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ABSTRACT

This dissertation describes the concept and the latest results from the niobium bird
experiment, which is an integrated, end-to-end test environment for the data reduction

scheme and the readout system designed for the Gravity Probe B program (GP-B).

The Gravity Probe B program is a relativity gyroscope experiment begun at
Stanford University in 1960 and supported by NASA since 1963. This experiment, for
the first time, will check the relativistic precession of an Earth-orbiting gyroscope that
was predicted by Einstein's General Theory of Relativity, to an accuracy of
1 milliarcsecond per year or better. A drag-free satellite will carry four gyroscopes in a
polar orbit to observe their relativistic precession. The primary sensor for measuring the
direction of the gyroscope spin axis is the SQUID (superconducting quantum interference
device) magnetometer. The data reduction scheme designed for the GP-B program
processes the signal from the SQUID magnetometer and estimates the relativistic
precession rates. I reformulated the two-step Kalman filters, originally developed by
J. V. Breakwell and X. Qin, and designed the niobium bird experiment to verify the
performance of the data reduction scheme experimentally with SQUID readout hardware

within the test loop.

The niobium bird experiment comprised three major components: a truth model,
Kalman filters, and a SQUID readout system. The truth model simulated the science
signal, which was injected into the SQUID readout systein. The SQUID output was then
fed into the two-step Kalman filters as a measurement, and the true values and the
estimates by the filters were compared to evaluate the filter performance. I also evaluated
the performance of the readout hardware in terms of the stability and the signal-to-noise

ratio, including the SQUID magnetometer, the lowpass filter, and the A-to-D converter.
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The latest results from the niobium bird experiment showed that the
temperature-dependent bias drift in a commercially available dc SQUID was too large to
achieve the required estimation accuracy. I used a commercially available dc SQUID
manufactured by Quantum Design, Inc., which showed a strong correlation between the
readout bias and the temperature of the SQUID controller with a cross-correlation
coefficient of 0.968 or a temperature coefficient of about 1 arcsecond per Kelvin. This
correlation, with a lack of temperature regulation, yielded a large bias drift in the SQUID
magnetometer which was about twenty times larger than what I assumed in the
simulation. For the GP-B science mission, the bias drift in the SQUID readout can be
reduced to meet the requirement by implementing a temperature regulation system and

designing a SQUID controller with a smaller temperature coefficient.

I also examined the effect of the gyroscope's polhode motion in the presence of
the trapped flux, the effect of a faster roll period, and the effect of the telescope pointing
error on the data reduction by simulations. I modeled the trapped flux signal by
modulation of a SQUID scale factor. Even though the model I used may not represent
the actual effects accurately, the simulation showéd that the trapped flux signal can be

spectrally separated by using a faster polhode period.
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CHAPTER 1. INTRODUCTION

1.1 Problem Statement

In June 1990, when the scientists at the Space Science Institute received the first
image from the Hubble Space Telescope (HST), they were convinced that there was a
major focusing error in the telescope and/or instrument package. An investigatory panel
later concluded that erroneous positioning of the refractive field lens during assembly
caused a blurred focus of the telescope. R. R. Shannon (Ref. 1), a member of the
investigatory panel, pointed out two factors that prevented the assembly error from being
detected: (1) lack of communication among the scientists regarding the test results and
(2) management pressure to avoid any additional testing because of cost concerns. He
also pointed out that all the optical components were “assembled into a structure with
final alignment determined by the test data on the components. No overall system test

then would be carried out, primarily to save a significant amount of money.” Shannon's



observations suggest that the assembly error could have been detected if an overall

system test had been performed prior to the system's implementation.

