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Abstract

Traditionally, navigation systems have been very large, expensive and used ounly in
aviation or military applications. However, recent advances in satellite-based posi-
tioning and the proliferation of small, low-cost motion sensors have made possible
navigation systems that are small and inexpensive enough to be used in consumer
products. Commercial consumer-grade navigation systems are, in fact, readily found
today in Japan, Europe, and the United States, with one of the largest potential
markets being in automobile navigation. Although the concept of in-vehicle nav-
igation systems is not new, implementations of such systems are relatively recent.
The research in this thesis advances the understanding of these systems through a
quantitative examination of the imnact that various navigation sensors have on the
performance of a land-vehicle navigation system. A range of navigation sensor per-
formance levels and their influence on vehicle positioning accuracy are examined. In
addition, the impact of incorporating information from a digital map database in the
navigation solution is also examined. The information produced by this research can
help today’s navigation system designers understand cost/performance tradeoffs in
various candidate system designs. In addition, it can also help navigation system
designers in the future, as the quality of navigation sensors improves through tech-
nological advancements. The work in this thesis can also be used to guide sensor
designers—to reveal to them those sensor error parameters which contribute most
to positioning error and to guide them into a design with appropriate performance
tradeoffs.

Results show that, for a typical navigation system, positioning error is dominated

by the accuracy of the position fixes provided by the Global Positioning System (GPS)

iv



receiver when GPS position fixes are available and by the rate gyro’s bias drift when
GPS position fixes are not available. Furthermore, results show that the accuracy
of the GPS fixes that are used has a significant impact on the relative contributions
that various navigation sensor errors make. The implications of these results for
navigation system design and sensor design are discussed. Finally, results show that
using input from a digital map database to aid in navigation can degrade heading

sensor calibration.
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Chapter 1

Introduction

1.1 Historical Context

Traditionally, navigation systems have been very large, expensive and used only in
aviation or military applications. However, recent advances in satellite-based posi-
tioning and the proliferation of small, low-cost motion sensors have made possible
navigation systems that are small and inexpensive enough to be used in consumer
products. Commercial consumer-grade navigation systems are, in fact, readily found
today in Japan, Europe, and the United States, with one application being automobile
navigation systems.

The concept of in-vehicle navigation systems is not new, but implementations of
such systems have appeared only recently. Programs investigating the possibility of
establishing an infrastructure to support widespread vehicle navigation began in the
U.S. as early as the late 1960’s. However, results from these studies deemed that the
supporting infrastructure for such a system would be too expensive, and further study
in the U.S. was dropped until the 1980’s [53]. In the late 1980’s, the U.S. government,
recognizing that parts of the country’s road system were taxed nearly to capacity,
launched a campaign to promote the application of high-tech solutions to enhance
roadway efficiency. Outlined in the National Program Plan for Intelligent Trans-
portation Systems (NPP) [13], this campaign includes a strategy for improving the
efficiency of the U.S. highway system over a 20-year period. The Plan’s goals include
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reducing highway congestion, fuel consumption, and the number of traffic accidents
by providing drivers with real-time traffic information, route guidance, electronic toll
collection, advanced vehicle collision avoidance systems, and automatic notification
to authorities in the event of a traffic emergency. These ambitious renovations to
the U.S. road system involve a number of diverse technologies, and knowledge of a
vehicle’s location lies at the heart of many services described in the NPP (e.g. route
guidance and emergency response).

In Japan, research efforts in real-time automobile route guidance were begun in the
1970’s with the goal of reducing traffic congestion. Throughout the 1970’s and 1980’s,
the Japanese government, in cooperation with industry, was continuously involved
in launching initiatives which helped to mature vehicle navigation technology [16].
Today, most Japanese car manufacturers offer factory-installed navigation systems in
at least some of their models. Estimates indicate that, by the year 2000, per annum

sales of vehicles with factory-installed navigation systems will reach 2.5 million [53].

1.2 Land-vehicle Navigation Concepts

This thesis deals with a specific technical aspect of vehicle navigation. However,
because this is a relatively new field, the reader may not be familiar with the parlance
of the vehicle navigation community. This section introduces the reader to several
important concepts that are key to understanding the research in this thesis.

Simply put, the most basic function of a land-vehicle navigation system is to
accurately identify the location of a vehicle. In many existing automobile navigation
systems, this is typically achieved by an on-board computer that continuously collects
data from sensors that are mounted inside the vehicle. The computer uses the sensor
data to compute the vehicle’s location and conveys this location to the driver by
means of a graphical electronic display. Examples of positioning sensors in a typical
navigation system include a Global Positioning System (GPS) receiver, a gyroscope,
an electronic compass, and a tap into the automobile’s odometer.

Although the purpose of the GPS is to provide its users with the ability to com-

pute their location in 3-dimensional space, a land-vehicle navigation system cannot,
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in general, continuously position a vehicle using a GPS receiver alone, and other
navigation aids are necessary. In order to understand why this is so, one must first
understand some basic facts about the GPS.

The GPS is a constellation of satellites in orbit around the Earth that is operated
by the U.S. Department of Defense (DoD). Signals transmitted by the satellites can
be received by appropriate equipment (a GPS receiver) on or near the Earth’s surface,
and the information in the signals can be utilized to compute the receiver’s location
in 3-dimensional space. The GPS can be used to perform 3-dimensional positioning
worldwide under all weather conditions. However, in order to compute its location in
3-dimensional space, a GPS receiver must be able to lock onto signals from at least 4
different satellites. Moreover, the receiver must maintain its lock on each satellite’s
signal for a period of time that is long enough to receive the information encoded in the
transmission. Achieving and maintaining a lock on 4 (or more) satellite signals can be
impeded by solid objects that stand between the receiver and a satellite because the
satellite signals are transmitted at a frequency (1.575 GHz) that cannot bend around
or pass through solid objects. GPS receivers cannot be used indoors, for example,
because the satellite signals cannot pass through a building’s walls. Outdoors, tall
buildings, dense foliage, or terrain that stand between a GPS receiver and a GPS
satellite will block the satellite’s signal. In urban or heavily-foliated environments,
then, a GPS receiver may be unable to provide a position fix for indefinitely long
periods of time. For this reason, an automobile navigation system cannot, in general,
continuously position a vehicle using a GPS receiver alone.

Even if GPS position fixes are available, however, they contain errors and are
accurate to only 100 meters (95% of the time). This error is unacceptably high
because densely packed urban road networks generally contain roads that are less
than 100 meters apart. (The inherent accuracy of the GPS is better than 100 meters.
However, the signals from the GPS satellites have been intentionally degraded by
the DoD for purposes of national security. This performance degradation is known
as Selective Availability (SA), and only DoD-approved users have access to satellite
signals without SA.)
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Because GPS position fixes are inaccurate and may, at times, be unavailable al-
together, many land-vehicle navigation systems utilize other navigation aids in con-
junction with GPS position fixes to enhance overall system performance. These aids
usually include some combination of sensors—e.g. low-cost gyroscopes, compasses,
an odometer, inclinometers, and/or accelerometers. Any sensors other than GPS
that are used to position the vehicle are collectively referred to as a dead-reckoning
unit. Dead-reckoning sensors generally cannot be used alone to position a vehicle
accurately for indefinitely long periods of time because dead-reckoning sensors, by
definition, do not measure absolute position. Without an occasional measurement
of absolute position, the error in a position estimate computed using dead-reckoning
sensors alone grows without bound. Dead-reckoning sensors are utilized because they
accurately measure changes in a vehicle’s position over short time periods and can be
used alone (for short time periods) if GPS position fixes become unavailable. GPS
position fixes, in contrast, contain errors that are random and uncorrelated from one
fix to the next, but the errors are bounded. The errors that appear in GPS posi-
tion fixes and in the outputs of dead-reckoning sensors are therefore complementary
in nature—dead-reckoning sensors smooth out the short-term GPS errors, and GPS
fixes calibrate the dead-reckoning sensor drift over long time periods. Proper fusion
of the GPS position fixes with the dead-reckoning sensor data can take advantage of
these complementary errors, producing positioning performance that is better than
could be obtained with either type of data alone.

In addition to GPS fixes and dead-reckoning sensors, many navigation systems
utilize data from a digital map database to aid in navigation. A digital map database
is essentially an electronic roadmap—a digitization of a local road network, with each
road represented as a collection of points assumed to be connected in a dot-to-dot
fashion. Information in a map database can be used to improve navigation accuracy
if the vehicle is assumed to be traveling on a road stored in the database. The
software algorithm that combines the sensor data with the map data to produce a
position estimate is generally referred to as a map-matching algorithm. Map-matching
algorithms are usually heuristic rules by which sensor data and information from the

map database are processed to identify that road on which the vehicle is most likely to
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be traveling. Map-matching algorithms described in the literature most often involve
pattern-matching techniques that attempt to correlate the pattern created by several
consecutive position fixes to a similar pattern of connected roads in the local road
network. After a successful correlation is made, information about the matched road
can be extracted from the database and used to calibrate errors in the navigation

Sensors.

1.3 Research in This Thesis

In light of the many possible combinations of navigation aids that can be used in
these systems, one is led to question what criteria navigation system designers have
used when selecting sensors for use in their vehicle navigation system. One could
probably say with some certainty that the set of sensors selected by a design team is
heavily influenced by the team’s dual goals of maximizing the system’s performance
while minimizing its total cost. Unfortunately for system designers, however, system
cost and performance are usually directly, rather than inversely, related—very accu-
rate sensors may improve the performance of a system, but they tend to cost more
than similar, less accurate sensors. Designers of land-vehicle navigation systems are
therefore faced with trading off system cost and performance and must judiciously
select that set of sensors deemed to be most cost-effective.

The purpose of this thesis is to provide a quantitative and qualitative ezamination
of the impact that individual navigation sensors have on the performance of various
land-vehicle navigation systems. The results of this research advance the understand-
ing of the relationship between navigation sensor performance and overall system
performance by means of analysis applied to various navigation systems. All of the
navigation systems examined are similar in that they each utilize GPS position fixes
and information from dead-reckoning sensors. The differences between systems lay
primarily in which dead-reckoning sensors the systems utilize and the accuracy of the
various sensor measurements. For example, many results are obtained for a system
utilizing GPS position fixes, a rate gyro, and an odometer. This sensor set was chosen

because it is frequently encountered in existing land-vehicle navigation systems. The
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performance of this set of sensors is examined for various rate gyro performance levels
and various GPS position fix accuracies. Other results are obtained for a system uti-
lizing GPS position fixes, a rate gyro, an odometer, and a compass. The performance
of this system is examined for various GPS position fix accuracies and for a range of
compass errors. Still other results are obtained for a system utilizing GPS position
fixes, a rate gyro, an odometer, and map-matching.

The quantitative results of this thesis immediately reveal the influence that in-
dividual navigation sensor error parameters have on navigation system performance.
These quantitative results should therefore be valuable for identifying the most cost-
effective navigation system designs. The qualitative results of this work should be
valuable to the land-navigation community as a practical reference for future nav-
igation system designs, and the analysis techniques used in this thesis should be a

valuable model for navigation system analysts.

1.4 Previous Research

Many papers and patents have been published which discuss various algorithms for
combining the information obtained from various sensors and navigation aids for use
in a land-vehicle navigation system [9, 17, 25, 24, 26, 28, 30, 29, 41, 34, 37, 39,
43, 48, 49, 50, 51, 56, 61, 62, 63, 64, 68, 69). However, relatively little analytical
or quantitative work seems to have been be done to establish rationales for sensor
selection. Nor has much work been done to quantify the relative contributions that
various navigation sensors make to overall system performance.

The work in this thesis is most closely related to work in [10]. In [10], the au-
thors examined the relative contributions that various navigation sensors made to the
navigation errors in an aircraft’s navigation system. The goal of the work in [10] is
similar to the goal of this thesis. In addition, the analysis technique developed in
[10] served as the inspiration for the analysis in this thesis. However, the problems
being solved differ substantially, and the results in [10] do not carry over to the prob-
lem presented in this thesis. For example, in [10], the navigation system included
a high-quality 3-axis inertial system, complemented with LORAN position fixes. In
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this thesis, not only are entirely different navigation sensors used, but the quality
of the sensors being examined (see Chapter 3) differs substantially from that of the
sensors examined in [10]. The scope of this work is also more inclusive, examining
several navigation systems and the use of other less-traditional navigation aids (e.g.
input from a digital map). In addition, the research in this thesis required extensions
to the theory presented in [10] that had to be developed by the author (see Section
2.4).

In other related work, the authors of [55] discuss the effects of inertial sensor
quality on the performance of a navigation system; however, this work focuses on
military-grade navigation systems, which are generally far too expensive to be prac-
ticable for commercial land-vehicle use. In [42], the author presents a simulation
study in which the relative merits of two inertial navigation systems for use in a Mars
rover are examined. Certain elements of the work in [42] are similar to elements of
the research in this thesis, but there are important differences. For example, the
author of [42] examined the sensitivity of the each navigation system’s performance
to perturbations in various sensor parameters. The author’s results identified those
sensor errors to which the total navigation error was most sensitive, thereby iden-
tifying the most important sensor errors. In this sense, the work in [42] is similar
to the research in this thesis. However, the principle focus of the work in [42] was
the evaluation of two navigation systems, not individual sensor contributions. The
author’s perturbation study did not quantify, for a given set of sensor parameters,
the individual contributions that the sensor errors made to the total navigation error.
Also, one of the systems was comprised of 3 accelerometers and 3 gyroscopes, but this
combination of sensors is generally not found in existing automobile navigation sys-
tems. Finally, the author assumed that the vehicle moved at a maximum speed of 1.0
meter per second, a speed that is much lower than is typical of an automobile. In an
earlier work, [32], the author enumerates various error sources in a particular vehicle
navigation system. However, the navigation system examined used only LORAN-C
to position the vehicle; dead-reckoning sensors were not utilized. Finally, in [35], the
author presents a methodology for evaluating a land-vehicle navigation system by

assigning it a “score” based on a host of criteria. The purpose of the scoring method
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is to provide an objective basis by which to compare systems. However, the author’s
scoring system incorporates a wide variety of evaluation criteria, including functional
features, cost, power consumption, reliability, etc. The author does not address the

relative merits of individual navigation sensors.

1.5 Contributions

The contributions of this work include a quantification of the contributions that
individual sensors and error parameters make to the performance of a land-vehicle
navigation system. Part of this contribution includes an investigation into the role
that low-cost motion sensors play in navigation system performance. However, it also
includes an investigation into the impact that various types of GPS position fixes
have on navigation system performance. Currently, the accuracy of GPS position
fixes is intentionally degraded by SA. However, a policy statement recently issued
by the White House indicates that SA will be turned off before the year 2006 [11],
and the accuracy of GPS position fixes will improve significantly. In addition, a more
accurate form of GPS positioning known as differential GPS positioning (DGPS) may
soon become widespread. These changes in the accuracy of GPS position fixes could
have a significant impact on the performance and evolution of land-vehicle navigation
systems. This research investigates the impact that each type of GPS positioning has
on navigation system performance.

The information produced by this research can help today’s navigation system
designers understand tradeoffs in various candidate system designs. However, it can
also help navigation system designers in the future, when Selective Availability is
turned off or DGPS becomes widely available. This contribution can also be used
to guide sensor designers—to reveal to them those sensor error parameters which
contribute most to positioning error and to guide them into a design with appropriate
performance tradeoffs. Another part of this contribution is the application of analysis
techniques to low-cost navigation systems. While a similar analysis technique was
applied to a high-end inertial navigation system in [10], this is the first published

analysis of a modern low-cost navigation system that includes low-cost sensors, GPS,
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and map-matching. A second contribution of this work includes the development of
error models for various low-cost dead-reckoning sensors and the design of a Kalman
filter for data fusion. Finally, this work includes an original map-matching algorithm
developed by the author. In summary, the contributions of this research are

e Quantitative analysis of the contributions that various dead-reckoning sensor

errors make to the positioning accuracy of a low-cost navigation system

e Quantitative analysis of the impact of various types of GPS positioning on

navigation system performance
e Development of original error models for various low-cost dead-reckoning sensors
e An original Kalman filter design for navigation sensor fusion

e Developed extensions to the theory of sensitivity analysis so that it may be

applied to a linearized Kalman filter

An original map-matching algorithm

1.6 Organization of the Following Chapters

In Chapter 2, the theoretical underpinnings for the work in this thesis are presented.
In this chapter, an analysis tool known as sensitivity analysis is presented. The
content of this chapter is independent of the specific problem being solved in this
research—it has been written in a tutorial way, to give the reader an understanding
of the analysis techniques used in this research without reference to specifics of the
problem being solved. This chapter includes a discussion of sensitivity analysis as it
appears in [10], but also presents extensions to the work in [10] that were developed by
this author for this research. The next chapter, Chapter 3, lays out error models for
various sensors that are commonly used in automobile navigation. Justification for the
error models is discussed, and the mathematical models are also presented. Chapter 4
is devoted to a discussion of map-matching and the manner in which it is treated in

this thesis. Specifically, various map-matching issues are discussed including factors
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involved in successful map-matching and the benefits of map-matching to navigation
system performance. Finally, a map-matching algorithm developed by the author
is presented. This chapter could rightfully be included with Chapter 3, but map-
matching issues deserve a chapter to themselves. Chapters 2, 3 and 4 together provide
the complete basis for the analysis work in this thesis. Chapter 5 ties the information
from the previous chapters together by presenting detailed equations of the analysis.
This chapter also discusses some important assumptions that were made to simplify

the analysis. Finally, Chapter 6 contains results, and Chapter 7 contains conclusions.



Chapter 2

Sensitivity Analysis

2.1 Introduction

As was mentioned in Chapter 1, existing land-vehicle navigation systems often include
a GPS receiver and a dead-reckoning unit, and the errors appearing in GPS position
fixes and the outputs of dead-reckoning sensors are complementary—GPS position
fixes do not drift but contain random errors that tend to be uncorrelated from one fix
to the next, and dead-reckoning sensors accurately measure changes in position over
short time periods but drift over long time periods. Proper fusion of GPS position
fixes with dead-reckoning sensor data can take advantage of these complementary
errors, producing positioning performance that is better than could be obtained with
either type of data alone. One algorithm for combining data with complementary
characteristics is known as a Kalman filter. The advantages of the Kalman filter are
such that it is well-suited for use in fusing GPS position measurements with data
from inertial instruments, and, for this reason, is frequently utilized in the navigation
community. Furthermore, the Kalman filter provides a mathematical framework that
is conducive to analysis. For these reasons, a Kalman filter will be used in this
research.

Many texts are devoted to a discussion of Kalman filtering ([19], for example), and
the reader is referred to one of them for details. Suffice it to say here that a Kalman

filter is a statistically optimal means for estimating quantities whose time histories

11
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can be approximately modeled and for which a related measurement is available. In
the state-space formulation of the Kalman filter, the quantities being estimated are
generally encapsulated in a column matrix known as the filter’s state vector. The time
history of the state vector can presumably be modeled by linear stochastic differential
equations referred to as the filter's model equations. The forcing function for these
equations is assumed to be zero-mean white noise with a Gaussian distribution and
a known spectral density matrix. In addition to the model equations, a measurement
of a linear combination of the states is assumed to be available; the relationship
between the measurement vector and the state vector is referred to as the measurement
equation. The measurements may be corrupted with additive zero-mean white noise
with a Gaussian distribution and another known spectral density matrix.

In order for a Kalman filter to produce a statistically optimal estimate of its
state, the filter’s model equations, measurement equations and spectral density ma-
trices must exactly describe the actual dynamical and statistical properties of the
system of interest. In other words, the time-history of the system’s state must be
described ezactly by known linear stochastic differential equations driven by white
Gaussian noise with known statistical properties. However, it is frequently the case
that the dynamical equations that exactly describe the behavior of a system are not
linear or are not known precisely. Moreover, it may be the case that the number of
states required to accurately model the system would be so large that the computa-
tional requirements of the filter mechanization would exceed available computational
capacity. Under these circumstances, the filter designer must resort to a reduced-
state Kalman filter, capturing the essential behavior of the system with fewer states
than are required to model it exactly. Whenever the equations in a Kalman filter
mechanization do not model the behavior of the physical system at hand exactly for
any reason—whether due to imprecise knowledge of the physical system or due to
deliberate reduction of the state—the Kalman filter will produce a suboptimal state
estimate. The filter is thus referred to as a “suboptimal” filter.

The error in the state estimate produced by a suboptimal filter will be greater
than that produced by an optimal filter. The extent to which the performance of a

suboptimal filter deviates from optimality may be quantified using a tool known as
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sensitivity analysis. Sensitivity analysis can be extremely enlightening because it can
reveal a great deal about various error mechanisms in a Kalman filter. Historically,
sensitivity analysis has been used to quantify the sensitivity of a particular subopti-
mal Kalman filter’s performance to perturbations in parameters which appear in the
filter’s equations. The research here, however, is not concerned with suboptimal filter
design per se. Instead, the goal of this research is to quantify the relative contribu-
tions that various navigation sensors make to the total navigation error. Fortunately,
the equations of sensitivity analysis can be formulated in such a way that the con-
tributions that individual error sources make to the total error in a Kalman filter’s
estimate can be computed. Sensitivity analysis therefore has uses beyond its histori-
cal applications. In this chapter the equations of sensitivity analysis are derived, thus
establishing the theoretical underpinnings for the analyses appearing in later chap-
ters. First, the equations of sensitivity analysis are presented for a linear Kalman
filter. Next, a simple example is given to illustrate the use of sensitivity analysis to
the reader. At the end of the chapter, extensions that are required for this research
are made to the basic equations of sensitivity analysis—specifically, the equations of

sensitivity analysis are rederived for a linearized Kalman filter.

2.2 The Equations of Sensitivity Analysis

The subject of sensitivity analysis has been studied in [3], [8], [10], and [21]. The
formulation in [10] is more general than those in [3] and [21] and is more relevant
to this research than the formulation in [8]. The derivation that follows is therefore
most closely related to that of [10]. The derivation presented in this section will be
extended further in Section 2.4 to accommodate a special form of the Kalman filter
that is utilized in the analyses in this thesis. (In the notation which follows, column
matrices are denoted with lowercase bold type, scalars are denoted with lowercase
plain type, and matrices are denoted with uppercase type.)

The derivation begins by assuming that the physical system at hand can be pre-
cisely modeled by a set of linear stochastic difference equations. All of the parameters

governing these equations are assumed to be known, and the equations should model
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the true behavior of the system as accurately as is reasonably possible. This set of
equations will henceforth be referred to as the “reference” system because the sensi-
tivity analysis will quantify the Kalman filter’s performance against (or, in reference
to) this system. Finally, it should be noted that these equations need not be identical
to the model equations of the Kalman filter in that they may include states that the
Kalman filter cannot reliably estimate or constants whose true values are not known
exactly.

This being said, we my begin the derivation. The reference system'’s state evolves

in time according to the following model:
Tl = PrxZrx + wip (2.1)

In this equation, the reference system state vector, @, has dimensions n x 1, the
reference system state transition matriz, ®,x, has dimensions n X n, and w,x is the
k" element of an uncorrelated random sequence with covariance matrix Q,; and a
Gaussian distribution. The quantity w,; is generally referred to as process noise.
The variable k is a discrete-time index representing time { = k7', where T is the
discretization period of the system. The subscript “r” distinguishes these quantities
as being associated with the reference system (as opposed to the Kalman filter).
The measurement vector, 2k, has dimensions p x 1 and is assumed to be a linear

combination of the system states:
Zrk = Hr,kmr,k + Urk (22)

where H,, is the reference system observation matrix and v, is the k‘* element of a
normally-distributed uncorrelated random sequence with covariance R, k.
The output of the system is defined by the s x 1 column matrix y,.,, which is a

linear combination of the system states:
Yrk = CraZrk (2.3)

where C, x is a matrix of dimension s x n.
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The Kalman filter state vector, &k, which is an m x 1 column matrix, evolves in

time according to the equation
Tfrr1 = ‘bflk:cf,k + wpi + Bru; (2.4)

where ®;; has dimensions m X m, wy, is process noise (an uncorrelated Gaussian
sequence of covariance @), Bk has dimensions n x j, and u is a deterministic input
to the filter of dimension j x 1. Note that the subscript “f” in this (and subsequent)
equations denotes a quantity that is associated with the filter (as opposed to the
reference system).

The actual measurements read from the sensors and used by the filter are a linear
combination of the reference states, the model for which is given in Equation 2.2.
The filter’'s model for the measurement vector, however, may be different from the
actual measurement vector. Accordingly, the filter “believes” that the measurement

taken is actually modeled by the equation
zk = Hppo g + sk (2.5)

where vg is the kt* element of a normally-distributed p x 1 uncorrelated sequence
with p x p covariance matrix Ry .

At each timestep, a measurement is taken and the Kalman filter generates an
estimate of the state vector. The state estimate is recursively computed using the
well-known Kalman filter algorithm:

Ky = P H[[HePjHfy + Reel™ (2.6)
Pfy = [ - KeHps P (2.7)
&f, = &+ Kilzek — Hra®rg] (2.8)
Erpn = @iy + Bruk (2.9)

Py = Bk PF®T i + Qrk (2.10)
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where K} is the Kalman gain, P is the covariance of the estimate error after a mea-
surement has been processed, :i:}:k is the estimate of the state based on measurements
up to and including timestep k, & is the predicted state, and Py, is the covariance
of the estimate error projected to timestep k + 1. Note that the “+” superscript

(3Rt

denotes a quantity afier a measurement update, and the superscript denotes a
quantity before a measurement update. More details describing the Kalman filter can
be found in [19].

The output of the Kalman filter is defined by the s x 1 column matrix ¥, which

is a linear combination of the estimate of the state:

where Cj is a matrix of dimension s x m.
Finally, the error between the output of the reference system and the output of
the Kalman filter is defined as

€k = Yrk — Ysik (2.12)
and define the covariance of e; as

P.; = Eleel] (2.13)

*

At this point, an important constraint on the exogenous input to the Kalman
filter, wy, must be established. Namely, it is required that u, be the sum of a linear
combination of the reference states and an additive noise term that is assumed to be
normally-distributed and uncorrelated with any states or noise sources in the system.

Mathematically, ux can be expressed as
ug = Lezrx + Y, (2.14)

This assumption is not too restrictive, but may require ., to be augmented with

states that define the time history of u,. Note that [y has dimensions j X n and ¥,
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has dimensions j x 1.
The goal of this derivation is to arrive at a recursive expression for the covariance
matrix P.x. To this end, a single combined state vector, x.k, is constructed by

stacking @, and &sx:

T
=] " (2.15)
| 1k |
so that )
4
T, = Aik (2.16)
| Trk
and )
T
zh=| (2.17)
| Trk |

Utilizing Equations 2.1, 2.9, and 2.16, one can arrive at an expression that describes

the propagation of :E::k in time from timestep k to timestep k£ + 1:

Wr
z] ’ (2.18)
* B,

Bel'r @i

mc,k+1 =

&, O } N

It is convenient to define ®.; and w,; so that Equation 2.18 can be rewritten as

follows:

T = DTl + wer (2.19)
where

B = [ Pri O ] (2.20)

Bl ®fp
and
Wrk
Wep = [ Buth, ] (2.21)

Utilizing Equations 2.8 and 2.17, one can produce an expression that describes

the evolution of z_; when a measurement is processed at timestep k:

m::k = chkm;k + Kc,lc'vr,k (222)
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where

I 0
By = (2.23)
KyH.x I —KiHpy
and
0
Kep= [ } (2.24)
Ky
The error term ey is given by
€ = Cc‘k:c::k (225)
where
Cer = Crs ~Cps | (2.26)

The covariance of z_, is derived from Equation 2.19 and is given by

Plrn= (Dc,kP:kq)c,kT + Qck (2.27)
where
Qrk 0
Qek = ' 2.28
"1 0 BuwBT (2.28)
and ¥y is the j x j covariance matrix of 1.
The covariance of :z:;‘:,c is derived from Equation 2.22 and is given by
Pl = BeiPeiBep” + KepRrpKex” (2.29)
Finally, the covariance of the error term e is given by
Poy = Cex PHCer” (2.30)

The diagonal elements of P, represent the mean-square value of the difference be-
tween vy, , (the output of the reference system) and y, (the output of the filter). As
such, they collectively represent the “true” mean-square error in the filter’s estimates

and are therefore the terms of interest.
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Equations 2.27, 2.29, and 2.30 together with the initial condition for P, form
the so-called equations of sensitivity analysis. The power of sensitivity analysis lies
in the fact that the diagonal elements of P, are linear in R,, @Q,, and P.(0). Hence,
the equations of sensitivity analysis are difference equations that are linear in their
forcing functions (R, and @,) and their initial condition (P.(0)). This important
result implies that the total effect of all of the terms in R., Q,, and P.(0) on P, is
equal to the sum of the effects caused by each individual term in R,, Q,, and P.(0).
Therefore, each term in R,, @, and P.(0) may be played through the sensitivity
equations one at a time, with all other terms in these matrices set to zero; the resulting
diagonal terms in P, represent the contribution that the non-zero term alone makes
to the mean-square error in the filter’s state estimate. The sensitivity equations must
be run many times—one time for each term in R,, @, and P,(0) whose nominal value
is non-zero. After the individual contributions of each term in R,, @, and P.(0) have
been computed, the contributions may be summed to obtain the total mean-square
error in the Kalman filter’s estimates.

