the side slope) then
the measured yaw rate is appropriate yaw rate, relative to the terrain, and no Euler
compensation need be performed.

Figure 4.7 shows separate gyroscope and steer angle bias estimation,r as well as the
gyroscope and steer angle measurements. The tractor was under automatic steering
control tracking a straight line. Therefore, the mean steer angle and yaw rate should be
zero (assuming no vehicle crab angle), resulting in bias estimates equal to the mean of the
measurements. It can be seen that the steer angle and yaw gyroscope biases are being

estimated correctly, independent of each other.

15

(deg, deg/s)

-25

0 10 20 30 40 50 60
Time (s)

Figure 4.7 Experimental Validation of Separate Bias Estimation of Steer
Angle and Gyroscope Biases During Straight Line Tracking.
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4.4.1 Rough Verification of Bias Estimates

To validate the radar bias estimate, a rough estimate of the bias is formed as follows.
A time difference estimate of the vehicle velocity can be obtained from a single
difference of two consecutive position measurements as shown in Equation (4.21).
oo JEK+1) - EE)Y + (N +1) - N(k)) @21)
At

A rough estimate of the radar bias can then be obtained by observing the difference

between the velocity estimate and the radar measurement.
AV, =V - radar (4.22)
The above “measurement” of the radar bias will be quite noisy, as it is taking the
difference between a noisy sensor measurement and a noisy velocity estimate. However,
if the radar bias estimate is tuned satisfactorily, the bias estimate should filter this noisy
difference. Figure 4.8 shows the radar and heading angle bias estimations. The tractor is
again under automatic steering control tracking a straight line due North (y=0 deg) as in
Figure 4.7. The change in crab angle and the ability to track the changing crab angle can
be seen over time for this run. This crab angle can be a combination of heading sensor
bias (from sensor misalignment) and changing lateral velocity due to uneven terrain.

Additionally, the effective filtering of the radar offset is seen in the radar bias estimate.
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Figure 4.8 Heading and Radar Bias Estimation During Experimental
Straight Line Tracking.

Figure 4.9 shows a plot of the difference between the actual heading and the
estimated heading using the yaw gyroscope during a GPS outage. This figure is the
same run shown in Figure 4.3 (GPS has been removed and brake disturbances were
added to alter the vehicle heading), but with the use of the cascaded estimators such that
the gyroscope is explicitly being integrated to provide heading estimates during the GPS
outage. As seen in the figure, the explicit integration of the yaw gyroscope is able to
estimate the heading of the tractor to within +0.6 deg for a 30 s outage as compared with
10-15 deg shown in Figure 4.3. The fact that the error resembles the heading is due to a
small error 'in the gyroscope scale factor. Estimation of this scale factor error is an

avenue for future work as discussed in Chapter 8.
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Figure 4.9 Heading Error Through Explicit Integration of the Yaw
Gyroscope From the Cascaded Estimation Technique. Brake
Disturbances are Added After a Simulated GPS Outage.

4.5 Conclusions

This chapter has discussed the use of a cascaded bias estimation technique consisting
of two cascaded estimators to estimate all of the states necessary for full state feedback
and dead reckoning. The cascaded estimation technique will be shown to provide
adequate positioning and state estimation to control a tractor through short GPS outages
in the next chapter. The estimator was also shown to be able to estimate the conflicting
steer bias and gyroscope bias. The cascaded architecture was shown to have many
advantages over a traditional estimation algorithm. The estimator in this chapter was
developed in inertial coordinates, but could have been done alternatively in tractor body
coordinates. Future researchers should investigate if this approach would decrease the
complexity of the estimator by removing the non-linearities due to the rotational

transformation from fixed to body coordinates.
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Chapter 5

Dead Reckoning Analysis

As discussed previously, it is important to provide continuous control of a farm
tractor through short GPS outages or loss of communication with the reference station.
The ability of an inexpensive dead reckoning system, using a low cost Inertial Navigation
System (INS) and initialized using carrier phase differential GPS, to provide adequate
position and attitude estimation for the control of a farm tractor during short GPS outages
is evaluated. This chapter also explores the errors associated with dead reckoning of the
tractor through short GPS outages. Simulated GPS outages are created by removing the
GPS position and attitude measurements from the estimator. The GPS measurements are
recorded to evaluate the performance of the dead reckoning estimator.

The dead-reckoning estimator described in Chapter 4 (utilizing an Extended Kalman
Filter) is shown to provide heading to within +1 degree and position estimation to within
0.3 meters for control of the farm tractor during 20-40 second GPS outages.
Furthermore, it may be possible to reacquire carrier-phase integers (i.e., estimate position
to within 9 cm) after GPS outages of less than 5 seconds, through the continuous position
estimation of the dead reckoning system. Ahalysis based on the short-term integration of
sensor noise is used to determine the error growth on the position estimate over time. It
is shown that the integration of the IMU sensor noise at 5 Hz is the major source of error,

motivating the use of higher sample rates on the dead reckoning estimator. Results are
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given which verify the ability of the dead reckoning system’s position and attitude

estimation for control of a farm tractor through a short GPS outage.

5.1 Error Analysis

The growth of positioning errors over time are a function of the integration routine as
well as the sensor noises and biases. Analysis for the growth of heading errors from the
discrete integration of sensor noise has been developed in [Gebre-Egziabher, 2001(a)]
and is shown below. The following error analysis assumes that the static covariance of
the sensor noise does not change with sample rate. In other words, no optimal pre-
filtering, based on the sample rate, is performed. An optimal pre-filter or anti-aliasing
filter whose bandwidth is reduced with the sample rate will provide more sensor filtering.

This would then decrease the covariance of the sensor noise as the sample rate is lowered.

5.1.1 Heading Error Analysis

Assuming the bias of the gyroscope has been accurately removed using the estimator
in Chapter 4, the remaining gyroscope’s sensor reading is:
e G.D
where: v¥" is serially uncorrelated white sensor noise of the gyroscope.

Integration of the gyroscope to get heading results in:
Jrevom)= e [vo <y ey 52
Assuming perfect integration of the yaw rate, the heading error (¥) is due only to the

integration of the sensor’s noise.
ye =J'vgym (5.3)

Using an Euler integration routine to obtain heading from the yaw gyroscope results in

the following discrete equation for the heading error.

Chapter 5. Dead Reckoning Analysis ' 80



« k
Via =WE T = T 54
i=1

where: T; = Sample Rate

Squaring and taking the expected value of the above equation results in:
bV dlg g oy b Sebekeny]) 69
i=1 :

Knowing that the expected value of the square of the gyroscope’s sensor noise is

simply the covariance of the gyroscope noise ( O'v?‘gy,,, ) results in:
2 2 2 2
GV" = Ts kO'ng = Tst()'vgm (56)

The above equation results in the following equation for the heading error growth from

the integration of sensor noise as a function of time:

0 .=0.JTt . 5.7
¥ v s
Figure 5.1 shows the integration of a static gyroscope (0 ,,, = 0.44 deg/sec) in the

tractor for 1 minute at 5 Hz and 100 Hz. As seen in the figure, Equation (5.7) adequately
describes the random walk due to discrete integration of the gyroscope noise.
Additionally, the effect of sampling rate on the heading error can be easily seen assuming
the same noise statistics for each sample rate. Figure 5.2 shows a Monte-Carlo
simulation used to validate the heading error growth.
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1o (5 Hz)
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-
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—
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Time (s)

Figure 5.1 Integration of Gyroscope Noise.
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Figure 5.2 Validation of the Heading Error Growth Using a Monte Carlo
Simulation.

5.1.2 Lateral Error Analysis for the Stationary Case

The above error analysis of [Gebre-Egziabher, 2001(a)] can be extended to the lateral
dynamics of the tractor to determine the effect of the discrete integration of the yaw rate
and velocity noises on the growth of lateral errors. Assuming that the bias of the radar
has been accurately removed using the estimator in Chapter 4, the remaining radar’s

sensor reading is:

Vradar =V +vmdar (5_8)
where: v"**" is serially uncorrelated white sensor noise of the radar.

Integration of the radar times the heading angle to get lateral position (y) results in
y+y° =_[(V+v’““"’ Jsin(y +v°) 59

Assuming the mean velocity and heading are equal to zero, the lateral error (¥°) is due to

the integration of the sensor’s noise times the heading error.
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ye - j.vradar Sin(lljs) (5,10)

Again, an Euler integration of the sensor outputs results in:
k .
Ve =yE Tl sin(y®) = yi + Ty =Y Ty y! (5.11)
=1

Squaring and taking the expected value of the above equation results in:

ey (Y | = E{S 10y XS vty T (5.12)

Because the radar noise and heading errors are uncorrelated:

E [ys =Y ]= TSZ(:C;E[(W Yos ) ]E[(vd” Yoo ¥ ]) (5.13)

Knowing that the expected value of the square of the radar’s noise is simply the
covariance of the radar noise (O'f,,,,,,,,) and using the expected value for heading from

Equation (5.7):

E[yg Y ]z T’ (il:Tf [iv;admv;adar ﬂ 0 }

i=1 j=1

\ \ (5.1%)
=T k0 Ol =T,02,0 0 Dk

i=1 i=t
Simplifying the above equation results in the covariance of the lateral error growth:

2 42 2 {132 1) 12742 2 _ 2.2 .2
0. =10 w0 om (1 +1k)=LKT, OO =T 1)’0 002, (5.15)

The above equation results in the following approximation for the lateral error growth

due to integration of the yaw gyroscope and radar noises:

O o =T10 1 C o[} (5.16)

The above estimate of the lateral error growth is due only to integration of the noise
in the radar and gyroscope sensors, and only provides the correct estimation of the lateral
error growth when the vehicle is not moving (average velocity is equal to zero). This is
because the analysis assumes that both processes are zero mean. Figure 5.3 shows a
Monte Carlo simulation to validate the lateral error growth at V,=0 m/s. The covariance

of the radar and gyroscope measurement noise is given in Table 4.2.
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Figure 5.3 Validation of the Lateral Error Growth for the Stationary Case
Using a Monte Carlo Simulation.

5.1.3 Lateral Error Analysis for the Non-Stationary Case

While the vehicle is moving, the lateral errors are not dominated by the integration of
radar noise, but rather the propagation of the position from the heading error found in
Equation (5.7). Therefore, utilizing the lateral error dynamics in Equation (3.3) and
substituting the heading error from Equation (5.7) results in a better description of the
lateral error growth. Neglecting the radar noise and assuming the mean heading is equal

to zero, the lateral error (y°) is due to the integration of the vehicle velocity times the

heading error.

y* = [Vsin@y®) (5.17)
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Again, using an Euler integration of the sensor outputs results in:
‘ k
Yeu =i +TVsinW,) = yi + TV, = 3 TV, (5.18)
=1

Substituting Equation (5.4) for the heading error into the above equation results in:

k

k k .
Yia =2 TVYE, =Z[RVZv§-’”"J =T3Vﬁkv,ff?il (5.19)
L=l = i=l

i=l

Squaring and taking the expected value of the above equation results in:
el (Y | = brv(S ez Yo S wen, Y]
-rev: (oo ke 1)
Assuming that gyroscope measurement noises are serially uncorrelated with each other
el (<Y |- T;‘VZE[,kzlkz(vsixl ] . ‘T:v?(ﬁlk%[(vfm Yo ]] (521)

Substitution the covariance of the gyroscope noise into the above equation results in:

(5.20)

& = el oY v S par,, avion, S (5.22)
=1 i1
Simplifying the above equation results in the covariance of the lateral error growth:
€2 =T V0%, (1K +1Kk7 + 1K) = LTV 0% =1V TP 0%, (5.23)
The above equation results in the following approximation for the lateral error growth

due to integration of the velocity times the yaw gyroscope noise:

€, =VO . 3T,1° (5.24)

In reality, the total error growth is the sum of errors from the integration of sensor
noise (Equation (5.15)) and heading error (Equation (5.17)). However, the errors from
Equation (5.15) are small compared to errors from Equation (5.17) (for the noise
covariance values of the sensors used in this thesis) and can therefore be neglected.
Figure 5.4 shows a Monte Carlo simulation to validate the lateral error growth at V,=2

m/s.
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Figure 5.4 Validation of the Lateral Error Growth for the Non-Stationary
Case Using a Monte Carlo Simulation.

Additionally, a similar analysis can be performed for the longitudinal dynamics.
However, the growth of the lateral errors are a function of sine while the longitudinal
error growth is a function of one minus cosine. Therefore, for small heading errors, the
lateral errors grow as a function of the heading error and the longitudinal errors grow as a
function of the heading error squared. Because the positioning errors associated with the
lateral direction are much more significant than the errors in the longitudinal direction,
the longitudinal error analysis was neglected.

Changes in crab angle (or lateral velocity from side-slip) are equivalent to a heading
error that results in a growth of position errors as shown in Equation (5.16). Therefore, if
the crab angle is changing on the same order as the error in heading, the growth in
position errors can be as much as twice that obtained solely from heading errors.
Unfortunately, increased sample rate cannot decrease the errors associated with changes
in crab angle.