The kinds of management that sacrificed accuracy to cost containment setting the
stage for the HST problem, may also threaten other current space programs. In particular,
in NASA's Great Observatories (Ref. 2, 3), which include the Advanced X-ray
Astrophysics Facility (AXAF), the Space Infrared Telescope Facility (SIRTF) and the
Gamma-Ray Observatory (GRO) as well as the HST, hardware requirements on the
Earth-orbiting satellites have become more and more challenging, especially for angular
resolution. As a result, unexpected system error is more likely to occur. Although the
satellite components are tested and calibrated individually prior to integration, overall
system testing is sometimes neglected. In order to avoid unexpected system error during
integration, one needs to establish an overall end-to-end test environment that includes
core satellite software and hardware, as well as ground support software and hardware, at

a reasonable cost.

I applied this concept of the integrated test environment to the Gravity Probe B
program (GP-B) at Stanford University and actualized it as the niobium bird experiment.
The critical hardware for the GP-B program, analogous to the telescope of the HST
program, includes the SQUID (superconducting quantum interference device)
magnetometer, the primary sensor for collecting scientific data. The data collected by the
SQUID magnetometer are corrupted by various noises associated with the hardware
instrumentation and have to be processed by a data reduction scheme to extract useful
information. As explained in following sections, the accuracy requirements for the data
reduction scheme are very tight given the state of the art of the SQUID magnetometer; it

is not overstated to say that the optimization of the data reduction scheme and the



development of a low-noise SQUID readout system! are key to the success of the GP-B
program. The two tasks are closely related. The noise profile of the SQUID readout
system provides the optimization parameters for the data reduction scheme, and,
inversely, the performance of the data reduction scheme determines the tolerance margins
for the SQUID readout system errors. The niobium bird experiment was designed
primarily to test the data reduction scheme in a closed loop environment with a
prototypical SQUID readout system in the same loop. This integration of thz data
reduction scheme and the sensor hardware within a single test loop establishes a vital link
between the two tasks that, essentially, cannot be completed independently. Thus, the
niobium bird experiment leaves very little space for unexpected integration error to creep
into the readout system. This thesis describes the development of the niobium bird
experiment as my doctoral research. This chapter comprises an overview of the
Gravity Probe-B program and the niobium bird experiment, followed by descriptions of

previous related work and an outline of the rest of the thesis.

1.2 GP-B Program Overview

Albert Einstein's General Theory of Relativity ushered in a new era of physics.
His most famous work, it is also, however, his most argued because, 77 years after the
theory was unveiled, it is still short of sturdy experimental evidence. L. I. Schiff was

aware of the weak experimental foundation of the theory in 1959, when he wrote (Ref. 4):

1 The SQUID readout system denotes a package of sensor instruments including the SQUID
magnetometer, a pickup loop, a lowpass filter, an analog-to-digital converter, a temperature controller, and
magnetic shielding.
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A8 = 6.6 Sec/yr
(Geodetic)

AB = .042 sec/yr
(Frame-dragging)

Figure 1.1  Gravity Probe B program. A gyroscope in an Earth orbit will undergo
two relativistic precessions according to general relativity.

Since the first two of the three “crucial tests” can be derived from the
equivalence principle and special relativity without reference to the
geodesic equation or the field equations of general relativity, it follows
that only the orbit precession really provides a test of general
relativity.2 (p. 343)

Later the same year, Schiff conceived the idea of testing general relativity by means of
Earth-orbiting gyroscopes (Ref. 5). According to the General Theory of Relativity, it was
predicted that an Earth-orbiting gyroscope would undergo two types of non-Newtonian

precession given by the following equation:

Q=0,+9Q, (1.1)

2 The “three crucial tests” of general rolativity are the gravitational red shift, the deflection of
starlight, and the planetary orbit precession, as indicated by Einstein.
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where ;=

= Gl, |37, ,~. . -
Qp == es[%(we'rve)“we:l

ve

Q: total precession rate vector of gyroscope's spin axis caused by general
relativity

geodetic precession rate vector of gyroscope's spin axis

QF: frame-dragging precession rate vector of gyroscope's spin axis

Ug: Earth's gravitational constant

c¢: speed of light in vacuum
satellite's position vector with respect to Earth's center, r,, =

Foe
V,.: satellite's velocity vector with respect to Earth's center
I5: Earth's moment of inertia about its spin axis