The catalog of the contributions that all terms in R, @, and P.(0) make to each
filter state at any instant in time is referred to as an error budget for that point in
time. An error budget is a snapshot of the contributions that all error sources make to
the total estimation error. Inspection of a complete error budget immediately reveals
those error sources that contribute the most to the errors in the filter’s estimates.
Such results can contribute greatly to an understanding of the error mechanisms in
a Kalman filter.

The error budget is also useful in other ways. Once a component error budget
is established, one can easily compute the sensitivity of the filter’s estimate error
to changes in a particular error source. This can be done easily because it is not
necessary to repeat the sensitivity analysis. This convenient result arises because the
mean-square estimate error is a linear function of each error source (i.e. each term in
R., Q,, and P.(0)). As a result of this linear relationship, an increase in the mean-
square value of an error source will cause its contribution to the mean-square error in
the estimate of each state to increase in direct proportion. For example, doubling the

mean-square value of the random noise in a measurement will cause the contribution
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of that noise term to the error in every state estimate to double, as well. This result
assumes that the real-world (i.e. reference system) error sources change and that the
Kalman filter design remains fized, and is a convenient means for examining a filter’s
sensitivity to variations in real-world parameters.

The simple example that follows will demonstrate the use of sensitivity analysis
and will demonstrate its usefulness in revealing the error mechanisms in a Kalman

filter.

2.3 A Simple Example

2.3.1 Problem Description

Let us suppose that we seek to estimate the value of a quantity whose time history
is described by a first-order Gauss-Markov process, and that a measurement of this
quantity is available but is corrupted additive white noise. In this example, we shall
utilize a Kalman filter to estimate this quantity, but will assume that the values for
the parameters which govern this process are not known exactly or change over time.
We shall employ sensitivity analysis to explore the manner in which such parameter
changes affect the Kalman filter's estimate error and shall use our results to gain
insight into the error mechanisms of the filter.
The reference system, which describes the actual evolution of the state z,, is given
by
I, = —ix, + u, (2.31)

Ty

where u, is normally-distributed white noise with spectral density matrix Q,:
ur = N(0,Q;) (2.32)
The Kalman filter’s model equation is given by

. 1
zf=—T—fxf+uf (2.33)
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where
us = N(Oa Qf) (2‘34)

The actual measurement is given by
z2=2z, 4+ (2.35)

in which
vr = N(0, R,) (2.36)

The value for the spectral density of the measurement noise that is used when com-
puting the Kalman gain is denoted Ry. The value of Ry may not be the equal to
the value of the true spectral density, R,, because we wish to simulate inaccurate

knowledge of the spectral density of v,.. Therefore
Vg = N(O, Rf) (2.37)

To maintain consistency with the discrete-time formulation in Section 2.2, the

matrices for the sensitivity analysis are given in discrete time:

o, = oo (-7) 0 )} (2.38)

Q. = | 2 = (2.39)

T, = } (2.40)

c,

P, = ] (2.41)

where z.(0) is a random number with a mean of zero and a Gaussian distribution

with variance —Q;i, and T is the discretization period of the system.
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Contribution of P 0.0 (0 %)
Contribution of Q- 0.212 (65.6 %)
Contribution of R, 0.111 (34.4 %)
Total Mean-square Error 0.323

Filter's Predicted Mean-square Error | 0.323

Table 2.1: Results of sensitivity analysis applied to an optimal filter

2.3.2 Basic Analysis Results

We begin the analysis with an optimal Kalman filter—that is, one for which 7y = 7,
Qs = Q:, and Ry = R,. Letting > =17, = 1.0, R, = By = 1.0, @, = Qf = 1.0, and
T = 1.0, we first run through the sensitivity analysis with R, and all of the elements
in Q. and P, set to their nominal values. In doing so, we find that, when the filter
reaches steady state, the total mean-square error in the estimate of z is 0.323.

In general, the error in the filter’s estimate of z results from 3 sources of un-
certainty: uncertainty in the initial value of z (i.e. P-(0)), process noise (Q,), and
measurement noise (R,). The equations of sensitivity can be utilized to quantify the
contribution that each of these 3 sources of uncertainty makes to the total mean-
square error in the estimate of z. This is accomplished by running through the
sensitivity equations once for each error source (3 times in this example). To evaluate
the effect of a single error source, the value of the error source of interest is kept at its
nominal value, the other two error sources are set to zero, and the equations are run.
In running through the sensitivity equations, the diagonal elements of P, represent
the contribution that the error source of interest makes to the mean-square error in
the estimate of z. By repeatedly exercising the equations of sensitivity, the contribu-
tion that each error source makes to the total error in the estimate of the state can
be quantified. Table 2.1 shows the contributions that each error source makes to the
total steady-state estimate error and is the steady-state component error budget for
this system.

The Kalman filter algorithm and the sensitivity analysis both computed the mean-
square error in the filter’s state estimate to be 0.323. Because the filter is optimal, we

expect the filter’s estimate of the mean-square error to be the same as that predicted
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by the sensitivity analysis, and this is indeed the case. The data in Table 2.1 also show
that the process noise contributes nearly twice as much as the measurement noise to
the mean-square estimate error. This leads us to conclude that the estimate of =
can be improved more effectively by decreasing the process noise than by decreasing
the noise in the measurement—e.g. halving the measurement noise will have less
impact on the filter’s estimate error than halving the process noise. If z had some
physical meaning, these results could have important implications. If, for example,
T represents a sensor bias, greater performance gains could be realized by decreasing
the bias’ drift than by decreasing the noise in the sensor’s output. The quality of the
sensor’s output could therefore be most effectively improved by focusing on decreasing
the bias drift, or even trading off an increase in measurement noise for a decrease in
bias drift. This result could have implications for the sensor’s design.

Because the sensitivity equations are linear in each source of uncertainty, the effect
of a change in each error source can be calculated without re-running the equations.
For example, we can easily quantify the change in the filter’s performance if the
actual measurement noise (R,) is different from that modeled in the filter (Ry). For
example, let us suppose the R, increases by a factor of 2.0. To compute the resulting
mean-square error in the steady-state estimate of z, we simply multiply the individual
contribution that R, made to the total mean-square error (found in Table 2.1) by 2.0
and re-compute the total mean-square error. Doing so reveals that the contribution
of the measurement noise increases to 0.222; the total mean-square error increases to
0.434; and the percent contribution that the measurement noise makes increases to
51.2%, surpassing the contribution of the process noise.

Other valuable insights can be gained from sensitivity analysis. For example, sup-
pose that the actual time constant for the first-order Gauss-Markov process describing
the reference state (7:.) is 1.5 instead of 1.0. If the value of 7y remains at 1.0, then the
filter will be suboptimal and the filter’s performance will likely degrade. In addition,
the filter’s prediction of the mean-square error will likely be incorrect. Results from a
sensitivity analysis applied to this filter/reference system configuration are tabulated
in Table 2.2.

The results in Table 2.2 show that the actual performance of the filter will decline,



CHAPTER 2. SENSITIVITY ANALYSIS 24

Contribution of P, 0.0 (0 %)
Contribution of @, 0.303 (73.2 %)
Contribution of R, 0.111 (26.8 %)
Total Mean-square Error 0.414

Filter’s Predicted Mean-square Error | 0.323

Table 2.2: Results of sensitivity analysis applied to a suboptimal filter

but the filter itself will not predict such a decline. As the results show, the contribution
of the measurement noise did not change, but the contribution of the process noise
increases by almost 50%. This result demonstrates the importance of having accurate
models for sensor error sources and underscores (as did the results in Table 2.1) that,
in this example, more significant performance gains could be realized by decreasing

process noise than measurement noise.

2.3.3 Extending the Analysis

The results presented in the previous section demonstrate the salient features of sen-
sitivity analysis. In this section, sensitivity analysis will be utilized to explore trends
that appear in the filter’s estimate of z when the process noise and measurement noise
parameters vary over a w.de range. The results of this examination provide insight
into the fundamental behavior of a Kalman filter and, for this reason, will help to
explain trends which appear in the results presented in Chapter 6. In the discussion
that immediately follows, the filter is assumed to be optimal (i.e. the filter parameters
are always equal to the reference system parameters). Hence, in this section, Qy = Q-
and Ry = R, in all simulations. Also, the RMS value of the process noise will be
denoted /@, and the RMS value of the measurement noise will be denoted VR.
Figure 2.1 shows the RMS error in the steady-state estimate of z versus /@,
with R fixed at 1.0. Also shown in the figure are the individual contributions that
process noise and measurement noise make to the steady-state error in the estimate
of z. Figure 2.2 is similar to Figure 2.1, but shows the RMS error in the steady-state
estimate of z versus V'R, with /@ fixed at 1.0. This figure also shows the individual
contributions that process and measurement noise each make to the steady-state RMS
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Figure 2.1: RMS error versus /@ Figure 2.2: RMS error versus vR

error in .

As Figure 2.1 shows, the process noise is responsible for a decreasing fraction of
the total RMS error as /@ grows larger relative to vV'R. When /@ is smallest, for
example, it contributes nearly all of the error. Similarly, as Figure 2.2 shows, the
measurement noise is responsible for a decreasing fraction of the total RMS error as
its RMS value grows larger relative to /@.

This may seem counterintuitive because one might guess that a noise input with a
large RMS value would contribute a correspondingly large fraction of the RMS error.
However, this is not the case. The trend arises because of the manner in which the
Kalman filter weighs the measurement information against the model information.
This weighting is numerically encapsulated in the Kalman gain. Loosely speaking,
the Kalman gain can be thought of as the weighting applied to the information in
a measurement—a “large” Kalman gain indicates that the measurement is weighed
heavily, and a “small” Kalman gain indicates that the predicted state is weighed
heavily. As the Kalman gain increases, then, the measurement information figures
more prominently into the filter’s state estimate.

Figure 2.3 shows how the value of the steady-state Kalman gain varies with V@
and VR. The curve labeled “Varying Measurement Noise” shows how the steady-
state Kalman gain changes as v/R varies (with /@ fixed). Similarly, the curve labeled
“Varying Process Noise” shows how the steady-state gain changes as /@ varies (with
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Figure 2.3: Kalman gain as a function of process and measurement noise

VR fixed). As the figure shows, the Kalman gain is large when /R is small or /@
is large. Hence, when VR is small (or \/Q is large), the measurement is weighed
more heavily, and measurement errors contribute more to the total estimate error.
Similarly, when /@ is small (or V'R is large), the measurement is given less weight
and the errors in the model contribute more to the total estimate error.

The relative weighting of the measurement against the model therefore explains
why the measurement noise dominates the total estimate error when VR is small
and why the process noise dominates the estimate error when /@) is small. Similar
trends will be observed in the results presented in Chapter 6, and we shall refer back
to this example when we encounter them. The reader should be aware, however, that
the relative contributions of various error sources cannot always be explained simply
by examining the Kalman gain. In general, the process noise, measurement noise,
and system dynamics all come into play in determining how much each error source

contributes to each state.
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2.4 Extending Sensitivity Analysis to a Linearized
Kalman Filter

For reasons to be given in Chapter 5, the Kalman filter analyzed in this research
is a linearized Kalman filter. A linearized Kalman filter is one in which the model
equations have been linearized about a known state trajectory, known as the nominal
state trajectory. At the moment, this fact is important only insofar as it affects the
formulation of the equations of semsitivity analysis. The specific equations of the
linearized Kalman filter used in this research are not important here. In order to
complete the theoretical picture for the work in this thesis, however, it is necessary
to extend the theory presented earlier in this chapter. It is worth noting that the
following derivation is original; past derivations of the equations of sensitivity analysis
assume the presence of a Kalman filter having the form described in Section 2.2 ([3],
8], [10], [21]).

Before proceeding with the derivation, it is worth establishing a basic understand-
ing of linearized Kalman filters. Linearized Kalman filters are generally employed
when the evolution of the state vector is described by a nonlinear differential equa-
tion or the measurement vector is a nonlinear function of the state vector. In this
research, certain model equations are nonlinear, and a linearized Kalman filter must

therefore be employed. These equations have the form
& = f(z(t),t) + w(t) + p(t) (2.42)

where f is a vector of nonlinear functions, ¢ is time, w(t) is white noise, and pu(t) is
a deterministic exogenous input.

In order to utilize a Kalman filter to estimate z, this expression can be linearized
about a nominal state trajectory (denoted &) using a Taylor series expansion. This
expansion can be carried out by first defining a perturbation state vector (denoted é&x)

such that
=+ & (2.43)

and then substituting the righthand side of Equation 2.43 into Equation 2.42 for
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z. Generally, only the first-order terms in the expansion are kept, so that, after

performing the expansion, we arrive at the approximation
z =~ f(2,t)+ F(t) & + w(t) + p(t) (2.44)
where F(t) is a matrix given by

_ Of(=(t),¢)
Fm——?aﬁ_m¢M) (2.45)

In light of Equation 2.43, the terms on the righthand side of Equation 2.44 can be
put into two groups: terms describing the evolution of the nominal state trajectory
and terms describing the evolution of the perturbation state. The nominal state

trajectory is a known deterministic function of time, and is given by
z = f(&,t) + pt) (2.46)

Subtracting this equation from Equation 2.44, we arrive at the following model for

the evolution of the perturbation state:
& = F(t) & + w(t) (2.47)

which is a linear stochastic differential equation. As such, it is suitable for use as the
model equation in a Kalman filter.

By utilizing a Taylor series expansion to linearize Equation 2.42, the problem of
estimating the “full” state (which evolves according to a nonlinear function) has been
reduced to a problem of estimating the perturbation state (which evolves according
to a linear function). A linear Kalman filter that is employed to estimate the pertur-
bation state vector is thus referred to as a linearized Kalman filter. An estimate of
the “full” state (£(t)) can be obtained by adding the filter’s state estimate (&&(t)) to
the (known) nominal state trajectory (Z(t)).

To accommodate a linearized Kalman filter, the equations of sensitivity analy-

sis must be reformulated because, in general, the results of the sensitivity analysis
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will depend on the nominal state trajectory. To proceed with the derivation of the

equations of sensitivity analysis, we first define the reference system:
&Er.k+1 = @r,k&r,k + wrk (248)

which is the discrete-time form of Equation 2.47. The quantity £ is a discrete time
index, ®, is the reference system’s n X n state transition matrix, and w,x is process
noise. This process noise is assumed to be an uncorrelated random sequence with
covariance matrix @ and a Gaussian distribution.
The Kalman filter’s model for the time history of the state vector, & is given by
the equation
&epre1 = Pribepr +wpp + Brug (2.49)

This is very similar to Equation 2.4. However, the exogenous input u is a function
of the reference state, which, in the equation to follow, has been separated into its

nominal and perturbation components:
U = E:ki:r,k + Fk&z’r,k + ¢k (250)

where 1, is the k** element of an uncorrelated Gaussian sequence that has covariance
matrix U.. Notice that u; may depend on the nominal state trajectory differently
than it depends on the perturbation state. We shall return to these time-update equa-
tions momentarily, but we now proceed by examining the measurement equations.
Recalling Equation 2.2, the actual measurements read from the sensors and used
by the filter are a linear combination of the reference states. The filter's model for
the measurement vector, however, may be different from the actual measurement
vector. In other words, the filter “believes” that the measurement of the “full” state

is actually modeled by the equation
Zpp = Hf'kmf,k +Urk (2.51)

Because a linearized filter’s state vector is a perturbation state (&rjx), however, the
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measurement vector zs; must be modified so that it is a linear function of the pertur-
bation states only. The modified measurement vector is referred to as the perturbation

measurement; the filter’s model for the perturbation measurement is

&f,k Zigp— Hf,ki:f,k (2.52)

= Hf’k&l:f,k +Vsk (2.53)

The actual measurement vector may not be the same as the filter's model for the

measurement, however, because the actual measurement of the “full” state is given

by
Zef = H,,km,,k + Vr (2.54)

The actual perturbation measurement vector, then, is
&r,k = Zpgp — Hf,k:f:f,k (2.55)

Noting that
Trk = i:r,k + &Br,k (256)

we can substitute from Equation 2.56 into Equation 2.54 for z,x, then substitute

the result into Equation 2.55 to arrive at an expression for the true perturbation

measurement:
6k = Zrp— HppZpx (2.57)
= Hpp(Brp+ &8rp) +vrp — HppZpi (2.58)
= Hr,k&nr,k + Urk + Hr,k:—i:r,k - Hf,kif,k (259)

The measurement at each timestep is utilized to update the state estimate accord-
ing to
68}, = &7, + Ki [8rk — HpxbE]y) (2.60)
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or, substituting from Equation 2.59 into Equation 2.60 for &z, k,

§&f, = 67+ Ki [Heplr g + vre — HyalB]y|
+K; (Hr,k‘ir,k - Hf'kif,k) (2.61)

We shall return to this expression shortly, but we must first derive a suitable
expression for & ,. Substituting from Equation 2.50 into Equation 2.49 for uy, an
expression can be derived for the propagation of the state estimate from timestep &

to timestep k + 1:
8741 = PralEfy + B (SkZr + Cilrs + 9P) (2.62)

We continue as we did in Section 2.2 by defining a combined state vector (&c. )

that is constructed by stacking &, and & :

e
= (2.63)
| &Efk |
so that i i
&,
&}, = g (2.64)
T | &
and _ -
&,
a=l (2.65)
| & |

Utilizing Equations 2.48, 2.62, 2.65, one can arrive at an expression that describes

the propagation of &Zk from timestep k to timestep k + 1:

+ [ 0 ] Tk (266)

Bz

Wrk
By,

4

- (Dr,k 0
c.k

ck+l — Bk Fk (Df,k

Equation 2.66 can be simplified to

&Bc_,k+l = (I)c,k&nz:k +wer + Ec.kir,k (267)
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where the meaning of ®.x and w,, can be inferred by comparing Equation 2.67 to
Equation 2.66, and =, is defined as

Ec,k = I: 0 ] (2.68)

BiZk

Utilizing Equations 2.61 and 2.64, one can arrive at an expression that describes

the evolution of &, when a measurement is processed
&B:k = Bc,k&:;k -+ Kc,kv,._k — Af,k:-i:f'k + A,-,k.’i:,.'k (2.69)

where B, and K., have the same meanings as in Equation 2.22 and

.
A = (2.70)
i Kka'k ]
and _ -
0
Ak = (2.71)
i KkHr,k i

The goal of the analysis is to produce a recursive expression for P (defined in
Equation 2.13) that is similar to Equation 2.30, but which applies to the linearized
filter. To this end, we must first derive an expression that describes the propagation
of the mean-square value of #, from timestep k£ to timestep k£ + 1 (i.e. one that
is analogous to Equation 2.27). This expression can be obtained by multiplying

Equation 2.67 by its own transpose and taking the expectation of both sides:

- _ + &T = & =T =T
P k+1 T (I)c,kp c,kq)c.k + QC.k + ZekLrkLr ke k

C.
+ 0o B[t @LET, + EendraB [Ety] 27 (2.72)

where Q. has the same meaning as in Equation 2.28 and E‘[&n:k] is the expected
value of &,
Next, we must derive an expression (analogous to Equation 2.29) that describes

the update of the mean-square value of @, after incorporation of &z into the state
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estimate. This expression can be obtained by multiplying Equation 2.69 by its own
transpose and taking the expectation of both sides:
P} = BekPBl+K.xRei KT,
+Ar,kir.kiZ:kAZ,‘k + Af,kf:j‘ki!}:kl\}:k
—ArkZrxZ ] AL — Apppp®T AT,

+Ariri BBy BT, + BouE[fes] #T AL,
~Ara@sE[es,]” BY - BoiEloos] 25,AL, (2.73)

where E[&z; k] is the expected value of & .

The recursive expressions for E[&nzk] and E'[&z:; k] are given by

E[f | = ®ckB[fel] + Zcxdns (2.74)
E[&BZ,C] = Bc,kE[&c_,k] + A,-,kit,-,k - Af'k:i:f,k (2.75)

Equations 2.30, 2.72, 2.73, 2.74 and 2.75 together form the extended sensitivity
analysis equations. Utilizing these equations for sensitivity analysis is complicated by
the fact that Equations 2.72 and 2.73 are not linear in the same sense as Equations
2.27 and 2.29. Specifically, the expressions for P:k and P, ., in Equations 2.72 and
2.73 are quadratic in &, x, sk, £ [&z:;':k], and E[&z:c" k]. In contrast, the expressions for
Pf, and P_, ., in Equations 2.27 and 2.29 are linear in their forcing functions (Q- s and
R. ) and initial conditions (P.(0)). The principle of superposition therefore applies
to the system of difference equations described by Equations 2.27 and 2.29 but not to
that described by Equations 2.72 and 2.73. Therefore, in general, sensitivity analysis
does not apply to the linearized Kalman filter in the same way as it applies to a truly
linear Kalman filter.

Because Equations 2.72 and 2.73 are not linear in the appropriate sense, the con-
tributions of individual error sources to the total mean-square estimate error cannot
necessarily be separated from one another. However, Equations 2.72 and 2.73 still
produce the true mean-square error in the estimates of the linearized Kalman fil-
ter’s state. Furthermore, if Equations 2.72 and 2.73 simplify so that they are linear,
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then the principle of superposition does apply and the contributions of individual
error sources to the total mean-square estimate error can be quantified. Whether the
equations simplify appropriately depends on whether the error models in the reference
system are a function of the nominal trajectory (i.e. whether =, = 0) and on how the
nominal trajectory is defined. For example, if = = 0, then Equation 2.72 simplifies
to Equation 2.27. Also, if

Hox &) = HppZgg (2.76)

then Equation 2.73 reduces to Equation 2.29.
Fortunately, in this research, Equation 2.73 simplifies to Equation 2.29 and Equa-
tion 2.72 simplifies to Equation 2.27 under most circumstances. Details regarding the

implementation of these equations will be presented in Chapter 5.

2.5 Summary

Sensitivity analysis is an elegant theoretical tool for quantifying the individual contri-
butions that various error sources make to the total mean-square error in a Kalman
filter’s state estimate. Furthermore, its formulation is such that the effects of changes
in the real-world error sources can be easily quantified with little computational ef-
fort. As the example in Section 2.3 illustrated, process noise, measurement noise, and
initial uncertainty in the state each contribute differently to the total estimate error.
The results implied that improvement in performance was a stronger function of pro-
cess noise than measurement noise. These results could have important implications,
depending on the physical meaning of the state. Finally, the example demonstrated
that the filter’s performance degrades if the filter’s models are inaccurate. This is not
unexpected, but, using sensitivity analysis, we were able to easily quantify the extent
to which the erroneous model degraded the filter's performance. As was shown, a
filter with an erroneous model can produce misleading results. All of these benefits
of sensitivity analysis demonstrate that it is well-suited for the analysis in this the-
sis. In the chapters to follow, a Kalman filter and a reference system model will be

presented, and the theory developed in this chapter will be applied to this system.



Chapter 3

Sensor Error Models

3.1 Introduction

The previous chapter supplied the theoretical foundation for the analysis in this thesis.
As the previous chapter demonstrated, a complete sensitivity analysis requires two
systems of stochastic equations: one that models the time history of the reference
system’s state and one that models the time history of the Kalman filter’s state.
For the problem addressed in this thesis, a detailed description of both systems of
equations will be deferred until Chapter 5. Before the detailed equations can be
presented, however, it is first necessary to discuss the performance characteristics of
various sensors commonly found in land-vehicle navigation systems. In this chapter,
each sensor’s performance is discussed, and a mathematical model for the error in
each sensor’s output is given. Some models are derived in this chapter, while others
are borrowed from the literature. The error models presented in this chapter will
reappear in Chapter 5 as part of the reference system’s and Kalman filter’s stochastic
equations.

[t is important to point out that, for some sensors, the error models that appear in
the Kalman filter’s equations differ from those that appear in the reference system’s
equations. The reason for this has to do with the fact that some error models depend
on parameters that cannot be reliably estimated by a Kalman filter. (The error model

for the fluxgate compass’ bias is an example.) Therefore, certain error models cannot

35
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be mechanized in a Kalman filter and must be supplanted with simpler ones that can.
However, such error models can generally be used in a sensitivity analysis. Differences
between the error models in the Kalman filter and those in the sensitivity analysis

will be noted.

3.2 Rate Gyro Error Modeling

3.2.1 Example Rate Gyros

Rate gyros are found in many existing land-vehicle navigation systems [38]. Two pop-
ular low-cost rate gyros are the Murata Gyrostar and the Systron Donner Gyrochip
Horizon. Both of these gyros generate an analog signal that is amplified so that 1 volt
of output corresponds to rotation rate of 45 degrees/sec. The maximum specified ro-
tation rate for both gyros is 90 degrees/sec, a rate which far exceeds typical turn rates
for an automobile. Both the Murata gyro and the Systron Donner gyro transduce
rotation rate using a vibrating element. When the gyro is not rotating, the vibrat-
ing element continuously vibrates back and forth within a plane. When the element
is subjected to rotation about a particular axis, coriolis forces cause the element to
deflect out-of-plane; the amplitude of the out-of-plane motion is proportional to the
rate of rotation. This out-of-plane motion is sensed and filtered by electronics inside
the gyro, and the filtered signal serves as the gyro’s output. (Excellent discussions of
vibrating-element gyroscopes can be found in [58] and [59].) Both of these rate gyros
have been tested by the author, and discussion of rate gyro error sources will center
around these two particular gyros.

There are other rate gyros that may compete in the low-cost market in the future.
Fiber-optic gyros (FOGs), which operate on a wholly different principle than the
Murata and Systron Donner gyros, are generally known to exhibit significantly better
performance than existing low-cost vibratory gyros [40]. Today, for example, Andrew
Corporation produces a FOG known as the Autogyro. According to the specifications
for this gyro, its performance is roughly 5 to 10 times better than that of the Murata
gyro. Currently, FOGs of this caliber are more expensive than the Gyrostar and



CHAPTER 3. SENSOR ERROR MODELS 37

Gyrochip; whether the cost of FOGs will, over the next few years, approach the

current price range of low-cost vibratory sensors seems dubious [40].

3.2.2 Rate Gyro Bias Drift

Two errors which appear in the outputs of existing low-cost rate gyroscopes are
additive white noise and bias drift. Tests have shown that, for the author’s gyros,
the RMS value of the white noise in the output of each gyro is approximately 0.6
mV (0.027 deg/s) and 1.0 mV (0.045 deg/s) for the Gyrostar and Gyrochip Horizon,
respectively. The bias drift of each gyro was examined in several static tests. Figure
3.1 shows data collected concurrently from a Gyrostar and a Gyrochip Horizon. The
data shown were collected over a 48-hour period, beginning immediately after power
was applied to each gyro. The output of each gyro was filtered (with a continuous-time
low-pass filter) and sampled at 50 Hz; this data was then filtered again (digitally) to
reduce the noise in the samples. The sampled data were saved at 1 Hz. Even though
filtered twice, the raw data is still somewhat noisy, and this noise obscures the drift
in the gyros’ outputs. For purposes of clarity, then, the raw data was averaged in
blocks of time 1 minute long. (Averaging the data is really another form of low-pass
filtering and is legitimate because it does not obscure long-term bias drift.) Finally,
in order to compare the data from the two gyros more easily, the mean of each set of
data (over the entire test) was removed. The modified gyro data is shown in Figure
3.1.