Errors in the gyroscope scale factor are negligible for straight-line tracking. However

for U-turn operation, a scale error as small as ¥2% results in a heading error of 0.9 deg.
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Additionally integration of the unknown bias will result in a linear growth of the heading
error and a parabolic growth of the lateral errors. Although the bias is being estimated
from the bias estimation, the bias tends to change over periods of time. However for
short durations, the bias can be assumed constant, such that the errors associated with the
drift of the bias can be neglected. There are also additional errors associated with the
integration routine, which are a function of thé routine and the sample rate [Chapra,
1989].

5.1.4 Error Growth Prediction Through Covariance Propagation

Alternatively the state covariance propagation, from the Kalman filter time update in
Equation (4.20), can be used to predict the state error growth due to integration of the
gyroscope noise. The dynamics in Section 5.1.1 and 5.1.3 can be described by the

following state space model:

i=Ax+ Byv®" (5.25)

e o

The above equation results in the following state covariance propagation (approximating

where:

the error growth due to integration of the yaw gyroscope noise) [Stengel, 1994]:
P=0OP®" +Q, (5.26)
where:
p, B [Ely )] Elyy°]
a2l A
@ = discretized state matrix (A)
For small sample rates (relative to the dynamics of the system) the discrete process nose
matrix (@) can be appréximated by [Franklin, 1998].
Q,=TIQ.I'" =T!BQ.B" (5.27)

where:
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0. = £ly¥]

I = disretized input vector (B)
An exact solution to Q, can be obtained using the method in Section D.7 of [Bryson,
1994]. The covariance propagation given by Equation (5.26) results in the same error
propagation for the heading error (Py) and lateral error (P;;) as Equation (5.7) and
Equation (5.24), respectively.

5.2 Experimental Dead Reckoning Results

As stated previously, the dead reckoning system was implemented on a John Deere
8400 tractor. The KVH fiber optic gyroscope (FOG) was used for sensing yaw rates and
an onboard radar was used for measuring velocity. The covariances of the noise for these
sensors are given in Table 4.2. The tractor was given a line trajectory to follow. The
majority of the experimental runs were performed at about 2 m/s (4.5 mph). Time was
given to allow the bias estimations to settle. Then both GPS position and attitude
measurements were denied to the controller and estimation algorithms. GPS
measurements were still recorded to analyze the performance of the dead reckoning
algorithm.

Figure 5.5 shows a plot of the difference between the actual heading, measured by
GPS, and the estimated heading using the yaw gyroscope during a simulated GPS outage.
The uncertainty in the heading error (Equation (5.4)) is also shown. The tractor is
- equipped with differential braking which gives the ability to add a heading disturbance to
the system by braking one side of the tractor. As seen in the figure, even under yaw
disturbances (from differential braking) during experimental runs, the growth in heading
error developed in Equation (5.7) describes the error quite well. Therefore, it can be
concluded that for short durations (on the order of a minute), the major error from
gyroscope integration at 5 Hz is due to the discrete integration of the sensor noise.
Additionally, the accurate heading estimation from integrating the gyroscope
demonstrates the effectiveness of the cascaded estimation architecture in Chapter 4 to

accurately estimate and remove the gyroscope bias. Integrating the gyroscope at a higher
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sample rate will reduce the heading error and increase the performance of the dead
reckoning system. Again, this is under the assumption that any pre-filter does not exist or
change, such that the covariance of the sensor noise remains the same regardless of the
sample rate. However, as errors from integration of the gyroscope noise decrease (from

increasing the sampling rate) other errors may become more dominant.

Heading Error (deg)

100

Time Following a GPS Outage (s)

Figure 5.5 Heading Error Following a Simulated GPS Outage.

Figure 5.6 shows the lateral error of three runs performing straight line tracking at a
typical tillage speed of 2 m/s. The figure plots the lateral error as a function of time after
GPS measurements were removed. Most of the runs had an estimation error within i0.3
m (1 foot) for over 40 seconds of a “GPS Outage.” This figure shows that for short
durations of GPS outages the estimator is still able to produce state estimates to control
the tractor. The lateral errors remained below 9 cm (half of a GPS Carrier-Phase cycle
length) for only 5-10 seconds as shown in the lower figure. The 9 cm error bound is what
is necessary to identify the Carrier-Phase integers after a GPS outage. However,
continuous positioning accuracy of 0.3 m is adequate for some tillage farm operations
(since it is comparable to the average overlap of most human operators [Palmer, 1988]).
Additionally, search algorithms can be used to produce integer solutions more rapidly by
providing a decreased search space from knowledge of the vehicle position to within 0.3

m.
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Lateral Error (m)
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Lateral Error (m)
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Figure 5.6 Lateral Error Following a Simulated GPS Outage. The Top
Figure Shows the + 0.3 m (1 foot) Boundaries, While the Bottom Figure is
Zoomed In to Show the +% Boundaries.

Figure 5.7 shows the difference between the estimated and actual positions for 42
seconds of one data run. The inner circle represents a 9 cm error bound (half a GPS
wavelength) while the outer circle represents a 0.3 m error bound. Although the error has
grown to 9 cm in only 8 seconds, the tractor has been controlled for 16 m. Therefore, the
dead reckoning error is on the order of 0.5%. Additionally, 40 seconds of control within
0.3 m also represents 0.5% of dead reckoning error. The tractor is being controlled along
a linear trajeétory. As mentioned previously, the lateral errors grow much faster than the
longitudinal errors. This can be seen by the fact that the position errors are along the |
lateral axis. Figures 5.6-5.7 demonstrate the feasibility of being able to recover intégers

after 10-15 m of dead reckoning at typical farm speeds of 2 m/s.
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Figure 5.7 Dead Reckoning Position Errors After a Simulated GPS
Outage for a Single Dead Reckoning Experiment.

Figure 5.8 illustrates the effects of the three errors on the dead reckoning system:
heading error from integration of the gyroscope, errors due to unknown crab angle, and
errors due to integration of the radar sensor. The figure shows the difference in dead
reckohing from using the gyroscope heading, GPS heading, and GPS velocity heading or
course. The direction of travel (velocity heading) and GPS headihg are not available
during a GPS outage, but are simply used to illustrate that the major error in lateral
positibn can occur from changes in crab angle (i.e., sideslip), which are not known during
the outage. The crab angle is being estimated while GPS is available. However, once
GPS measurements are lost, the crab angle can no longer be estimated and must be
assumed to remain constant. In this figure, the system was controlled along a line using
heading estimation from the gyroscope after GPS was turned off. The data was then
post-processed using the GPS and velocity headings for comparison. The velocity
heading is obtained by looking at the direction of two consecutive position measurements
as shown below. ‘

\% _
wvel _ tan-l ( east ) = tan ~1 ( ek ek—l )
Vo (I (] 5.17
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As seen in the figure, the gyroscope heading is able to estimate the lateral position
nearly as well as using the actual vehicle heading (from GPS). This is because the
gyroscope can accurately estimate vehicle heading to within one degree for short (30-40
second) periods as seen previously. The difference in lateral error from using the

gyroscope estimated heading and the vehicle heading remains less than 0.3 meters.
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Figure 5.8 Lateral Estimation Errors due to Integrating Various Headings
(Demonstrating the Effect of Crab Angle on the Errors).

The dead reckoning system using GPS heading as well as thé estimated heading from
the gyroscope results in large errors as the crab angle changes. The crab angle in this
experiment was constant for about 20 seconds, during which time the lateral errors are
quite small. However, after 20 seconds, the crab angle changed less than 1 deg (violating
the assumption that it remains constant), which led to a linear growth in the lateral error.
This change in crab angle could be attributed to a number of factors such as a tire getting
caught in a furrow. Additionally, crab angle has been shown to change with changes in
terrain side-slope [Bell, 1998]. If the exact vehicle velocity direction is known, the dead
- reckoning system can estimate the lateral position very accurately (within 0.1 m during
the 80 seconds in Figure 5.8). The growth of errors from using the velocity heading
(which cannot be seen due to the scale of the figure) are due to the integration of the radar
noise. However, as mentioned previously, these errors become insignificant compared to

the lateral errors produced from errors in heading. If the crab angle remains constant, the
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dead reckoning system can provide good accuracy. However, even on level ground,
disturbances and implements can produce small changes in crab angles that then become
the major cause of errors. Because the crab angle is being estimated in real time, the
variance of the crab angle over time can be monitored to provide realistic estimate of the
dead reckoning errors during a GPS outage.

Figure 5.9 represents the use of the entire dead reckoning algorithm. The first lap
around the desired trajectory (shown by a dashed line) was performed clockwise by the
tractor under automatic steering control using GPS measurements. GPS measurements
were then removed and the tractor drove three additional laps around the track (requiring
over 3 minutes) with no position or attitude measurements. The decrease in dead
reckoning performance over time can be seen in the increased error at the end of the

fourth lap around the track.
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Figure 5.9 Dead Reckoning Performance Around a Track.

The tracking errors for the first lap as well as the errors from the first two dead
reckoning laps are shown in Figure 5.10. Errors for the last lap grew substantially, due to
a change in the gyroscope bias, and are therefore not shown in the figure. The position

and heading errors listed in the figure are for the two laps with no GPS measurements.

Chapter 5. Dead Reckoning Analysis 93



The periodicity of the errors is due to an error in the gyroscope scale factor.

mentioned previously, this is an avenue of future work as discussed in Chapter 8.
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Figure 5.10 Dead Reckoning Errors Around the Track.
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5.3 Conclusions

The accuracy of the dead reckoning controller using low cost inertial sensors
initialized with Carrier Phase GPS was discussed in this chapter. Experimental results
were given that demonstrate the capabilities of the inertial-aided dead reckoning system
to maintain 9 cni accuracy for 5-8 seconds (or about 10-16 meters). Results also show
that the dead reckoning system was able to maintain lateral errors within 0.3 meters for
about 30-40 seconds during a GPS outage. Although 9-cm accuracy is necessary to
reacquire integers, 0.3 meters provides adequate accuracy for many farm tillage
operations (during a short GPS outage). It was also shown that the integration of the
gyroscope could estimate the vehicle heading to +1 deg during the 20-40 second outages.
Therefore, INS can be coupled with GPS to provide continuous control of a farm tractor
with accuracies adequate for tillage operations through the duration of any reasonably
expected GPS outage.

Equations for the growth of heading and lateral errors were developed and shown to
predict the errors in experimental tests. The errors were seen to be a function of the
sample rate, such that increasing the sampling rate of the yaw gyroscope and velocity
sensor could decrease the errors (assuming the covariance of the sensor noise did not
change as a function of sample rate). Dead-reckoning performance of a farm tractor can
be predicted using the presented analysis. This will allow designers to look at tradeoffs
of using various sensors, as well as evaluate the merits of integrating GPS with inertial
sensors for control of farm equipment. However, it was shown that changes in crab angle
can become the largest contribution of lateral errors of the dead reckoning system.
Changes in crab angle cannot be estimated during a GPS outage, and errors associated

with crab angle are not a function of sample rate.

Chapter 5. Dead Reckoning Analysis . 95



Chapter 5. Dead Reckoning Analysis

96



Chapter 6

Partial INS Based Attitude
for Control of a Tractor

This chapter explores the use of a Partial Inertial Navigation System (PINS) based
attitude methodology, as an alternative tb multiple antenna GPS attitude, for the control
of the farm tractor. Previous chapters have assumed that full attitude measurements of
the tractor are available through a multiple GPS antenna system. The PINS system is
comprised of one lateral accelerometer for measuring roll and one yaw rate gyroscope.
This system currently provides a less expensive attitude solution than the mulﬁple GPS
antenna system. While the PINS heading will drift over time, if left uncorrected, it does
not suffer from GPS errors resulting from multi-path and antenna blockages. A Kalman
filter incorporates the PINS measurements with cm-level Carrier-Phase Differential GPS
(DGPS) measurements from one position antenna for complete position and attitude
estimation of an off-road vehicle. The cm-level accuracy of DGPS allows for precise
calibrations of the PINS system to eliminate drift. Because GPS attitude measurements
are not available, an estimate of vehicle heading and roll must be constructed. A heading
estiniator using noisy heading measurements from a single GPS antenna, known as
vehicle course, is incorporated with a rate gyroscope to provide accurate heading
estimates. This heading estimate assumes no sideslip or crab angle. Because there is no

heading measurement using GPS in this chapter, it is not possible to estimate crab angle

Chapter 6. Partial INS Based Attitude for Control of a Tractor 97



as was done in Chapter 4. A simple low pass filter was designed (based on an analysis of
the roll frequency) and shown to provide satisfactory estimates of vehicle roll. Because
most farm applications occur at constant speed, it is usually not necessary to account for
low frequency vehicle accelerations as in [Hayward,1999]. The large amounts of higher
frequency vibration accelerations experienced in off-road vehicles can be filtered out.
This chapter shows that a low cost PINS system is capable of providing the attitude
accuracy necessary for cm-level control of an off-road vehicle. Results are shown using
the PINS system, in conjunction with DGPS position measurements, to autonomously
control the farm tractor. This chapter also compares the lateral control performance of
various sensor options in simulation. Experimental results using low-cost inertial sensors
are compared to the use of GPS based attitude for the control of a farm tractor. These
results show the ability of the low cost PINS attitude system integrated with a single GPS
receiver on the tractor to provide lateral tracking accuracies of 3 cm (16) on level ground
with a calibrated y-axis accelerometer. These results are comparable to the accuracies

obtained using the GPS attitude systemy.