Wg: Earth's spin vector

The first term is known as geodetic precession and the second term as frame-dragging
precession. Schiff's idea was to obtain measurements of these relativistic precession rates
for a “torque-free gyroscope,” which would provide possible evidence for the validity of
general relativity, and he suggested that “experiments of this type might be more easily
performed in a satellite than in an Earth-bound laboratory.” Together with
W. M. Fairbank, Schiff first contacted NASA in 1961, and a NASA grant for his
experiment to test general relativity by observing the precession of an Earth-orbiting
gyroscope started in November 1963. This NASA-funded experiment was later
designated Gravity Probe B and is currently conducted by engineers and scientists at the
W. W. Hansen Experimental Physics Laboratory, the Aeronautics and Astronautics
Department, and the Physics Department of Stanford University, with Lockheed Space
and Missile Company as the payload subcontractor. The objectives and engineering

considerations of the GP-B program are explained in the following sections.
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Figure 1.2  GP-B satellite outside view. The main body of the GP-B satellite is a
dewar that holds liquid helium for temperature control.

1.2.1 GP-B Program Objectives

The primary objective of the GP-B program is to measure the relativistic
precession of Earth-orbiting gyroscopes to an accuracy of 1 milli-arcsecond per year or
better. As shown in Figure 1.1, according to general relativity, a gyroscope in a polar
orbit at the altitude of 650 kilometers undergoes geodetic precession of 6.6 arcseconds
per year in the North-South direction and frame-dragging precession of 0.042 arcsecond
per year in the East-West direction. In the actual science mission, four gyroscopes are
carried on a drag-free satellite for redundancy. Figure 1.2 shows the outside view of the
GP-B satellite. The satellite also carries an optical telescope whose axis is aligned with
the satellite's axis of symmetry. The satellite's attitude is regulated by the control system
so that the telescope is always pointing at a guide star-Rigel, the brightest star of the

constellation Orion. The telescope axis regulated to the optical direction of Rigel
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Figure 1.3  GP-B signal flow diagram. The direction of the gyroscope's spin axis is
measured onboard and sent to the ground station. The Kalman filters
process the data there.

provides a distant inertial reference from which gyroscope's precession, including

relativistic precession, is measured.

The signal processing of the GP-B program can be divided into two parts: satellite
on-board process and ground station process. Figure 1.3 is a simplified flow diagram of
the GP-B science signal.3 Within the satellite, the direction of each gyroscope spin axis
is measured by the primary sensor (explained in Section 1.2.6), and the measurement
signal goes through the lowpass filter for anti-aliasing. The output of the lowpass filter is
then quantized by an analog-to-digital converter, and the preprocessor encodes the
digitized signal into an appropriate form for transmission to the ground station. At the
ground station, the received signal is decoded and sent to the data reduction scheme. The

data reduction scheme then works on the decoded science signal and estimates the

3 Hereafter, science signal denotes a series of measurements of the gyroscope spin axis direction
with respect to the telescope axis in a form available at the ground station.
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relativistic precession terms given a calibration signal. The following sections describe

engineering challenges involved in the instrumentation of this signal flow.

1.2.2 GP-B Satellite Orbit

The nominal orbit for the GP-B satellite is a polar orbit at the altitude of
650 kilometers. One of the major reasons for choosing a polar orbit instead of an inclined
orbit was the simplicity of data reduction formulation. The first term of Equation 1.1, the

geodetic precession rate vector, is parallel to the orbital angular momentum vector

h, =¥, XV, and the second term, the frame-dragging precession rate vector, is a

function of the satellite position vector and the Earth's spin vector. If the orbit is polar,

the following conditions hold:

R, @y =0 (1.2a)
by F, =0 (1.2b)
then, Q,-2,=0 (1.3)
where
Eve: orbital angular momentum vector of the GP-B satellite
@: spin vector of the Earth
F..: position vector of the GP-B satellite with respect to the Earth's center
QG: geodetic precession rate vector

frame-dragging precession rate vector

-

Thus, in the case of a polar orbit, the two precession terms become orthogonal with the
geodetic precession rate vector perpendicular to the orbital plane and the frame-dragging
precession rate vector parallel to the orbital plane. The measurement equation for the

science signal developed in Chapter 4 shows that the geodetic precession rate term and



the frame-dragging precession rate term are out of phase by 90 degrees, which simplifies

the formulation of the Kalman filters presented in Chapter 5.