As the figure shows, the bias in both gyros drifts nearly identically with time. This
suggests that the drift of both biases is caused by the same phenomenon—probably
temperature variations. Other tests have been run in which the gyro’s output was
recorded as the gyro temperature was varied. These tests confirmed the fact that
each gyro’s bias is a strong function of temperature.

Static tests reveal that both gyros suffer from a significant transient bias drift
immediately after power is applied to them. Figures 3.2 and 3.3 show the average

output of each gyro for several minutes after power was applied. As the figures show,
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Bias Variation of Systron Donner and Murata Rate Gyros v. Time

T T T T T T T 1 T

0.1 ; :
Murata Gyro -
0.08 - :

006f - -
0'04 e e e e s

f

Systron Donner Gyro

-0.02F-

S
b

Deviation of Output From Mean (deg/s)

-oosf- - - -

-008f- - -

-0.1 L 1 ] 1. Il —t 1

A
0 5 10 15 20 25 30 35 40 45 50
Time (hours)

Figure 3.1: Forty-eight hours of data from two rate gyros

the mean output of both gyros approaches a steady-state value in a roughly exponen-
tial fashion. This phenomenon is probably the result of the gyro’s self-heating—i.e.
when each gyro is turned on, the electronics inside begin to dissipate heat and cause
the temperature of the gyro to rise. As the temperature inside the gyro stabilizes,
the mean output of the gyro changes at a slower rate. The outputs of both gyros take
about the same amount of time to stabilize; however, note that the magnitude of the
drift is larger for the Murata gyro than for the Systron Donner gyro.

A similar phenomenon was observed in [4]. In [4], the authors performed a thor-
ough analysis of two low-cost rate gyros, one of which was the Murata Gyrostar. The
authors developed error models for the rate gyros that were based on their data, and
then evaluated the models against real gyro data. The error models in [4] account for
the transient bias drift that results from self-heating. This author believes that it is
more appropriate to ignore the effects of self-heating since this phenomenon is clearly
transient; furthermore, the goals of the work in this thesis are most appropriately
reached by examining the steady-state contributions that sensors make to a naviga-

tion system’s performance. Therefore, in this work, the error model for the rate gyro
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Systron Donner Rate Qyro Output v. Time
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Figure 3.2: Murata gyro transient Figure 3.3: Systron Donner gyro transient

ignores this start-up transient bias drift.

It is important to understand the characteristics of the rate gyros’ bias drift be-
cause the analysis in this thesis requires a model of the bias drift. If, in fact, the drift
in the bias is due principally to changes in ambient temperature, then the relation-
ship between bias drift and temperature is deterministic. Under these circumstances,
the Kalman filter’s model for the bias drift may depend explicitly on temperature.
However, in order to mechanize a temperature-dependent model, a measurement of
temperature would have to be available to the filter. To avoid using a temperature
measurement, a simpler Kalman filter could be designed in which the bias’ dependence
on temperature is ignored altogether. In this case, the bias drift would be modeled
as a random process, even though the bias drift is not truly random because it is
actually a deterministic function of a measurable quantity (i.e. temperature). From
the point of view of the Kalman filter, the bias drift could be modeled as a random
process, since the Kalman filter would have neither a temperature measurement nor
knowledge of the bias’ relationship to temperature.

There are two ways, then, in which the bias drift can be modeled in the Kalman
filter: 1.) model the bias drift as a random process with enough bandwidth to
track worst-case drift resulting from changes in ambient temperature or 2.) include
a temperature-measuring sensor (e.g. a thermistor) in the navigation system that

could be used to calibrate the bias’ temperature dependencies. In an implementation
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adopting option 1, the Kalman filter’s model for the bias drift would not explicitly
depend on temperature—it would assume that the bias drift was a random process,
and the temperature-dependent part of the bias drift would not be deliberately com-
pensated. Because variations in the gyro’s temperature (and therefore the rate gyro
bias) would likely not have a mean of zero, a random walk could be employed as
a reasonable model for the bias drift. (Other candidate models, such as a first- or
second-order Gauss-Markov process are zero-mean processes and therefore would be
less appropriate.) In contrast, in a filter design adopting option 2, a measurement of
temperature must be available. The value of the bias as a function of temperature
would presumably be known and could be stored in a software lookup table. Changes
in the bias with temperature during normal operation could then be corrected by
the navigation software: first, the temperature would be read from the temperature
sensor; then, the value of the bias drift that corresponded to the temperature reading
would be found in the lookup table; the bias error from the lookup table would then
be subtracted from the gyro’s output, and the corrected gyro reading would be fed
into the Kalman filter as a measurement of heading rate.

It may appear that including a temperature measurement and lookup table to
calibrate the rate gyro bias (i.e. option 2) would result in performance superior to
an implementation that ignored the bias’ dependency on temperature. However,
this is not necessarily the case. First, temperature variations probably occur over
time periods that are much longer than the sample period of the filter. (The data
in Figure 3.1 demonstrate that bias variations occur over many minutes, and the
sample period of the Kalman filter designed for this research is 0.5 seconds.) As
the ratio of the time-constant of the bias variations to the filter’s sample period
approaches infinity, a random walk model will more closely approximate the bias
variations. Hence, the actual bias variations could probably be accurately modeled
(in the Kalman filter) as a random walk, and the filter should be able to easily track
bias variations without a measurement of temperature, as long as complementary
sensor measurements are available. Second, adding a temperature sensor adds cost,
complexity, and measurement errors to the navigation system. Consumer vehicle

navigation systems are very cost-sensitive products, and any benefits in performance
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gained by adding a temperature sensor would have to be weighed carefully against
the attendant cost. Furthermore, the functional relationship between bias drift and
temperature may vary from gyro to gyro. Therefore, it may be necessary to customize
the data held in a temperature-versus-bias lookup table for each gyro, adding further
to production costs. Finally, errors in the temperature sensor’s output, such as drift
and noise, would have to be appropriately modeled or compensated.

The Kalman filter in this work does not assume the presence of a temperature
measurement. [t therefore includes a random walk process to model the rate gyro bias.
The empirical data in Figure 3.1 was used as a starting point to derive parameters
that govern this model. Note that the particular data set in Figure 3.1 is probably not
best modeled as a random walk. However, in a real system, the bias may change in
a variety of ways—it could be constant, change in a stepwise fashion, or oscillate (as
is roughly demonstrated in Figure 3.1)—depending on how the gyro’s temperature
changes. Therefore, the Kalman filter model must be flexible enough to track various
types of bias variations. The most appropriate model for this is a random walk. The
parameters for the bias models were chosen conservatively, so that the Kalman filter
could track worst-case variations in the bias.

The philosophy behind the model for the gyro bias for the reference system is
somewhat different than it is for the Kalman filter. In the reference system equa-
tions, we seek to utilize a model that most closely emulates the frue bias variations.
Therefore, the model for the bias in the reference system is not a random walk. In-
stead, the data in Figure 3.1 was used to directly derive a model for the bias drift
that emulates that particular data set. The model chosen is a second-order Gauss-
Markov process. Also, the angular error produced by the bias drift in this model is
approximately 30 degrees/hour RMS; this is consistent with the gyros’ specifications

and with data cited in the literature.

3.2.3 Rate Gyro Scale Factor Error

The errors modeled for both rate gyros include bias drift and additive white noise.

However, it is important to note that the Kalman filter error models presented in



CHAPTER 3. SENSOR ERROR MODELS 42

this thesis (and in [4]) ignore rate gyro scale factor errors. Results have shown that
ignoring scale factor variations is reasonable because it is extremely difficult for a
Kalman filter to calibrate a rate gyro’s scale factor errors under certain circumstances.
Specifically, a Kalman filter cannot estimate the rate gyro’s scale factor error unless
the error appears in the rate gyro’s output. When the rate gyro is not rotating, the
output of the gyro contains no significant information about its scale factor, and the
rate gyro’s scale factor error cannot, therefore, be determined from the rate gyro’s
output. Hence, if a rate gyro is part of a vehicle navigation system, it is only when the
vehicle is actually rotating that the gyro’s scale factor errors can be observed in the
rate gyro’s output. However, land-vehicles typically move in straight lines for long
periods of time, and turns occur abruptly and last only a short time. Because of this,
a navigation Kalman filter will generally not be able to estimate its rate gyro’s scale
factor error accurately. It has been this author’s experience that the Kalman filter
developed for this research does a poor job of estimating the rate gyro’s scale factor,
even if the vehicle’s movement includes turns. In addition, including a gyro scale
factor error as a state in the Kalman filter complicates analysis because it introduces
a nonlinearity into the filter’s equations.

Hence, the design for the Kalman filter used in this research assumes that the rate
gyro’s scale factor is constant and equal to the nominal scale factor for Murata’s rate
gyro. No attempt is made to estimate the gyro’s scale factor error. However, because
scale factor error may exist in a real gyro, it is important to investigate its influence
on navigation system performance. Therefore, the reference system’s model for the
rate gyro’s output includes scale factor error. The manner in which the scale factor
error figures into the rate gyro’s error equations will be given in Section 3.2.4.

Empirical data has been gathered from both a Gyrostar and Gyrochip to determine
each rate gyro’s scale factor accuracy. Figures 3.4 and 3.5 show results that were
obtained when the Murata and Systron Donner rate gyros were tested using a rate
table. (A rate table is an apparatus with a platform that can be made to rotate
at a constant speed with very high accuracy.) For each test, the gyroscopes were
mounted on the table and rotated at each of 13 different speeds, from -60 degrees/sec
to 60 degrees/sec. Each gyro’s output was recorded at each rotation rate for several
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Results of Scale Factor Test for Murata Rate Gyro
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Figure 3.4: Gyrostar rate table results

minutes. Figures 3.4 and 3.5 show the average output of the Murata and Systron
Donner gyros, respectively, at each speed. The circles show the actual test data, and
the line through the points was fit to the data in a least-squares sense. The equation
for the fit line is shown on the plots.

The scale factor reported by the gyro specifications is 45 degrees/sec/volt, or
0.0222 volts/degree/sec. As the equations on the plots show, both gyros’ scale factors
are very near their specified values. The scale factor measured for the Systron Donner
gyro is only 1.4% larger than the nominal scale factor given in the gyro’s specifications;
the scale factor error measured for the Murata gyro is too small to be considered
significant in comparison to the error inherent in the test.

How much a scale factor error contributes to heading error depends on how much
the vehicle turns. Theoretically, if a rate gyro’s output is integrated directly to mea-
sure a change in heading, then the computed heading change will be in error by the
same percent as the rate gyro scale factor. For example, a scale factor error of 1.0%
will result in a heading error of approximately 0.90 degrees after a 90-degree turn. If
the vehicle never turns, then scale factor error contributes virtually nothing to errors

in the heading estimate. Hence, one should expect the largest heading error to appear
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Results of Scale Factor Test for Systron Donner Gyro
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Figure 3.5: Gyrochip rate table results

when the vehicle makes turns which sweep through large angles. Because it is ex-
tremely difficult for the filter to estimate the rate gyro’s scale factor and because scale
factor error generally does not contribute to navigation error except when the vehicle
is turning, the deleterious effects of scale factor error can be mitigated by increasing
the filter’s measurement noise parameter for the rate gyro in proportion to the turn
rate. Doing so will cause the Kalman filter to weigh the rate gyro measurement less,

thereby reducing the negative impact of the scale factor error on performance.

3.2.4 Equations for the Rate Gyro Error Model

The output of a rate gyro (Vo) is usually an analog voltage that varies (nominally)
linearly with the rotation rate (wr) of the gyro. For a non-ideal rate gyro, the output

voltage is biased and corrupted with noise:

where V, is a bias and v is white noise in the output. The quantity V.. r is the

“ideal” gyro output (unbiased and uncorrupted by noise). For an ideal gyro, the
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output voltage is related to the rotation rate of the gyro about its sensitive axis by
Wwr = KT(Vout,T - ‘/norminal) (32)

where K7 is the true scale factor and Vi omina is the nominal output of the rate gyro
when it is not rotating about its sensitive axis. For both the Murata Gyrostar and
the Systron Donner Gyrochip Horizon, the nominal output is 2.50 volts.

The heading rate measured from a non-ideal rate gyro contains three sources of
error—scale factor error, bias error and white noise error. (Other error sources exist
[2, 12, 60|, but justification for ignoring them will be given presently.) The heading

rate measured from a non-ideal gyro (wWmeqs) is therefore
Wmeas — nominal(vout - ‘/nominal) = (KT + 6K)(Vout - ‘/naminal) (33)

8K is the scale factor error. (Recall that, even though the Kalman filter does not
attempt to estimate the rate gyro’s scale factor error, the reference system’s model
does include scale factor error. For this reason, scale factor error is included in the
model for the rate gyro's output.) The relationship between the measured angular

velocity, Wmees, and the true angular velocity, wr, is therefore given by

Wmeas = (KT + &’)(th,T + V;) +v - Vnominal) (34)
oK
Wmeas = (1 + —)(wT + Wh,T + ’UT) (3'5)
Kr
where
wr = KtV (3.6)
ur = KT'U (37)

The measured heading rate therefore contains several terms: the true heading rate
(wr), the true heading rate bias (wy ), the true white noise in the output (vr), and
three error terms that are proportional to the fractional error in the nominal scale

factor. These three error terms appear if the assumed scale factor (Kneminat) is not
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equal to the true scale factor; when the reading from the gyro is converted from a
voltage to a heading rate, these errors will be introduced. Equation 3.5 is used in the
equations of sensitivity analysis. It should be noted that, in this research, the scale
factor error in the reference system model is assumed to be constant.

The Kalman filter design ignores the scale factor error and therefore assumes that

the gyro measurement is given by
Wmeas = WT + Wy T + VT (3.8)
The Kalman filter’s model for the bias error is a random walk process given by
Wh = Uy, (3.9)

where u,,, is zero-mean Gaussian white noise. The justification for choosing this model
was given in Section 3.2.2. In the equations of sensitivity analysis, the model for the
true bias error, denoted w,r is give by the sum of a second-order Gauss-Markov

process and a random constant:

Wy T = Wp + Pb (3.10)
where
o, = 0 (3.11)
t_;./'b = Gy (3.12)
db = —‘ngwb —_ 2ﬁabab + uab (3'13)

where f3,, is related to the time-constant of the process and u,, is zero-mean Gaussian
white noise.

It should be noted that, for various reasons, several sources of error that may
appear in the output of a rate gyro have been ignored. Each of these error sources
will now be briefly defined and an explanation will be given as to why they were

ignored. The error sources that were ignored are g-sensitivity, cross-axis sensitivity,
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and nonlinearity. The g-sensitivity of a rate gyro causes errors to be introduced into
the gyro’s output as a result of linear acceleration. The output of an ideal rate gyro
would be entirely insensitive to acceleration. However, this quantity has been ignored
because a simple calculation can show that the typical acceleration encountered in a
real automobile is quite small: 0.27-g for a vehicle accelerating from 0 MPH to 60 MPH
in 10 seconds. Furthermore, experience suggests that, most of the time, automobiles
accelerate at even lower rates and often travel at nearly constant speeds. This error is
therefore likely to be a very small contributor to the overall navigation error. Cross-
axis sensitivity causes errors to be introduced into the gyro’s output as a result of
rotations about an axis perpendicular to the axis of sensitivity. This error has been
ignored because an automobile typically rotates about a vertical axis only. Finally,
nonlinearity errors are introduced into the gyro’s output because the relationship
between angular speed and the gyro’s output is not truly linear. This error source
has been ignored because rate table test results have shown that nonlinearity errors

are quite small in the range of turning rates typically encountered in an automobile.

3.3 Magnetic Compass Error Modeling

3.3.1 Compass Error Characteristics

A magnetic compass is an electronic device that measures its heading relative to
magnetic North by measuring the direction of the Earth’s local magnetic field. Com-
passes are generally implemented with magnetometers, a Hall effect sensor, or a set
of orthogonal coils referred to as a “fuxgate.” It seems generally true that, of the
existing compass implementations, the fluxgate compass is most commonly used in
existing land-vehicle navigation systems [38].

Results will show that accurate heading measurements can be an extremely valu-
able positioning aid. However, accurate heading measurements can be difficult to
obtain with a magnetic compass because disturbances in the magnetic field near the
compass can induce large errors in the compass’ output. Sources of magnetic dis-

turbance encountered in vehicle navigation include power lines, motors (e.g. a fan
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Fluxgate Compass and Rate Gyro Data Across a Bridge and Nea r Power Lines
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Figure 3.6: Compass data taken on a bridge and near power lines

inside the vehicle), and residual magnetism in local metal structures such as bridges,
buildings and even the vehicle’s chassis.

Data collected from a fluxgate compass have verified that a compass can exhibit
very large measurement errors. Figure 3.6 shows data collected from a fluxgate com-
pass taken in a vehicle that was being driven across a nearly-straight bridge in the
vicinity of power lines. Included in the plot is the integral of data that were simul-
taneously collected from the Systron Donner rate gyro. The integrated gyro data
provide a measure of the vehicle’s heading history that is independent of the compass
reading. As the figure illustrates, the gyro data indicate that the vehicle’s heading
is changing very little, while the compass data shows swings larger than 100 degrees.
Two other independent gyroscopes were sampled concurrently and their data verify
this result. Clearly, the compass reading is in error, probably as a result of magnetic

disturbances induced by the power lines and the metal in the structure of the bridge.

Because compasses are susceptible to large errors, error compensation schemes for
the fluxgate compass have received significant attention. Some compensation meth-

ods depend on having other sensors available, such as an angular velocity sensor {46]
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or GPS [36]. Other approaches involve calibrating the compass errors by generat-
ing a lookup table of the errors as a function of heading [5, 41, 48] or involve some
type of basic prefiltering technique [65, 52]. Still other approaches involve gimballing
the compass to prevent the compass from tilting relative to a local horizontal plane,
thereby avoiding tilt-induced errors in the compass’ output [67]. Finally, some flux-
gate compass manufacturers specify a method by which the user can calibrate the
errors in the compass. Such a calibration process is designed to eliminate systematic
measurement errors that are a function of heading. Usually, calibration involves rotat-
ing the compass through at least 360 degrees, while digital electronics in the compass
generate a lookup table of heading errors. This type of calibration can compensate
for systematic errors that affect the gyro at the time of calibration. However, this
type of calibration is ineffective against random errors that arise during operation
and changes in the systematic errors that occur after calibration.

An analytical study of fluxgate compass errors has shown that the errors that
appear in a compass’ output can be mathematically modeled as a function of magnetic
heading [44]. In [44], the authors derived the following expression for errors that

appear in the compass reading:
©p = Asin(0) + B cos(©) + Csin(20) + Dcos(20) + E (3.14)

where ©, is the compass’ bias error, 4, B, C, D, and E are constants and © is the
true magnetic heading of the compass. It has been this author’s experience that this
model is difficult to utilize in a Kalman filter because of the relatively large number of
unknown parameters that must be estimated and because Equation 3.14 is nonlinear
in ©. The estimates of the parameters A, B, C, D, and E were unstable when this
model was mechanized in a Kalman filter. In [70], this model was also rejected, but

for other reasons. Also, in [65], this model was cited but apparently not used.

3.3.2 Equations for the Compass Error Model

Experience and the literature indicate that the errors in the fluxgate compass’ output

can be modeled as the sum of three components: a bias that is a systematic function
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of heading, a random (but time-correlated) error resulting from external magnetic dis-
turbances, and white noise. Therefore, the following model was used in the sensitivity

analysis to model the total error in the fluxgate compass’ output:
emeas = e + eb + 'Ue (3.15)

where © is the true heading and vg is additive white noise in the measurement. The

model for the bias is the sum of three terms:
O =60,+¢+19 (3.16)

where 6, is a random constant and

Jd = n (3.17)
n = _)81;219 - 2161;77 + Uy (318)
¢ = Asin(©)+ Bcos(©) + Csin(20) + D cos(20) (3.19)

In Equations 3.17 through 3.19, A, B, C, D, and 6, are constants, the values for
which were chosen from data in [44]; ¥ is a time-dependent random error described by
a second-order Gauss-Markov process whose characteristics are determined by 3, and
the RMS value of u,. Note that ¢ is a heading-dependent bias, §, is a constant bias,
and ¥ represents magnetic disturbances. Equations 3.16 through 3.18 and a linearized
form of Equation 3.19 represent the reference system’s model for the fluxgate compass’
bias error.

However, this model is not used in the Kalman filter for two reasons. First, as
was mentioned, the model described by Equation 3.19 is nonlinear and has several
unknown constants; attempts to mechanize this model in a Kalman filter resulted
in unstable estimates. Second, the errors caused by external magnetic disturbances
(denoted ¥ in the model above) occur at unpredictable times and with unpredictable
magnitude and therefore defy reliable predictive modeling.

Choosing a Kalman filter model for the compass’ bias is therefore difficult because

the filter must perform adequately when faced with measurement errors that are
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unpredictable. It would be unwise to ignore the measurement errors altogether, since
poorly modeled measurement errors can have a detrimental effect on the performance
of a Kalman filter. One solution is to use a large value for the variance of the noise
in the filter’s heading measurement and/or use a large value for the variance of the
process noise in the filter’s model for the compass’ bias. This is inadvisable, however.
Using a large value for the measurement noise variance attempts to compensate for
time-correlated bias errors by indicating to the filter that uncorrelated errors are
large. Also, a constant measurement variance indicates that the RMS additive white
noise in the measurement is constant. Loosely speaking, then, the weighting that the
filter applied to every compass measurement would be the same, whether or not the
measurement contained large errors. This is inadvisable because, while some compass
measurements might be corrupted with large bias errors, others would not. Using a
large value for the process noise in the bias model would probably extend the time it
takes for the filter to reach a steady-state bias estimate and increase the filter’s RMS
error in the steady-state estimate of the compass’ bias and heading. So, while these
solutions might improve the performance of the filter under worst-case conditions,
there is a better solution. A

A more appropriate solution to this problem is to include a fault-detection al-
gorithm in the navigation software that can determine when the compass errors are
too large. This algorithm could cause the Kalman filter to ignore the compass data
when the compass errors exceed a tolerable threshold. Sensor fault-detection algo-
rithms already exist, and it is not necessary to describe one here. One advantage
of using a fault-detection algorithm is that it eliminates the need for a “worst-case”
error model in the Kalman filter and avoids the attendant degradation in filter per-
formance. Another advantage of this solution is that the compass data are utilized
only if the measurement errors are below an acceptable threshold. Because the error
in a compass reading can be so large that it entirely obscures the useful data in the
measurement, ignoring the compass reading altogether can be appropriate.

In the presence of a fault-detection algorithm, the data from the compass could
be ignored if a large disturbance were detected. If the data were not being ignored,

then the data should contain “small” disturbances, a heading-dependent error, and
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white noise. The Kalman filter’s model for the bias (©,) must therefore be chosen so
that it is capable of tracking the changes in the bias as the vehicle’s heading changes.
Although the model given in Equation 3.14 may appear to be a legitimate model,
its complexity prevents its successful use. Therefore, the model of the compass’ bias

drift that was chosen for use in the Kalman filter is simply a random walk:
O = ue, (3.20)

In addition to a bias, the measurement is assumed to include additive noise, the RMS
value of which was chosen based on data collected from a fluxgate compass during
on-road in-vehicle testing. (The parameters governing this model can be found in
Appendix A).

3.4 Odometer Error Modeling

An odometer measures the curvilinear distance traveled by a vehicle. This section
includes an analysis of the errors that appear in an odometer’s output. Equations
describing the use of odometer data in particular navigation systems appear in [65],
[66], [7], and [52]; a particularly detailed analysis is given in [66]. In [70] and [43],
the authors discuss various error sources in odometry and actual data is presented in
[43], but no formal analyses are presented. The following analysis is slightly different
from other analyses in the literature.

For the analysis that follows, we first consider Figure 3.7, which is a functional
representation of any one of a number of odometer implementations. This figure
shows a cross-section of a rotating shaft or gear in the vehicle. Rigidly mounted on
the rotating shaft are several evenly-spaced “trigger points” which pass a “pick-up
sensor” that is mounted to the body of the vehicle. The odometer operates in such
a way that the pick-up sensor generates a single digital pulse when any one of the
trigger points passes it.

For an odometer comprised of an optical shaft encoder, as in [34], the trigger

points represent the slots in the encoder wheel and the pick-up sensor represents an
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Figure 3.7: A schematic representation of an odometer

opto-electric device that generates a digital pulse when a slot passes through its field
of vision. For an odometer comprised of a series of magnets and a pick-up coil, as in
[43] and [48] (and in this research), the trigger points represent the magnets, and the
pick-up sensor represents the coil and any necessary signal-conditioning circuitry.
However the odometer is physically implemented, it will be assumed in the follow-
ing analysis that the odometer is any sensor that generates a constant integer number
of digital pulses for each revolution of a rotating shaft on the vehicle. It is further
assumed that the rotation rate of the shaft is (approximately) linearly proportional
to the forward speed of the vehicle, and that this rotation rate is independent of
whether the vehicle is turning. (An odometer on a vehicle’s drive shaft would satisfy
these assumptions.) Finally, it will be assumed that the odometer readings are taken
at points in time separated by a constant sampling period, T, and that, between
sampling points, the cumulative number of odometer pulses, N, is stored. In the
following analysis, & is an integer that refers to the sample taken at time t = kT
By way of definition, we first define the true odometer scale factor, Sirye, to be the
curvilinear distance traveled by the vehicle between two consecutive pulse outputs
of the odometer. The value of S;.,. depends on the radii of the vehicle’s tires and
is therefore not necessarily constant because the radii of the vehicle’s tires may vary
with the vehicle’s speed, the tires’ air pressure, or the progressive wear of the vehicle’s
tires [43]. It will be assumed that significant variations in S, take place over a time
period that is much longer than one sampling period. Therefore, we will consider
Sirue t0 be constant over each sampling period and treat it as an unknown quantity.

We next define the nominal odometer scale factor, S,, to be a known constant that
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is approximately equal to the true odometer scale factor, S;r. Finally, we define the
odometer scale factor bias, AS, to be the difference between Sime and S,:

AS = Sirge — S, (3.21)

Note that AS is not necessarily constant, nor is it known exactly. Note also that
Sirues So, and AS all have dimensions of distance traveled per pulse.

We now seek to derive an expression for the error in the odometer measurement.
We begin the analysis by assuming that, when the k** sample is taken, the pick-up
sensor is located randomly, with uniform distribution, between any two trigger points
on the shaft. Next, the quantity di is defined as the forward distance that the vehicle
must travel in order to cause the next trigger point to pass the pick-up sensor. The

quantity di is random and has a uniform distribution from 0 to Siry., denoted
dk = U(O, Strue) (3-22)

If the vehicle subsequently moves forward by some arbitrary distance Dy, over the
next T seconds, then the odometer will generate N pulses. At the start of the k + 1%
sampling time, the pick-up sensor may be located anywhere between two trigger
points. Let us define di) as the forward distance that the vehicle must travel in
order to cause the next trigger point to pass the pick-up sensor. The forward distance
traveled from timestep k to timestep k + 1 is Dy and is related to N and Sirye by

Dtrue = Strue(lv - 1) + dk + (Strue - dk+1) (323)

or
Dtrue = Struelv + dk - dk+1 (324)

The righthand side of Equation 3.24 contains the difference of two random variables,
dr and dg,,, both of which are uniformly distributed from 0 to Sirye. This difference
is also a random variable, which shall be denoted di x+1, whose distribution is the
convolution of two probability density functions: U(0, Strye) With U(0, —Sirue). This

distribution is shown in Figure 3.8. Therefore,
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Figure 3.8: Probability density function of di x41
Dtrue = StrueN + dk,k+1 (325)

The quantity dg x4 is quantization error that arises because the odometer discretizes
the distance traveled by the vehicle into segments that are each Si . in length.