6.1 Effect of Roll

The major need for roll measurements is created by the fact that the GPS antenna is
located at the top of the cab of the tractor so that it may be visible to as many of the
overhead satellites as possible. As seen in Figure 6.1, vehicle roll (¢) creates lateral
position eﬁors due to the non-collocation of the GPS antenna and the control point (CP)
which is located on the ground between the rear wheels. The lateral error at the CP is
simply:

Veer = —hsin(®) 6.1)
where .., is the lateral difference between the GPS position and the CP.

Even if the terrain is fairly flat, small irregularities in the ground will lead to position
errors and can even cause the controlled system to become unstable. Analysis has shown
that for a typical lever arm height (h) correction of 3 meters, positioning errors from roll

measurement noise (10) exceeding 0.4 deg will exceed the of DGPS measurement noise
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[Bell, 1999]. Therefore, to utilize the cm level accuracy of DGPS, roll measurement
noise must be less than 0.4 deg.

Pitch motion of the vehicle creates longitudinal positioning errors. However in the
steering control of the farm tractor, there is no ability to control motion in the
longitudinal direction. Because only lateral tracking is being controlled, pitch motion

was ignored in this work.

- GPS Antenna

e

!
Position of CP ——j \——— GPS Position

Figure 6.1 Effect of Positive Roll on GPS Measurements.

6.2 Estimation Algorithm Using PINS Attitude

The work in this chapter is concerned only with comparing control of the tractor
using GPS attitude to control using PINS based attitude. Because this chapter is not
concerned with dead reckoning, no radar measurements are used. The estimatioh
algorithm used for this work is very similar to the estimation algorithm discussed in

Chapter 4. However, because there are no GPS attitude measurement (as in Chapter 4)

Chapter 6. Partial INS Based Attitude for Control of a Tractor 99



and a few different sensor combinations, the estimation algorithm is discussed again for

this chapter. Figure 6.2 shows a schematic of an off-road vehicle including its CG and

control point (CP).
N

Figure 6.2 Schematic of a Tractor.

Y

As was done previously, the lateral velocities at the CG of the vehicle will be

neglected in the control and estimation algorithms used in this chapter. Under this

assumption, the equations of motion which describe the off-road vehicle shown in Figure

6.2 can be divided into the forward and lateral dynamics shown in Equations (6.2) and

(6.3).
N =V, cos(y) + i, sin(y) (6.2)
E =V, sin(y) +yi,, cos(y)
¥ = -200, Y -0y + K028 (6.3)
§=Lsi Xy,

TV TV
where: u = control input
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E = east position

N = north position
V. = forward velocity
v = heading

Y = yaw rate

Y = yaw acceleration
0 = steer angle

0 = steering slew rate

Ky, @, § are the tractor yaw dynamic parameters from the NYD model discussed in

Chapter 2. The valve parameters, 7, and K,, are given in Section 3.1.1.

6.2.1 Reconstructing an Estimate of Heading

Again, in this chapter there are no heading measurement from GPS. Therefore, an
estimate of heading must be reconstructed from the given set of sensors. Equations (6.2-
6.3) could be placed into one state matrix to estimate all of the necessary states for
control of the tractbr. However, the gyroscope would not specifically be used to help
smooth the heading measurements. Therefore, a simple two state kinematic Kalman filter
is first constructed to estimate the vehicle heading and yaw gyroscope bias. The filter
uses the yaw gyroscope as an input and a rough estimate of vehicle course from
consecutive GPS position measurements as a state measurement. Additionally, as
discussed in Chapter 4, problems can occur when trying to estimate the gyroscope and
steer angle biases in one estimator. Modeling the gyroscope bias as a first order Markov

process with a time constant of 200 seconds results in the kinematic heading model:

. O _ =~
,W = 1 v + I W oo W
Eim | 10 Ml gim| O] "

: (6.4)
v
l/[vel = [1 0{ yaw + vV/
bias _|
where: vy is the GPS velocity heading measurement noise with covariance 0.01 rad?
Wyaw 1S @ yaw process noise vector with covariance:
5x107 rad? 0
4 0 Ix107° =
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Initial values for the discrete heading process noise matrix (Q,) were obtained using the
input sensor noise covariance and Equation (5.27). Values were then slightly modified,
to give the desired filtering characteristics, resulting in the above Q,, matrix.

The Markov time constant of 200 seconds is the estimated time constant of the bias
drift from an Allen Variance analysis of the Fiber Optic Gyroscope in [Gebre-Egziabher,
2001(a)]. The covariance of the process noise is determined from the gyroscope’s sensor
noise and bias drift properties. A linear Kalman filter is then applied to the above
kinematic model to provide estimates of the vehicle heading and yaw gyroscope bias.
The linear Kalman filter is comprised of a measurement update and time update [Stengel,
1994], which is performed at each time step (k). The measurement updated is described
by:

L, = PC"(CPCT +R)
X=X, +L(y,...—Cx) (6.5)
P, =(I-LOP,

where: L = Kalman Gain Vector

P = State Estimation Covariance Matrix

C = Observation Matrix

R = Sensor Noise Matrix

I = Identity Matrix

x= State Estimate Vector [l,l/ g ,,y“w]z
The assumed measurement noise covariance (used in R) on the heading measurement was
0.01 rad®. This covariance value is higher than the GPS velocity-based heading
measurement noise in order to include errors in the heading measurement induced by
vehicle roll dynamics. The time update is described by:

X =Dx, +Tu
k+1 k . k ( 6 6)

P,,=0QPQ2 +Q,

where: @ =discretized state matrix without the Markov time constant
(2=discretized state matrix with the Markov time constant
I'=discretized input vector
Qw=discretized process noise covariance matrix

For the discrete estimator described by the model given in Equation (6.4), @ is found

by discretizing the state matrix (A) without the Markov time constant shown below:

Chapter 6. Partial INS Based Attitude for Control of a Tractor 102



A=[g ‘O‘] ©.7)

and I"is the discretized input vector (B).
B=[ of (6.8)
It is important to note that when propagating the states forward in the time update, the
Markov time constant is not used in the state matrix (4). The Markov time constant is
only used to determine €2, which is used in propagating the state covariance matrix (P).
This is because in reality the actual input driving the gyroscope bias is not known, and
therefore the “best guess” is that it remains constant during the time update.
The heading measurement can be estimated from the GPS velocity heading
measurement (from a single GPS antenna, as in [Kornfeld, 1998] or in [Bevly, 2000(a)])

or from consecutive position measurements as shown in Equation (6.9).

Yoy =tan”!| Lot | gt B2 Ee 69)
north Nk - Nk-l

Because GPS velocity information is quite accurate (without any differential
corrections) the heading measurement from the velocity vector is fairly accurate.
However, the velocity measurements will include all extraneous velocities, including
those induced by vehicle roll. Assuming that there are no changes in the side slip such
that the difference between the vehicle heading and direction of travel remains the same,
the gyroscope filters out this added noise in the heading measurement (and estimates the
gyroscope bias) regardless of other model errors. Additionally, the gyroscope will be
integrated in the time update step of the Kalman filter to produce heading estimates
during a GPS outage. ’

Estimation of the heading from this separate filter was found to be much more
accurate (than the heading estimate from one Kalman filter using the model given in
Equations (6.2-6.3)) because it specifically uses the gyroscope measurements to smooth
the noisy heading measurements. '

Figure 6.3 shows the separate yaw bias estimation, as well as the steer angle
measurement and the gyroscope measurements. This run is similar to the run in Figure
4.4, however now it can be seen that the yaw gyroscope bias is being estimated correctly,

regardless of the steer angle offset.
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Figure 6.3 Separate Yaw Gyroscope Bias Estimation.

The use of a separate estimation technique allows for estimation of the steer angle
bias as in Chapter 4. As mentioned previously, these two biases cannot be estimated
together in one Kalman filter as it sometimes leads to instability in the estimator. Again,
no compensation of the gyroscope yaw rate for non-zero roll and pitch was performed in

this work.

6.2.2 Estimation of the Remaining Tractor States

The remaining tractor dynamics (given in Equations (6.2-6.3)) can be placed into the
following state space structure:

X = A(y)X + Bu+w, (6.10)

where: wx= process noise vector (8x1) with covariances from Chapter 4 (Table 4.1)

o~ a AT
and the remaining estimated states are X =[E N V. v vy 6 4 54

The steer angle bias (8;) and velocity of the tractor are assumed to be slowly varying and
modeled as being driven by random process noise with the same process noise
covariances as the estimator in Chapter 4. Note that heading is not a state in Equation

(6.10).
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Because the vehicle heading is estimated in a separate filter and is not a state in
Equation (6.10), the model described by Equation (6.10) is linear. Therefore the linear
Kalman Filter given previously in Equations (6.5) and (6.6) can be used to propagate the
estimates of the tractor states. The estimate of heading from the heading estimator given
in Equation (6.4) must be fed into the state matrix (A) of the tractor dynamics model. For
the estimator described by the model given in Equation (6.10), @ is determined by

discretizing the state matrix (A):

0 0 cos(y) Igpsin(y) 0 0 0 O
0 0 sin(y) I cos@y) 0 0 0 0
00 0 0. 0 0 ¢ 0
0 0 0 0 1 0 0 0
- 6.1D)
AV=15 0 o ~w!  -2%w, K@ 0 0
00 0 0 0 0 1 0
00 0 0 0 -%v 0
0 O 0 0 0 0 0]

and I'is found by discretizing' the input matrix (B):
B=[O 00000 K% 0} (6.12)

The observation matrix (C) is described by:

=Cx+v - (6.13)

y meas

where: ¥ .. = [EGPS Ngps \i’gyro - g™ 51301
v = sensor noise vector (5x1) with covariances from Chapter 4 (Table 4.2);

(6.14)

oSO
o O = O
(= T e i -
o o= O O
oo O O
el T = i
OO OO
-0 OO

0

The estimator presented in Chapter 4 also estimated a slowly varying crab angle or
heading bias due to lateral velocities. Since no heading measurement is used in this
chapter it must be assumed that there is no heading bias and that the vehicle is headed
along its forward velocity. This assumption is fine on flat terrain. However on largely
sloped terrain, the tractor actually exhibits significant crab angles and the assumption is
no longer valid [Bell, 1998]. Some type of compass or magnetometer could be used for a
heading measurement, but these sensors generally have a bias associated with them

making the crab angle indistinguishable from the heading sensor bias. The magnetometer
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bias may be calibrated out a priori, as demonstrated in [Gebre-Egziabher, 2001(b)], énd
then used as a heading measurement. Additionally, the magnetometer’s heading output is
highly coupled to vehicle roll and pitch due to inclination and declination of Earth’s
magnetic field [Gebre-Egziabher, 2000]. A method for estimating the roll of a farm
vehicle, which can also be used for estimating pitch, is developed in the preceding
section. These roll and pitch estimates could then be to used to correct the magnetometer
outputs using the methods developed in [Gebre-Egziabher, 2000]. Even in circumstances
with significant amounts of crab angle, a heading measurement is not absolutely
necessary. As long as the crab angle is not changing faster than the bandwidth of the
estimator in Section 6.2.1, the estimator will provide a good estimate of vehicle course or
direction of travel. Ultimately it is the vehicle’s course (and not actual heading) that is

required for control of the tractor.

6.2.3 Reconstructing an Estimate of Roll

As discussed in Section 6.1, an estimate of vehicle roll is required to correct the GPS
position measurement on the roof of the tractor. Without GPS attitude measurements, an
estimate of the vehicle roll must be constructed in order perform this correction. The roll
motion of the vehicle occurs from terrain inputs (as described in Figure 6.1) as well as
from vehicle dynamics coupled through the suspension. As a simplification, the coupling
between the roll and vehicle dynamics is neglected in this work. Therefore, the roll states
are modeled independently as shown in the roll model equation below.

o 010 ¢7] Joo0
¢ |=|0 0 0 ¢ [+|]1 Ofw, w,]
& 0 0 Ofg™ 0 1

[%]_{1 0 o] Z
¢;gyro - O 1 1 rofl
_gbiax

6.15)
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¢ =rollangle

¢ = rollrate
where:

roll

g, =rollgyro bias

w, & w, are disturbance inputs

The roll states can now be estimated using the same Kalman filter described
previously. However, the roll states are only driven by disturbances (i.e. process noise)
because there is no commanded input. Therefore, good knowledge of the covariance of
the disturbance inputs, w; and wy, is required to estimate the states éorrectly. However,
since an estimate of the roll rate state is not required, Equation (6.15) can be rearranged
to use the roll rate measurement from a gyroscope mounted in the roll axis as an input to

~ a kinematic model shown in Equation (6.16).

o oL
g. l:au O 0 g I;;oll —0 gyro roll (6 16)

¢HCC = [l O{gtll + v(lCL'

b

where: Vace 15 the roll measurement noise with covariance 3x10™* rad?
Wrou 18 the roll measurement noise with covariance:

_[4><10*S rad’ 0 }
" 0 1x107 =&
The Kalman filter described by Equations (6.5) and (6.6) can now be applied to the above
kinematic model to provide estimates of the vehicle roll angle and roll gyroscope bias.
Figure 6.4 shows a spectral analysis of vehicle roll on a typical field (measured using
GPS ’at 10 Hz) for a tractor traveling 2 m/s. As seen in the figure, the vehicle roll
disturbance is mostly at low frequency, “rolling off” at around 0.12 Hz. A resonant peak
can also be seen near 1 Hz. This is a high frequency ground disturbance acting on the
cab of the vehicle. The low frequency nature of the vehicle roll precludes simply filtering
GPS position measurements. If the roll disturbance was solely high frequency vibrations,
the GPS antenna measurements at the roof of the vehicle could be filtered, since the

tractor would be unable to track these high frequency lateral motions.
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Figure 6.4 Spectral Analysis of Tractor Cab Roll (at 2 m/s).