A detailed discussion of the orbit selection can be found in the work by
J. V. Breakwell, et al. (Ref. 6) and R. Vassar (Ref. 7). Even though they found that the
final estimation accuracy of the frame-dragging precession rate improved with a slightly
inclined orbit compared with a perfect polar orbit, I selected the polar orbit as the nominal
orbit for the GP-B satellite because of the simplicity of the filter formulation.
C. W. F. Everitt discussed this trade-off (Ref. 8) and concluded that
In conclusion, I remark that intriguing as nonpolar orbits are, it is wise,
in the first instance anyway, to stick with the near polar orbit. Doing
so minimizes the burden of data reduction and hence the possibility of
error in the reduction process. Particularly important is the fact that in

a near polar orbit gravity gradient torques have no influence on the
determination of the motional precession of the gyroscope.4 (p. 623)

P. Axelrad investigated the orbital perturbation for the GP-B satellite in the polar orbit
and simulated the long-term perturbation over the one-year mission by MATLAB (Ref.

9).

1.2.3 GP-B Satellite Pointing Control

Since the precession of the gyroscope spin axis is measured from the telescope
axis, it is crucial to align the telescope axis to some inertial reference direction that is not
affected by the local Earth gravity. Rigel, the brightest star of the constellation Orion,
was chosen as a distant inertial direction, and N. J. Kasdin (Ref. 26) designed the satellite
pointing control system, which can regulate the telescope axis within 20 milliarcseconds
(RMS) of the optical direction of Rigel. I constructed a simulafibh model for the satellite

pointing error, which is presented in Chapter 4.

4 The “motional precession” means the frame-dragging precession of the gyroscope.
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1.24 GP-B llite Roll Control

The GP-B satellite is rotated about its axis of symmetry at a roll period of
10 minutes’ in order to average the disturbance torque on the gyroscope and to increase
the signal-to-noise ratio of the science signal because the readout sensor has a 1/f noise
profile. Since our goal is to measure the relativistic precession of a gyroscope, the other
type of precession—Newtonian precession hinders that goal. In order to reduce the
amount of Newtonian precession, we use a drag-free satellite with roll, which has an
averaging effect on the transverse torque so that the net disturbance torque is minimized.
Another reason for rolling the satellite is to modulate the science signal. Since the
readout sensor (explained in Section 1.2.6) has a 1/f noise profile, it is better to have the
science signal at a higher frequency than dc. The science signal received at the ground
station is modulated at the roll frequency and is demodulated using the roll phase
measurement from the roll phase controller designed by B. W. Parkinson and J. R. Crerie
(Ref. 11). Crerie demonstrated that the roll phase could be controlled within
25 arcseconds (RMS) and measured within 10 arcseconds (RMS) of accuracy. The
simulation model for the satellite roll phase error that I constructed is described in

Chapter 4.

1.2.5 GP-B Gyroscopes

The objective of the GP-B program, to measure the relativistic precession rates to
an accuracy of 1 milliarcsecond per year or better, requires that the Newtonian precession
be regulated within 1 milliarcsecond per year. The drift rate of the gyroscope spin axis
caused by Newtonian precession must be less than 10-18 radian per second in order not to

corrupt the measurement of the relativistic precession. Three major types of torque

5 During a recent conversation with me, B. W. Parkinson suggested that we speed up the roll to as
much as a one-minute period (Ref. 10). Doing so increases the effective signal-to-noise ratio of the science
signal because of the 1/f noise profile of the readout sensor.
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contribute to the Newtonian precession of the GP-B gyroscope: gravity gradient torque,
suspension torque, and electric torque, from which, respectively, are derived the
following three requirements on the construction of the gyroscope: (1) homogeneity
better than 3x107, (2) sphericity better than 5x107", and (3) electric dipole moment

smaller than 1x107*° e.s.u. (Ref. 12).