We now turn our attention to the measurement that is made by the odometer.
The measurement that is made by the odometer is the distance Dneqs, the product
of S, and N:

Dineas = SoN (3.26)

In general, Dpe.s will not be equal to Dirye, not only because S, is not generally
equal to Sirye, but also because Dy contains the random quantity digi1. We seek,
as the result of this analysis, a mathematical expression for the difference between
Dineas and Die. To that end, we next define the error in the measurement, Derror,
such that

Dreas = Dirue + Derror (3.27)

then, substituting from Equations 3.21 and 3.26 into Equation 3.27, we arrive at
Dmeas = (Strue - AS)N (328)

If we next solve Equation 3.25 for Si.,. and substitute the resulting expression into
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Equation 3.28, we arrive at
Dmeas = Dirue — dk,lc+1 +NAS (329)

Finally, setting the righthand sides of Equations 3.27 and 3.29 equal to each other,

we arrive at an expression for the error in the distance measured by the odometer:
Derror = N AS ~ di 11 (3.30)

Equation 3.30 shows that the error in the measured distance has two components:
a non-random component that is proportional to the distance traveled and a random
component that is distributed as shown in Figure 3.8. Equation 3.30 is the basic error
equation for the odometer. However, this equation must be developed further before
we will arrive at a suitable error equation. Before developing Equation 3.30 further,
however, a model for the time history of AS must be derived.

The variations in AS over time depend on vehicle speed, vehicle loading, tire
pressure, temperature, and tire wear. For a given vehicle loading, the most significant
of these factors over short time periods are vehicle speed and tire pressure [43]. The
effects of vehicle loading are not investigated in [43]. Furthermore, in this work, the
influence of vehicle loading on the odometer scale factor is assumed to be constant in
all simulations because the load within a vehicle generally does not change while the
vehicle is in use. Therefore, there is no need to include vehicle-loading effects in the
model for the odometer scale factor’s time history. Tire wear can change the odometer
scale factor significantly [43]. However, this wear takes place over the lifetime of the
tire, and can therefore be considered constant over short time spans.

It is surprisingly difficult to empirically measure small changes in an odometer
scale factor because such testing requires extremely accurate position measurements
(more accurate than stand-alone GPS can provide) and a long straight track on which
the vehicle can travel. Because of the difficulties associated with testing the time-
varying component of an odometer’s scale factor, such tests were not performed. As
suggested in Equation 3.21, the odometer scale factor, S, has been modeled as the sum

of a (known) constant S,, and a time-varying bias, denoted AS. The bias has been



CHAPTER 3. SENSOR ERROR MODELS 57

modeled as the sum of a first-order Gauss-Markov process and a speed-dependent

term:
AS =5, + Kg,V (3.31)
where !
Sy = ——3Sp + us, (3.32)
st

The quantity Kg, is a constant, V' is the vehicle’s speed, and ug, is zero-mean white
noise with a Gaussian distribution.

The value of K, used in this research was obtained from empirical results in
[43]. The parameters governing the random part of this model (Equation 3.32) are
difficult to choose. No useful empirical data describing the random variations in a
scale factor odometer have been found in the literature, and it is difficult to obtain
accurate empirical data. Therefore, for the filter model, worst-case values for 75, and
the RMS value of ug, were selected based on estimated worst-case tire temperature
and pressure variations. (The reader is referred to Appendix A for the particular
values of these quantities.) For the reference system’s model, a range of parameter
values was used in order to explore the range of bias variations that would likely occur
in a real system.

Substituting from Equation 3.31 into Equation 3.30 for AS, we arrive at the final

expression for the odometer error equation:

Derror = SpN + KSbV N —~ dk,k-H (333)

3.5 GPS Discussion and Error Modeling

As of the writing of this thesis, the only type of GPS positioning available to civilian
users worldwide is unaided positioning corrupted by SA. It is possible, however, that
SA will be turned off, and free differential corrections may become available over the
entire continental United States in the near future. In either case, the accuracy of GPS
position fixes available to civilian users would improve significantly. This may have

significant impact on land-vehicle navigation design because the improved positioning
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accuracy may cause the relative impact of dead-reckoning sensors on overall system
performance to change. For example, improved positioning accuracy may improve
dead-reckoning sensor calibration and may, therefore, permit navigation system de-
signers to relax requirements on dead-reckoning sensor performance. This possibility
is a compelling reason to investigate the impact that each type of GPS positioning has

on the contributions that dead-reckoning sensors make to overall system performance.

3.5.1 GPS with SA On

The equations used to model SA-induced positioning errors form a second-order
Gauss-Markov process. These equations were first presented in [18] and have been
shown to accurately model position error induced by Selective Availability. In [18],
the author derived this model from 4 sets of GPS measurements, each of which was
approximately 5 hours long. Each data set was taken at a different time of day. The
subscript z in the following equations denotes quantities associated with the x-axis
in a locally horizontal xy coordinate frame that is fixed to the Earth; the equations
modeling the position error along the y-axis are identical (except for the subscripts)

and are therefore not included.

e = & (3.34)
éa: = “,Bg/\a:“zgxgz'*‘ux (335)
u; = N(0,02) (3.36)

This model for SA-induced positioning error is included in both the Kalman filter’s
model equations and in the reference system’s model equations. (The values for the

parameters that govern these equations can be found in Appendix A.)

3.5.2 GPS with SA Off

The error model for this type of GPS positioning has proven the most difficult to
justify because no real data could be found from which a model could be empirically

derived. The only source of data was found in [54, Chapter 11]. This reference does
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not include any differential equations which model the time history of this type of
GPS position error. However, the data in this text show that the RMS bias error in
each pseudorange is approximately 5.1 meters and the RMS value of the uncorrelated
noise in each pseudorange is anywhere from 0.4 to 1.4 meters, depending on how
much averaging the receiver does. With no measurement data available and no other

source of modeling information, the model used for this research is given by

e = & (3.37)
é:: = —.B:Az—zﬂxfz'{'ux (338)
u; = N(0,02) (3.39)

Note that the form of this model is identical to the one for GPS positioning error
with SA on. The difference is that the parameters that govern the equations (4, and
o) have different numerical values. This model was also used in [18] to simulate GPS
with SA off. (The values for the parameters that govern these equations can be found
in Appendix A.)

3.5.3 Differential GPS

Unlike unaided GPS, the use of DGPS requires a source of differential corrections.
As of the writing of this thesis, there is no single widely-available source of free
differential corrections. However, a few commercial sources of corrections exist, and
a few sources of free corrections exist in restricted geographical areas. Commercial
differential corrections are services to which users can subscribe. For a fee, subscribers
are given access to differential corrections that are broadcast on a radio frequency in
their locale.

Two other sources of differential corrections may be available to navigation sys-
tems for land-based vehicles, although one is not yet widely available. The U.S. Coast
Guard (USCG) has established differential GPS correction stations covering the U.S.
coasts and inland waterways. This system provides differential GPS corrections to
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the marine community free of charge [22]. The radiobeacons broadcasting the correc-
tions transmit nondirectionally at a frequency of 285-325 kHz with enough power to
reach a user 10 to 175 miles away [14, 23]. Therefore, although not designed primar-
ily for land-based GPS users, the corrections may be receivable by land-based GPS
users in the vicinity of the U.S. coasts and inland waterways. A similar differential
correction service may be placed inland to cover the entire continental U.S. [20] (For
excellent discussions of the USCG DGPS system and its performance characteristics,
the reader is referred to [1}, [14], and [15].)

A second source of differential corrections that may become available to land-
vehicle navigation systems is the Wide Area Augmentation System (WAAS). The
WAAS is a GPS-based navigation system currently being developed by the Federal
Aviation Administration for the aviation community. According to current plans,
differential GPS corrections would be broadcast free of charge over the entire U.S. by
a set of geosynchronous communications satellites [53, Chapter 4].

Although DGPS position fixes are generally much more accurate than unaided
GPS position fixes, accessing DGPS corrections is generally not without some cost.
Commercial differential correction services, for example, add to system cost through
the subscription costs and the cost of the equipment required to access the broadcast
corrections. The USCG DGPS system would require equipment (in addition to a GPS
receiver) to receive the broadcast corrections. In contrast, current indications are that
WAAS corrections will be broadcast in such a way that an ordinary GPS receiver with
an internal software modification will be able to receive them [53, Chapter 4].

An error model for DGPS position fixes was derived by the author using data
obtained from Stanford University’s experimental WAAS. An example of such data
is shown in Figure 3.9. The data from which the error model was derived consisted
of position fixes taken at 1 Hz for 7 hours. The differential correction computed
using Stanford’s WAAS was applied to each position measurement taken over that
7-hour period. The error in each differentially corrected position fix was calculated
by subtracting the antenna’s location (which was known) from its measured location.
The calculated position error was then utilized (by the author) to derive the following

model for the bias error in the DGPS position fixes.
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Example of WAAS Positioning Error v. Time
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Figure 3.9: Positioning error for Stanford’s WAAS

The total bias error (Ap) is modeled as the sum of two biases (A and &), each
of which is modeled as a first-order Gauss-Markov process. The time-constants (7
and 7¢) and RMS values of the two biases are not equal. The following model was

obtained for each component (i.e. x and y) of the bias error:

Ap, = A + &, (3.40)
where
. 1
Az = ——Az+uy (341)
Tx
uy = N(0,03) (3.42)
and
. 1
€ = ——&+ Ug (3.43)
Tg

ue = N(0,07) (3.44)



CHAPTER 3. SENSOR ERROR MODELS 62

This model is used both in the Kalman filter model equations and the reference system
model. (The values for the parameters that govern these equations can be found in
Appendix A.)

3.5.4 Using GPS to Obtain a Heading Measurement

As was demonstrated by Figure 3.6, a compass is susceptible to magnetic disturbances
and, as a result, its output may contain errors that occur at unpredictable times
and have an unpredictable magnitude. Even if navigation software were able to
successfully minimize the impact of compass errors by identifying (and ignoring)
erroneous compass data, ignoring the data effectively renders the sensor useless; how
frequently the sensor data would be unusable depends on the nature of the compass’
magnetic environment. One way to avoid the problems associated with a compass is
to replace it with a sensor that can measure absolute heading without relying on the
Earth’s magnetic field.

Conveniently, an appropriately modified GPS receiver can be used to measure
absolute heading. (In the literature, much attention has been given to measuring
attitude using GPS, usually for aircraft and spacecraft applications.) In addition to an
appropriately modified GPS receiver, two GPS antennas, mounted in a fixed location
relative to each other, would be required. These additional hardware requirements
would increase the total cost of a navigation system. However, the added cost may
be worthwhile because attitude measurements from GPS are quite accurate. They
are immune to drift and insensitive to the magnetic disturbances which can plague
compasses. Furthermore, the bias in the measurement is small if an appropriately
calibrated state-of-the-art receiver is used, although the bias can be a function of
temperature [53]. According to [53], the RMS error in a heading measurement (in
radians) is approximately %, where L is the distance between the antennas (in
meters). Assuming the antennas are 20 centimeters apart (which is a reasonable
distance), then the RMS measurement error would be approximately 1.5 degrees.
(The error in the heading may be larger than this, however, for a two-antenna attitude

system if the vehicle is not horizontal.)
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Another significant point in favor of using a GPS-based heading measurement is
that, for an appropriately designed receiver, only one satellite would usually need to
be in view to make the measurement, rather than the four that are required for a
position measurement. This is very important, because it means that a GPS receiver
could produce a heading measurement even if it could not produce a position mea-
surement. Data collected by this author while driving in downtown San Francisco
over a 30 minute period showed that the GPS receiver had 4 satellites in view ap-
proximately 10% of the time, but always had at least 1 satellite in view. Therefore,
it is possible that, even in environments in which a GPS receiver could not produce
a position fix, the GPS receiver could produce a measurement of absolute heading.

At this time, there are commercially available GPS receivers with multiple antenna
inputs that are capable of measuring attitude. Unfortunately, this author knows of
no low-cost commercially available GPS receivers that have been modified to measure
only one axis of attitude. Therefore, while, in principle, it may be feasible and ben-
eficial to use GPS-based heading measurements in an automobile navigation system,
currently available GPS receivers that are capable of making attitude measurements
are too expensive. Even so, it is worthwhile to explore the navigation performance
improvement that is achieved when a GPS-based heading measurement is available.

In this research, the Kalman filter and reference system model equations for the
GPS-based heading measurement errors are similar—in both systems, the measure-
ment includes a bias and white noise; the bias is modeled as constant in the reference

system and as a slowly-varying quantity in the Kalman filter.

3.6 Summary

In this chapter, error models for various sensors which commonly appear in automobile
navigation systems have been presented. Some of these error models were derived from
real data sensor data, while others were taken from the literature. These error models
represent the first step toward developing a navigation Kalman filter and equations
of sensitivity analysis. The Kalman filter will be developed in Chapter 5. Application
of the sensitivity analysis to this Kalman filter will parallel the example in Chapter
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2, and details will be given in Chapter 5. Before deriving and analyzing the Kalman
filter, however, it is first necessary to discuss the roles that a digital map database

plays in automobile navigation.



Chapter 4

Map-matching

4.1 Introduction

A digital map database is essentially an electronic roadmap—a digitization of a local
road network, with each street stored as a group of points that are assumed to be
connected in a dot-to-dot fashion. Map databases in existing land-vehicle navigation
systems are usually stored on a CD-ROM or hard disk and usually contain a record of
every road in a particular geographical area. They may also contain much more than
just geographical information about each road, including speed limits, directionality
(i.e. whether a road is one-way), address information, connectivity (i.e. whether roads
which appear to intersect when viewed from above actually do), and the type of each
road (e.g. freeway, residential sidestreet, etc.). However, map databases generally do
not contain information on driveable surfaces other than roads (e.g. parking lots).
Map databases are part of many navigation systems because the vehicle’s location
is usually conveyed to the driver on an electronic display that shows the local road
network. But map databases can be used for more than just display purposes—
information in a map database can also be used to aid in navigation if a vehicle is
assumed to be traveling on a road stored in the database.

The software algorithm that employs information from the map database to aid in
navigation is generally referred to as a map-matching algorithm. Broadly speaking,
map-matching is the process by which data from the navigation sensors and map
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database are combined to identify that road on which the vehicle is most likely to be
traveling. There are many different implementations of map-matching algorithms that
appear in the technical and patent literature [27, 47, 31, 26, 29, 30, 9, 33, 24]. Most
map-matching algorithms described in these references consist of a set of heuristic
rules by which sensor and map data are processed; other methods (most notably [37]
and [57]) use more rigorous probabilistic methods.

The main purposes of map-matching are 1.) to provide information from the map
database to aid in navigation and 2.) to convey a meaningful vehicle position to the
driver (i.e. a position that lies on a road). Note that a position estimate derived
from the navigation sensors alone may not coincide with the coordinates of a road in
the map database due to error in the position estimate, error in the map database,
or because the vehicle is not traveling on a road (i.e. it may be in a parking lot).
If the map-matching algorithm “believes” that the vehicle is on a road, information
from the database can be employed to correct the apparent navigation error and to
generate a position that appears meaningful to the driver.

This chapter discusses several issues associated with map-matching and its effects
on vehicle navigation. Factors in successful map-matching and the relationship be-
tween map-matching and sensor calibration are discussed. The manner in which this
research examines the impact of map-matching on navigation system performance is
described. Finally, at the end of the chapter, a map-matching algorithm developed
by the author is described in detail.

4.2 Factors in Successful Map-matching and Ben-

efits of Map-matching to Navigation

In order to be a useful aid to navigation or to convey a meaningful location to the
vehicle’s driver, a map-matching algorithm must correctly identify the road on which
the vehicle is traveling. The algorithm’s ability to do this successfully depends in
a complex way on details of the algorithm’s design, the quality of the navigation

sensor data, and the correctness of the information in the map database. Developing
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Figure 4.1: GPS position fixes overlaid on a map display

a map-matching algorithm that always works well is difficult because which road
the vehicle is actually on is ambiguous—there may be many candidate roads in the
vicinity of the vehicle’s estimated location. This ambiguity can be especially difficult
to resolve because roads are often laid out in a grid-like fashion, and a map-matching
algorithm cannot take advantage of unique geometric features in the road network to
pinpoint the vehicle’s location. This concept is, perhaps, more clearly understood by
examination of Figure 4.1.

Figure 4.1 shows a set of consecutive GPS position fixes (shown with “+” symbols)
superimposed on a display of the surrounding road network. The position fixes were
collected from a low-cost GPS receiver mounted inside an automobile. (The GPS
receiver’s antenna was mounted to the vehicle’s roof.) The map display was drawn
utilizing information from a digital map database produced by Etak, Inc. The figure
also shows arrows that represent the path that the vehicle actually took. Comparison
of the path represented by the position fixes with the arrows shows that the position
fixes are offset from the road due to the influence of Selective Availability. The figure
also illustrates that the GPS position fixes occasionally exhibit gaps and large lateral
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jumps. Such gaps and jumps in the position fixes can be “smoothed” when the GPS
position fixes are properly fused with data from dead-reckoning sensors. However,
results have shown that the bias in the position fixes cannot be eliminated even when
dead-reckoning sensors are utilized because dead-reckoning sensors do not measure
absolute position. The figure illustrates that the path actually taken by the vehicle
may be ambiguous when the sensor data alone is examined.

Successful map-matching, then, depends on the successful execution of two tasks:
first, to correctly resolve this ambiguity after initial startup, given sensor data that is
erroneous and map database information that may be erroneous and, second, to con-
tinuously maintain a “lock” on the correct road as the vehicle moves about. Whether
a map-matching algorithm will be successful depends very much on the strengths
and weaknesses of the particular algorithm. It is therefore difficult to make gen-
eral statements about how successful map-matching algorithms are and how much

map-matching improves navigation accuracy.

4.2.1 Initially Identifying the Correct Road

There are elements that are common to many map-matching algorithms, and from
these we can, perhaps, identify some of the ingredients in successful map-matching.
Most of the heuristic map-matching algorithms that appear in the literature attempt
to solve the ambiguity problem by employing a set of rules that process sensor and
map data to implement some form of pattern-matching [27, 47, 31, 26, 29, 30, 9, 33].
Pattern-matching algorithms generally attempt to correlate the pattern created by
many consecutive position fixes to a similar pattern of roads in the surrounding road
network. When the pattern created by the position fixes is deemed to be sufficiently
similar to a pattern of connected roads in the road network, a map-matching algorithm
will generally select a single road from the database as that road on which the vehicle
is most likely to be. Once this has been established, the navigation software may
begin to include information from the map database to aid in sensor calibration.
Successful pattern-matching obviously depends on how well the pattern created

by consecutive position fixes (from the navigation sensors) matches a unique pattern
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of roads in the vicinity and on how unique that pattern is. The shape of the pattern
created by the position fixes depends on the quality of dead-reckoning sensor data
and the quality of GPS fixes obtained. At one extreme, for example, accurate DGPS
fixes may always be available. If this is the case, the need for map-matching may be
obviated because the DGPS fixes should lie on a road stored in the map database. If
they do not, then the error is probably in the map database. At the other extreme,
GPS fixes may not be available at all, and the navigation system has only dead-
reckoning sensor data with which to navigate the vehicle. Under these circumstances,
the map-matching algorithm’s performance will depend on the drift characteristics of
the dead-reckoning sensors and the accuracy with which the sensor errors were initially
calibrated. The overall performance of the navigation system will depend on the map-
matching algorithm'’s ability to continuously calibrate the drift of the dead-reckoning
sensors. In a third scenario (one that is more likely for existing navigation systems),
GPS (with SA on) fixes are available. Because of SA, the error in the position fixes
will drift slowly within 100 meters of the actual vehicle location and may increase
as the environment becomes increasingly hostile to accurate GPS positioning. In
addition, results will show (in Chapter 6) that typical dead-reckoning sensors are
not accurate enough to allow SA-induced position error to be estimated accurately.
Therefore, because city streets may be closer together than 100 meters, the street
on which the vehicle is actually traveling may be difficult to determine. Under these
circumstances, the success of a map-matching algorithm becomes difficult to predict
because it depends on particulars of the algorithm and the situation under which
the algorithm is being tested—one algorithm may succeed where another would fail,
depending on the particular strengths and weaknesses of each implementation.
Successful pattern-matching also depends on how well the information in the map-
database represents the real world. Map-databases may contain erroneous informa-
tion. For example, roads that actually exist may not be in the database or they may
be incorrectly placed [45]. Even if, at some point in time, a given database is wholly
correct, errors would be introduced as new roads are constructed and old ones are

closed or changed. Some work has been done to examine the effect of database errors
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on the performance of a particular navigation system [6]. In [6], the authors simu-
lated errors in a map database by altering the contents of the database so that some
roads were distorted from their actual shape or were taken out altogether. The au-
thors quantified the effects of these database errors by simulating vehicle motion over
the modified areas of the database and examirning the performance of the vehicle’s
navigation system. The authors found that, for their navigation system, database
distortions had a measurable effect on the navigation system’s performance; when
roads were missing from the database, the map-matching algorithm utilized by the
navigation system placed the vehicle on the wrong road by choosing a road that was
in the database. However, the work in [6] is limited, and the authors point out that

their work is not extensive enough to support general conclusions.

4.2.2 Sustaining Successful Map-matching

Once a map-matching algorithm “believes” that it has correctly identified the road
on which the vehicle is traveling, it must subsequently maintain a “lock” on the
correct road as the vehicle proceeds. Its ability to do this successfully will depend,
of course, on the quality of the sensor data and the strengths and weaknesses of
the algorithm. However, there are some situations which are generally difficult for
most map-matching algorithms. For example, one difficult situation for many map-
matching algorithms arises when a vehicle is traveling on a highway and approaches
an exit ramp heading off the highway. In this situation, if the exit ramp splinters off
the highway at a shallow angle, it may be difficult for a map-matching algorithm to
resolve whether the vehicle remained on the highway or headed onto the exit ramp.
Whether a particular map-matching algorithm would be successful in this situation
would probably depend heavily on the quality of the raw heading sensor data.
Another difficult situation arises when a vehicle travels on a straight road for a
long distance, then turns; if there are other nearby roads which branch off the straight
road, the map-matching algorithm may have difficulty resolving the road onto which
the vehicle actually turned. The reason for this has to do with the fact that along-

track error tends to accumulate when a vehicle travels on a long straight road, even
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if map-matching is in use. Traveling on a long straight road for an extended period
allows along-track positioning error to accumulate due to bias error in the odometer’s
scale factor. For example, if the odometer scale factor estimate is accurate to 1%
(typical), along-track error will grow to 50 meters if the vehicle travels in a straight
line for 5 kilometers. If GPS position fixes are available, the along-track error will be
bounded by the error in the GPS position fix; however, if the GPS position fixes are
corrupted by SA, this could be as large as 100 meters.

A third difficult situation arises when the vehicle travels off the road and onto a
driveable surface which is not in the map database. Examples of common driveable
surfaces that are generally not included in map databases include parking lots and
decks. In these situations, the map-matching algorithm must deliberately abandon
the assumption that the vehicle is on a road. Obviously, the navigation software must
proceed using only sensor data and must stop using information in the map database
to aid in navigation. One can imagine that developing a robust algorithm to perform
well under these circumstances would be difficult.

Finally, in geographical areas in which roads are densely arranged in a regular grid,
a navigation system may have difficulty identifying the road on which the vehicle is
traveling. This problem is particularly difficult because the roads are not only close
together, but the regular layout of the roads impedes effective pattern matching.
Choosing one road from among two (or more) that are closely-spaced and parallel is

cited by the authors of [6] as one of the most difficult problems in vehicle positioning.

4.2.3 Using Map-matching Information to Aid Navigation

Once a map-matching algorithm chooses a road on which it believes the vehicle is
likely to be traveling, the navigation software can make use of information in the map
database to aid in positioning the vehicle. Precisely what information is used and
how heavily the map information influences the final position estimate depends on the
particulars of the map-matching algorithm. For example, in [26], one of the earliest
patents on map-matching, the algorithm sometimes uses the heading of the matched

road to correct errors in readings from a compass; whether the correction is made
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depends on the degree of confidence in the map-matched position. In contrast, the
system described in [39], [24], and [25] incorporates map database information into
the navigation solution only when the vehicle turns a corner. In yet another system
(described in [9]), the map-matched position is continuously fed back to calibrate the
dead-reckoning sensors. Means for calibrating navigation sensors using map-matched
positioning are also mentioned in [31] and [29], but details are not given. In each of
the navigation systems for which sufficient information is available, information from
the map database is used differently. For this reason, it is difficult to make general
statements about the extent to which map-matching improves navigation accuracy.

However, it seems generally true that the location and/or direction of the road
can be extracted from the database and used as a “measurement” of cross-track
position and /or heading. It is important to emphasize that the map-matched position
provides the navigation system with an accurate estimate of the vehicle’s position
perpendicular to the road, but not parallel to it. (This may be more clearly understood
if one realizes that the system’s position error can be resolved into two orthogonal
components: one parallel to the road and one perpendicular to it.) Knowledge of
the road’s location can be used to correct only the perpendicular component of the
position error. One implication of this fact is that map-matching can be used to
continuously calibrate a navigation system’s heading sensors. Errors in a compass
reading and a rate gyro’s bias, for example, can be calibrated if the map-matched
position information is incorporated into the navigation solution appropriately. The
odometer scale factor, on the other hand, cannot be continuously calibrated. (It
should be noted that correct map-matched positioning can provide very accurate 2-
dimensional position measurements when the vehicle turns, because a turn is a unique
feature in the map database that locates the vehicle precisely. This is recognized and
taken advantage of in [39], for example.)

Although map-matching can be utilized as a navigation aid, the use of map-
matching to calibrate dead-reckoning sensors is not always beneficial. Errors in the
map-matched position can skew the sensor calibration, causing the navigation sys-
tem to produce erroneous estimates of certain sensor errors. For example, the map-

matching algorithm may mistakenly “believe” that the vehicle is traveling on a road
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which it is not really on. If the “wrong” road and the “right” road diverge, then the
sensor calibration could be ruined. This is an obvious example. However, there are
much more subtle ways in which map-matching can skew sensor calibration, even if
the map-matching algorithm always identifies the correct road.

Specifically, map-matching can degrade heading sensor calibration as a result of
the vehicle’s side-to-side motion on a road. For example, as the vehicle travels down
a straight road, correctly map-matched positions will lie along a straight line because
the road’s representation in the map database would consist of coordinates lying on
a straight line. However, human drivers do not drive in perfectly straight lines and
cause their vehicles to wander slowly side-to-side several decimeters. If the map-
matched position is used as a measurement of the vehicle’s cross-track position, these
“measurements” of cross-track position would indicate that the vehicle is traveling
in a straight line; however, the system’s heading sensors (e.g. a rate gyro and/or
compass), which measure the vehicle’s true motion, would indicate that the vehicle
is not traveling in a straight line. The system’s sensor-fusion algorithm (a Kalman
filter, for example) would therefore be presented with conflicting information from the
sensors and map-matching algorithm. Presumably, this algorithm would utilize both
pieces of information, weighing each one into its calculation of the vehicle’s position.
Whatever weighting scheme is used (as long as neither piece of information is entirely
ignored), the sensor-fusion scheme would resolve the conflict by concluding that each
measurement was partly in error. As a result, it would attribute some of the apparent
vehicle motion to bias drift in the rate gyro or compass. The sensor-fusion algorithm
would therefore produce erroneous estimates of the errors in the gyro or compass
readings. In sum, then, as a result of a driver’s tendency to wander laterally within
a lane (or to change lanes on a multi-lane roadway), even a perfect map-matching
algorithm can induce errors in sensor calibration. In this research, the effects of

map-matching on sensor calibration will be examined from this point of view.
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4.3 Analyzing the Influence of Map-matching on

Navigation System Performance

The results to be expected from the type of analysis just described may not be
immediately obvious. As has been mentioned, a subtle error in sensor calibration
appears as a result of the vehicle’s lateral motion on a road. This section attempts
to demonstrate more clearly why this error arises.