However, the fact that the vehicle roll consists mostly of a low frequency content
allows for the use of inexpensive accelerometers. Sensors such as accelerometers suffer
from high frequency noise, but can be filtered to measure the frequency content seen in
Figure 6.4. Because the roll disturbances are of such low frequency, the roll gyroscope
does not add much more information to the filtered accelerometer. For this reason, only
the accelerometer was used to measure roll for control of the tractor. The roll estimator
(which uses the roll gyroscope) described in Equation (6.16) was only used for
comparison to the accelerometer measurements. It was noticed that indeed the filtered
roll accelerometer produced similar results to the full 2-state estimation model.

The accelerations measured from the accelerometer include roll as well as lateral
acceleration created from vehicle yawing and side slip [Gillespie, 1992] as shown in
Equation (6.17).

e = =8 SO +V, ¥ +V, (6.17)

where
Vmeas = Measurement from the accelerometer

g, = gravitational constant (9.81 m/s*)
B = vehicle side slip angle

Equation (6.17) assumes that the longitudinal velocity (Vi) and yaw rate (y) are

orthogonal. Because Vy << Vi, lateral accelerations at the vehicle CG due to side slip
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can be neglected. Therefore only corrections of the accelerometer measurement due to
vehicle yaw rate are considered. The resulting corrected roll measurement is:
Pras =sin” (w} (6.18)
8
A simple first order digital low pass filter with a bandwidth of 0.12 Hz was used to
filter the accelerometer measurements (at a sample rate of S Hz) as shown in Equation
(6.19).

oz) _ 085 o (6.19)
Opeas(z)  72—085

Although this cutoff frequency is filtering away the higher frequency roll seen in
Figure 6.4 (at about 1 Hz), the tractor’s control bandwidth is such that it could not track
the high frequency lateral motion caused from this higher frequency roll. Therefore, no
performance is lost by filtering the roll sensor at 0.12 Hz.

The GPS position measurements at the roof of the vehicle must be translated to the
control point on the ground using the “lever arm” correction:

Py =TXP, +P,. (6.20)

lever—arm
Equation (6.20) represents the transformation (lever arm correction) from the GPS
positions measured on the roof of the tractor in an East-North-Down coordinate system to
the tractor control point (CP) on the ground. The transformation matrix (7) for a yaw
(y), pitch (0), roll(¢) Euler angle sequence is defined by [Greenwood, 1988]:

cos(y)cos(8) cos()sin(8)sin(9) — sin()cos(9) cos(w)sin(8)cos(@) + sin(y) sin(4)

T ={ sin(y)cos(@) sin(y)sin(0)sin(¢) + cos(y)cos(d) sin(y)sin(@) cos(d) —cosy) sin(¢) 6.21)
~sin(@) cos(8)sin(¢) cos(8) cos(¢)

The antenna measuring the position of the tractor was located on the front right corner
of the roof of the tractor cab. Therefore the lever arm vector (Pyer-arm) from the position

antenna to the CP (located on the ground between the rear axles for this chapter) is

defined as:
X —-1.61lm
f,lever——arm = y == 057 m (622)
z| ] 3.06m

Chapter 6. Partial INS Based Attitude for Control of a Tractor 109



As mentioned previously, pitch of the vehicle does not create lateral errors and

therefore was not used in this chapter. Therefore, Equation (6.20) simplifies to (assuming

zero pitch):
N cos(y) —sin(y)cos(¢)  sin(y)sin(¢) N
E| =|sin(y) cos)cos@) —cosy)sin(@) (P om +| E (6.23)
D 0 sin{¢) cos(¢)

CcP meas
However, if there was a concern over longitudinal errors, the same approach of low
pass filtering an accelerometer could be applied to the pitch axis (since the frequency

component of pitch motion is nearly identical to that of roll).

6.3 Simulation Results

The same linear quadratic regulator (LQR) presented in Chapter 3 was used to control

the lateral error (y) of the tractor with the control point at the CG of the vehicle (I, =0).

The control algorithm is actually independent of whether or not GPS or PINS attitude
measurements are used. This is due to the fact that the control algorithm only uses the
estimates of specific states, and not the measurements themselves (assuming that the
estimator can produce the required state estimates given its measurements). This
flexibility allows for optimization of the GPS/INS integration without affecting the
control algorithm of the tractor. ‘

A simulation study was done to provide a comparison of the (closed loop) line
tracking at 2 m/s of various sensor sets. Realistic sensor noises (described in the next
section and given in Table 6.2) were used. A combination of low frequency vehicle roll
(+5 deg at 0.1 Hz) as well as white roll measurement noise was added to the vehicle. The
roll measurement noise is due to actual roll noise as well as roll measurement noise. The
following five cases were simulated:

Case I-GPS Attitude

Case II-No GPS Attitude (i.e., no roll measurement)
Case III-No GPS Attitude with a Gyroscope

Case IV-Noisy Roll Measurement

Case V-Noisy Roll Measurement with a Gyroscope
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Standard deviations of the heading estimate errors are shown in Figure 6.5a and the
standard deviation of the resulting lateral position errors are shown in Figure 6.5b. A

summary of the errors for the various cases are also presented in Table 6.1.
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Figure 6.5a Heading Error vs. Roll Figure 6.5b Lateral Tracking Error vs.
Noise for Various Sensor Sets. Roll Noise for Various Sensor Sets.
Table 6.1 Simulation Study Results: Heading Estimation
and Lateral Errors (16) for Various Sensor Sets.
Case I | I I v v \% \% \%
lo Roll 0.1 0.2 02 | 025 | 1.0 | 025 | 05 1.0

Noise (deg)

o(V¥,,, ) (deg) 05 | 3.0* 0.5 2.0% | 3.0% 0.3 0.37 | 045

O(Y erroc ) (€MD) 1.0 | 28.0% | 21.0 | 85*% | 12.0% | 2.1 2.7 3.2

Asterisks are given next to values where the system was unstable for the LQR control
weights given in the previous section. Therefore results for these cases are for a
controller with reduced penalties and a reduced bandwidth. It is‘important to note that
the decrease in controller bandwidth ignores the roll disturbances at the cost of reducing
the ability to reject “real” position disturbances. It is evident by the results in the table,
that the gyroscope’s ability to provide a better estimation of heading also provides an
increase in the lateral traéking performance (even with noisy roll measurements). It is
important to note that Case IV will exhibit the same performance as a system using one
regular state estimator. This is because the gyroscope (in a regular estimator) would not

specifically filter the noisy heading measurement.
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6.4 Experimental Results

The experimental validation of the PINS attitude for control of the tractor was again
performed on the John Deere 8400 tractor discussed in Appendix A. A KVH fiber optic
gyroscope (FOG) was used for sensing yaw rates. Although off-road vehicles are subject
to large amounts of mechanical vibrations, the non-mechanical FOG can provide
excellent yaw sensing under these conditions. The yaw gyroscope provides the ability to
estimate heading and yaw rates more accurately, therefore increasing the control
performance of the vehicle. The increased estimation of yaw rates additionally helps the
roll estimate due to the yaw correction described in Equation (6.18). A Humphrey’s
accelerometer and a Systron Donner Gyroscope were used in the roll axis of the vehicle.

The majority of the experimental runs were performed at about 2 m/s (4 mph) along
straight-line trajectories. This is a typical speed for most farm tillage operations. GPS
attitude corrected position measurements were recorded for performance analysis of the
PINS control. Data was collected to compare the errors from GPS attitude
measurements, GPS position based attitude measurements, and PINS measurements. A
list of the sensor noises is shown in Table 6.2. The noise associated with the single
antenna velocity and heading estimate is dependent on vehicle speed. The values listed
below are typical for speeds ranging between 2-3 m/s (4-6 mph). It is important to note
that most INS sensors have biases that are usually not constant over time and
temperature, and therefore must be calibrated. It is also important to note that the static
sensor noise on the accelerometer can be misleading. The actual accelerometer noise will
be much higher due to the fact that the accelerometer is sensitive to high frequency
accelerations and vibration noise, creating the heed to filter the accelerometer. The
critical value of concern is the roll measurement noise after sampling and filtering of the

accelerometer.
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Table 6.2 Static Sensor Noises (10).

State GPS INS
Multiple 0.1 Honeywell 0.60
Antenna Magnetometer
¥ (deg) Single Antenna
(Equation (6.9) 2.0
@ V,~2m/s)
Y (deg/s) | Multiple 10 | KvHFOG 0.44
Antenna
V. (m/sec) | Single Antenna | 0.03 | Doppler Radar 0.12
¢ (deg) | Multiple 0.1 Humphrey 0.04
| Antenna ' Accelerometer )
¢ (deg/s) Multiple 1.0 Systron Donner k 0.60
Antenna ) Rate Gyro '

Figure 6.6 shows a plot of GPS roll measurements and the measurements from the

accelerometer for a controlled run along a straight line in a fairly level field at 2 m/s. The

filtered accelerometer is then compared to the GPS roll measurements along with the

difference in the two measurements in Figure 6.7. It is important to notice that the roll

measurement error for the filtered accelerometer is below the 0.4 deg threshold required

to utilize the DGPS position accuracy as mentioned previously [Bell, 1999].
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Figure 6.6 Accelerometer Roll and Roll from GPS.
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Figure 6.7 Filtered Accelerometer Roll, GPS Roll, and Their Difference.

Figure 6.8 shows the lateral error for straight line’ tracking on a fairly level field. The
errors are calculated using the GPS attitude measurements to provide the “true” position.
Figure 6.9 shows the heading estimation for the step response. The top portion of the
figure shows the noisy velocity heading as well as the GPS attitude heading. The bottom
portion of the figure shows the estimated heading using a Kalman filter from the model
given in Equation (6.4). As can be seen in Figure 6.9, the heading estimator is providing
a fairly accurate estimate of the vehicle heading in the presence of large heading noise
from the velocity vector of one GPS antenna. This shows the ability of the gyroscope to
help smooth the noisy heading measurements which led to the instabilities for Case II and
Case IV of the simulation in the previous section. The small limit cycle observed in the
vehicle heading is due to unmodeled non-linearities including, hydraulics, actuator dead

band and linkage misalignments in the steering mechanism.
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Figure 6.9 Heading Estimation for the Experimental Step Response.
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Figure 6.10 shows an experimental run controlling the tractor in a field. The initial
errors in Figures 6.8 and 6.10 are from the initial line acquisition. Additionally, Figure
6.11 shows the actual and estimated heading and Figure 6.12 shows the heading errors for

the run done in Figure 6.10.
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Figure 6.10 Control of the Tractor in a Field.
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Figure 6.11 Heading Estimation for the Field Run.
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Figure 6.12 Heading Errors and Heading Estimate Errors for the Field
Run (Note the Change in Axes).

Table 6.3 presents a comparison of the attitude systems for the control of the tractor

over several different runs tracking a line for approximately 120 m at 2 m/s. All errors

are with reference to GPS positions corrected using GPS attitude measurements. It is

important to note that this reference has 2-3 cm of error (15). The mean and standard

deviation for the “no lever arm” case will be highly dependent on the amount of roll and

change in roll over the field. - All of the runs occurred on fairly level terrain with less than

+5 deg of roll and agree quite well with the simulation results presented in Table 6.1

Table 6.3 Comparison of Attitude Systems for Control of the Tractor.

Tractor Tracking Errors
Mean (m) 1o (m)
No Lever Arm Correction 0.10 0.12-
PINS Only 0.007 0.0315
GPS Attitude 0.001 0.0234
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6.5 Conclusions

This chapter has shown that inertial sensors, integrated with a single GPS receiver can
provide the attitude accuracy to perform cm-level control of a farm tractor. The PINS
controlled tractor is shown to produce attitude estimates nearly comparable to the attitude
measurements obtained from a 4-antenna GPS solution. Results show that the roll
characteristics of the tractor allow an inexpensive accelerometer to be filtered in order to
provide roll measurements near the accurécy of the GPS attitude system. Finally, results
show that performance of the PINS controlled tractor is comparable to that of a tractor
using GPS attitude. It was also shown that a simple separate bias estimation technique
could estimate the yaw gyroscope bias in the presence of a steer angle bias as’ well as
provide accurate heading estimates of the vehicle.