In order to satisfy all three requirements, the GP-B gyroscope is 1.5 inches in
diameter and made of quartz with a thin-film niobium coating. Niobium is a metal that
becomes superconducting when cooled below 9 K. The gyroscope is cooled to 1.8 K for
the science mission. Then the gyroscope is electrically levitated inside the drag-free
satellite and spun up to about 170 Hz. According to the physicist Fritz London (Ref. 13),
a spinning superconducting object generates a magnetic dipole moment called the London
moment. The gyroscope spun up to 170 Hz generates a London field of about
1.2 x10™ gauss (Ref. 14). Importantly, the London moment is always aligned with the
instantaneous spin axis of the gyroscope. Thus, the London moment works as a tag on
the gyroscope that indicates the direction of the spin axis. The next section explains the

technique used to measure the direction of the London moment.

1.2.6__ GP-B Readout System

In order to measure the direction of the gyroscope's spin axis, the GP-B program
uses a magnetometer called a SQUID (superconducting quantum interference device),
which operates according to the flux quantization principle of a superconducting loop.
As shown in Figure 1.4, an inductive coil called a pickup loop is placed around the
gyroscope and inductively coupled to the London field created by the spinning
gyroscope. The SQUID magnetometer is a flux-to-voltage converter, and the output is a
voltage proportional to the magnetic flux within the SQUID loop. The magnetic flux of

the London field is inductively coupled to the SQUID loop within the SQUID probe.
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Figure 1.4 London moment readout of a superconducting gyroscope and a SQUID
magnetometer.

Any change in the direction of the London moment, that is, any change in the direction of
the spin axis perpendicular to the loop, induces current in the pickup loop. The induced
current is then sent to the input coil coupled to the SQUID loop. The total flux within the
SQUID loop is kept constant by the control effort through the feedback coil that is
coupled to the SQUID loop. The output of the SQUID controller is a voltage
proportional to the amount of the flux coupled from the input coil, which is, in turn,
proportional to the amount of flux within the pickup loop (Ref. 15). T. V. Duzer, et al.
(Ref. 16) and S. T. Ruggiero, et al. (Ref. 17) explain the operational principles of the

superconducting devices including the dc SQUID.

The sensor noise of the SQUID magnetometer has 1/f power spectral density.

Figure 1.5 shows the noise power spectral density of several SQUIDs (Ref. 14). For the
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Figure 1.5  Simplified power spectral density of several SQUIDs (Ref. 14).

lower frequencies, the power spectral density is inversely proportional to the frequency®
and is flat above the corner frequency, which is typically 0.1 Hz to 1 Hz. Since the noise
power spectral density of SQUID has a 1/f profile, it cannot be modeled as white noise
going through a linear lowpass filter, which makes simulating the SQUID noise very

difficult. The modeling of the SQUID noise is discussed in Chapter 5.

1.3 Overview of the Niobium Bird Project

The niobium bird experiment’ (NbBird) was conceived by B. W. Parkinson in

1987; Parkinson and I performed the initial investigation of the experiment in the fall of

A noise with power spectrum density that is inversely proportional to the frequency is called a 1/f

Analogous to the “Iron birds” of aircraft ground testing, this experiment was named by Parkinson

referring to the extensive use of superconductive niobium in the test setup and in the science mission
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that year. During the science mission, the output of the SQUID magnetometer will be
sent down to the ground station (see Figure 1.3). At the ground station, the data reduction
scheme will estimate the relativistic precession rates from the received signal, and the
requirement on the estimation accuracy is better than 1 milliarcsecond per year.
Therefore, the optimization of the data reduction scﬁeme and the construction of a
low-noise SQUID readout system are fundamental for the success of the GP-B program.
The primary objective of the niobium bird experiment is to verify the data reduction
scheme in a closed-loop environment where the actual readout hardware is installed.
Figure 1.6 (a) is a conceptual diagram of the niobium bird experiment. Figure 1.6 (b)
shows the three major tasks of the niobium bird experiment: truth model construction,

data reduction synthesis and experimental verification.