Two-lane roads (i.e. two individual lanes, the traffic on which moves in opposite
directions) are usually represented in map databases with one set of coordinates. Each
coordinate is a latitude/longitude pair (or equivalent) that should lie on the physical
road. If there is no error in the digitization of the database, these coordinates should
coincide with the centerline of the road. The cross-track position “measurement” that
would be obtained from the map database, then, is a position on a line coinciding
with the centerline of the road. If the vehicle travels down the center of either lane,
then the error in the map-matched position would be a bias approximately half the
width of one lane. Figure 4.2 shows this error. As the driver causes the car to wander
from side-to-side within the lane, this bias would change with time.

Divided multi-lane highways present other difficulties. Because the vehicle has
the ability to change lanes on a multi-lane highway, the vehicle’s actual location can
“float” relative to the centerline of the freeway as the driver changes lanes. Therefore,
the bias in the map-matched positions would change with time. Figure 4.3 graphically
illustrates the concept being described.

The research in this thesis focuses on map-matching by examining the effects
that lane changes and lateral motion within a lane have on the calibration of dead-
reckoning sensors. As was mentioned, in this research, the map-matched positions
are supplied to the navigation Kalman filter as cross-track position “measurements.”
Because these cross-track position “measurements” lie on a line and the actual vehicle
motion is not straight, the errors in the map-matched positions will induce errors in
the calibration of the dead reckoning sensors, particularly the heading sensors. How
severely the calibration of the dead-reckoning sensors is affected will probably depend

on the mature of the vehicle’s motion—e.g. more rapid lane-changes will probably
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induce larger errors than slow lane-changes. These calibration errors will be quantified
in this research and will be attributed to map-matching. Details regarding the manner
in which map-matching is utilized by the Kalman filter designed for this research are

given in Chapter 5, and results can be found in Section 6.7.

4.4 A Detailed Description of a Map-matching Al-
gorithm

This section presents an example map-matching algorithm developed by the author.
A detailed description of the algorithm follows. Briefly stated, the map-matching
algorithm starts by assuming that the vehicle’s actual location is somewhere in the
vicinity of the first GPS position fix that is obtained. (If a GPS position fix is not
available, the algorithm must be initialized manually with an approximate location
and heading.) Based on this first GPS fix, the algorithm assumes that every location
on every road in the vicinity is a possible location for the vehicle. As time progresses,
the algorithm attempts to identify the “most likely” location for the vehicle by im-
plementing a form of pattern-matching; after a “most likely” location is identified
with some degree of confidence, the algorithm supplies the coordinates of the “most
likely” location to the Kalman filter as a measurement of position. The filter treats
this position measurement as being very accurate in the cross-track direction, but
very inaccurate in the along-track direction. Thenceforth, the map-matching algo-
rithm continuously updates the “most likely” location and supplies it to the filter as
a measurement of position. Details of the pattern-matching approach, which lie at

the heart of the map-matching algorithm, follow.

4.4.1 The Basis for Pattern-matching: Two Heuristic Obser-
vations
The pattern-matching approach that is used to identify and update the “most likely”

location for the vehicle is based on two heuristic observations. First, the vehicle’s

position (as estimated by the Kalman filter from sensor data alone) generally does not
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fall directly on any particular street, but is, instead, usually offset from the street by a
slowly-changing distance. Hence, the pattern traced on the map by many consecutive
position fixes closely resembles the actual path taken on the road network. Second,
the actual path of the vehicle becomes evident over time because that pattern created
by many consecutive estimated positions correlates highly to a unique path through
the road network. Figure 4.1, shown previously, illustrates these concepts. This
figure shows GPS position fixes overlaid on a display from a digital map database.
Comparison of the path represented by the position fixes with the vehicle’s actual
path (shown with arrows) demonstrates that the path actually taken by the vehicle
may be ambiguous when the sensor data alone is examined. The core idea of the
algorithm developed in the following section is the means by which this ambiguity is

resolved.

4.4.2 Resolving Ambiguity with a Cost Function

In this research, the solution to the ambiguity problem is premised on the observation
that the discrete position fixes obtained from sensor data alone could be put onto the
correct road on the map if a correction, or shift, were added to each estimated position.
Such a correction would, in general, have components in both the x and y coordinate
directions (i.e. East- and North-pointing axes in a local East-North-Up frame) that
would change slowly, as the error in the individual position estimates drifted. This
concept is illustrated in Figure 4.4. Figure 4.4 shows (with arrows) that a nearly
constant correction applied to each position estimate causes the position estimate to
shift to the actual location of the vehicle on the road. Examination of the real data in
Figure 4.1 also suggests that this is true if the sudden jumps in the fixes are ignored.
(Note that, even if the GPS position fixes contain sudden jumps, their influence on
the navigation system’s estimate of the vehicle’s location can be greatly reduced when
the GPS position fixes are combined with dead-reckoning sensor information. As a
result, the combined GPS/dead-reckoning position solution is generally “smooth” and
offset from the road by a slowly-changing amount.)

Thus, it appears that the vehicle’s estimated location could be shifted to the
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Figure 4.4: A nearly-constant correction applied to consecutive estimated positions

actual vehicle’s location if a 2-dimensional correction were added to the vehicle’s
estimated xy-position. However, which way to shift the estimated position is initially
ambiguous because which road the vehicle is on is unknown—if there are several roads
in the vicinity of the first position estimate, then there are many candidate position
corrections that could be applied to it to shift it to a nearby road. However, as long
as the vehicle is on a physical road for which the database has a record, then there
exists a unique xy-correction that can be applied to the estimated vehicle location to
cause it to coincide with the vehicle’s actual location. Figure 4.5 illustrates this idea.
As the figure suggests, the estimated location for the vehicle is in error because the
navigation sensors have errors in their outputs; which correction is the right one is
therefore ambiguous because vehicle’s actual location is unknown. It is the job of the
map-matching algorithm to resolve this ambiguity and determine which correction is
the right one.

The map-matching algorithm developed here resolves this ambiguity by making

use of a series of identical error (or “cost”) functions—one error function is created
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Figure 4.5: Many candidate corrections applied to a single estimated position

for every candidate correction. The error function is designed so that its cumulative
sum for a given correction increases rapidly over time if the corrected location is
inconsistent with the information from the map database. The most likely location
of the vehicle is therefore chosen to be the corrected location whose error function
has the smallest cumulative sum.

To illustrate the concept of a cost function in this context, we consider the fol-
lowing example. Suppose that, at some instant in time, the Kalman filter’s estimate
of the vehicle’s position is at the location shown by the shaded circle in Figure 4.6.
Furthermore suppose that there are three candidate corrections (labeled 1, 2, and 3)
that shift the vehicle’s estimated location to nearby roads (shown by the white circles
in Figure 4.6). Notice that the estimated vehicle heading is nearly parallel to the
vertical roads and that traffic on one of the vertical roads is restricted to movement
in one direction. For each of the three candidate positions shown in Figure 4.6, let

us introduce and evaluate the cost function
. . 2 . . . 2 . 2 N2
Ci =4} (5}7,k) + UL ek + v (C;k) + 5 (63,/:) + 93 (E}ll,k) +... (4.1)

where C{ is a “cost” associated with the j* correction evaluated at timestep &, and
the quantity €4« is a directionality error defined as 1 if a one-way restriction is violated

and 0 if a one-way restriction is not violated; each ¥ is a weight chosen by the designer.
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Figure 4.6: A demonstration of 3 possible corrections and their associated “costs”

The ellipsis marks in Equation 4.1 indicate that more terms than those shown can
be included in this cost function definition, depending on how much information is

available in the map database. The other quantities are defined as

€r = Tmpk— T (4.2)
e;,k = Ymk — yi,k (4.3)
& = Omr— b (4.4)

i}

where (z,32,) is the j* corrected xy-location of the vehicle, (Zmk, Ym) is an ar-
bitrary point on a road in the map database, 6, is the heading of the road at
(Zmk» Ymi), and 6, is the Kalman filter’s estimate of heading. (Note that 6, and
€4 are determined once a point on the map (Zmk, Ym,k) is chosen.) The jt* corrected

location (x"_:,k, yz,k) is computed according to

v = Tk + Azl (4.5)
gk + Ayl (4.6)

SRS

.k

where (£, §x) is the estimated xy-location of the vehicle, A:vf_;‘k is the j** x-coordinate

correction and Ay, is the j** y-coordinate correction.
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The manner in which each correction (Aa:ik, Ayf;’k) is obtained is at the heart of
this map-matching algorithm and is determined using the cost function defined in
Equation 4.1. At this point, we seek to qualitatively evaluate CI (j = 1,2,3) for
each of the 3 corrections depicted in Figure 4.6. (Note that the time index & is not
relevant to this example, but is kept in the notation for consistency.) Our goal is to
identify which of the 3 candidate corrections is most likely to be the one that shifts the
estimated vehicle location to the true vehicle location. To achieve this goal, we seek to
identify one particular value of C} for each correction, denoted CJ*. The quantity CJ*
is the minimum value of C,{ that is obtained after evaluating C,{ at all points on every
road in the map database that lie in the vicinity of (z-,’_:‘k,yﬁ‘k). In other words, for
each correction, C,{ is repeatedly evaluated at every point (Zm, &, Ym k) in the vicinity
of (z-g'k, yi,c), with the goal of finding the minimum value of C{. The general form of
C1 is such that, as the point (Zm, ¥mx) at which C} is evaluated moves farther from
(xﬁ,k,yi,,c), the value of C! increases quadratically; since the algorithm’s goal is to
minimize C,{, it is not necessary to evaluate C,{ at every point in the entire database.
In sum, then, for each correction, the goal is to find that point on the map (z}, ., Ym.x)
that minimizes the value of C3.

If the cost function (Equation 4.1) were evaluated for each of the corrected po-
sitions shown in Figure 4.6, then Corrected Position 1 would incur additional cost
because the road on which it lies is restricted to one-way travel in the wrong direc-
tion. Corrected Position 2 would also incur additional cost because the heading of the
road on which it lies differs significantly from the estimated heading of the vehicle.
Finally, Corrected Position 3 would incur no additional cost for violating a one-way
restriction, nor would it incur much additional cost for errors in heading. Therefore,
if the weights (denoted with a ¥ in Equation 4.1) are chosen appropriately, the cor-
rection with the minimum cost would be Corrected Position 3. As time passes, the
vehicle would presumably move about on the road network, and consecutive position
estimates would form a pattern that is similar to the actual path of the vehicle. At
regular intervals, the cost function for each correction (C1) must be re-evaluated, and
its minimum value (Ci*) must be found. The cumulative sum of the minimum cost

must be tracked individually for each correction. The most likely location for the
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vehicle is determined to be that corrected position for which the cumulative sum of
C,’c"“ is minimum over all j and k. Mathematically, the most likely location for the
vehicle after the k** update is deemed to be the j** corrected position if

Si=25; (4.7)

where

k .
Sy = j=nllj.1.1,N {Z Cg‘} (4.8)

i=1
and N is the total number of candidate corrections.

If the vehicle traces a path that correlates highly to a unique path in the road
network, those corrected positions that lie on the wrong road should suffer significant
increases in their associated cumulative cost because they should be inconsistent
with the pattern of roads in the road network. In contrast, corrected positions that
lie near or coincide with the vehicle’s true location should maintain a low cumulative
cost because they are most consistent with the information in the database.

To summarize, the pattern-matching method presented here recognizes that the
difference between the vehicle’s actual position and its estimated position generally
changes slowly. Therefore, a nearly-constant correction can be added to a vehicle’s es-
timated position to put it in the correct location on the map. However, there are many
possible position corrections that could be added to the vehicle’s estimated position
to put it on a nearby road. Therefore, which correction is the right one is ambiguous
and must be resolved. In the algorithm just described, this ambiguity is resolved
by evaluating a cost function for each correction over time; that correction with the
minimum cumulative cost is deemed to be the most likely correction. The cumulative
cost for each correction should therefore be inversely related to the likelihood that the
correction shifts the vehicle’s estimated location to its true location—i.e. corrected
locations with a low cumulative cost are more likely to coincide with the vehicle’s

actual location than those locations with a high cumulative cost.
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4.4.3 Updating Each Correction Over Time

Because the Kalman filter’s estimate of position will generally drift relative to the
actual location of the vehicle, corrections should not remain constant, and must,
instead, vary over time. To allow the corrections to vary with time, the algorithm at
hand utilizes an adaptive scheme that updates each correction.

At each update (update k for example), each correction is processed sequen-
tially. The first step in the update of the j** correction is to add the xy-correction
(Arzyk, Ayik) to the filter’s estimate of the vehicle’s position (i, Jik), as was described

in the previous section:

NS
i

Zp + Azl (4.9)
gk + Ayl (4.10)

o,
Eod
i

The corrected position (:vl’k,yik) may not coincide exactly with a road stored in
the map database because the error in the estimated position changes over time.
Therefore, it may be necessary to modify the correction. For each corrected position,
then, a search is initiated for that point (z}, , ¥y, r) Which lies on a road in the map
database and minimizes CJ. Once (T k> Ym k) is found, the correction is modified so

that the corrected position (z7,, “steps” toward (z} .,¥r ;) by some amount.
e,k Yo,k p mk Ym k

The correction is updated according to

Azi,m = Azi,k + MZmx — 1‘3.-1:) (4.11)
A c.,k+1 = Ayﬁ,k + MYk — yﬁk) (4.12)

where
A€o, 1] (4.13)

The value of A controls how far the corrected position “steps” toward (z, k., Ym.x)-
For example, if A is zero, then the correction does not change. If ) is unity, the point
(Zk + Azi'k s Uk + Ay'z‘,c +1) coincides ezactly with the point (z;, ;, ¥ x)- Experience

has shown that using A = 1 is risky because the point (z7, s,y ) i not always a
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sensible choice for the location of the vehicle. Making the corrected position “step”
a fraction of the way toward (z}, x, U5, «) (e-g- With A = 0.7) helps hedge against this
risk.

4.4.4 Using the Map-matched Position in the Kalman Filter

Over time, the cumulative cost S’ associated with most corrections becomes very
large. The cumulative cost of a correction is therefore a convenient criterion for de-
termining whether the correction can be eliminated as unlikely. If the cumulative cost
for a given correction exceeds a predetermined threshold, for example, that correc-
tion can be eliminated. Over time, as the vehicle’s path traces out a pattern that is
unique on the road network, more corrections can be eliminated as their cumulative
cost exceeds the threshold. The number of remaining candidate corrections therefore
decreases over time. Once the number of candidate corrections drops to some small
number, the chances that one of the remaining corrections is the right one should
be fairly high, and the corrected position can be utilized by the Kalman filter as a
“measurement” of position.

Logistically, several matrices in the Kalman filter mechanization must be en-
larged (in real time) to accommodate the new measurement. In addition, because
map-matching generally provides position information that is accurate only in that
direction which lies perpendicular to the road, the filter must be “told” that the
measurement is accurate only in one dimension. This involves assigning appropriate
values to the Kalman filter parameters that describe the error in the map-matching
“measurement.” When the map-matched position information is fed back into the
filter as a position measurement, the filter can utilize the additional information to
aid in the calibration of its dead-reckoning sensors just as naturally as it would if it

were receiving the information from another sensor.

4.4.5 Map-matching Results

This section contains results obtained using the map-matching method described in

the previous section. Most of the results are provided in graphical form as plots that
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show symbols representing the vehicle’s position overlaid on a road network. All of
the results shown were generated from the same set of real sensor data collected in a
test vehicle.

Figure 4.7 shows results after the first 78 seconds of data processing. This figure
demonstrates the map-matching algorithm'’s performance as it autonomously identi-
fies the road on which the vehicle is traveling, without having any a priori information
about the vehicle’s location. The figure shows a road network overlaid on which are
two sets of symbols: crosshairs and squares. The crosshairs (“+” symbols) in the fig-
ure represent the Kalman filter’s best estimate of the vehicle’s location; initially, the
crosshairs do not lie on a road due to errors in the GPS position fixes. As the figure
shows, this set of crosshairs appears to stop abruptly. The reason for this is that, at
the point where the crosshairs stop, the map-matching algorithm began to supply its
position “measurements” to the Kalman filter. The Kalman filter’s estimated posi-
tions do not really stop, as it appears; instead, the filter’s estimated location simply
“jumps” to map-matched location.

The squares represent the location at which the map-matching algorithm believes
the vehicle to be. Recall that the map-matching algorithm deems the vehicle’s most
likely location to be at that corrected location with the minimum cumulative cost.
Therefore, the squares in Figure 4.7 represent those corrected positions for which
S,{ = S;. As Figure 4.7 shows, the map-matching algorithm chooses the wrong
position correction for the first five timesteps—the first five corrected positions lie on
the southwest side of Abrams Court, but the vehicle was actually traveling on the
northeast side of Abrams. The algorithm failed because both sides of Abrams Court
are nearly parallel. The sixth corrected position, however, is in (approximately) the
right location, as are subsequent corrected positions.

Figure 4.8 shows numerical values of Sy for all the corrections being tracked by the
algorithm. At the beginning of the run, there are many candidate corrections. The
map-matching algorithm’s purpose is to resolve which correction, when applied to the
filter’s estimated position, produces a corrected position that matches the vehicle’s
actual location. The magnitude of S,{ is inversely proportional to the likelihood that

corrected position j is the actual location of the vehicle. As the figure shows, the
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Figure 4.7: Results showing the map-matching algorithm converge on the right road

cumulative cost for most of the corrections grows rapidly. This suggests that most of
the corrections that were candidates at the start of the run are incorrect. As shown
in the figure, only two candidate corrections survive more than 30 correction updates.
Examination of these two corrections revealed that both of them cause the corrected
position to lie on the correct road, and the corrected positions are, in fact, actually
very close to one another.

Inspection of Figure 4.8 shows that the cumulative cost for a group of several
corrections ends abruptly. The endpoints of these curves are circled in the figure.
The reason that these curves end abruptly is because the map-matching software
detected that these corrections were redundant and eliminated them. In other words,

these corrections were very nearly equal to other corrections; when the map-matching
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Figure 4.8: The cumulative cost for each correction as a function of time

software detects that two or more corrections are very nearly equal, it will eliminate all
but one correction to reduce its computational burden. The reason some corrections
can become nearly equal is because they are periodically updated, and the adaptive
updating scheme (see Equations 4.11 and 4.12) does not restrict the corrections from
becoming equal. As a result, corrections that are initially in the vicinity of one another
frequently converge over time.

To demonstrate that the map-matching algorithm works correctly, it was applied
to the data set whose GPS position fixes are shown in Figure 4.1. Figure 4.9 shows
the Kalman filter’s estimate of the vehicle’s location (shown with “+” symbols) and
the map-matching algorithm’s estimate of the vehicle’s location (shown with squares).
The symbols are difficult to distinguish because they overlay each other. The geo-
graphical region shown in Figure 4.9 is the same as that shown in Figure 4.1. Com-
paring Figure 4.9 with Figure 4.1, it is clear that the Kalman filter/map-matching

system smoothes the jumps and eliminates the bias in the GPS position fixes.
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Figure 4.9: Map-matched and Kalman filter location estimates versus time

4.5 Summary

This chapter began with a discussion of various issues associated with map-matching.
A discussion of various factors influencing successful map-matching was included. It
was emphasized that the success of a particular map-matching algorithm depends
on the particular strengths and weaknesses of the algorithm, and, for this reason,
it is difficult to make general statements regarding the circumstances under which a
map-matching algorithm will be successful. In addition, it is difficult to make general
statements regarding the benefit of map-matching as a navigation aid. However,
the influence of map-matching as a navigation aid is investigated in this research,
and the manner in which this investigation is carried out was described. Finally, a

map-matching algorithm developed by the author was described in detail.



Chapter 5

Analysis Detalils

5.1 Introduction

This chapter ties together the material of the previous chapters, bringing the theories
established in Chapter 2 to bear on the Kalman filter presented in this chapter.
This chapter begins with a discussion of several important assumptions that have
been made to simplify analysis. Next, the Kalman filter equations and the equations
of sensitivity analysis are given. Most of these equations were already presented in
Chapter 3 as sensor error models. However, in this chapter, the equations are grouped
more conveniently for readers interested in the details of the Kalman filter and the
sensitivity analysis mechanization. Readers who are not interested in these details

may skip Sections 5.3 and 5.4 without loss of coutinuity.

5.2 Simplifications

A general analysis of an automobile navigation system bears certain complications
that must be simplified in order to obtain meaningful results efficiently. In this
section, four important simplifications that are made in the analysis in this research

are introduced and justified.

89
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5.2.1 Dealing with Trajectory Dependencies

The first such issue arises in connection with the effect that the vehicle’s trajectory has
on the performance of a navigation system. Simply stated, the vehicle’s motion—e.g.
how often the vehicle turns, how fast the vehicle moves, how often the vehicle changes
lanes, etc.—will have an impact on the positioning accuracy of its navigation system.
This fact is readily seen when one realizes that certain sensor errors will change as
the vehicle moves. For example, a rate gyro scale factor error contributes more to
heading error when the vehicle turns, and the magnitude of the errors caused by the
odometer depends on the vehicle’s speed. Because the magnitude of some sensor
errors vary with the vehicle’s motion, analysis results are trajectory-dependent and
therefore specific to the chosen trajectory. This makes it more difficult to perform a
general analysis.

In addition to trajectory-dependent sensor errors, there are also map-matching er-
rors that are trajectory-dependent. For example, as was discussed in Section 4.2.3, a
map-matching algorithm produces an accurate estimate of a vehicle’s position perpen-
dicular to the road, but not parallel to it. A navigation system utilizing a successful
map-matching algorithm will therefore have accurate knowledge of the vehicle’s loca-
tion perpendicular to the vehicle’s heading. Immediately following a 90-degree turn,
then, the location of the vehicle should be known accurately in 2 dimensions. Hence,
the impact that map-matching has on positioning accuracy depends on the vehicle’s
trajectory—if the vehicle turns frequently, a successful map-matching algorithm will
cause the positioning error to drop at each turn. On the other hand, if the vehicle
travels on a straight road over a long distance, map-matching will restrain position
error only in the cross-track direction, not the along-track direction.

These trajectory dependencies impede efficient analysis because they tie analy-
sis results to a specific trajectory—any analysis results apply only for the assumed
trajectory. One obvious analysis methodology, then, is to examine the navigation
system’s performance over a wide variety of representative trajectories. This type of
analysis would require an examination of many trajectories that the vehicle would be
likely to take. However, it is immediately clear that this method would be tedious

and almost certainly incomplete.
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A much more efficient alternative can be found if one recognizes that vehicles
spend most of their time traveling on straight roads. Simple experience tells us that
this is true and that turns are infrequent. For this reason, most of the analyses in this
research assume that the vehicle is traveling on a straight road at a constant speed,
thereby eliminating trajectory-dependent effects associated with turns and vehicle
acceleration. Trajectory dependencies are not ignored but will, instead, be examined
with individual simulation runs. While this solution is not a truly general solution,
it reduces the analysis to its simplest form and will produce results that are general

except during those occasions when the vehicle turns.

5.2.2 Simplifying Map-matching

A second issue arises in connection with the complexities of analyzing the effects of
map-matching on navigation system performance. Because map-matching is a key
element in many existing automobile navigation systems, its influence on navigation
system performance should be included in this research. However, quantifying the in-
fluence that map-matching has on a navigation system’s performance is complicated
for two reasons. First, a map-matched position “measurement” is fundamentally dif-
ferent from sensor measurements—a sensor measurement consists of “the truth plus
systematic and random errors,” while a map-matched position could be incorrect alto-
gether (containing no truth) if the map-matching algorithm fails. If a map-matching
algorithm fails to produce a correct “measurement” of position, the Kalman filter’s
position estimate may diverge from the true vehicle position. Treating data from a
map-matching algorithm as true position measurements is therefore risky because a
divergent map-matching algorithm could ruin the navigation system’s performance.
Unfortunately, whether a map-matching algorithm will fail is nearly impossible to
predict because it depends on the specific workings of the algorithm, the quality of
the sensor data, and the geometry of the local road network. Second, analysis re-
sults would be valid only for the particular map-matching algorithm and trajectory

at hand because the effects of map-matching on navigation system performance are
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determined by details specific to the algorithm— e.g. the manner in which the map-
matching data is weighed against the sensor data, how a map-matched position is
derived, and the particular weaknesses of the map-matching algorithm.

For these reasons, we seek a simpler approach to examining the influence of map-
matching on navigation system performance. In particular, we seek a solution that
is independent of any particular map-matching algorithm, but, at the same time,
reveals the salient influence of map-matching on navigation system performance. To
this end, it has been assumed in this research that a perfect map-matching algo-
rithm is in place—i.e. one that always produces a cross-track position fix on the
correct road. Also, the navigation Kalman filter has been designed to utilize the
map-matched position as a cross-track position measurement. This approach avoids
having to implement a map-matching algorithm and having to deal with the atten-
dant complications of map-matching divergence. It also avoids tying all simulation
results to a single implementation of a map-matching algorithm and its particular
pathologies. Finally, since this approach treats the map-matched position as a “mea-
surement” of cross-track position, the entire system analysis is kept within a single
framework—no exceptions need to be made in the analysis to treat map-matching

input.

5.2.3 Choosing a Vehicle Trajectory

A third simplification that is closely related to the previous two arises in connection
with the actual vehicle trajectory chosen for the simulations. As the first simplifica-
tion has established, the vehicle is assumed to be traveling on a straight road in most
simulations. Another way to state this simplification is, obviously, that the vehicle’s
nominal heading is always constant. In most simulations, then, the vehicle’s heading
was simulated to be constant and identically zero. (In simulations involving map-
matching, however, the performance of the system is explored as the vehicle moves
laterally on the road. In these simulations, then, the heading is not constant. The

reader is referred to Section 4.3 for details.) Furthermore, the vehicle’s nominal path
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is assumed to coincide with a local North-pointing axis. Therefore, in the simula-
tions, the vehicle is always moving due North on the North-pointing axis of a local
East-North-Up reference frame. There is no loss of generality in making these assump-
tions, but because the vehicle moves along one axis in a local reference frame, certain
convenient simplifications arise. For example, under these assumptions, the vehicle’s
cross-track position and its x-position (i.e. East-position) are equivalent; similarly, its
along-track position and its y-position (i.e. North-position) are equivalent. Therefore,
the cross-track position “measurement” provided by the map-matching algorithm is
a “measurement” of the vehicle’s x-position. Hence, in the measurement equations in
Section 5.4.2, the map-matching “measurement” is treated as a measurement of the

vehicle’s x-position.

5.2.4 Linearizing the Kalman Filter

One last simplification to be noted arises in connection with the assumptions of
sensitivity analysis. One important prerequisite for a sensitivity analysis is that the
reference system equations be linear. However, certain equations in the navigation
Kalman filter are nonlinear. The filter is an extended Kalman filter, and therefore
sensitivity analysis cannot be directly applied. However, this issue can be avoided by
linearizing the nonlinear equations about a known nominal state trajectory. The filter
presented in this chapter is therefore a linearized Kalman filter. This linearization is
done only for the sake of analysis, since a filter for which the nominal state trajectory
is known a priori could not be used in a real navigation system. As a result of the
linearization, the filter estimates the deviation of the true states from the nominal
state trajectory. The states in the filter are therefore perturbation states, not the
“full” state. Results have shown that the performance of the linearized Kalman filter
is virtually identical to that of the extended Kalman filter; therefore, it can be argued
that the results of the sensitivity analysis (applied to the linearized filter) apply to the
extended Kalman filter, as well. In this chapter, only the linearized filter’s equations

are given.
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5.3 The Kalman Filter Equations

5.3.1 The Kalman Filter Model Equations

In this section, the model equation for the navigation Kalman filter will be presented.
Before presenting the equations, however, there are several important introductory
remarks that need to be made.

First, it is important to note that the states of the Kalman filter represent pertur-
bations from a nominal state trajectory because the filter is linearized. To remind the
reader that the states are perturbations, a é symbol has been included in the notation
of certain perturbation quantities. Elements of the nominal state are denoted with

an overbar (e.g. ), and the “full” state is given by

=T+ & (5.1)

For individual elements of &, the § symbol is used only for those states whose nom-
inal state value is non-zero. For example, the vehicle’s nominal speed is denoted V
and its perturbation speed is denoted &V, since V # 0. Most of those states that
represent sensor errors, however, have nominal values that are defined to be identi-
cally zero. Defining the nominal states in this way is perfectly legitimate as long as
the assumptions of the linearization are not violated. The perturbation states are
therefore identically equal to the “full” states, and the 6 notation is dropped for these
states. Dropping the é notation avoids needless clutter in the equations and maintains
notational consistency with the sensor error models presented in Chapter 3.