Special care was taken to insure that the accelerometer biases were calibrated before
experiments. It is known that most INS sensors have bias drifts associated with them
(although there are certain types of inclinometers that have very good bias stability). For
this reasbn, a solely INS attitude solution may hot be practical for providing robust cm
level accuracy over all conditions. However, this chapter has shown that the inertial
sensors can provide the attitude accuracy to perform cm-level control of a farm tractor.
Therefore, the PINS solution may provide a good back up sensor solution, where the INS
biases can be calibrated using GPS attitude measurements similar to the methodology
discussed in Chapter 4. In practice, some type of fusion of the GPS attitude and inertial
solutions will most likely be used. This type of redundancy will increase the robustness

of the system to sensor failures.
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Chapter 7

Towed Implement Control

This chapter explores the use of a simple kinematic implement model, and carrier-
phase Differential GPS measurements (16=2 cm) on both the tractor and towed
implement to directly control the position of the implement. This control is performed
through the steering actuation of the tractor. A simple analytical model is developed for
the tractor/implement combination. The kinematic model is linearized, allowing the
parameters of the model to be identified using system identification techniques [Ljung,
1987]. The linearization of the model also allows state-space control and estimation
techniques to be applied. A controller is then designed and implemented on the
experimental system to control the position of the implement on a given path across’the
field. Full state feedback (requiring 7 states) is used to control the implement. An LQR
algorithm is used to produce the feedback gains for the controller and an Extended
Kalman Filter (EKF) is used to estimate all of the states required for the full state
feedback algorithm. The model is validated with experimental data using carrier-phase
Differential GPS position on the tractor as well as on the implement. The linearization of
the tractor-implement model is validated through an open loop simulation as well as
through a series of line tracking and step response experiments on a John Deere tractor
with a chisel plow. Initial experimental results demonstrate that a linear compensator can

accurately control the towed implement to within 10 cm of the desired trajectory.
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7.1 Tractor-Implement Model

Figure 7.1 shows a schematic of the tractor pulling a towed implement. The
implement’s point of zero lateral velocity (ZLV) as well as the implement control point
(cp) are shown in the figure. The ZLV is the point on the implement where the lateral
velocity is equal to zero, stemming from the use of a kinematic model to describe the
implement. The control point defines the location of the GPS positioning antenna on the
implement, as well as the implement position (e, ny), in this thesis. The position, yaw,

and steering dynamics of the tractor have been discussed in previous chapters.

E

Figure 7.1 Schematic of a Farm Tractor and Towed Implement Combination.

A kinematic model of the implement can be used to describe the relationship between

tractor velocity (V,)and yaw rate (r) to implement angle as given in Equation (7.1).

¥ ==rli+ 2 cosr)] —Lesin(y) A
The above model is derived by simply looking at how tractor velocity and yaw rates
translate into velocities at the tow pin (as discussed in Section C.1). The resulting tow

pin velocities can then be used to determine the rotational velocity of the implement

assuming zero lateral velocity at the ZLV point. Linearizing Equation (7.1) around small
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implement angles and placing it into a transfer function from tractor yaw rate (r) to

implement angle results in:

yis) _—0+8) _ -K,
r(s) s+% s+,

(1.2)

The resulting linear model is a simple first order lag from tractor yaw rate to
implement angle. The parameters in Equation 7.2 were identified using a system
identification approach [Ljung, 1987] similar to the approach taken to identify the yaw
dynamics of the tractor in Chapter 2. The tractor was manually driven around at various
speeds while inducing yaw rates to produce various implement angles.

Figure 7.2 shows how the identified values vary with forward velocity with the
implement down as well as with the implement up. A least squares best fit of the points
in Figure 7.2 allows for identification of the variables a; and b; in Equation 7.2 for the
implement down (solid line) as well as the implement up (dashed line). The results of
the least squares fit along with the physically measured quantities of a; and b; are given in
Table 7.1. It is interesting to notice that the position of the implement’s ZLV point (the
point with zero lateral velocity) moves forward when the implement is in the ground. It
makes intuitive sense that the implement’s blades “plowing into the ground” change the |
rotation point of the implement. Therefore, for the physical measurements of a; and by,
the ZLV point was assumed to be at the implement’s axle (tires) when the implement was

up and at the midpoint of the plow blades when the implement was down.

Table 7.1 Implement Model Parameters.

Pérameter System Identified | Measured
a 1.16 m .14 m
b; (implement down) 442 m 50m
b; (implement up) 5.63m 5.8 m
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Figure 7.2 Implement Model Parameters vs. Velocity for the Implement
Down (Solid) and Implement Up (Dashed).

The best fits for the model parameters shown in Figure 7.2 are used to validate the
model in Figure 7.3. Figure 7.3 shows the vehicle velocity, yaw rate and implement
angle (calculated from the inverse kinematics given the tractor position and heading and
the implement position as shown in Appendix C) as well as the implement angle from the
linear model in Equation 7.2. Recall that the model has been linearized using small angle
approximations (which generally holds for angles less than 20 deg). As seen in the
figure, the linearized model fits the actual data fairly well for angles less than 30 deg.
The error between the model! and actual angles due to the linearizatioh can also be seen in
the regions of implement angles above 30 deg. However, most implement operations
should maintain implement angles of less than 30 deg such that the linearization is valid

for control of the implement.

Chapter 7. Towed Implement Control 122



.
=

Yaw Rate (deg/s)
<o

=)
=]
~

Y

£
(=]

[
<o

Implement Angle (deg)
=)

i 1 1 i l
0 20 40 60 80 100 120 140 160 180 200
Time (s)

Figure 7.3 Implement Model Validation.

Figure 7.4 shows the open loop roots of the tractor-implement combination. Six of
the roots are the same as the roots of the tractor system discussed in Chapter 3. The

implement adds one additional real pole at about -0.4 rad/sec.
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of the Tractor-Implement Combination. the Tractor-Implement Combination
(Ts=0.1 sec).

7.2 Implement Control Algorithm

A linear quadratic regulator (LQR) was used to control the lateral error (y;) of the
implement (as opposed to the lateral error of the tractor as in Chapter 3). Setting the
control point along the center line of the implement at a distance L; from the tow pin (as
shown in the schematic in Figure 7.1) and assuming small heading errors and implement
angle, the lateral dynamics of the implement are described by:

v =Wy, —Liy—(a, + L))y (7.3)
where y; is the lateral position of the implement with respect to the tracking line as shown
in Figure 7.5 and Ver 1s the difference between the actual and desired heading as given in

Equation (7.9). The derivation of Equation (7.3) is given in Section C.2 of the
Appendices.
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Figure 7.5 Schematic of a Desired Implement Trajectory.

Rewriting Equation (7.2) into the form:
7 =~-Ky-ay (7.4)
The remaining dynamics necessary for full state feedback control are the tractor yaw
dynamics (developed in Chapter 2) and the steering dynamics (given in Chapter 3).
Rewriting the yaw dynamics from Equation (2.13) yields

W =-200 W — oy + K, 08 (1.5)
and rewriting the steering dynamics given in Chapter 3 yields
e —-1. K
0=—-0+—"
T T, u (7.6)

Equations (7.3-7.6) must be placed into the state space form shown in Equation (7.7) for

the lateral control states ( X .):

X,=AX,+Bu (7.7

The linear lateral dynamics can then be used to calculate the LQR control gains for the
control law:

u=-K X, (7.8)

Where: Xc=[:571 }7 l/’}err ll; y; S éj|
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(Note: The * denotes estimates of the states.) Methods for calculating y, and ¥, are

given below. All other estimates come from the Extended Kalman Filter estimation
method described in the next section. The heading error is simply the difference in the
desired and actual heading.
V.., =V~ (1.9)
The lateral error of the implement (shown previously in Figure 7.5) is the distance of the
implement control point to the desired line and can be found by:
Y = (él —E,, )COS(V’des) - (ﬁl =Ny, )Sin('/’des) (7.10)
The LQR compensator gain vector (K;) was solved at each time step (by solving the
Riccati equation in real time) using the following control state weighting matrix (Qy) and
control input weighting value (R,) as described in [Stengel, 1994]:
o, =diagl0, 0, 0, 0, O, 0 &l
=diagll 0 0 0 0 1 0] (7.11)
R,=0.1
The above weighting matrices results in a control vector gain (K,) at 2 m/s of:

K, =[269 -13.81 23.14 079 020 457 042]

Placing weight on the steer angle state increases the damping in the closed loop system
by penalizing the amount of steer angle allowable. The above compensator results in a
closed loop bandwidth of 0.5 rad/sec dominated by the complex root pair shown in

Figure 7.6.
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In this thesis the tractor’s yaw dynamic model developed in Chapter 2 is assumed to
remain unchanged with the addition of the implement. Because the implement is towed,
the implement should exert little lateral force on the tractor (for small implement angles).
Several yaw dynamic identification runs (as was done in Chapter 2) for the tractor were
taken with the implement up and down. These identified data runs can be seen in Figure
7.7 along with the NYD model from Chapter 2. The tractor yaw dynamics exhibit a very
similar behaviof with the towed implement to that seen in Chapter 2 (with no implement).
However the natural frequency has decreased slightly due to the implemeht. Increasing
the mass of the tractor or front tire relaxation length will cause the natural frequency of
the analytical FTR model to decrease. However, the FTR model will not match the small
amount of added damping seen in the tractor yaw dynamics with the implement.
Although the tractor model has changed slightly, the implement’s closed loop bandwidth
of 0.5 rad/s allows the use of the same NYD model Additionally, because the closed loop
bandwidth of the controlled system is considerably below the yaw dynamics of the
tractor, it may be possible to simplify the controller using the kinematic yaw rate model
of the tractor shown in Equation (7.12).

,=Vrs (7.12)
L
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Figure 7.7 Identification of the Second Order Yaw Dynamic Model of the
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7.3 Implement Estimation Algorithm

The dynamics that describe the tractor implement are given in Equations (7.3-7.6).
The tractor position dynamics are described by (from Equation (4.1) with [cp=0 and
neglecting lateral velocities (Vy) at the CG):

E, =V sin(y)

=Vt o
The tractor yaw dynamics and steering dynamics were given in Equation (7.5) and
Equation (7.6), respectively. The implement position dynamics (at the cp) are described

by: |
é = Er = (L7 + L) cos(y +y) = ay cosy) 714
n, = Ny +(L; Y+ Lyn)sin(y +y) + a,y sin(y)
The implement position dynamics can be derived directly from the velocity at the control
point or by taking the time derivative of the implement position kinematics as shown in

Section C.3. Substittiting Equations (7.1) and (7.13) into Equation (7.14) results in:
&y =Vy siny) + [ ayrcosy) + 2V, sin(y) os(y +) - a,yr cos(y) 015)
iy =V, cosy)— [ a,yrcos(y) + 2V, sin(y) bin(y + ) + a,yrsinw) '

There are 16 states listed in Table 7.2 which must be estimated in order to accurately
control the implement. Several of the states are needed for full state feedback as
discussed later in Section 7.4. Ten of the stétes come from the dynamics of the tractor-
implement combination given in Equations (7.4-7.6, 7.13, and 7.15) The remaining six
states are velocity and five biases estimated in order to improve the accuracy of the

control architecture.
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Table 7.2 Estimated States for Towed Implement Control.

Tractor Implement

~

n T
A ~ A A ~ e . & & A A A ~ ~ oy ~ T
XT=[ET N, Vo v vy y, 666, 3 rb} k=6 a7 7]

E = tractor east position e =east position
N =tractor north position n=north position
V, =forward velocity Y =angle

y = heading Y, =angle bias

W = yaw rate ’
¥/ = yaw acceleration
Yy =heading bias or "crab angle"

& =steer angle

o =steering slew rate
o p, =steer angle bias

gy = gyro bias
rb =radar bias

A cascaded estimator very similar to the estimator described in Chapter 4 was used
for estimating all of the states needed for accurate implement control. The dead-
reckoning estimator, given in Chapter 4, and used to estimate the tractor states, remains

unchanged. The estimated states from the dead reckoning estimator are:

~ ~

%=t 8 % v g v
The remaining dynamics used to estimate the states necessary for control are the tractor
yaw dynamics (7.5), the steering dynamics (7.6), implement position dynamics (7.15),
and the implement angle dynamics (7.1). This leaves the remaining states to be estimated

in the second estimator.

N N . . . T
Xﬁ[‘f’ vV, 66 96, ¢ A 7 Yb:|

Because the dynamics described in Equations (7.1), (7.5), (7.6) and (7.15) are non-

linear, they must be linearized about an operating point at each time step in order to place

the dynamics in the form shown in Equation (7.7). This is done by solving for the

Jacobian (J) at each time step such that:
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X =JX +Bu (7.16)

%o, 4
ox; oz,
where: J=|: :
F ... W
ax; ox,

As in Chapter 4, the biases and velocity of the tractor are assumed to be driven by a white
process noise such that:
IV Sbias V bias J = Whias
where wp;s 1s @ random process noise vector.
All of the covariance values assumed for the process noise for the tractor states remain
unchanged from Chapter 4 (listed in Table 4.1). The covariances of the process noise for

the four additional implement sates are listed in Table 7.3

Table 7.3 Additional Covariance Values for Process
Noise of the Implement States.