To accomplish these tasks, the niobium bird experiment consists of three major
parts: the truth model, the SQUID readout system, and the data reduction scheme. The
truth model and the data reduction scheme are C programs stored in a computer, and the
SQUID readout system consists of a D-to-A converter, a gyroscope, a SQUID probe, a
SQUID controller, a lowpass filter, and an A-to-D converter. Figure 1.6 (a) describes
how these elements are connected, and the niobium bird experiment comprises five steps:

(1) The truth model generates a simulated science signal in a digital format,

and the digital signal is converted to an analog voltage by the D-to-A
converter;

(2) The analog voltage is then injected into the SQUID readout system, which
includes the pickup loop, the SQUID magnetometer and so on;

(3) The A-to-D converter samples the output of the SQUID readout system,
and the quantized readout signal is sent back to the computer for data
reduction;

(4) The data reduction scheme processes the readout signal as if it were from
the science mission and estimates the relativistic precession rates;

(5) The estimated values are compared with the true values stored in the truth
model, and the difference becomes the estimation error.
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After these five steps, the estimation error is evaluated to verify the performance of the
data reduction scheme and refine the hardware requirements embedded in the truth
model. If the resulting estimation error is too large, the error tolerances in the truth model
are reduced to improve the accuracy. In addition, the niobium bird experiment serves as
a platform to develop a prototypical SQUID readout system. The prototype is calibrated
in terms of the signal-to-noise ratio, the stability, and the repeatability and ultimately
tested by the data reduction scheme. The experimental setup and results are presented in

Chapter 6.
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(a) Conceptual diagram of niobium bird experiment. Niobium bird experiment
consists of truth model, prototypical readout system, and data reduction
scheme.

(b) Three major tasks of niobium bird experiment.

Figure 1.6  Conceptual diagram and three major tasks of niobium bird experiment.
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1.4 Previous Results

The data reduction scheme has been synthesized and analyzed by R. Vassar (Ref.
7), T. G. Duhamel (Ref. 18), R. S. DiEsposti (Ref. 19), and X. Qin (Ref. 20). Vassar
established the measurement equation for the covariance analysis and initiated an
end-to-end error analysis. Following Vassar, Duhamel analyzed the error sources that
Vassar did not treat. He also converted Vassar's Kalman filter from a covariance form to
a square root information filter. DiEsposti further elaborated the error models by adding
the satellite dither model, the SQUID noise shaping filter, and the lowpass filter model.
He verified the data reduction scheme with the simulated science signal generated by his
truth model. Qin's work is the most recent; he synthesized and analyzed the two-step data

reduction scheme. The following sections summarize the work of each of these

researchers.
1.4.1 Vassar's Work

Vassar initiated a systematic end-to-end error analysis by integrating previous
work by C. W. F. Everitt (Ref. 21, 22) and others who investigated various error sources
individually. Vassar used covariance analysis to optimize various science mission
parameters, such as the orbital inclination and the launch date. His contributions to the
GP-B program were as follows (Ref. 7):

. Derlivi_ng the measurement equation of the science signal for covariance
analysis;

+ Optimizing the orbital inclination and the launch date according to the
covariance analysis;

¢+ Determining the dominant error sources;

* Analyzing the sensitivity of the estimation error to the SQUID noise, roll
phase error and the scale factor drift;

* Analyzing the disturbance torque on the gyroscope.
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Vassar derived the measurement equation and synthesized the Kalman filter in a
covariance form. His Kalman filter estimated the two relativistic precession terms,
geodetic precession and frame-dragging precession, according to his measurement model.
The estimation error was then evaluated to optimize the orbital inclination and the launch
date. Although he found that the optimal inclination was slightly less than 90 degrees,
90-degree inclination is the current nominal value for the GP-B program as discussed in
Section 1.2.2. He also found that the optimal launch date of the GP-B satellite was
September for a polar orbit. During the optimization process, Vassar determined the

dominant error sources to be the SQUID sensor noise and the proper motion of Rigel.