Second, the equations that follow are presented as continuous-time differential
equations, but the equations of sensitivity analysis (in Chapter 2) were discrete-time
equations. The equations are presented in their respective domains for convenience
only.

Third, with regard to notation, the subscript “f” which appears in the following
equations denote quantities associated with the filter, while the subscript “r” denotes
quantities associated with the reference system. (This notation is consistent with

that of Chapter 2.) However, certain elements of the nominal trajectory do not have
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an “f” or “r” subscript. The subscript has been dropped to emphasize that many
elements in the reference system’s and filter’s nominal trajectory vectors are identical
(ie. ©, =0; =0).

Finally, the model equations for the linearized filter can be divided into two groups:
equations modeling the vehicle’s kinematic motion, and equations modeling sensor
errors. The equations that model the kinematic motion of the vehicle remain the
same no matter what set of sensors is available to the filter, while the equations
that model the sensor errors will vary, depending on which sensors are available to
the filter. (Recall that we are interested in examining the performance of a number
of different navigation systems, each of which utilizes a different set of navigation
sensors.) Therefore, some of the equations to be shown are not present in a given
filter mechanization if the corresponding sensor is not part of the navigation system—
e.g. the equation for the compass’ bias is not necessary if the navigation system does
not include a compass.

Having made these preliminary remarks, the filter equations will now be presented.
The perturbation quantities that describe the vehicle’s kinematic motion are its x-
position (pz,s), y-position (dp, (), speed (&V;), acceleration (&ay), and heading (8y).
The manner in which these quantities are related depends on certain elements of the
nominal state vector. The equations that follow, for example, depend on the vehicle’s
nominal speed (V) and nominal heading (8). The quantities that model the sensor
errors include the rate gyro’s bias (wj s), the compass’ bias (O, f), the odometer scale
factor bias (Sp,f), and the error in the x- and y-components of the GPS position fixes
(Azf> Ayr)- The filter’s state vector is defined as

T
scp=| &ap By OV Gy O wip Obp Sop Anp Loy Ags &) (52)

With the exception of the equations for the bias in the GPS position fixes, the model

equations in the Kalman filter are given by

&,; = sin(®)8V; + V cos(®)d0; (5.3)
p,; = cos(Q)V — Vsin(0); (5.4)
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: 1
&Zf = - &lf + Uq g (5.6)
Ta,f
) f = OWmeas — Whf (5.7)
Wof = TUuy,f (5.8)
G,,,f = Uy, f (5.9)
. 1
Sb,f = - Sb,f + Uus,.f (5.10)
TSs.f

where all quantities denoted with a u represent zero-mean Gaussian white noise. The
quantity dwmeqs is treated as an exogenous input to these model equations. This
quantity can be thought of as a measurement of the perturbation in the vehicle’s

heading rate and is defined as
6wmeas = Wmeas — W — Wp (511)

where Weqs is the measured heading rate (i.e. the raw output of the rate gyro), @ is
the nominal heading rate of the vehicle, and @ is the nominal rate gyro bias. Injecting
a raw measurement into a model equation as an exogenous input is convenient when
the measured quantity is a derivative of one of the filter’s states. Formulating the
filter in this way allows it to track rapid changes in the state. In this case, injecting
the raw rate gyro output into the model equation allows the filter to track rapid
changes in the vehicle’s heading. If a more conventional approach were taken, in
which the rate gyro measurement were part of the measurement vector (z), then it
would be necessary to include a mathematical model of the vehicle’s heading in the
model equations. This approach was attempted and was found to result in poorer
filter performance when the vehicle turned and, in general, produced poor estimates
of the vehicle’s heading.

As was mentioned in the introductory remarks, the states that represent sensors
errors—ws, 5, ©p, and Sp y—are, technically, perturbation states. However, the nomi-

nal values for these states are defined to be identically zero. The perturbation states
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are therefore identically equal to the “full” states. The models for these perturba-
tion states are therefore identical to the models for w, (Equation 3.9), ©, (Equation
3.20), and S, (Equation 3.32) in Chapter 3. Also, since w;, = 0, Equation 5.11 can be
rewritten as

6Wmeas = Wmeas — @ (5.12)

The equations for the bias in the GPS position fixes were not included in Equations
5.3 through 5.10 because the models for the x- and y-components of the bias vary
depending on whether SA is on, SA is off, or differential corrections are available. In
all cases, the models for the position bias add four more equations to those above.
Also, as with the other semsor errors, the nominal values for the biases and their
derivatives are defined to be identically zero, and the § notation is dropped. If SA
is on, the x-component of the error in the position fixes (Az ) is given in Equations
3.34 and 3.35:

Azy = &zf (5.13)

éﬂ-'vf —ﬁf:,fAI,f - 2,Br.f€z,f +uzf (5.14)

(The model for the y-component of the bias is identical and is therefore not given.)
This is a second-order Gauss-Markov process whose behavior is controlled by the
constant f; s and the Gaussian white noise uz ;. If SA is off, the error equations have
the same form as these equations, but the numerical values for the parameters that
govern the equations (i.e. the initial conditions for A; ; and &, Bz, and the RMS
value of uz s) differ.

If DGPS position fixes are available, then the meaning of §; r and §, s change. Each
component of the position error is modeled as the sum of two biases (i.e. Az s+ &z,5)-
Each bias is modeled as a first-order Gauss-Markov process (with time-constants
denoted 7y; and 7¢ ) that is driven by white noise (denoted uy; and wugy). The
equations for the biases were originally given in Equations 3.41 and 3.43:

1

/\,_-'f + Uy g (5.15)
T,\,f

"\z,f = -
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and

. 1
N ——&z, 5+ Ug s (5.16)
Te.f

The model for the y-component of the bias is identical and is therefore not given.

The reason for presenting Equations 5.3 through 5.16 is, of course, to benefit the
reader interested in the specifics of the sensitivity analysis mechanization. Several
matrices that appear in the formulation of the equations of sensitivity analysis can
be identified from Equations 5.3 through 5.16. Specifically, the matrices that can be
extracted from these equations are ®yx, Bk, Qfk, Zk, [k and ¥;; the meaning of each
of these matrices can be found by examining Equations 2.49 and 2.50. These matrices
are particularly important because they are required for the time-update equation in
the sensitivity analysis (i.e. Equation 2.72). The continuous-time form of the first
two matrices in this list (i.e. ®;x and Bi) can be formed by inspection Equations
5.3 through 5.16 with reference to Equation 2.49. The matrix Qyx is required by
the Kalman filter algorithm (see Equation 2.10) and is the discrete-time form of the
spectral density matrix for the additive white noise in the model equations.

Some clarifying remarks are needed in connection with the last three matrices
(i.e. =k, [x and ¥y). These matrices define the input u; in accordance with Equation

2.50, which is repeated here:
Ug = SxZop + Diberp + 94 (5.17)

The quantity ;. appears in the model equations as an exogenous input to Equation
5.7. Because there is only 1 input to the filter’s model equations, u; is actually a

scalar quantity that is given by
U = 6wmea3 = Wmeas — W (518)

Since u; is a scalar, the matrices = and ['; have dimensions 1 x n (where n is the
number of states in the reference system), and U, the covariance of v, is also a

scalar.
We can develop Equation 5.18 further by making use of Equation 3.5. Equation



CHAPTER 5. ANALYSIS DETAILS 99

3.5 defines the output of the gyro in terms of the vehicle’s true heading rate, the true
rate gyro bias, the true value of the noise in the gyro’s output, and the true rate gyro
scale factor. Substituting from Equation 3.5 into Equation 5.18 for wmeqs, we arrive

at

oK
Uy = (1 + K_T) (wr + wyr + Vur) — W — @D (5.19)

where w, is the true vehicle heading rate, ws, . is the true rate gyro bias, and v, - is
uncorrelated Gaussian noise in the output of the gyro. The quantities w, and ws,
are elements of the reference system state vector, and v, , is also a reference system
quantity. Noting that

Swrk Ewy — W (5.20)

OWpri = Wy — Wp = Whr (5.21)

Equation 5.19 can be reformulated to

Uy = —?{—Iiu? + (1 + %) (bwr + Owp r k) + (1 + %) Vur,r (5.22)
Equation 5.22 has the same form as the general expression for u; given in Equation
5.17. Hence, the exact values for the elements of the matrices Z¢, [, and ¥, can be
identified by inspection of Equation 5.22 together with the definition of the reference
system state vector (to be given in Section 5.4.1).

With the equations given thus far, the matrices ® 7k, Qfx, Bk, Zk, [k and ¥y that
appear in the equations of sensitivity analysis can be formed. The remaining matrices
that appear in the formulation of the equations of sensitivity analysis (in Chapter 2)

can be found by inspecting equations that appear in the following sections.

5.3.2 The Kalman Filter Measurement Equations

In this section, the measurement equations for the Kalman filter are presented. The
purpose of this section is to give the reader enough information to form the filter’s
observation matrix (H;) and the filter’s measurement noise covariance matrix (Ry).

The equations are slightly complicated by the fact that the filter is a linearized
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Kalman filter. As was described in Chapter 2, the measurement vector in a linearized
filter is actually a linear combination of perturbation states. The quantities measured
from the navigation sensors are modified according to Equation 2.55, which is repeated

here:
Zrk = Zrg — HppZsi (5.23)

where 2,; is a vector of quantities measured from the sensors, Hyy is the filter’s
observation matrix, and &y is the value of the nominal state trajectory. Performing
this subtraction puts the measurement vector in terms of the filter’s perturbation
states, &;. (For a more detailed derivation of this equation, the reader is referred to
Section 2.4.)

To arrive at an expression with the same form as Equation 5.23, we shall begin
with the “full” measurement vector, z,,. For the filter at hand, the elements of
the “full” measurement vector are the vehicle’s x-position (p;mess) and y-position
(Py,meas), the distance traveled between measurements (Dyneqs), the vehicle’s heading
(Omeas), and the cross-track position as determined by the map-matching algorithm
(Pm.meas)- The position measurements are taken from a GPS receiver, the distance
traveled is measured by the odometer, and the heading measurement is obtained
from a compass or an attitude-capable GPS receiver. In matrix form, the “full”

measurement vector is given by

Pz meas

Dy, meas
Zrk = Dmeas (524)
emeas

| Pm,meas |

The nominal distance measured by the odometer is defined as
Dieas = SoN (5.25)

where S, is the nominal odometer scale factor (in meters/pulse) and N is the number
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of pulses generated by the odometer between measurements.

The filter design assumes that the measured quantities are corrupted with white
noise and represent a linear combination of the filter’s “full” states. If stand-alone
GPS position fixes are being used by the filter, then the filter's model for the rela-

tionship between its measurements and its “full” states is given by

Pzymeas = DPz,f + Az,f+ Up, s (5.26)
Pymeas = Dyf+ Ayf+Up,.f (5.27)
Dmeas = ViT + -;-a.sz — Sb.fN — Ks, fViN + Vogom,f (5.28)
Omeas = Of +Ops+ves (5.29)
Pmmeas = Dz.f+ Umjf (5.30)

where T is the time between measurements, Kg, r is a constant, and Oy is the com-
pass’ bias. Also, every term denoted with a v represents white noise. The subscript
“f" on these terms indicates that the RMS value of each noise term is assumed by
the filter and is not necessarily equal to the actual RMS value; the actual noise terms
will be distinguished with the subscript “r” in subsequent equations. The remaining
symbols represent filter states that are defined in Section 5.3.1. If DGPS position
fixes are available, then Equations 5.26 and 5.27 are replaced with

Prmeas = Prf+ Az +&of+Vp. g (5.31)
py.meas = py,f + Ay,f + Ey'f + ’Upy,f (5.32)

The perturbation measurement for the filter is computed by subtracting H;Z;x

from 2, in accordance with Equation 5.23:

&r,k = Zrk — Hf,ka':f,k (5.33)
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- - -

Pz.meas P+ Az
Py,meas by + ’—\y
&p=| SN |—-|VI+ial?-5N-Ks VN (5.34)
Omeas 0+ (:)b, f
| Pm,meas | | Dz

This equation has the same form as Equation 5.23, and the vector &z, is the pertur-
bation measurement.
The filter implementation assumes that the perturbation measurement vector has

this structure:
&f,k = Hf,k&f,k + Vfk (535)

and the Kalman gain is computed based on this assumption. In reality, however,
the measurement vector 2, contains errors that are not modeled in the filter. The
elements of the matrix Hy; can be identified by comparison of Equation 5.33 with
Equation 5.34. The matrix Ry is a diagonal matrix whose diagonal elements are the

mean-square values of the noise terms appearing in Equations 5.26 through 5.30.

5.4 The Equations of Sensitivity Analysis

5.4.1 The Reference System Model Equations

Like the filter’s model equations, the model equations for the reference system can be
divided into two groups: those states which model the vehicle’s kinematics, and those
which model sensor errors. Naturally, some of the model equations in the reference
system differ from those in the Kalman filter. The notation used in the following
equations is nearly identical to that used in the filter’'s model equations, with the

principle difference being the presence of the subscript “r” to distinguish variables as
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reference system quantities. The reference system state vector is given by

6pz,r
Dy.r

The equations that model the vehicle’s kinematics are given by

., = sin(Q)V;, + V cos(6)P, (5.37)
p,, = cos(®)&, — Vsin(8)60, (5.38)
V. &, (5.39)
b, = 0 (5.40)
O = bw, (5.41)
Gy = 0 (5.42)
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The quantities &, and &v, are zero because the vehicle’s actual trajectory is defined
to coincide exactly with its nominal trajectory; hence, the reference system’s pertur-
bation states associated with the vehicle’s kinematic motion are identically zero.

The odometer’s scale factor bias model (Equation 3.32) is

. 1

Spr=— Spr + Ug,r (5.43)
TSy,r

If a rate gyro is available, its bias is modeled as the sum of a constant () plus a

time-varying quantity described by a second-order Gauss-Markov process (@), as

given in Equations 3.11 through 3.13:

Whp,r = ©Db,r + Wp,r (544)
where
or = 0 (5.45)
éb‘r = ab,r (5.46)
db.r = _ﬁzb,rwb,r - 2ﬂab,7‘ab,1‘ + uab,r (5.47)

If a fluxgate compass is available, the bias in the compass’ reading is given by
Equation 3.16 as the sum of a constant (8,,), a heading-dependent term (¢, ), and a

time-varying term (9,):

@b,r = ga,r + ¢ + 9, (548)
where
oy = 0 (5.49)
7-9r = (550)
f]r = —ﬂn,rzﬂr - 2ﬂr],r7’r + Unp,r (551)
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The heading-dependent bias (¢,) is a nonlinear function of heading (©) given by
¢, = Asin(0) + B cos(0) + C'sin(20) + D cos(20) (5.52)

In order for this to be used as a model equation in the sensitivity analysis, it must be
differentiated with respect to time and linearized about the nominal state trajectory.
The general expression for this quantity is lengthy and complicated; however, when
the vehicle is traveling in a straight line (as is the case in most simulations), the

nominal heading rate is zero, and the expression is greatly simplified:
&, = Acos(0)bw, — B cos(8)6w, + 2C cos(20)6w, — 2D sin(20)bw, (5.53)

The nominal value of ¢, (denoted ¢,) is a function of © and @.

If GPS-based heading measurements are available instead of the fluxgate compass,
the bias in the measured heading is modeled as a constant. The model for ©, therefore
simplifies to

Oyr = o (5.54)

’

If GPS fixes are available, then four additional states are added to the model
equations. The equations for these states are the same as those used in the filter’s
model equations. If SA is on, then the x-component of the error in the position fixes

is given by Equations 3.34 and 3.35:

~
Ut
[y
ot
N

/\z,r = Ez,r
E:c,r = —,B;g,r/\z,r - 2ﬁx,r§z,r + Uy

—~~
[y
(1
N

h—

(The model for the y-component of the bias is identical and is therefore not given.) If
SA is off, the error equations have the same form as these equations, but the numerical
values for the parameters that govern the equations (i.e. the initial conditions for A
and & r, Ozr, and the RMS value of u.,) differ. If DGPS position fixes are available,
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then the models are given by

. 1
At,r = - Ax,r + uA’r (5-57)
Ta,r
and !
é:c,r = _’—‘fx,r + Ugr (558)
Ter

and the position error is modeled as the sum of these two biases (i.e. Az + &)
Finally, the reference system includes a state to model the bias in the “measure-
ment” of cross-track position from the map-matching algorithm. This “measurement”
is biased because the actual location of the vehicle generally does not coincide with
the centerline of the road that is stored in the map database. At the beginning of
this chapter, it was pointed out that a simplifying assumption was made in which the
centerline of the road was assumed to coincide with a local north-pointing axis. Under
this simplifying assumption, the “measurement” of the vehicle’s cross-track position
from the map database is always zero. Therefore, the bias in the map “measurement”

is the negative of the vehicle’s true x-location:
Py = —sin(@)&;, — V cos(O) (5.59)

The complete set of reference system model equations consists of those preceding
equations that model the time histories of the elements of &z, (defined in Equation
5.36). Certain matrices that appear in the time-update equation in the sensitivity
analysis (i.e. Equation 2.72) can be found by inspection of these equations. The
matrices of particular interest are ®,,, the state transition matrix, and Q,, the
covariance matrix for the white noise terms driving the differential equations. These
matrices can be found by putting the reference system model equations into matrix

form and discretizing the resulting system of continuous-time differential equations.
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5.4.2 The Reference System Measurements Equations

Recall that the “full” measurement vector, 2,, is

Pz,meas
Dy,meas

zr,k = Dmeas (560)

emeas

| Dm,meas |

This measurement vector can be rewritten as a linear combination of the nominal

trajectory and reference system states plus additive noise:
Zrk = Hr,k (i:r,k + &:r,k) + Urk (5'61)

If stand-alone GPS fixes are used, then the measurement equations are given by

[ Prr + Aoy + Vpy e
Pyr + Ayr + Upyr
zp = | 2a. T2+ V,T ~ 5N — K5, : Ve N + Yodom,r (5.62)
Or+6bor+ 0 +U +vor
L Pzr + Pmr
[ Br + A
P, + Ay
= | LlaT*+ VT - 5N - Ks,,VN
0+8,,+a,+9:
I Pz + Py
[ 6pz,r + ’\z.r ] [ Upg,r ]
6py,r + Ay Upy,r
+| L&, T+ &, T = SN = K5, ;&N | + | Vodoms | (5.63)
8O, + 0, + &, + U, Yo,
I R . I L vmr |




CHAPTER 5. ANALYSIS DETAILS 108

Note that, for clarity, the time index k has been dropped from the individual elements
of the matrices above. Also, recall that the nominal values for most of the sensor errors
(i.e- Az, Ay &z, &y Sb, 05, and U) are defined to be identically zero for both the filter
and reference system’s nominal trajectories. The reader will note, however, that these
symbols are included in the preceding equation for completeness. Finally, if DGPS
position fixes are used instead of stand-alone GPS position fixes, then the first two

equations in Equation 5.63 should be replaced with

Dzmeas = DPzyr+ ’\::,r + Ez,r + Up,.r (564)
py,meas = py,r + ’\y,r + Ey,r + 'Upy,r (5.65)

Equation 5.63 has the form
Zrp = HepZr g + Hp g8k + ek (5.66)

from which the matrices H,; (the reference system observation matrix) and the di-

agonal matrix R, (the covariance matrix of v, ;) can be identified.

5.5 Summary

This chapter opened with a discussion of several assumptions which were justified and
which simplify the analysis considerably. After this, the equations for the Kalman
filter and the sensitivity analysis were presented in detail. Many of these equations
were presented as sensor error models in Chapter 3. In this chapter, however, they
were grouped so that the interested reader could more easily identify the matrices
that appear in the equations of sensitivity analysis. Having justified the assumptions
made in the analysis and having presented the Kalman filter and sensitivity equations,

the results of the sensitivity analysis be presented.



Chapter 6

Results

6.1 Introduction

The main goal of this research is to gain an understanding of low-cost navigation
systems by quantifying the contribution that individual error sources make to a nav-
igation system’s performance. The most natural measure of a navigation system’s
“performance” is its positioning accuracy. However, a great deal can be learned
about a navigation system’s behavior by examining other quantities, as well. There-
fore, the results and discussion which follow are not limited to an examination of
positioning error only. Instead, several performance parameters are examined and
various influences on each of these parameters are discussed.

The results which will be shown were obtained by applying sensitivity analysis to
several navigation systems, each of which utilized a different set of navigation sen-
sors. Most results pertain to a system utilizing GPS position fixes, a rate gyro, and
an odometer. This set of sensors will be referred to as the “baseline” system config-
uration, and the performance of this system will generally serve as the benchmark
to which other systems will be compared. The discussions which follow are orga-
nized on a topical basis and include the key results that best convey to the reader an

understanding of the error mechanisms in the navigation Kalman filter.

109
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| GPS Positioning Type SA On | SA Off | DGPS |
Steady-state RMS Cross-track Position Error (m) | 19.3 7.7 1.1
RMS Cross-track Bias Error in GPS Fixes (m) 20.6 8.0 1.07

Table 6.1: Comparison of cross-track position error and GPS position error

6.2 The Roles of Various Sensors While GPS Fixes
Are Available

We shall first examine the ability of the Kalman filter to estimate the vehicle’s position
while GPS position fixes are available. To do so, results will be shown for 3 navigation
systems: each of the 3 systems utilized the baseline sensor set (i.e. GPS fixes, a rate
gyro, and an odometer) but utilized a different type of GPS position fix (GPS with
SA on, GPS with SA off, and DGPS). For these 3 navigation systems, the cross-
track and along-track components of the position error will be examined separately,
beginning with the cross-track error.

Table 6.1 shows the RMS error in the GPS position fixes and the RMS error in
the cross-track position estimate after the filter reached steady-state. The first row
in the table shows the RMS value of the error in the cross-track position estimate
after the Kalman filter reached steady-state. The data in the 3 columns in this row
show results for each of the 3 navigation systems at hand. The second row in the
table shows the RMS value of the bias in the GPS position fixes that were available
to the navigation system. The data in this (second) row represent the accuracy of the
cross-track position measurements that were available to the filter. The data in the
second row serves as a benchmark to which the data in the first row can be compared
to determine how much the filter was able to improve upon its position measurements.

As the data show, the filter is not able to reduce the positioning error significantly
below that of the RMS value of the bias error in the GPS position fixes. In fact, when
DGPS position fixes are utilized, the RMS error in the cross-track position estimate
is greater than the RMS bias in the position fixes. This occurs because the RMS

value of the uncorrelated noise in the DGPS position fixes is large (1.4 meters) in
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GPS Positioning Type SA On | SA Off | DGPS
GPS Bias Drift 95.3% | 97.4% | 92.7%
GPS Measurement Noise 0.9% | 1.8% | 6.4%
Rate Gyro Bias Drift 3.5% | 0.5% | 0.1%
Rate Gyro Measurement Noise | 0.3% | 0.3% | 0.8%
Odometer Errors 00% | 0.0% | 0.0%

Table 6.2: Relative contributions to mean-square error in cross-track position estimate

comparison to the RMS bias error and, therefore, figures prominently into the cross-
track position error. The data in Table 6.1 suggest that, while GPS position fixes are
available, the accuracy of the positioning system is dominated by the accuracy of the
GPS position fixes.

Sensitivity analysis results support this conclusion and provide further insight
into the filter's error mechanisms. Table 6.2 shows the percent contribution that
various error sources make to the steady-state mean-square error in the estimate
of the vehicle’s cross-track position. The error sources listed in the table have been
categorized according to their sensor of origin and their time-correlation. For example,
“GPS Bias Drift” refers to the time-correlated errors in the GPS position fixes. The
percentages listed in this row of the table represent the fractional contribution that
random bias drift in the GPS position fixes makes to the total mean-square cross-
track position error. “GPS Measurement Noise” refers to errors in the GPS position
fixes that are uncorrelated in time. “Rate Gyro Bias Drift” refers to time-correlated
bias errors in the rate gyro’s output, and “Rate Gyro Measurement Noise” refers to
errors in the rate gyro’s output that are uncorrelated in time. Finally, the influence of
uncorrelated and correlated errors in the odometer readings are grouped together in
the row labeled “Odometer Errors.” As the data show, the bias in the GPS position
fix contributes more than 90% of the total error in the cross-track position estimate,
demonstrating that the positioning error is dominated by the accuracy of the GPS
position fix.

The data in this table reveal that the error sources consisting of uncorrelated
noise—the GPS measurement noise and the rate gyro measurement noise—become

increasingly significant as the accuracy of the position fixes improves. The fractional
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| GPS Positioning Type SA On | SA Off | DGPS
Steady-state RMS Position Error (m) 13.9 6.5 1.1
RMS Bias Error in GPS Position Fix (m) { 20.6 8.0 1.07

Table 6.3: Comparison of along-track position error and GPS positioning error

contribution of the uncorrelated error sources increases because, as the GPS position
accuracy improves, the filter is better able to mitigate the effects of the correlated
error sources than the uncorrelated error sources. In other words, the filter estimates
the correlated errors with increasing accuracy as the GPS measurement accuracy
improves, but it is less able to reduce the effects of the uncorrelated noise sources.
This occurs because the information in an uncorrelated signal contains no information
that can be utilized to predict its future value—the value at one timestep is unrelated
to the value at every other timestep. In contrast, the value of a correlated signal at
any point in time contains information about the signal at a later point in time. The
filter is therefore better able to take advantage of the improved accuracy in the GPS
position fixes when estimating correlated errors.

Results for the along-track error are slightly better. Table 6.3 shows results similar
to those of Table 6.1, and Table 6.4 shows results similar to those of Table 6.2.
Table 6.4, however, includes separate rows for the contributions of the correlated and
uncorrelated errors in the measurement from the odometer. As Table 6.3 shows, the
steady-state along-track error is smaller than the steady-state cross-track error when
SA is on or off. When DGPS position fixes are utilized, the steady-state along-track
error is the same as the steady-state cross-track error. Table 6.4 shows the percent
contribution that each error source makes to the mean-square along-track position
error. As the data in this table show, the position error is dominated by the bias in
the GPS position fix.

The data presented in Tables 6.4 exhibit trends that are similar to those in Table
6.2—uncorrelated errors (from the odometer and position measurements) contribute
an increasing fraction of the total error as the GPS position measurements become
more accurate. Not all of the correlated error sources, however, exhibit the same
trends as those in Table 6.2. Specifically, the fractional contribution of the GPS
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| GPS Positioning Type SA On | SA Off | DGPS
GPS Bias Drift 85.8% | 90.3% | 91.9%
GPS Measurement Noise 04% | 0.8% | 4.9%
Rate Gyro Bias Drift 0.0% | 0.0% | 0.0%
Rate Gyro Measurement Noise | 0.0% | 0.0% | 0.0%
Odometer Bias Drift 13.3% | 81% | 0.4%
Odometer Quantization Noise | 0.5% | 0.8% | 2.8%

Table 6.4: Relative contributions to mean-square error in along-track position esti-
mate

bias drift increases as the position measurements become more accurate. This trend
appears because the absolute contribution of the odometer bias error drops rapidly.
The filter effectively takes advantage of the improved positioning accuracy to esti-
mate the odometer bias, and, as a result, the error in the odometer bias decreases
rapidly. Because the odometer bias is estimated more accurately, the odometer bias
drift contributes less to the error in the along-track position estimate. The absolute
contribution of the GPS bias drift to the along-track position error also decreases as
the position measurements improve, but it does not decrease as rapidly as the con-
tribution of the odometer’s bias drift. As a result, the fractional contribution of the
GPS bias drift increases.