Implement State Covariance
er 0.1 m*
n 0.1 m*
y 0.01 rad®
% 1.0x107° rad®

As was done in Chapter 4, the radar and gyroscope biases estimated in the first filter are
used to correct the sensors used as measurements in this second filter. The observation
matrix (C) is defined by the measurement model equation:

Y, =CX +0v (7.17)

. — pot o 8Yro radar __ GPS GPS inv~kin]T
Where. Ymeas - [5 VI 8 bias Vx rbias eI n, y
v = unknown sensor noise vector (9x1);

The same sensor noise covariances for each of the sensors from Chapter 4 (listed in Table

4.2) are used in this chapter. Recall that carrier-phase Differential GPS is used to
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measure the position of the implement as well as the position of the tractor. Therefore
the covariance of the measurement noise is the same for the implement position and
tractor position measurements. The covariance of the pseudo implement angle
v_kin

measurement (7"” , calculated using the inverse kinematics detailed in Section C.4) was

assumed to be 3.0x10™* rad®>. Note that there are three sensor biases in the second

estimator such that:

6" =8 +6,,,
Ve o (7.18)
Y=Y+ Y

The Extended Kalman Filter (EKF) is comprised of a measurement update and time

update [Stengel, 1994], which are performed at each time step (k). The measurement

update is described by:
L, =pclcpc +p7
R, = X, + L Omeas — CX) (7.19)
where: L = Kalman Gain Vector

P = State Estimation Covariance Matrix
C = Observation Matrix

R, = Sensor Noise Matrix

I = Identity Matrix

X = State Estimate Vector

The time update is described by:
X, =X4t
T (7.20)
F,=®R® +0,

where: & =discretized Jacobian (J) at each time step
Q.=discretized process noise matrix
At = sample rate

X is obtained from Equations (7.1, 7.5, 7.6, 7.13, & 7.15)
The EKF provides estimates of all the states in Table 7.2 at every time step. The process
noise matrix (Q,,)was taken to be a diagonal matrix, which assumes no correlation for the
process noise of any of the states. The values of each diagonal were the process noise

covariance of the corresponding state as listed in Table 4.1 and Table 7.3. Similarly the
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sensor noise matrix (R,) was taken to be diagonal using the sensor noise values in Table

4.2 and 3.0x10™ rad? for the pseudo implement angle measurement (y™-5%).

7.4 Experimental Implement Control Results

The implement control was tested on the aforementioned John Deere tractor pulling a
- 7.93 m (26 foot) wide chisel plow shown in Figure 7.8. A GPS antenna was placed at the
rear of the implement (L;=6.51 m) to provide 2 cm positioning of the implement (in
addition to the GPS receiver on the tr‘ac‘tor). The control point for the implement was set

at the GPS antenna location.

Figure 7.8 GPS Guided Farm Tractor and‘Implefnent.

The tractor was given line trajectories to follow, starting from some offset from the
line to simulate step responses. The majority of the experimental runs were performed at
about 2 m/s (4.5 mph). Figure 7.9 shows a simulation of a unit stép response for lateral
control of the tractor. Figure 7.9a uses a control algorithm to control the position of the
tractor, while Figure 7.9b has the feedback wrapped around the position of the
implement. As seen in the figure, by controlling the implement, the tractor overshoots

quite a bit in order to bring the implement lateral error to zero approximately 50% faster
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(and in a very similar fashion to the way the controller brings the lateral error of the

tractor to zero in Figure 7.9a).

a) Feedback control of the Tractor

1 T T T T ¥ 1
' : i '} == Implement
: : -~ ~ Tractor
-0.5 ) i L ] L 1
-10 0 10 20 30 40 50 60
East (m)
b) Feedback control of the Implement
: | = Implement
- T;actor
cieam . ot
1 l H 1
20 30 40 50 60

East (m)

Figure 7.9 Simulation of Tractor-Implement Step Responses.

Figure 7.10 shows an experimental step response of the tractor and towed implement.

The desired trajectory is a line at 0 m North. As seen in the figure there exists a slight

offset in the implement position even on flat terrain. This bias will most certainly be

more pronounced and vary in an uncertain manner on hilly terrain. It is also evident that

the implement controller is commanding the large overshoot of the tractor in order to

bring the implement to the desired line as in the simulation shown in Figure 7.9b.

Comparisons of the simulated and experimental step responses for two different initial

condition runs are shown in Figure 7.11.
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Figure 7.10 Experimental Implement Step Response.
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Figure 7.12 shows the lateral implement error (as measured with GPS) from four
- various step responses from varying distances from the desired tracking line, as well as a
zoom in of one step response. The ensemble error of the lateral controller (once the
desired line was reached) on the four runs was 1.4 cm with a standard deviation of 6.5
cm. Additionally, as shown in the bottom half of the figure, the implement errors
remained within 10 cm. Recall that the accuracy of the GPS position sensor is 2 cm. The

lateral accuracy measurements in Figure 7.12 include this 2 cm of GPS position noise.
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Figure 7.12 Implement Lateral Tracking Errors.

Figure 7.13 is a simulation of the implement control about an arc. The tractor
implement starts with a 1 m step response tracking a straight line near (0 m,0 m). The
implement is controlled about a 15 meter radius arc centered at (45 m,15 m). Both the
implement and tractor positions for the simulated experiment are shown in the figure.
Additionally, the lateral tracking errors of the implement and tractor positions and the
implement angle from the simulated run are shown in Figure 7.14 and Figure 7.15,

respectively.
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Figure 7.13 Simulated Control of the Implement Along an Arc.
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Figure 7.14 Lateral Errors of Implement and Tractor Position for the
Simulated Arc Trajectory.

Chapter 7. Towed Implement Control 137



30 f % ! % ! ! T

Implement Angle (deg)

0 10 20 30 40 50 60 70 80
Time (s)

Figure 7.15 Implement Angle During Simulated Control Along an Arc.

Finally, Figure 7.16 shows the implement controller tracking a 35 m diameter circle
centered at (0 m,50 m). Note that the implement does not start tracking the arc at the
tangent of the arc. Rather, the implement was tracking a line and then was asked to track
the circle once it reached the edge of the arc. The lateral error while tracking the arc was
2.5 cm with a standard deviation of 3.5 cm. The lateral errors of the implement and
tractor position are shown in Figure 7.17. Notice that in order to achieve approximately 5
cm RMS tracking error with the implement, the tractor position is about I meter outside
the desired arc. This discrepancy shows the importance of being able to control the

implement position on curved trajectories.
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Figure 7.16 Experimental Control of the Implement Along an Arc.
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Figure 7.17 Lateral Errors of Implement and Tractor Position for the
Experimental Arc Trajectory.
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7.5 Conclusions

This chapter has demonstrated the position control of a tractor towed implement
using Carrier-Phase Differential GPS measurements on both the tractor and implement.
A simple kinematic model of the implement was used for the control algorithm. The
parameters for the kinematic model were identified a priori and validated with an open
loop simulation by comparing the model and actual implement angles. An LQR
controller was then developed for the implement-tractor combination. Experimental step
responses and line tracking tests were performed on flat terrain in order to provide initial
evaluation of the methodologies. The experiments show the feasibility of a simple LQR
algorithm to control the implement by producing lateral tracking accuracies of 5 cm (106).
Additionally, it was shown that settling times are decreased by 50% and curves can be
directly tracked through feedback control on implement position. However, no
conclusions can be drawn at this time as to the controller’s effectiveness as trajectories
become more demanding and slope angles increase.

At this time it is also unknown how much the model parameters of the tractor and
implement vary with changing soil, implement type, implement load and implement
depth. These types of changes may vary the tractor model and also vary the implement’s
ZLV location (which changes the model parameters in Equation (7.2)). The identified
‘model parametérs were close to physical measurements of the implement. If, however,
the location of ZLV is found to be variable, it may be necessary to identify these
parameters in real time in order to adapt the compensator for the variations in tractor
conditions. As mentioned previously, it may be quite possible to simplify the tractor
model since the closed loop bandwidth of the implement controller is well below the yaw
dynamics of the tractor. This may allow for easier adaptation of the model in real time.
Ultimately, the need for adaptation will also depend on the accuracy requirements placed
on implement control. Acceptable accuracies may be obtained using the physically
measured parameters of the implement with some robust controller that ensures stability

over the implement model’s variations.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The models and the control and estimation algorithms discussed in this thesis will
ultimately lead to significant improveménts in performance, productivity, and robustness,
for automatically steered farm vehicles. There has been much previous research on
automatic steering control of farm vehicles using GPS. This thesis has extended these
previous works to include control at high speeds, GPS/INS integration, and control of
towed implements. Specific conclusions and contributions of this thesis can be

summarized as follows.

e Accurate high speed control, for operations such as spraying,-to within 4 cm (1) and
up to 16 mph, can be obtained using the new identified tractor yaw dynamic model.
An analytical model with a significant front tire relaxation length can capture the

dynamic characteristics of this new identified model.

e A cascaded estimation architecture can estimate all biases and states required for
accurate control. The algorithm provides more accurate estimation of the sensor
biases and tractor states as well as more accurate dead reckoning state estimation

during GPS outages. Additionally, the cascaded architecture simplifies the real time
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calculations for estimating all of the states required for control and dead reckoning

navigation of the farm tractor.

® The cascaded estimation algorithm can provide position estimates through dead
reckoning for control of the tractor through GPS outages. The first (6™ order) filter
can estimate the position and heading of the vehicle, even during periods with no
GPS measurements, as well and the inertial sensor biases. The second (6th order)
filter can estimate the remaining states required for full state feedback. The algorithm
allows continuous control of the tractor to within one foot for short (20-40 second)
GPS outages. Additionally, £ (9 cm) tracking accuracies are achievable for

approximately 5 seconds without any GPS measurements, allowing for carrier wave

integer recovery.

e The growth of heading and position errors occurring from integration of sensor noises
(dead reckoning) during short GPS outages can be predicted using the error growth
equations developed in this thesis. These error growth models adequately predict the

experimental dead reckoning error growth through short GPS outages.

e Accurate lateral control, to within 4 cm (16), can be obtained without GPS attitude
measurements. This method requires a low cost accelerometer and gyroscope to

provide attitude estimation for the tractor.

» Towed implements can be controlled to within 10 cm of a desired path using the
implement control algorithms developed in this thesis. Additionally, curves can be
directly tracked and step response time decreased by approximately 50% by using
direct feedback control of the implement position. A kinematic model of the towed
implement can adequately describe the implement dynamics required for control of

the implement.
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8.2 Future Work

Automation of off-road vehicles, specifically automatically steered farm equipment
using GPS, will become widespread in the near future. Initial architectures are in place
that make it possible to do the most fundamental steering control. However, as these
systems become more widespread, several issues must be resolved. Farm equipment
experiences a wide range of operating conditions (varying loads, ground conditions,
implements, tire configurations, etc.), which significantly change the models upon which
the control and estimation algorithms are based. Currently, extensive a priori system
identification and hand tuning of the control weights as well as the Kalman filter
parameters are used. Algorithms that can adapt to changing environments will be
necessary to expand their use to multiple farming applications. Current low volume sales
of automated farm equipment allows engineers to calibrate each vehicle upon installation
of the guidance equipment. However, automated calibration techniques will become

necessary in order to provide larger volume sales.

An adaptive control algorithm based on on-line parameter identification has been
developed for a neutral steer tractor model [Rekow, 2000]. Another adaptive technique
based on the identification of a “steering coefficient” through the use of an Extended
Kalman Filter was also developed [Bell, 1999]. Now that a more accurate yaw model has
been developed in this thesis, one avenue of futuie research is to apply the adaptive
techniques of Bell and Rekow to this newly developed model. However, for many farm
operations, such as straight lines, these yaw dynamics may be hard to observe [Rekow,
2001].

The yaw dynamic model developed in Chapter 2 was shown to be dependent on a
parameter called the tire relaxation length, which depends on the diameter of the tire.
Therefore, this important parameter will vary for nearly every vehicle on a farm. Effects
of various soils on the tire cornering stiffness and tire relaxation lengths will cause
variations in the yaw dynamic model. Other conditions such as field conditions or soil
types, tire ballast, and weight distribution may also significantly change the tractor
model. The effect of the controlled response of the tractor due to an error in the modeled

CG location was also shown in Chapter 3. Therefore some type of real time system
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identification or robust control will be necessary to account for the changing dynamics.
Additionally, the implement model given in Chapter 7 was shown to be quite dependent
on implement depth. The parameters of the implement model will undoubtedly be
influenced by changing implements, ground conditions, as well as implement depth. In
order to make implement control robust to these changes, an adaptive algorithm will be

required that can identify the changing parameters or adapt to the parameter variations.

Even though much progress has been demonstrated in the area of GPS controlled
farm tractors, more research will be required to continue to increase the capabilities of
these systems. Several such future suggestions, many of which include the broad area of

adaptation, are listed below.