The validity of Vassar's covariance analysis was limited by the unmodeled error
sources such as the gyroscope trapped flux, the bending of starlight by the Sun's gravity,
the ambient magnetic field leakage, the temperature-dependent bias drift8, and so on. He
also assumed that there would be two orthogonal pickup loops per gyroscope whereas the
current configuration is a single pickup loop per gyroscope. Thus, his covariance

analysis was better than the actual case by a factor of /2.
1.4.2 Duhamel's Work

Duhamel amended Vassar's error model by incorporating the bending of starlight
and the polhode motion of the gyroscope. His major contributions to the GP-B program

were as follows (Ref. 18):

* Modeling the bending of starlight caused by the Sun's gravity;

* Analyzing the dynamics of the gyroscope, taking into account the effect of
elasticity;

* Analyzing the effect of data interruption during the science mission;

» Analyzing the effect of trapped flux and its use of scale factor calibration;

8 Interestingly, the temperature-dependent bias drift has turned out to be one of the most dominant
error sources in the niobium bird experiment.
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+ Pointing out the special relativity correction of the aberration of starlight;

+ Converting Vassar's Kalman filter to a square root information filter.

Duhamel modeled the bending of starlight by the Sun claiming that the data reduction
scheme could estimate the bending of starlight to an accuracy of 1.4 %, which can be
measured by a separate method, very long base interferometry (VLBI), to an accuracy of
0.9 % (Ref. 23, 24, 25). Another notable contribution was the analysis of the effect of
trapped flux. He claimed that the trapped flux signal at the spin frequency had a better
signal-to-noise ratio than the science signal at the roll frequency and could be used to
calibrate the scale factor. The scale factor calibration in turn improved the estimate of
relativistic precession by a factor of 2, but Duhamel did not show how much
improvement was observed in the scale factor estimate. I have elaborated his work on
scale factor calibration; Chapter 5 shows that the scale factor can be estimated to three
parts in 103 accuracy using only the science signal at the roll frequency if I assume a

constant trapped flux.

Duhamel's other important contribution was the introduction of the square root
information filter (SRIF). Even though the SRIF is mathematically equivalent to the
Kalman filter in a covariance form, it is more stable and accurate when implemented in a
digital computer and often suitable when the accuracy of estimation is more important

than the speed of estimation.

The limitations of Duhamel's work are similar to those of Vassar's, since Duhamel
inherited Vassar's signal model. Even though Duhamel amended Vassar's model to a
certain extent, he did not resolve many of the issues raised by Vassar's research, including

ambient magnetic field leakage, temperature-dependent bias drift, and the miscentering

torque on the gyroscope.
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1.43 DiE i's Work

DiEsposti's most significant contribution was the establishment of the “truth
model.” DiEsposti defined the truth model as a simulation model that simulates the
science signal. The simulated science signal then becomes the input to the data reduction
scheme as if it were from the actual science mission (Ref. 19). Even though Vassar and
Duhamel created their own measurement models in conjunction with the error analysis,
the measurement models mainly served as tools to develop their Kalman filters. The
truth model was not distinguished clearly from the process model of the Kalman filter.
DiEsposti, on the other hand, constructed the truth model and the Kalman filter process
model separately, stating that “simulated gyro and telescope measurement data is
generated by the ‘Truth Model’ approach. ... Sampled data is processed by Kalman Filter
algorithms. The Kalman Filter extracts optimal estimates of the relativistic precessions
from the measurement data.” His statement implicitly suggests the concept of the
niobium bird experiment; moreover, he envisioned such an experiment in his conclusion:
“After a final Kalman Filter design has been chosen, hardware elements, which include

the data instrumentation system, should be inserted into the simulation” (Ref. 19).
His other contributions include the following:
» Modeling of 1/f SQUID noise by a third-order shaping filter in the truth

model and a first-order shaping filter in the Kalman filter process model;