The data in Tables 6.2 and 6.4 also show that the rate gyro errors contribute
nothing to along-track position error and that the odometer errors contribute noth-
ing to cross-track position error. (Other results have shown that a compass, like
a rate gyro, contributes only to cross-track position error.) Hence, heading sensors
are tied to cross-track position and the odometer is tied to along-track position.
This simple observation is, perhaps, not surprising when one recognizes that a head-
ing measurement is kinematically related to changes in cross-track position and the
odometer measurement is kinematically related to changes in along-track position.
As a consequence of these kinematic relationships, each dead-reckoning sensor error
is “orthogonal” to a component of position error. This result reveals a fundamen-
tal error mechanism of the filter and leads to important conclusions. For example,

changes in sensor quality will have little or no impact on “orthogonal” components of
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the positioning error—e.g. using a high-quality gyro will not improve the along-track
positioning error. Furthermore, improvements in one component of position accuracy
will improve calibration of only the associated dead-reckoning sensors—e.g. the im-
provement in cross-track position accuracy afforded by map-matching will improve

gyro calibration, but not odometer calibration.

6.3 The Influence of GPS Positioning Type

The results shown thus far demonstrate that the dead-reckoning sensors do not sig-
nificantly reduce the position error while GPS position fixes are available. However, if
GPS position fixes become unavailable, the subsequent performance of the navigation
system is determined by two factors: the sensors’ drift characteristics and the accu-
racy with which dead-reckoning sensor errors were calibrated before the GPS fixes
became unavailable. In this section, these two issues will be examined. First, results
will be presented which quantify the influence that each type of GPS positioning (i.e.
SA on, SA off, and DGPS) has on dead-reckoning sensor calibration. Next, the per-
formance of each navigation system without GPS will be examined, and the major

contributors to positioning error will be identified.

6.3.1 The Influence of GPS on Sensor Calibration

As was mentioned, a navigation system’s performance without GPS is determined
partly by the accuracy with which the dead-reckoning sensor errors are calibrated
before the GPS fixes become unavailable. For the “baseline” navigation system, the
calibration of the rate gyro’s bias, the odometer scale factor bias, and the vehicle’s
heading are the key parameters that govern the position error growth rate after GPS
position fixes become unavailable. Therefore, in this section, we shall examine the
Kalman filter’s ability to calibrate these 3 dead-reckoning parameters. Results will
be shown for 3 navigation systems, each of which utilizes a different type of GPS
positioning.

We begin by examining the filter’s ability to estimate the vehicle’s heading. The



CHAPTER 6. RESULTS 115

GPS Positioning Type SA On | SA Off | DGPS
RMS Error (deg) 0.76 0.42 0.12
GPS Bias Drift 59.4% | 67.1% | 8.1%
GPS Measurement Noise 0.9% | 2.8% | 40.0%
Rate Gyro Bias Drift 34.1% | 21.2% | 5.6%
Rate Gyro Measurement Noise | 5.6% 9% | 46.2%

Table 6.5: Relative contributions to mean-square error in heading estimate

first row of Table 6.5 shows the RMS steady-state heading error for the same 3
navigation systems described in Section 6.2. The remaining rows show the percent
contribution that various error sources make to the mean-square error in the steady-
state heading estimate.

There are several interesting points that can be made from the data in this table.
First, the RMS error in the heading estimate is a strong function of the positioning
accuracy, decreasing by a factor of more than 6 over the range of position fix accuracy.
Second, when stand-alone GPS position fixes are utilized (i.e. SA on or off), the
position fixes contribute the largest fraction of the total heading accuracy. This may
be surprising because one might guess that the rate gyro errors would contribute more
to heading error than the GPS bias. This result underscores the strong influence of
position error on heading error. Third, the contributions that the uncorrelated error
sources make become much more significant and the correlated errors become less
significant as the accuracy of the position fixes improves. For example, when DGPS
is used, the sources of uncorrelated noise—GPS measurement noise and rate gyro
measurement noise—contribute almost 90% of the total error. When SA is on, the
correlated errors—SA-induced position errors and the rate gyro bias drift—contribute
more than 90% of the total error.

The trends observed in the relative contributions of the correlated and uncorre-
lated noise sources were also observed in the results in Section 6.2. The explanation
for this trend is similar to the one given in Section 6.2—the improved positioning
afforded by DGPS allows the correlated dead-reckoning sensor errors to be estimated
more accurately than when stand-alone GPS (with SA is on) is utilized. As a result,

the accuracy of the gyro bias estimate is better, and the gyro’s bias drift contributes
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| GPS Positioning Type SA On | SA Off | DGPS
RMS Error (deg/s) 0.0034 | 0.0027 | 0.0018
GPS Bias Drift 23.6% | 23.6% | 1.2%
GPS Measurement Noise 0.5% 1.1% | 6.3%
Rate Gyro Bias Drift 1% | 65.2% | 53.5%
Rate Gyro Measurement Noise | 4.9% | 10.1% | 39.1%

Table 6.6: Relative contributions to mean-square error in rate gyro bias estimate

correspondingly less to the heading error. The noise sources, on the other hand, can-
not be calibrated because they are uncorrelated random quantities. Therefore, their
influence on heading is affected less by the improved positioning accuracy. When
SA is on, the position fixes are used less effectively by the filter to calibrate the
dead-reckoning sensor errors. Since the position bias (when SA is on) cannot be esti-
mated accurately, the rate gyro bias is not calibrated well and bias drift figures more
prominently into the total heading error.

Next, we examine the filter’s ability to estimate the rate gyro’s bias. Table 6.6
shows the RMS steady-state error in the rate gyro bias estimate for each navigation
system and the percent contribution that various error sources make to the mean-
square error in the steady-state rate gyro bias estimate. As the table shows, the
trends in individual sensor contributions are similar to those observed in the data of
Table 6.5: bias drift in the stand-alone GPS position fixes contributes a large fraction
of the error, and the contributions of the correlated and uncorrelated error sources
exhibit similar trends. Unlike the data in Table 6.5, however, the rate gyro’s error
parameters (i.e. noise and bias drift) contribute a much larger fraction of the total
error.

Finally, we examine the ability of the filter to estimate the odometer scale factor
bias. Table 6.7 shows the RMS error in the odometer scale factor bias estimate and
the percent contribution that various error sources make to the mean-square error
in the odometer scale factor bias estimate. As the data show, the contribution of
the drift of the bias in the position fixes drops off quickly when DGPS position fixes
are utilized, and the odometer’s uncorrelated quantization noise becomes much more

significant. The random drift in the odometer bias is the dominant error source in all
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GPS Positioning Type SA On | SA Off | DGPS
RMS Error (m/pulse x 107%) | 4.91 3.98 | 215
GPS Bias Drift 28.1% | 32.0% | 3.0%
GPS Measurement Noise 02% | 0.5% | 4.1%
Odometer Bias Drift 71.1% | 65.5% | 59.9%
Odometer Quantization Noise | 0.6% | 2.0% | 33.0%

Table 6.7: Relative contributions to mean-square error in the odometer scale factor
bias estimate

cases, but its contribution decreases as the position fixes become more accurate.

In Table 6.7, the fractional contribution of the GPS bias drift exhibits a seemingly
peculiar trend—it does not decrease monotonically with the accuracy of the position
fixes. Instead, it is largest when SA is off. This trend appears simply because the
calculation of the fractional contribution of each error source reflects the contributions
that the other error sources make. A simple calculation can show that the absolute
contribution of the GPS bias drift decreases monotonically, as expected. However,
when the fractional contribution of the GPS bias drift is computed, it increases for
the “SA Off” case because contribution of the odometer bias drift drops more rapidly.
Hence, even though the absolute contribution of the GPS bias drift decreases, it does
not decrease as rapidly as the contribution of the odometer’s bias drift. As a result,
the fractional contribution of the GPS bias drift increases for the “SA Off” case.

These results were obtained assuming a “worst-case” odometer bias drift rate. Be-
cause the results in Table 6.7 show that the odometer bias drift is the most significant
contributor to the error in the estimate of the odometer’s scale factor bias, reduction
of the odometer bias drift rate would have a very significant impact on these results.
In the discussion of Chapter 3, the point was made that the parameters in the model
for the odometer bias drift are uncertain. Therefore, it is important to explore the
likely range of odometer bias drift rates. Table 6.8 shows the results obtained when
the RMS bias drift used to obtain the results in Table 6.7 was decreased by a factor
of 3.
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[ GPS Positioning Type SA On | SA Off | DGPS
RMS Error (m/pulse x 10-3) | 2.98 | 257 | 147
GPS Bias Drift 76.4% | 76.6% | 6.4%
GPS Measurement Noise 05% | 1.2% | 8.8%
Odometer Bias Drift 21.5% | 17.4% | 14.2%
Odometer Quantization Noise | 1.6% | 4.8% | 70.6%

Table 6.8: Mean-square error in the odometer scale factor bias estimate for low bias
drift

6.3.2 System Performance Without GPS Position Fixes

In Chapter 1, the point was made that a GPS receiver may not be able to provide a
position fix under certain circumstances. In urban or heavily-foliated environments,
for example, buildings or foliage may prevent a sufficient number of GPS satellite sig-
nals from reaching the GPS receiver. As a result, the GPS receiver may be incapable
of providing a position fix for an indefinitely long period of time, and the navigation
system would have to produce a position estimate based solely on its dead-reckoning
sensor data. The results presented in the previous section provide clues to the perfor-
mance to be expected from various navigation systems if GPS position fixes become
unavailable. Naturally, one would expect that those systems for which the rate gyro
bias, the heading, and the odometer scale factor bias are calibrated more accurately
would perform better after GPS position fixes become unavailable. However, this is
not conclusive because the performance of each system without GPS also depends
on the drift characteristics inherent in each dead-reckoning sensor. Therefore, in this
section we shall examine the influence of sensor drift on system performance by ex-
amining the performance of each system without GPS position fixes. The navigation
systems to be examined are the same as those of the previous section.

Figures 6.1 and 6.2 show the RMS cross-track and along-track positioning error
versus time for a system in which the GPS position fixes were corrupted with SA.
The uppermost curve in each plot represents the total RMS position error; the other
curves in each figure represent the RMS contributions that each error source makes to
the position error. After the filter reached (nearly) steady-state (after 1300 seconds),

the GPS position measurement was denied to the Kalman filter, causing the filter to
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Contributions to RMS Cross-Track Position Error v. Time -~ SA On, Rate gyro, Odometer
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Figure 6.1: RMS error in cross-track position estimate after a GPS loss (SA on)

continue with measurements from only the rate gyro and odometer. Note that the
time axis (i.e. the ordinate) begins at 1200 seconds because we are interested only in
the results after that time.

As both figures show, the GPS positioning errors (bias and measurement noise
together) make the largest absolute contribution to the position error after the GPS
measurements have become unavailable. At first glance, this may not appear to
make sense. After all, how can GPS measurement errors contribute to positioning
error if the GPS position fixes are not available? The answer to this question lies
in the realization that the GPS position error contributes to errors in the calibration
of the heading, rate gyro bias, and the odometer scale factor bias during the first
1300 seconds. (This fact was demonstrated in the previous section.) Part of the
position error that accrues after GPS becomes unavailable is due to the calibration
error induced by GPS errors before GPS becomes unavailable. Therefore, the GPS
measurement errors cause the position error to increase with time even after the
GPS fixes become unavailable because they induce errors in the estimates of the
vehicle’s heading, the gyro’s bias, and the odometer scale factor bias. Hence, the plot

demonstrates that position error grows rapidly as a result of the calibration error
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Contributions to AMS Along—Track Pasition Error v. Time - SA On, Rate gyro, Odometer

25 . ~
O
€ ; 4
g . Total RMS Error
w -
=
215
@

o
o
k]
L4 : .
In :
10 e el el e
o :
o
< .
0 :
= : .
o s : Due to Odometer Bias Drift
Due to Odom. Néise : ‘
Due to GPS Meas. Noise - R
: : a
0 i i -t i i
1200 1250 1300 1350 1400 1450 1500
Tine (sec)

Figure 6.2: RMS error in along-track position estimate after a GPS loss (SA on)

induced by SA while the GPS position fixes are available.

Comparison of the figures shows that the cross-track position error grows much
more rapidly than the along-track position error. The reason for this is revealed by
examining the contributions that the individual sensor errors make to the position
error. As Figure 6.1 shows, the growth rate of the cross-track position error is domi-
nated by the contribution of the rate gyro bias’ random drift. Figure 6.2 shows that
the growth rate of the along-track position error is dominated by the contribution of
SA and the odometer scale factor bias drift. Part of the reason that the cross-track
position error grows more rapidly than the along-track position error is that the rate
gyro bias is two integrations removed from position; this implies that a constant
rate gyro bias will cause position error to grow roughly as the square of time. The
odometer scale factor bias, on the other hand, is only one integration removed from
position, implying that a constant odometer scale factor bias error will cause position
error to grow linearly with time. Hence, the magnitude of the sensor errors and their
kinematic relationship to position determine the growth rate of the position error.

Because the rate gyro’s bias drift dominates the growth rate of the cross-track
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Contributions to RMS Cross-Track Error v. Time - SA On, 10 deghr Gyro, Odometer
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Figure 6.3: RMS error in cross-track position when using a 10-degree/hour gyro

position error, using a gyro with a lower bias drift rate should improve system perfor-
mance. However, even when a better gyro is used, the total cross-track position error
is not reduced significantly. Figure 6.3 shows the total RMS cross-track position error
versus time for a system in which the rate gyro (with a bias drift of approximately 30
degrees/hour) was replaced with a better one (having a bias drift of approximately 10
degrees/hour). (This approximates the replacement of the Murata rate gyro with a
fiber-optic rate gyro.) The uppermost curve in the figure is the total RMS cross-track
position error, and the remaining curves represent the contributions that individ-
ual sensor errors make to the total cross-track position error. As the data show,
the position error induced by SA is by far the largest contributor. When compared
with Figure 6.1, one can see that the contribution of the 10-degree/hour rate gyro
is significantly less than that of the 30-degree/hour gyro. However, the contribution
of SA remains nearly unchanged, and, ultimately, using the better gyro is of little
consequence.

For a system utilizing GPS position fixes with SA off, the relative contributions of
the various sensor errors are similar to those when SA is on. Figures 6.4 and 6.5 show
data similar to Figures 6.1 and 6.2. As the data show, the growth rate of the error in
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Contributions to RMS Cross-Track Pasition Error v. Time - SA Off, Rate gyro, Odometer
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Figure 6.4: RMS error in cross-track position estimate after a GPS loss (SA off)

the cross-track direction is dominated by the rate gyro’s bias drift and is higher than
that for the along-track direction.

For a system utilizing DGPS position fixes, results are roughly similar—the rate
gyro’s bias and noise dominate the cross-track position error growth rate, and the
odometer’s bias drift dominates the along-track position error growth rate. Figures
6.6 and 6.7 show data similar to Figures 6.1 and 6.2. As the data show, the total
contribution of the gyro bias drift to the cross-track position error is substantially
less than when stand-alone GPS position fixes (with SA on) are utilized. This occurs
because the rate gyro’s bias is calibrated more accurately when DGPS is utilized.
Also, the relative contribution of the noise in the gyro’s output is larger in this case
than when SA is on. Interestingly, the contribution of the gyro bias drift and the
noise in the gyro output are commensurate. Nevertheless, the contribution of the
drift eventually exceeds that of the noise, and the growth rate of the total position
error is still dominated by the gyro bias drift.
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Contributions to RMS Along—Track Posltion Emorv. Time - SA Off, Rate gyro, Odometer
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Figure 6.5: RMS error in along-track position estimate after a GPS loss (SA off)
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Figure 6.6: RMS error in cross-track position estimate after a GPS loss (DGPS)



CHAPTER 6. RESULTS 124
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Figure 6.7: RMS error in along-track position estimate after a GPS loss (DGPS)

6.4 The Influence of a Heading Measurement

The data presented in Section 6.3.2 demonstrated that the growth rate of the position
error (without GPS fixes) is dominated by heading errors induced by the rate gyro’s
bias drift and noise. This fact suggests that the growth rate of the position error could
be reduced if an absolute heading measurement were added to the system because a
heading measurement would allow the filter to continuously calibrate the rate gyro’s
bias even without GPS fixes and would also bound the total heading error. In this
section, results will be shown for two systems utilizing a heading measurement in
addition to GPS, a rate gyro, and an odometer. The difference between the systems
lies in the source of the heading measurement—one uses a compass and the other

uses a GPS-based heading measurement.

6.4.1 Using a Fluxgate Compass

First, results will be shown for a system in which the heading measurement is taken
from a fluxgate compass. As was discussed in detail in Chapter 3, a fluxgate compass

is susceptible to magnetic disturbances and, as a result, its output suffers from errors
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Contributions to AMS Cross—-Track Position Error v. Time — SA On, Compass, Rate Gyro, Odometer
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Figure 6.8: RMS error in cross-track position estimate when using a compass

that occur at unpredictable times and with unpredictable magnitude. Therefore,
because “typical” compass behavior defies accurate definition, this analysis examines
system performance when subjected to a range of compass errors. With this approach,
the results here should, at least, bound the expected system performance. In the
results that follow, magnetic disturbances to the compass reading were simulated as
having a minimum value of 0.0 degrees and a maximum RMS value of 8.0 degrees.
Although the errors in the compass’ output can far exceed an RMS value of 8.0
degrees (see Figure 3.6), it is assumed that any real navigation system would employ
a fault detection algorithm, and that the compass data would be rejected if the errors
exceeded 8.0 degrees (RMS).

Having established the grounds for the analysis, we proceed by examining Figure
6.8. This figure shows the error in the cross-track position estimate versus time.
Notice that the time axis begins at 1200 seconds, when the filter is nearly in steady-
state, and that the GPS position fixes become unavailable beginning at 1300 seconds.
As the figure shows, the simulated magnetic disturbances dominate the growth rate of
the cross-track position error. Comparison of Figure 6.8 with Figure 6.1 shows that

the total RMS cross-track position error is approximately 52 meters at the end of
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Cross-Track Position Error With and Without Compass Disturbances v. Time

60 T T T T v T T T

] ) 1 13 ) ] 1 '

] 1 ] ¥ ) ] ] )

] 1] t ] ] 1 1 1

1 1 ) ] ] [} ] ]

50 r - ’ - * 74 : r

H ! : ' ! RMS Error With |

A Magndte |

1 ) ' . 4 Disturjances |
40F~----~- T == Fmm— e ittt t adiaddyy’ 2b didabsings e Satintiind e et ==

1 ) 3 ) [} '

€ i ) : H ] : '

5 ! ! ! ! AMS Error'Without !
5 3ok--—--- [, .% _____ A N Mtagnetic -~ - -~ -

@ ! ) y Qisturbancks '

1 1] 1 ] 1 1

>4 ] ] [l ] ' '

' t ) ) 1 ]
) s

L} 1 ] ) 1 ) 1 i

1 1 1 ] 1 ] 1 [}

] ) ] 1 1 ] 1 t

, : ' H i : ' :
10f---~~ pom-- 4 4------t o 1 - -k

] ) ] ] 1 ] 1 1

1 ! 1 ) I ) 1 i

1 ¥ 1 ] 1 ] 1 1

) ' ] 1 I ] 1 ]

' ) 1] ) I ] ] 1

A 1 L 1

0 L L 1
1200 1250 1300 1350 1400 1450 1500 1550 1600
Time (sec)

Figure 6.9: Cross-track position error using a compass with and without magnetic
disturbances

both simulations. The data shown in Figure 6.1 were obtained for a system in which
a compass was not utilized. Therefore, the addition of the fluxgate compass did not
cause the cross-track position error to decrease at all. If one assumes a “best-case”
scenario in which there are no magnetic disturbances whatsoever, then the cross-track
position error will be lower. Figure 6.9 shows the total RMS cross-track position error
obtained when the magnetic disturbances are eliminated. Also shown in the figure,
for reference, is the total RMS cross-track position error that is shown in Figure 6.8.
The space between the two curves in Figure 6.9 represents the range of perfor-
mance that could be expected from the navigation system if the RMS value of the
disturbances in the compass measurements were between 0.0 and 8.0 degrees. Note
that, when there are no magnetic disturbances, the cross-track position error at the
end of the simulation is approximately 40 meters, and when the magnetic disturbances
are maximum (8.0 degrees RMS), the cross-track position error is approximately 52
meters. The key observation to be made here is that a very substantial improvement
in the performance of the compass improved the cross-track position error (at the end

of the simulation) by only 23%. The improvement in the cross-track position error
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is not larger because the Kalman filter has been designed conservatively with regard
to the compass measurements. In other words, because the compass measurements
can be very inaccurate, the filter has been designed so that it does not “trust” the
compass measurements heavily. The net result is that the filter’s estimate of heading
(and, therefore, its estimate of cross-track position) contains larger errors than would
be obtained if the compass measurements could be considered as more reliable. In
sum, then, significant decreases in the errors in the compass measurements do not re-
sult in correspondingly large decreases in cross-track position error because the filter
design is conservative.

To close this section, it should be mentioned that the results in Figures 6.8 and
6.9 should be accepted with caution. As was mentioned, the magnetic disturbances
appearing in the compass measurement were modeled as a first-order Gauss-Markov
process with a time-constant of 3.0 seconds and an RMS value of 8.0 degrees. This
model was chosen based on heuristic observations of actual compass disturbances
similar to those found in Figure 3.6. If such disturbances are not well-modeled as a
first-order Gauss-Markov process with a time-constant of 3.0 seconds, then the influ-
ence of the disturbances on the RMS cross-track position error will likely be different
than that suggested by Figure 6.9. If the time-constant of the disturbances is less
than 3.0 seconds, the disturbances are more nearly approximated by uncorrelated
noise and their deleterious effects on system performance will probably decrease be-
cause they will be smoothed. On the other hand, if the time-constant is greater than
3.0 seconds, the negative impact of the disturbances on the cross-track position error

will likely increase.

6.4.2 Using a GPS-based Heading Measurement

As the results in the previous section demonstrated, heading measurement error
strongly affects system performance. Improving heading sensor performance may
therefore improve overall system performance significantly. In this section, the bene-
fit of using a GPS-based heading measurement is examined. (See Section 3.5.4 for a

discussion of GPS-based heading measurements.)
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Contribution to Cross-Track Position Error v. Time - SA On, GPS Att, Rate gyro, Odometer
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Figure 6.10: RMS error in cross-track position estimate when using GPS attitude

Figure 6.10 shows the RMS cross-track position error (versus time) for a system
utilizing a GPS-based heading measurement. Notice that the time axis begins at 700
seconds, when the filter is nearly in steady-state, and the GPS position fixes become
unavailable beginning at 800 seconds. As the data show, the RMS cross-track position
error grows much more slowly when the GPS attitude measurement is used than when
the compass is used.

For purposes of comparison, Figure 6.11 shows the RMS cross-track position error
for 3 systems: a system without a heading measurement, a system with a compass
(with no magnetic disturbances), and a system utilizing a GPS-based heading mea-
surement. The curves in Figure 6.11 are taken from Figures 6.1, Figures 6.9, and 6.10.
As the data show, the RMS cross-track position error is much smaller when the GPS
attitude measurement is used than when the compass is used, even when there are no
magnetic disturbances in the compass’ reading. This difference in performance arises
because the Kalman filter design is more conservative when the compass is utilized.
The reason that the filter is designed more conservatively is so that it can track the
heading-dependent changes in the compass’ bias. (Recall from Equation 3.16 that the
model for the compass’ bias includes a heading-dependent error term.) Unlike the
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Figure 6.11: Comparison of RMS cross-track position error for 3 heading measure-
ments

compass, the heading measurement from the GPS receiver is assumed to be corrupted
with a constant bias and uncorrelated noise. Because the bias in the GPS heading
measurement is constant, the filter parameters were chosen to take advantage of this
knowledge. The performance of the more-conservative filter is worse because it weighs
its heading measurement less and therefore reaps less benefit from this measurement.

Figure 6.11 also shows that the benefits of utilizing a GPS-based heading measure-
ment are substantial, particularly when the performance of this system is compared
with that of the system without a heading measurement. With the heading measure-
ment, the contribution of the rate gyro bias drift to the cross-track position error is
reduced enormously, and the cross-track position error grows approximately 6 meters
while the GPS position fixes are unavailable. In contrast, without the heading mea-
surement, the rate gyro bias is the dominant contributor to the cross-track position
error growth rate, and the cross-track position error grows by more than 30 meters

while the GPS position fixes are unavailable.
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6.5 The Influence of Vehicle Speed

It was assumed in all of the simulation results shown thus far that the vehicle was
moving at a constant speed of 10 meters/second (22 MPH). This is a typical speed
for a vehicle traveling on residential roads. However, the performance of a navigation
system will depend on the vehicle’s speed, and the extent to which the performance
is influenced by vehicle speed should be examined. This section compares results
for two navigation systems utilizing the same set of sensors (i.e. GPS with SA on, a
rate gyro, and an odometer). In each simulation, however, the vehicle’s speed was
different—10 m/s in one simulation and 30 m/s (67 MPH) in the other.

6.5.1 The Estimate of Cross-track Position

Results show that, while GPS position fixes are available, the error in the steady-
state estimate of the vehicle’s cross-track position is nearly the same at both speeds.
This occurs because the cross-track position error is dominated by the accuracy of the
GPS position fixes, regardless of the vehicle’s speed. When GPS position fixes become
unavailable, however, the growth rate of the cross-track position error is lower when
the vehicle moves faster. Table 6.9 shows the growth rate of the cross-track position
error after the GPS position fixes become unavailable. The growth rates in Table 6.9
were calculated by taking the ratio of the change in cross-track position error that
occurred while the GPS position fixes were unavailable to the total distance traveled
during that time. The reader should note that the cross-track position error grows
more rapidly as a function of tzme when the vehicle moves faster; however, it grows
more slowly as a function of the distance traveled. The reader should also note that,
because the cross-track position error is not a linear function of time, the growth
rates given in Table 6.9 depend on the length of time that the GPS position fixes are
unavailable; the data in Table 6.9 were computed from results in which the position
fixes were unavailable for 200 seconds.

The cross-track position error grows more slowly when the vehicle moves faster
because the Kalman filter estimates the vehicle’s heading and calibrates the rate gyro’s

bias more accurately while the GPS position fixes are available. Table 6.10 shows the
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| Vehicle Speed 10 m/s | 30 m/s |
[ Cross-track Position Error Growth Rate (cm error/m traveled) 1.6 0.93 |

Table 6.9: Cross-track position error growth rate at 2 vehicle speeds

| Vehicle Speed | 10m/s 30 m/s
RMS Heading Error (deg) 0.76 0.37
RMS Rate Gyro Bias Error (deg/s) | 3.4 x 1073 | 2.5 x 107

Table 6.10: RMS error in heading and rate gyro bias estimates at 2 vehicle speeds

RMS error in the steady-state heading and rate gyro bias estimates at each vehicle
speed. As the data in the table show, the estimates improve when the vehicle moves
faster. This occurs because, as the vehicle moves faster, the distance that the vehicle
travels between consecutive measurements increases (because the sampling rate is
fixed). Because the position fixes move farther apart as the vehicle moves faster,
the accuracy of the heading inferred by the filter from the position measurements

improves.

6.5.2 The Estimate of Along-track Position

The error in the estimate of the vehicle’s along-track position is slightly worse when
the vehicle moves faster. After 800 seconds, for example, the RMS error in the
estimate of the vehicle’s along-track position is 15.0 meters when the vehicle’s speed
is 10 m/s and 16.8 meters when the vehicle’s speed is 30 m/s. Note that this is opposite
to the effect observed with heading. The along-track position error increases with the
vehicle’s speed because of the bias in the odometer scale factor. The contribution of
the odometer scale factor bias to the error in the odometer measurement increases in
proportion to the vehicle’s actual speed; as the vehicle travels faster, then, the error
in the odometer measurement becomes larger, and the error in the filter’s estimate of
along-track position increases as a result. For example, if an odometer is biased by
1%, a measurement of speed obtained from this odometer will be in error by 10 cm/s
when the vehicle is traveling at 10 m/s and 30 cm/s when the vehicle is traveling at

30 m/s. This error in the estimate of the vehicle’s speed will figure into the error
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in the filter’s along-track position estimate. Hence, for a given odometer scale factor
bias, the measurement error increases as the vehicle’s speed increases, and the error

in the filter’s estimate of along-track position increases as a result.