On-line Identification. New methods for performing on-line system identification and
adaptive/self tuning compensators to improve the control and estimation of vehicle states
must be developed. Most on-line system identification approaches, including Least Mean
Squares (LMS), Recursive Least Squares (RLS), and the Extended Kalman Filter (EKF),
are based on an ARX model assumption. This model form has previously proved to be a
poor identification algorithm in the presence of low signal to noise ratios. Additionally,
system identification in closed loop systems provides biased model parameters due to the
correlation of output error and input. More importantly, closed loop systems are not
persistently excited, leading to low signal to noise ratios, while tracking certain
trajectories, making it difficult to identify certain modes or parameters of the system.
One new approach to address the problem of persistent excitation may be to cast the
estimation into a hybrid system (a system consisting of continuous and discrete elements)
problem formulation. This would allow an estimation algorithm to identify certain
parameters when they are most observable and switch to another estimation mode when
other parameters, such as the turning dynamics during a planned turn, are more
observable. The idea of optimal switching and robustness of the switching system
identifier must be addressed. Additionally, algorithms must be developed that ensure no
undesired transients are introduce when switching from regime to the next (known as

“bumpless” switching). On-line adaptation will be an integral part of making vehicle
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control (and many other) systems robust, without sacrificing performance capabilities of

the system.

Self-Tuning Controller and Estimator. State space techniques such as LQR control and
Kalman filter estimation have become increasingly wide spread in industry and academia.
However, these methods still assume certain knowledge of the system, such as the sensor
and process disturbances. Although sensor noise can be easily modeled, identification of
process disturbances to self-tune the Kalman filter is not as trivial. Some theoretical
work has been done on the identification of process disturbances. However most, if not
all, have provided simulation results only and have not demonstrated the capability on
real systems. An LQR algorithm provides an “optimal” control algorithm given a set of
LQR weighting matrices. However, these weights are picked somewhat arbitrarily, or are
hand tuned until satisfactory performance is obtained. For example, as shown in Chapter
3, placing a weight on the steer angle state provided good controller performance.
Because these architectures are used in many vehicle navigation and control applications,

the ability to self-tune these algorithms becomes important.

Real Time Disturbance Identification. In order to adaptively tune the Kalman filter, an
estimate of the process disturbances acting on the system must be known. This process
noise can change with field conditions (varying roughness), velocity, as well as tractor
configuration. For example, “sloshing” of liquid fertilizer in belly-mounted fertilizer
tanks could cause the estimator to become unstable without a proper model of this
disturbance. Some disturbances are not white as is assumed under the Kalman filter
model. Disturbances such as previous furrows in the ground, called “beds” can cause
sinusoidal or colored disturbances. The disturbance identification technique would be
used to estimate biases, both constant and cyclical, as well as the covariance of each of
the disturbances. Additionally, time constants of estimated biases, such as the vehicle
crab angle or steer angle bias, could change due to changes in the terrain. The estimation
of the disturbance covariance matrix would allow the Kalman Filter to be tuned in real
time to optimally estimate the states of the vehicle. Tracking and robustness could be

improved if these various disturbances could be modeled in real time.
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Inertial Sensor Scale Factor Estimation. In this thesis, all scale factors on inertial sensors
(the accelerometer in Chapter 6 and the gyroscope in Chapters 4-5) were assumed to be
known. In Chapter 5, it was shown how errors in the scale factor can lead to errors in the
dead reckoning estimation. However, only sensor biases were estimated in this thesis.
This is because estimating the scale factor is a nonlinear estimation problem.
Additionally, and probably more importantly, sensor scale factors are less observable.
For example, during straight line tracking, the gyroscope’s scale factor is not observable.
However, a method which estimates the sensor’s bias while the vehicle is driving in a
straight line, and then identifies the sensor’s scale factor at the end of the field when the
vehicle must turn around could be developed. As with the vehicle parameter
identification mentioned previously, this creates a need for a well designed switching
estimation algorithm which must be carefully analyzed for stability. The ability to
estimate sensor scale factors in real time will provide better dead reckoning accuracy,

especially during U-turn operations or other curved trajectories.

Modeling/Control of Other Agricultural Vehicles. As automated farming becomes
widespread, it will be desirable to automate all aspects of the farm. If a farm is planted
using GPS, then why not harvest using GPS. The range of vehicles on a farm is quite
broad, ranging from front steered vehicles as used in this thesis, to rear steered vehicles,
articulated vehicles, tank steer (track) vehicles, etc. Models for tank steer and articulated
vehicles have been developed in [Crolla, 1983]. However, these models have never been
used for control and therefore their validity never verified for use in a closed-loop
system. Another vehicle that would be of extreme interest for modeling and control is a
“High Boy” spray vehicle like the John Deere 471(). This vehicle has an active
suspensiohsystem and 90 foot spray boom for smooth spraying up to 22 mph. It would
be interesting to see what effect the suspension has on the model dynamics. Additionally,
the vehicle has 6 foot diameter front and rear tires, to provide crop clearance. As
discussed in Chapter 2 the large tires of agricultural vehicles require a relaxation length in
the tire model (that is related to the tire diameter) to capture the yaw dynamics. It would
be interesting to see if these larger tires of the spray vehicle do indeed extenuate the

effect of the tire relaxation length in the yaw model. Additionally, a thorough tradeoff
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analysis of model complexity versus control accuracy should be conducted with each

vehicle.

Human-like Adaptation to Driving. Growing up on a farm, I learned to drive a tractor at
the age of 10. It was not difficult to go from knowing how to drive a tractor, to being
able to steer a combine, or other tractors. A complicated model, or knowledge of the
deadband zone in the steering column was not required. At age 27, I drove a tracked
vehicle for the first time. At first I was a little “wobbly,” but within a few seconds I had
“adapted” to its driving characteristics quite well. Humans have no problem adjusting to
steering these vehicles at any speed. However, in Chapter 2, it was shown that the
omission of the tire relaxation length could cause the control algorithm to become
unstable. It would be interesting to determine what humans use as references and models
to allow us to be so extremely robust in driving various vehicles. This human factors
information would allow automatically steered controllers to be placed on any vehicle
(that a human could be expected to drive) as it comes off the assembly line, eliminating

the need to model each new version of farm vehicle developed.

Path Planning. With the ability to accurately control a tractor through a field comes the
freedom to farm a field on any particular path. Any path can be commanded and tracked
by an automatically steered tractor. Therefore it is no longer limited to what a human is
comfortable tracking. Optimization schemes could be run to assess the most efficient
way to plow a field, minimizing turning times. When planting in beds or harvesting
crops, farmers often skip a set number of rows (which they could easily count during
these operations). For other operations, a farmer cannot “eyeball” the spacing accurately
enough. However with an automatically steered tractor this is an easy possibility. A
tractor could plow a field, skipping an implement width the entire time, then come back
and fill in the gaps - if this proved to be the optimized method, given the

tractor/implement characteristics such as turning radius and implement width.

Collision/Obstacle Avoidance. Many fields will contain fixed obstructions such as
telephone poles, large boulders, windmills, etc., as well as moving obstructions such as

other farm vehicles. Hitting, for example, a telephone pole with high voltage lines with

Chapter 8. Conclusions and Future Work 147



an implement can not only be dangerous to the operator, but will also damage the
guidance equipment. Algorithms which try to perform the desired task without causing a
collision must be developed. These algorithms must account for the specific dynamic
characteristics, such as the tractor/implement model, in order to avoid various obstacles,
yet still control the implement accurately around the obstruction. One of the most
significant barriers to real productivity gains from such a system will be safety and risk
avoidance. These systems will have to be proven safe and possibly certified (with
OSHA, for example) as aircraft are certified. Various “fail-safe” features of the vehicles
must be explored. This will ultimately lead to the ability to use fully autonomous tractors

which in turn can bring many additional benefits to the agricultural community.

8.3 Closing

It goes without saying that farming and farmers provide an essential service.
However, there continues to be a decrease in the ratio of farm producers to consumers.
Therefore, farms must better manage their resources to provide optimal production.
Because of this need, many new technologies, including automatically steered farm
tractors using GPS, have already become a reality in the marketplace and on farms. As
these systems become more widespread, the tasks which farmers demand of their
automatically steered tractors will grow. Farmers will want automatic steering for
spraying and through short GPS outages. Additionally, farmers will eventually want to
control the position of the implement. This will lead to advances in new agricultural
techniques such as farming on side-hills, pulling larger implements with more precision,
or narrower spaced planting. These advances will require accurate knowledge of the yaw
dynamics, INS/GPS integration, and implement control algorithms developed in this
thesis. These new capabilities, which have been the focus of this thesis, will need to be
integrated into current systems in order to provide leading edge technologies and

advanced capabilities to farmers.
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Appendix A

Experimental Hardware

All of the work performed in this thesis was implemented on a John Deere 8400
tractor, under loan to Stanford University from John Deere, shown in Figure A.1. The
major components of the automatically steered tractor are:

Trimble TANS Vector

IntegriNautics carrier-phase Differential GPS system

Linear Potentiometer (John Deere Part No. AZ52077)
- Motorola HC12 Microprocessor

Experimental Electro-Hydraulic Valve

Industrial Computer Source PC

Radar (John Deere Part No. RE152877)

KVH Autogyro Fiber Optic Gyroscope

Systron Donner Gyroscope (AQRS-00064-104)

Humphrey Accelerometer (LA01-0501-1)

Pacific Crest RFM96 Radio Modems

FreeWave Radio Modems (DGR-115/115H)

The four antenna TANS Vector GPS unit provides three-dimensional positioning
accuracy of 2 cm and an attitude accuracy of 0.1 deg in each axis. Full attitude is
required to transpose the GPS measurements from the roof of the tractor to a control
point on the ground below the axle of the tractor [Bell, 1999]. The tractor uses the linear

potentiometer to measure the steering wheel angle and an electrically actuated steering

Appendix A. Experimental Hardware 149



valve is used to provide a steering slew rate. A Motorola 68HC12 microprocessor
interacts with the steering valve and potentiometer and communicates with the master
computer via serial communication. The master computer runs the control and
estimation algorithms at a SHz update rate using a Lynx real time operation system. The
tractor was equipped with a radar for measuring velocity. The radar is standard on most
new tractors. It is used for providing an accurate measure of the vehicle speed for
operations such as planting and spraying (where application rate is critical) as well as
providing a means to estimate wheel slip. A KVH fiber optic gyroscope (FOG) was used
for sensing yaw rates. Although off-road vehicles are subject to large amounts of
- mechanical vibrations, the non-mechanical FOG can provide excellent yaw sensing under
these conditions. However, typical mechanical gyroscopes generally create sensing
errors when subjected to vibrational accelerations. The 16 sensor noise on the FOG and
radar are 0.44 deg/sec and 0.12 m/s, respectively. Sensor noises of the various sensors

used in this work are summarized in Tables 4.2 and 6.2.

Figure A.1 GPS Guided Farm Tractor.

The John Deere 8400 has the following characteristics:

e 225 hp turbo charged in-line 6 cylinder diesel engine
e 16 forward gears up to 22 MPH
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Four wheel drive

Lockable rear differential

Adjustable Ballast

18,700 pound unballasted gross weight

Powershift transmission

Length of 207 inches, axle width of 118 inches and height of 120 inches

The major components of the system are shown in Figure A.2. The upper left hand
corner shows the linear steer angle potentiometer which is mounted between the front
steer wheel and the frame of the tractor. The lower left hand corner shows the inertial
sensors (KVH gyroscope and Humphrey accelerometer) used in this thesis. The inertial
sensors were simply placed on the floor board inside the cab of the tractor. The lower
right hand corner shows the four GPS antennas mounted to the roof of the cab. The four
antennas were required by the Trimble Vector attitude system. The upper right hand
corner shows the mounting of the “brains” of the system. The computer, GPS receiver,

radio modem, and Trimble Vector were all mounted in the rack shown in the figure.

Figure A.2 Components of the GPS Farm Tractor.
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The overall block diagram of the system, including the setup required for controlling the

implement, is shown in Figure A.3
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Figure A.3 Overall Block Diagram of the Guidance System.
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Appendix B

Identification of the HC12 Delay and its
Effect on the Yaw Dynamic Modeling

As discussed in Appendix A, a Motorola 68HC12 microprocessor was used to
measure the steering potentiometer and communicated with the master computer via a
serial port (at 9600 baud). This communication delay led to a “mysterious” zero in the
initial system identification given in Chapter 2. In later experimental tests, data was
collected via the 68HC12 as well as with an A/D board onboard the master éomputer as
shown previously in the schematic in Figure 2.2. The difference in measurements at the
A/D board and from the 68HC12 were examined to determine the 68HC12’s effect on the
system identification presented in Chapter 2. Once the delay was identified, it was
accounted for in the data used for identifying the tractor yaw dynamics.

First, software was written to collect only steer angle measurements from the A/D
board and the HC12. The relationship between the two different steer angle
measurements was assumed to be a linear transfer function as:

Swen _ () (B.1)
6AID

A Box-Jenkins first order model (one pole and no zeros) was used to fit the transfer
function given in Equation (B.1). This analysis was completed for several sample rates.

The discrete pole location of the Box-Jenkins fit for the various sample rates is shown in
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Figure B.1. A pure delay would result in a pole at z=0. Therefore from Figure B.1, the

delay can be approximated as 0.038 seconds.
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Figure B.1 Pole Location of a First Order Model of H(z) for Various
Sample Rates.

Figure B.2 shows the empirical transfer function of the input-output data as well as
the first order Box-Jenkins fit of the transfer function. Also shown is the frequency
response of a pure delay of 0.038 seconds. Therefore it was concluded that there was
indeed a delay in the HC12 measurements (of at least 0.038 seconds) in the data taken for
system identification. As seen in the figure, the pure delay of 0.038 seconds
characterizes the difference in phase between the tow measurements quite well

(especially in the frequency range of the tractor yaw dynamics).
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Figure B.2 Spectral Analysis (ETFE), First Order Box-Jenkins Model,
and a Pure Time Delay Model of H(z).

The phase lag of the HC12 steer angle measurements seen in Figure B.2 attributed to
a fictitious zero in the initial yaw dynamic model fits. Although the delay was found to
* be 0.038 seconds when recording only HC12 and A/D steer angle measurements, when
ahalyzing the data taken for system identification, the delay appeared to be more on the
order of 0.075 seconds. The software used to take data for system identification was not
only recording the steer angle measurements, but also the GPS position and attitude of
the tractor, as well as tractor yaw rate measurements from the gyroscope. This additional
complexity may have caused the HC12 measurements to be delayed by an additional
sample above the 0.038 second delay. Recall that the nominal sample rate for the yaw
model system identification was 0.05 seconds.

Figure B.3 shows the zero locations using a second order Box-Jenkins fit with one
time delay (BJ[2 2 2 2 1]). This results in a transfer function with two poles and one
zero. As seen in the figure, the zero is not negligible in the data taken with the HC12.
However, data taken with the A/D board must be delayed 0.075 seconds in order to create

a similar zero location in the input-output data. The zero also appears be proportional to
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V! which can be predicted by the bicycle model. However, the zero in the TR and FTR

models, which better characterized the tractor yaw mode, is canceled by an additional

pole (and therefore is characterized by a model that effectively has no zero).
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Figure B.3 Comparison of Identified Zero Location with A/D
Measurements (Delayed by 0.075 Seconds) and HC12 Measurements.

Figure B.4 shows the modeling errors from various order fits (with and without a zero

in the transfer function) using the A/D measurements

Figure B.5 shows the modeling

errors from the various order fits using the raw HC12 measurements (Figure B.5a) and

the HC12 measurements shifted forward by 0.075 seconds (Figure B.5b). Note that the

zero is only important (in terms of modeling error) for

HC12 measurements.

the identification using the raw
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Finally, Figure B.6 shows the transfer function characteristics of the system identified
yaw model for all data sets using the HC12 steer angle measurements and the A/D steer
angle measurements. Note that the delay in the HC12 steer angle measurements only
affects the location of the zero in the model. The zero locations occurring to the right of

the imaginary axis (positive zeros) in Figure B.6 are from discrete zeros of the identified
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model outside of the valid identification frequency range. These zeros therefore have

virtually no effect (or benefit) in modeling the input/output data.
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To conclude, all HC12 measurements were assumed to be delayed by 0.075 seconds
and were therefore shifted forWard by 0.075 seconds in all of the system identification for
both single and dual rear wheels presented in Chapter 2.  Shifting the HCI2
measurements forward by 0.075 seconds created models which did not require a zero to

adequately capture the yaw dynamics of the tractor.
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Appendix C

Implement Dynamics and Kinematics

This appendix presents the derivations of the implement angular dynamics, lateral
dynamics, as well as the implement’s forward kinematics and position dynamics us_ed in
the control and estimation algorithms presented in Chapter 7. Additionally, the algorithm
for calculating the implement angle (using inverse kinematics) used as a measurement by

the estimation algorithm in Chapter 7 is presented.

C.1 Angular Dynamics

Figure C.1 shows the implement-tractor combination, including the lateral implement
position (yj), the implement’s lateral velocity (V), and the implement’s x and y velocities

(V, and Vi, respectively). The implement ZLV, corresponding to the point on the

implement with zero lateral velocity, is also shown in the figure.
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Figure C.1 Schematic of a Farm Tractor and Implement for Calculating
the Implement Angular and Lateral Dynamic Models.

The kinematic implement model assumes that there is no lateral velocity at the axle (or at
some point, ZL.V, along the implement) such that:

V,=0 (C.1)
The sum of the lateral velocities at the ZLV include those due to tractor linear and

rotational velocities as well as the rotational velocity of the implement as shown below.
V, =Y Vy, ), =b,7+by +a,ycos(y)+V,sin(y) =0 (C.2)
Rearranging terms in Equation (C.2) results in the kinematic implement model describing

the rotational rate of the implement.

7= -1[/[1 + Z—’cos(y)} - %‘— sin(y) (C.3)

1 I
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C.2 Lateral Position Dynanﬁcs

The velocities of the implement in the x and y directions (shown in Figure C.1) are:

(V,). =V, +L, sin(y)y + L, sin(y)yr

(,), =V, L, cos(x)i - (L, cos(y) +a, €4
The overall lateral velocity of the implement is then defined as:
¥, =(V,), sin) +(V, ), cos(w) (C.5)
Substituting Equation (C.4) into (C.5) results in:
y, =V, sin(y) + L, sin(y)y sin(y) + L, sin(y)y sin(y) B

+V, cos(y) — L, cos(y)y cos(y) — (L, cos(y) + a,  cos(y)
Assuming small angles and neglecting the square of small angles results in the implement

lateral position dynamic equation:

v =Vy-Ly-(L, +a, W (C.7)
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C.3 Position Kinematics and Dynamics

Figure C.2 shows the implement-tractor combination, including the implement

position (e;ny) and implement angle ().
N4
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e

Figure C.2. Schematic of the Tractor and Implement for Calculating
Forward and Inverse Kinematics

The position of the implement in the tractor frame is described as:

(x,), ==a, — L, cos(y) +c, sin(y) :
(v, ), =—L, sin(y) - ¢, cos(y) €3
All the work in this thesis assumes that the position of interest is along the center line of
the implement such that ¢; = 0. The position of the implement in the Inertial frame
(North-East-Down) is defined as:
e, = E; +(x;), sin(y)+(y, ), cos(y)
n, = Ny +(x,), cosw) —(y, ), sin(y)

Substituting Equation (C.8) (with ¢; = 0) into Equation (C.9) results in the following

(C.9)

forward kinematics describing the implement position:

e, =E . + (— a, -L, cos(y))sin(y/) — L, sin(y)cos(y)

n, =N, +(=a, — L, cos(y))cos(y) + L, sin(y)sin(y) (C.10)
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Taking the time derivative of the above equation results in:

¢, = E, +(~a, — L, cos(y))cos@)y + L, sin(y)y sin(y)
+ L, sin(y) sin(y)y — L, cos(y)¥ cos(y)

7, = Ny +{a, + L, cos(y))sin()y + L, sin(y)7y cos(y)
+ L, sin(y) cos(y )y — L, cos(y)y sin(y/)
Collecting like terms results in:
é; = Ey + (i) sin(y) - cos(@) cosn) XL, + L)~ a, cosy
i, = N, +(sin(w)sin(y) + cos(y) cos(Y) XL, ¥ + L,y )+ a, sin(y)yr
Substituting the following trigonometry identity

cos(y + ) = sin(y) sin(y) — cos(y) cos(y)
sin(y +7) = sin(y) sin(y) + cos(y) cos(y)

into Equation (C.12) results in the position dynamics of the implement:

é; = Ep + (L7 + L,y )cos(y +7)—a, cos(y)yr
n, = N, +(L,7+ Ly )sin(y +7) +a, sin(@)y

C.4 Inverse Kinematics

(C.11)

(C.12)

(C.13)

(C.14)

The estimation and control algorithms presented in Chapter 7 require the angle

between the implement and the tractor. Because no direct measurement of this angle was

available, the angle was derived from other available measurements. Creating a sensor

that would actually measure the implement angle is not a trivial task. There are many

degrees of freedom at the tow pin of an implement which makes measuring the angle

between the tractor and implement a cumbersome task. By measuring the position of the

implement, not only is it possible to infer the implement angle, but precise locations of

the implement can be controlled as well.
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The implement angle () can be calculated from inverse kinematics using simple

geometry. The implement position (e,n;), the tractor position (Ex,Ny), tractor heading

(y), as well as position of the tow pin relative to the implement and tractor positions

(apLycy) must all be known as shown in Figure C.2. First the position of the tow pin is

calculated by:

e, = E, —asin(y)
n, = N, —oacos(y)

(C.15)

Then the offset angle of the GPS receiver is calculated (Note: the offset angle will be zero

if the GPS receiver is placed along the center line of the implement).

Ay = tan (%) (C.16)
Next the angle between the GPS receiver and tow pin is calculated.
¥, =tan™ [———e’ —4 ] (C.17)
n,-m
The above angle is in Cartesian space and is the sum of the following angles.
71 =y +180deg +y + Ay (C.18)
The implement angle can now be found by réarranging (C.18) above.
Y =%, —(180deg +y + Ay) (C.19)
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Appendix D

Steering Valve Identification

The steering actuator dynamics are an integral part of the tractor control system. As
mentioned in Chapter 3, the steering valve actuator is highly nonlinear. Characteristics of
a typical steering actuator, including saturation and a dead-band region, are shown in

Figure D.1

SSS

b* Via

5.,

Figure D.1 Typical Valve Characteristics Including Dead-Band Region
and Saturation (Steady State Slew Rate vs. Voltage Input).
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Data was taken to identify the steady state characteristics of the steering valve. A
Pulse Width Modulated (PWM) voltage was used to regulate the 12 volt tractor battery
source. The PWM duty cycle percentage creates an effective voltage equal to the
percentage of the source voltage. The current drive chips provide the capability to drive
the current in a positive or negative direction through the solenoid. Figure D.2 shows the
experimental steady state slew rate vs. PWM duty ’cycle. The figure also contains the
characterized (best-fit) valve function, F,(V,). The parameters of the valve function
characterizing the steering actuator in Figufe D.2 are give in Table D.1. Note that there is

no such thing as a negative PWM duty cycle. Negative duty cycle in this appendix refers
to a PWM duty cycle with the current applied in the negative direction.

0.8 % ! ! ! ! T ! ! !
06k . ,,,,,,,,,, S SR S ST ,,,,,,, SR T

f=]
S
T

=4
o
T

i
=)
™D

L

Steady State Slew Rate (rad/s)
=

2

- L
—100 -20 0 20 40 60 80 100
% PWM Duty Cycle

Figure D.2 Experimental and Valve Model of the Steady State Slew Rate
vs. Input Voltage.
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Table D.1 Parameters Describing the Steady State
Characteristics of the Steering Valve.

Parameter Units Value
b % PWM Duty Cycle 26.27
b % PWM Duty Cycle -30.20
m* (rad/s) / (% PWM Duty Cycle) 0.0289
m (rad/s) / (% PWM Duty Cycle) 0.0395
oL, rad/s 0.67
8, rad/s -0.72

Identification of the steady state slew rate versus input voltage is used to invert the -
non-linear characteristics of the steering valve. Once the steady state characteristics of
the steering actuator are known, system identification can be used to determine the

remaining dynamics of the steering actuator. Figure D.3 shows a block diagram of the

steering valve dynamics as well as the non-linear valve inversion function (F,") used to

generate the command PWM input (#commana) from the desired control input (u).

Steering Valve

I T ™ (]

-1 H 1

FW,) T Em) ;

100, T E 1 :

) - '

4 L = I S A SR N i

2 sor- E % 0.} & :

8 ik f i
u Ucommand 1 |z o L Y
i ST I H G

g Ha E : : 1

™ e i

2 ' 2 :

N —_ 1

-1 0.5 0 0.5 1 : Ao %, pwM Suty Cycte™ 100 !

u ] 1

Figure D.3 Valve Inversion and Valve Dynamics Block Diagram.

Assuming that the valve non-linearity is perfectly inverted (i.e., that F, xF ' =1),

the remaining steering valve dynamics from the control input () to steer angle are then

described by the linear transfer function:
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K
5(s)=—oh =Ky ®.1)

> u
Is”+d,s s(T,s+1)

where: K, =Valve DC Gain

d,=Valve Damping

I,=Valve Inertia

T,=Valve Time Constant
The above transfer function represents a first order lag between input and steering slew
rate (5 ), plus a pure integrator from slew rate to steer angle (8). The values for the
steering valve model in Equation (D.1) were found using a system identification
approach similar to the approach taken to model the tractor yaw dynamics in Chapter 2.

If the steady state characteristics of the valve have been accurately identified (in F,) then

the valve DC gain (Kv) will simply be equal to one.

Figure D.4 shows the empirical transfer function (ETFE) from the input («) to output
(6) data. The figure also shows the Box-Jenkins fit of the input-output data. The valve
time constant (7,) was found to be 0.1053 seconds. Finally, Figure D.5 shows the input

as well as the actual and modeled steer angle (8) and steering slew rate ( é ) outputs.
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Figure D.4 Empirical Transfer Function and Box-Jenkins Model Fit of
the Steering Actuator Dynamics.
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Figure D.5 Valve Input and Actual vs. Model Valve Outputs of Steer
Angle (8) and Slew Rate (& ).
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