6.6 The Influence of Odometer Resolution

Simulations in this section were run to examine the influence that the odometer’s
resolution has on the estimates of various quantities. “Odometer resolution” is the
distance that a vehicle moves forward between consecutive pulses generated by the
odometer. This quantity is measured in units of centimeters/pulse (or meters/pulse).
The number of pulses generated by the odometer on an anti-lock braking system
varies between 12 and 60 pulses per wheel revolution. The distance traveled between
pulses depends on the radius of the wheel, but a rough calculation suggests that, for
a typical compact car with a wheel circumference of 2.0 meters, this corresponds to
resolutions between 3 and 17 centimeters per pulse.

The odometer’s resolution defines the magnitude of its quantization error—the
finer the resolution, the smaller the quantization error. The quantization error, in
turn, appears in the odometer measurement as an uncorrelated zero-mean random
error (see Section 3.4). Examination of Figures 6.2, 6.5, and 6.7 suggest that the
odometer’s quantization error is not a significant contributor to along-track position
error unless DGPS position fixes are utilized and those position fixes become unavail-
able. (This result is consistent with results shown previously that demonstrated that
uncorrelated sensor errors affect position accuracy more when DGPS position fixes are
used than when stand-alone GPS position fixes are used.) The results shown in Fig-
ures 6.2, 6.5, and 6.7 could be considered nearly “worst-case” because the odometer
resolution was relatively coarse (20.0 cm/pulse).

Because the odometer resolution can play a significant role in positioning accuracy
when DGPS position fixes are utilized, it is worth examining the benefits of using an
odometer with a finer resolution in a system utilizing DGPS position fixes. Figure 6.12
shows how a decrease in the odometer resolution will cause the along-track position

error to grow at a slower rate when DGPS position fixes become unavailable. The
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Figure 6.12: Along-track position error with various odometer resolutions

figure shows the RMS along-track position error for two navigation systems, each of
which utilized DGPS position fixes, a rate gyro, and an odometer. The odometer
resolution was 20 cm/pulse in one simulation and 1.0 cm/pulse in the other. The
DGPS position fixes were denied to the Kalman filter beginning at 800 seconds to
simulate a loss of GPS positioning capability. As the figure shows, the improvement in
the odometer resolution has some effect on the growth rate of the cross-track position
error. Ultimately, the growth rate of the along-track position error is dominated by
the odometer’s scale factor bias drift, which is the same for both systems shown in
the figure. As a result, the position error eventually grows at approximately the same
rate in both systems.

It is worth noting that the resolution of the odometer has a strong effect en the fil-
ter’s estimate of speed. Table 6.11 shows the contributions that various error sources
make to the mean-square error in the estimate of the vehicle’s speed. Data in the ta-
ble are shown for 3 navigation systems, each of which utilized GPS with SA on, a rate
gyro, and an odometer with a different resolution (1.0 cm/pulse, 10.0 cm/pulse, and

20.0 cm/pulse). As the data show, the contribution that quantization noise makes to
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Odometer Resolution 1.0 cm/pulse | 10.0 cm/pulse | 20.0 cm/pulse
RMS Error (m/s) 0.03 0.054 0.093
GPS Bias Drift 47.4% 14.2% 2.0%
GPS Measurement Noise 0.5% 0.2% 0.2%
Odometer Bias Drift 49.7% 14.9% 4.9%
Odometer Quantization Noise 2.4% 70.7% 92.9%

Table 6.11: Relative contributions to mean-square error in speed estimate for 3
odometer resolutions

the mean-square estimate error increases as the odometer resolution becomes increas-
ingly coarse. The interesting point to be made is that the fractional contribution of
the quantization error dominates the total error when the resolution is 20.0 cm/pulse
but is nearly insignificant when the resolution is 1.0 cm/pulse. Odometer resolution is
therefore a key parameter if the navigation system operator is interested in obtaining

accurate estimates of the vehicle’s speed.

6.7 The Influence of Map-matching on Sensor Cal-
ibration

As described in Chapter 4, the use of map-matching to calibrate dead-reckoning
sensors is not always beneficial. Errors in the map-matched position can skew sensor
calibration, causing the navigation software to produce erroneous estimates of certain
sensor parameters. Specifically, map-matching can degrade heading sensor calibration
as a result of the vehicle’s lateral motion on a road. The reader is referred to Sections
4.3 and 5.2.2 for more detailed explanations of the manner in which map-matching is
treated in this research.

In this section, results for two simulations will be presented. Both navigation
systems included map-matching, GPS (with SA on), a rate gyro, and an odometer.
The difference between the simulations lies in the motion of the vehicle: in the first
simulation, the vehicle moved in a straight line (parallel to the centerline of the road)
and made a single lane-change; in the second simulation, the vehicle’s motion is more

realistic, constantly wandering laterally approximately 30 centimeters. The purpose
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Figure 6.13: Heading error induced by map-matching during a lane-change

of examining the effects of a lane-change and side-to-side motion with two separate

simulations is to isolate the individual effects of these two types of motion.

6.7.1 The Effects of a Lane-change

Figure 6.13 shows the influence that a lane-change has on the filter’s heading estimate
when map-matching is in use. The figure shows the 2-o (i.e. 95%) error bounds
predicted by the sensitivity analysis and by the filter itself. For reference, the figure
also shows the actual error in the heading estimate for a single run. The lane-change
began at 150 seconds and lasted for 10 seconds; in that time, the vehicle moved
laterally 3 meters. As the figure shows, the filter, being unaware of the bias in the
cross-track position “measurements,” optimistically predicts that the error in the
heading estimate remains unchanged from its steady-state value during the lane-
change. The sensitivity analysis results, however, indicate that the heading error will
reach approximately 1.3 degrees (2-0’). The actual heading error in the filter’s heading
estimate confirms the sensitivity analysis results. Figure 6.14 shows the influence that

a lane-change has on the filter’s estimate of the rate gyro’s bias. The figure shows the
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Figure 6.14: Gyro bias error induced by map-matching during a lane-change

2-g (i.e. 95%) error bounds predicted by the sensitivity analysis and by the filter itself.
For reference, the figure also shows the actual error in the rate gyro bias estimate for
a single run. The results are similar to those shown for the heading estimate, but
the error induced in the gyro bias estimate does not appear to be as severe as that
induced in the heading estimate. This result is consistent with results presented in
Tables 6.5 and 6.6, in which it was demonstrated that position fixes influence the
heading estimate more heavily than the rate gyro bias estimate. This is probably due
in part to the fact that the rate gyro bias is two integrations removed from position,
while heading is only one integration removed from position. Another cause for this
result may be the fact that a heading rate measurement is available, but a heading
measurement is not. The presence of a heading rate measurement implies that this
measurement will figure prominently into the estimate of heading rate; the absence
of a heading measurement implies that the filter must infer its heading estimate from
other measurements. The position measurement will likely influence the heading
estimate more heavily than the heading rate estimate.

Figures 6.13 and 6.14 show one other result that may not be obvious at first

glance—even though the lane-change lasted only 10 seconds, the errors in the heading
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and gyro bias estimates that were induced by the lane-change lasted much longer
(over 100 seconds). This happened because, loosely speaking, the Kalman filter was
“unaware” of the error in the estimates. When the lane-change occurred, the Kalman
gain in the filter had reached its steady-state value and was weighing the sensor data
as if the errors in the heading and gyro bias estimates were small. The filter therefore
did not weigh the data from the other sensors appropriately to eliminate these errors
quickly. This idea may be understood more clearly if one examines the beginning of
the simulation, when the filter “knew” that the errors in the heading and gyro bias
estimates were large. When the filter “knew” that the errors were large, the Kalman
gain was computed in such a way that the GPS and map-matching measurements
were utilized to quickly reduce the heading and gyro bias errors. In steady-state, the
filter gain was calculated assuming that the errors in the heading and gyro bias had
reached their steady-state values, and the errors induced by the lane-change decrease
much more slowly.

A lane-change can therefore induce calibration errors that last much longer than
the lane-change itself. One way that the effects of lane-changes on calibration er-
rors can be mitigated is to increase the RMS measurement noise associated with
the map-matching “measurement.” The Kalman filter would then attribute to the
map-matched position a larger fraction of the discrepancy between the heading in-
ferred from the map-matched positions and the heading rate measured from the gyro.
However, increasing the RMS measurement noise associated with the map-matching
“measurement” would have a detrimental effect on the cross-track positioning accu-
racy. This would occur because the filter would weigh the GPS position fixes more
heavily, and the bias in the GPS position fixes would figure more prominently into

the position estimate.

6.7.2 The Effects of Lateral Motion Within a Lane

In this section, we shall examine the calibration errors that are caused by map-
matching as a result of a vehicle’s lateral motion within a lane. In the simulation

from which the following results were taken, the vehicle wandered laterally very slowly,



CHAPTER 6. RESULTS 138

Heading Enor and 2-Sigma Efror Bounds v. Time - SA On, Map-matching, Rate gyro, Odometer
0.5 T T T T T

™

ol | . 2SomaBonapiedciea By Fter L
"' 2-Sigma Bound Predicted By Sensitivify Analysis '
B T SISy SIS R

Heading Error (deg)

Figure 6.15: Heading error induced by map-matching as a result of motion within a
lane

with an amplitude of approximately 30 centimeters. Results are shown in Figure 6.15.
The figure shows 3 curves: the 2-¢ (i.e. 95%) heading error predicted by the filter,
the 2-0 heading error predicted by the sensitivity analysis, and the true heading error
obtained from one simulation run. As the figure shows, the filter does not predict
the heading error induced by map-matching. However, the heading error predicted
by the sensitivity analysis does not substantially exceed that predicted by the filter.
The reason that the motion does not cause the heading error to increase signifi-
cantly can probably be understood in light of the fact that the vehicle’s actual heading
varies only very slightly from the heading of the road. In other words, the vehicle’s
average heading must be the same as the road’s (constant) heading, otherwise the ve-
hicle would head off the road. The vehicle’s actual heading deviates only a very small
amount from this average. For the simulation at hand, for example, the changes in
heading required to cause the vehicle to wander are very small, reaching a maximum
of approximately 0.3 degrees. Therefore, during the simulation, the actual heading of
the vehicle was never more than 0.3 degrees from the heading that would be inferred

from consecutive map-matched position “measurements.” It should not, therefore,
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Figure 6.16: Rate gyro bias error induced by map-matching as a result of motion
within a lane

be too surprising that the motion of the vehicle within the lane does not increase the
heading error significantly.

Finally, we examine the influence of lateral in-lane motion on the estimate of the
rate gyro bias. Figure 6.16 shows the 2-0 rate gyro bias error predicted by the filter,
the 2-o rate gyro bias error predicted by the sensitivity analysis, and the true error
in the rate gyro bias estimate obtzined from one simulation run.

As the figure shows, the actual error in the rate gyro bias estimate is well within
the filter’s predicted 2-c boundary. The filter is more “pessimistic” about the rate
gyro bias estimate because the Kalman filter design is conservative. There are two
different models for the rate gyro bias drift: one in the Kalman filter equations (a
random walk) and one in the reference system equations (a a second-order Gauss-
Markov process). The parameters of the random walk model were conservatively
chosen so that the filter could track worst-case drift in the rate gyro’s bias. Therefore,
the filter has been designed to “expect” bias drift that is worse than the true nominal
bias drift. As a result, the filter’s prediction of the error in the bias estimate is larger

than the actual error.
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In sum, the influence of lateral motion within a lane has a greater effect on the
estimate of heading than on the estimate of the rate gyro’s bias. However, the largest
effects of motion within a lane are not nearly as large as the effects of a lane-change.
The reason that lateral motion within a lane has less effect than a lane-change is
simply due to the nature of the vehicle’s motion. Lateral motion within a lane involves
heading changes that are smaller than those encountered in a lane-change, and the
changes in heading associated with in-lane motion take place over time periods that

are much longer than those associated with a lane-change.

6.8 The Influence of Rate Gyro Scale Factor Er-
rors and Turns

In this section, the effect of rate gyro scale factor error is examined. As discussed in
Chapter 3, the most significant influence of rate gyro scale factor error arises when
the vehicle makes turns that sweep through large angles. Since many roads intersect
at a right angle, a simulation was run in which the vehicle made a 90-degree turn.
The simulation was run two times, each time with a different rate gyro scale factor
error (1% and 5%). Figure 6.17 shows the heading error as a function of time for both
simulations. The turn started at 1000 seconds and lasted approximately 7 seconds.

As the data show, the peak heading error is greater than 4 degrees when the rate
gyro scale factor is in error by 5%. Also, although the turn lasted only 7 seconds,
the heading error induced by the turn lasts much longer than 7 seconds. Finally,
when the scale factor error is 5%, the RMS heading error exhibits peculiar behavior
in which it decreases after the turn, reaches a minimum of approximately 0.8 degrees,
then increases again to almost 2 degrees at the end of the simulation. This result
may not be terribly significant, however, because empirical testing showed that the
scale factor error for two particular low-cost rate gyros was on the order of 1% (see
Figures 3.4 and 3.5). The results in Figure 6.17 suggest that a 1% scale factor error
is probably not significant.
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Figure 6.17: Heading error induced by rate gyro scale factor error

6.9 Summary

In this chapter, the techniques of sensitivity analysis derived in Chapter 2 were ap-
plied to a number of navigation systems. Each navigation system was represented by
a specific Kalman filter implementation, the mathematical structure for which was
described in detail in Chapter 5. The analysis was used to quantify the contributions
that various error parameters make to navigation system performance. These quanti-
tative results provided insight into the fundamental error mechanisms in each Kalman
filter and identified key parameters that dominate navigation system accuracy.

Key results show that, while GPS position fixes are available to the filter, the
navigation system’s positioning accuracy is approximately the same as the accuracy
of the GPS position fixes. When GPS position fixes are unavailable, the growth rate of
the position error is dominated by the rate gyro’s bias drift. Also, results showed that
the relative contributions of uncorrelated noise sources become increasingly significant

as the accuracy of the GPS position fixes improves.
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Results further showed that the type of GPS position fix available to the filter
strongly influences dead-reckoning sensor calibration and, therefore, strongly influ-
ences system performance if the GPS position fixes become unavailable. Performance
of the navigation systems without GPS was worst when stand-alone GPS position
fixes (with SA on) were used by the filter. However, this performance was greatly
improved when the navigation system was augmented with a GPS-based heading
measurement.

Map-matching was shown to have a significant influence on heading sensor calibra-
tion. However, the magnitude of the error introduced into the calibration is largely
determined by the nature of the vehicle’s lateral motion on the road. Lane-changes
introduce much more error into the estimate of heading and the estimate of the rate
gyro bias than lateral motion within a lane, because lane-changes involve relatively
rapid changes in vehicle position, while lateral motion within a lane involves small
heading changes over much longer time periods.

The rate gyro’s scale factor error can cause very significant heading errors if the
vehicle turns and if the scale factor error is relatively large. A constant rate gyro
scale factor error of 5% was shown to cause the RMS heading error to increase by
approximately 3.5 degrees as the vehicle made a 90-degree turn. Furthermore, the
heading error induced by the vehicle’s turn decreased at a very slow rate. This result
implies that, if GPS position fixes become unavailable immediately after the vehicle
makes a turn, position error will accrue rapidly. This result should be tempered,
however, with the realization that empirical test data showed scale factor errors to
be on the order of 1% for two low-cost rate gyroscopes. In addition, analysis results
indicate that a scale factor error of 1% is probably not significant.

Finally, as the vehicle’s speed increases, the error in the heading estimate de-
creases. Consequently, after position fixes become unavailable, the ratio of the in-
crease in cross-track position error to the distance traveled decreases as the vehicle’s
speed increases. In contrast, the error in the estimate of the vehicle’s along-track
position increases. Also, the odometer’s quantization error has little impact on posi-
tioning accuracy while position fixes are available; however, it does have a significant

impact on the growth rate of the error in the along-track position estimate when
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DGPS position fixes are utilized and subsequently become unavailable. Furthermore,
odometer resolution can be the dominant error source in the estimate of the vehicle’s

speed.



Chapter 7
Conclusions and Closing Remarks

In this chapter, broad implications of the results of the previous chapter are drawn.
The primary goal is to draw implications for navigation system design and sensor
selection. An attempt is also made to keep an eye to the future since dead-reckoning

sensor performance and the accuracy of GPS positioning will likely improve.

7.1 Conclusions

7.1.1 Conclusions Drawn From Research Results

The most glaring implications for sensor selection and system design arise in connec-
tion with the type of GPS positioning utilized in the navigation system. The choice
of GPS positioning type (if a choice is available) has strong implications for navi-
gation system performance while GPS position fixes are available and during those
times when GPS position fixes are unavailable. The positioning accuracy of a system
utilizing GPS position fixes (but not utilizing map-matching) is virtually the same
as that of the position fixes themselves. Hence, statistically, the greatest positioning
accuracy that could be expected from a system is roughly that of the GPS position
fixes. If, at some point in time, the GPS position fixes become unavailable, the posi-
tion error will, statistically, always increase beyond that of the error in the position

fixes. The rate at which the position error increases will depend not only on the type

144
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of GPS positioning utilized but also on which sensors comprise the dead-reckoning
unit and on the drift characteristics of the individual dead-reckoning sensors. Dead-
reckoning sensor calibration is substantially better if DGPS position fixes are utilized
than if stand-alone GPS position fixes (with SA on) are utilized. In fact, SA has
such a strong influence on parameter calibration that improving gyro bias drift by a
factor of 3 (from 30-degree/hour to 10-degree/hour) was shown to be of little benefit.
Hence, if DGPS positioning is utilized, lower-quality dead-reckoning sensors can be
employed to achieve a given level of system performance when the position fixes be-
come unavailable for a given duration. Alternately, for a given dead-reckoning unit,
positioning error will grow at a much slower rate when GPS position fixes become un-
available, if DGPS position fixes are available to calibrate the dead-reckoning sensors
in advance.

Once GPS position fixes become unavailable, which sensors comprise the dead-
reckoning unit has a strong effect on navigation system performance and on which
error parameters dominate the positioning error growth rate. Assuming a dead-
reckoning unit comprised of a rate gyro and an odometer, for example, then the rate
gyro’s bias drift will dominate the position error growth rate (if the rate gyro has the
characteristics assumed in this research). The contribution that the gyro’s bias drift
makes to the cross-track position error is always greater than the contribution made
by the random noise in the gyro’s output, unless DGPS position fixes are utilized
to calibrate the gyro's bias. If a heading measurement from a compass is added to
this system, then system performance depends strongly on the compass’ magnetic
environment. If a relatively high-quality heading measurement (as might be obtained
from an attitude-capable GPS receiver) replaces the compass, the performance of
the navigation system is improved substantially: the growth rate of the cross-track
position error (after GPS position fixes become unavailable) is substantially reduced
and the contribution of the rate gyro’s bias drift to position error is greatly reduced.
Under these circumstances, the growth rate of the cross-track position error is domi-
nated by the errors in the heading measurement and calibration error induced by SA
before the position fixes become unavailable.

Another important result showed that individual dead-reckoning sensors affect
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each component of position error differently. As one might guess, the heading rate
and heading measurement errors contribute only to the cross-track position error, and
the odometer errors contribute only to the along-track position error. This simple
observation indicates that changes in sensor quality will have little or no impact
on “orthogonal” components of the positioning error—e.g. using a high-quality gyro
will not improve the along-track positioning error. Furthermore, improvements in
one component of position accuracy will improve calibration of only the associated
dead-reckoning sensors.

Finally, the presence of a successful map-matching algorithm can greatly reduce
positioning error. The implicit caveat here, however, is that the algorithm must be
successful. Whether a map-matching algorithm will be successful depends very much
on the strengths and weaknesses of the particular algorithm. It is therefore difficult
to make statements about how successful map-matching algorithms are in general,
and how much map-matching improves navigation accuracy. However, even if the
map-matching algorithm is successful in the sense that the map-matched location
does not diverge from the vehicle’s true location, map-matching is still not always
beneficial to sensor calibration. Errors in the map-matched position can skew the
sensor calibration, causing the navigation software to produce erroneous estimates
of certain sensor errors. Specifically, map-matching can induce heading sensor cali-
bration errors when a vehicle moves laterally on a road. (Typically, lateral motion
is produced by lane-changes and by a driver’s natural tendency to wander within a
lane.)

In summary, the key conclusions of this research are

e Positioning accuracy is dominated by GPS position fixes while the fixes are
available. Utilizing dead-reckoning sensors that are much better than existing
low-cost dead-reckoning sensors does not decrease positioning error significantly

below the bias error in the GPS position fixes.

e When stand-alone GPS fixes (with SA on) are utilized, the calibration error
induced by SA when the position fixes are available has very significant delete-

rious effects on system performance after the position fixes become unavailable.
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Improving gyro quality significantly does not improve performance substantially
because heading error is strongly affected by SA. For this system, then, cali-
bration error plays a more significant role than sensor quality in determining

system performance after position fixes become unavailable.

e DGPS position fixes improve parameter calibration significantly. The improve-
ment in sensor calibration means that lower-quality (and therefore less expen-
sive) dead-reckoning sensors can be used to achieve a given level of system

performance when the position fixes become unavailable for a given duration.

7.1.2 Suggestions for Navigation System Design

This section summarizes a few of the author’s recommendations for navigation system
design. The recommendations that follow are based partly on results that can be
found in this thesis and partly on speculations that the author believes to be true,
based on the experience gained in the pursuit of this research.

To utilize the results in this thesis as a basis for a navigation system design, one
must first choose a performance specification for the navigation system at hand. For
the sake of this discussion, let us consider a navigation system that must continuously
position a vehicle with 10 to 15 meters of accuracy.

Given this specification, it is probably true that any navigation system that utilizes
stand-alone GPS position fixes (with SA on) would have to rely entirely on its map-
matching algorithm to achieve the specified positioning accuracy. This would be true
regardless of which low-cost dead-reckoning sensors were used to augment the GPS
position fixes. Even if SA were off, the navigation system would probably have to
rely heavily on its map-matching algorithm, especially when GPS position fixes were
unavailable. Whether or not such a navigation system could successfully meet the
specification, then, would probably depend almost entirely on the performance of its
map-matching algorithm.

If DGPS position fixes are utilized, the prospects for achieving continuous po-
sitioning to an accuracy of 10 meters are much better. In a system using DGPS

position fixes, dead-reckoning sensor calibration can be improved enough that the
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navigation system could meet its performance specification even if the position fixes
become unavailable for several minutes and even if no map-matching algorithm were
employed. Utilizing a dead-reckoning system that included a low-quality gyroscope
and a GPS-based heading measurement or a relatively high-quality gyroscope (and
no heading measurement) would probably prove to be a very good system.
Furthermore, utilizing DGPS would probably make it possible to employ a map-
matching algorithm that is far simpler than existing algorithms. This could be very
significant because manufacturers of commercial navigation systems (which use GPS
with SA on) generally devote years of effort to fine-tuning the performance of their
map-matching algorithms. Eliminating the need for a complex map-matching al-
gorithm could greatly reduce the development time of a navigation system. Even
though it would probably still be necessary to make use of map-matching when posi-
tion fixes became unavailable for several minutes, one could have greater confidence
that the map-matching algorithm would start on the right road and also that the

dead-reckoning sensor calibration would be accurate.

7.2 Closing Remarks

The point of the research in this thesis has been to provide insight into the nature
of land-vehicle navigation system performance through quantitative analysis. The
information produced by this research will hopefully help today’s navigation system
designers understand tradeoffs in various candidate system designs, and also help
navigation system designers in the future, if/when Selective Availability is turned
off or DGPS becomes widely available. Finally, it is hoped that this research can
also reveal to sensor designers those sensor error parameters that contribute most to

positioning error and guide them into a design with appropriate performance tradeoffs.



Appendix A

Numerical Values for Various

Parameters

This appendix contains numerical values for various parameters which appear in the
equations of Chapters 3 and 5, including time constants, the spectral densities of
process noise parameters, and RMS values of measurement noise parameters. Not all
of the values given in the following tables are numerical. For example, the value for
Vodom, f 1S given as —551 This indicates that v,4om,; depends on S,, the nominal odometer
scale factor. In most simulations, the value of S, was 0.20 meters/pulse. Finally,
certain parameters are statistical quantities and are described by their distribution
in the following tables. Normally-distributed quantities with mean m and variance
o? are denoted N(m,o?); quantities with a uniform distribution in the interval [a, b]
are denoted U(a, b).
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[ Symbol | Definition Spectral Density
ug; | Acceleration model process noise (m/s*)/s 1.0
u,,, | Rate gyro bias model process noise (rad/s)’/s | 2.0821 x 10~!!
ug, s | Compass bias process noise (rad?/s) 3.046 x 1075
ug, s | GPS-based heading bias process noise | 3.046 x 10~
(rad?/s)
us,s | Odometer scale factor bias process noise | (0.0033S,)"
(m/pulse)?/s "
Uz, f GPS position error process noise with SA on 7.63 x 1073
(m?/s)
uz,r | GPS position error process noise with SA off 1.15 x 10~
(m?/s)
uy; | DGPS bias process noise (m*/s) 8.4 x 1074
ug; | DGPS bias process noise (m?/s) 1.85 x 10~*
Table A.1: Spectral densities of process noise parameters in Kalman filter model
equations
| Symbol | Definition Value |
Ta; | Acceleration model time constant (s) 3.0
75,5 | Odometer scale factor bias time constant (s) 1800
Bz,s | Stand-alone GPS error parameter (1/s) 0.0165
Trf | DGPS bias time constant (s) 321
Te.f DGPS bias time constant (s) 10800
Ks, | Odometer speed error rate (m/(pulse-m/s)) | 9.0 x 107>

Table A.2: Values for various constant parameters in Kalman filter model equations

| Symbol | Definition | RMS Value |

v,y | Rate gyro measurement noise (volts) 4.71 x 10~*
Vp,.f | X-position measurement noise (m) 1.4
VUp,.f | Y-position measurement noise (m) 1.4

Vodom,f | Odometer quantization noise (m/pulse) 2
ve,s | Compass measurement noise (rad) 0.0349
ve, | GPS-based heading measurement noise (rad) 0.0349
Um,s | Additive noise in map “measurement” (m) 1.0

Table A.3: RMS values for measurement noise parameters in Kalman filter measure-
ment equations
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| Symbol | Definition |  Spectral Density |

ug,r | Odometer scale factor bias process noise z@f:h%)z 2@'20335")1
(m/pulse)?/s

Ua,r | Rate gyro bias process noise (rad/s?)*/s 2.94 x 107

Upr Compass bias process noise {rad?/s) 0.0285

Ugr GPS position error process noise with SA on 7.63 x 10~3
(m?/s)

Uz,r GPS position error process noise with SA off 1.15 x 1073
(m?/s)

Upr DGPS bias process noise (m?*/s) 8.4 x 10~*

uer | DGPS bias process noise (m?/s) 1.85 x 10~

Table A.4: Spectral densities of process noise parameters in reference system equa-

tions

| Symbol | Definition Value
TS, r Odometer scale factor bias time constant (s) 1800
Ks, Odometer speed error rate (m/(pulse-m/s)) 9.0 x 107°
b, r Constant component of rate gyro bias (rad) | N(0,1.39 x 107°)
Boy.r Rate gyro bias drift parameter (1/s) 2.98 x 10~*
o.r Constant component of compass bias (rad) N(0,0.00762)
bor Constant component of GPS-based heading N(0,0.00762)

bias (rad)
A, B,C, D | Compass bias parameters (rad) U(0,0.0872)

Bn.r Compass bias error parameter (1/s) 0.715
Bz r Stand-alone GPS error parameter (1/s) 0.0165
Tar DGPS bias time constant (s) 321
Ter DGPS bias time constant (s) 10800
Kr True rate gyro scale factor (rad/s/volt) 0.7854

Table A.5: Values for various constant parameters in reference system model equa-

tions
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Symbol | Definition | RMS Value |
vyr | Rate gyro measurement noise (rad/s) 4.71 x 10~*
Up.r | X-position measurement noise (m) 1.4
Vp,r | Y-position measurement noise (m) 1.4

Vodomr | Odometer quantization noise (m/pulse) %1
ver | Compass measurement noise (rad) 0.0349
vo,r | GPS-based heading measurement noise (rad) 0.0349
Umr | Additive noise in map “measurement” (m) 0.0

Table A.6: RMS values for measurement noise parameters in reference system mea-
surement equations
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