* Installing a matching scheme for the gyroscope readout gain and the
telescope readout gain using the satellite dithering;

+ Installing a first-order lowpass filter in the truth model and an equivalent
digital first-order lowpass filter in the Kalman filter process model.
The SQUID readout noise has a power spectral density that is inversely proportional to
the frequency in the low-frequency region. Since the 1/f power spectral density cannot be

accurately modeled by the white noise going through a linear filter, DiEsposti
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approximated the 1/f power spectral density as the white noise going through a three-pole
lowpass filter. I later took the same approach by approximating the SQUID readout noise
with a four-pole lowpass filter (explained in Chapter 4). DiEsposti also installed the scale
factor matching scheme using the dithering of the satellite and showed that the gyroscope
readout gain and the telescope readout gain could be matched to 1% or better. The scale
factor matching scheme was designed to subtract the telescope pointing error from the
gyroscope science signal. However, N. J. Kasdin later demonstrated that the satellite
pointing controller could regulate the pointing error within 20 milliarcseconds (RMS)
(Ref. 26). Given this pointing accuracy and assuming that the pointing error has a zero
mean®, Chapter 5 shows that the subtraction of the telescope signal from the science
signal does not affect the estimation accuracy and, therefore, that it is not necessary to
install the matching scheme. DiEsposti's other major contribution was installing an

anti-aliasing lowpass filter in the truth model and an equivalent digital filter model in the

Kalman filter.

In terms of the design specification, DiEsposti's assumption was closer to the
current design of the GP-B hardware than Vassar's or Duhamel's. DiEsposti assumed a
5-hour integration SQUID instead of the 70-hour integration SQUID assumed by Vassar
and Duhamel. He also assumed a single pickup loop per gyroscope, which is the current

design, whereas Vassar and Duhamel assumed two pickup loops per gyroscope.

An important limitation of DiEsposti's work was that the anti-aliasing lowpass
filter in his truth model was still an equivalent digital filter and did not represent the
analog filter correctly. The niobium bird experiment overcomes this limitation by having

an actual readout system within the test loop.

9 J. P. Turneaure pointed out that the assumption of a zero-mean pointing error may limit the
validity of my conclusion. I agree that the effect of a pointing error with a nen-zero mean has to be

analyzed to verify my claim.
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The other limitation of DiEsposti's research is that he did not compare the Kalman
filter's performance with and without the additional models in the Kalman process model.
Although he added the SQUID shaping filter model and the lowpass filter model to the
Kalman process model, he did not state how much improvement those additions
achieved. Thus, the foundation of the need for those models was weak. In fact,
Chapter 6 shows that the data reduction scheme converges without the addition of those

two models.

1.4.4 Qin's Work

Qin's major contribution to the GP-B program was the development of a two-step
data reduction scheme (Ref. 20) that gave much clearer insight into the state variables
than the single-step data reduction schemes developed by Vassar, Duhamel, and
DiEsposti. Qin divided the estimation state vector components into two parts: slow
variables at the annual frequency and fast variables at the orbital frequency. Even though
the idea of dividing the state vector was not completely original as Vassar et al. (Ref. 6)
implied, Qin formulated the two-step data reduction scheme and analyzed it thoroughly.

The two-step data reduction scheme is reformulated in Chapter 5.
Qin’s other contributions were as follows:

+ Installing a covariance reset technique;
* Analyzing the estimation sensitivity to the roll phase error;

* Analyzing the estimation sensitivity to the initial gyroscope spin axis
misalignment;

+ Investigating the application of a Z-A A-to-D converter.

Covariance resetting is a useful technique when the measurement equation is a
nonlinear function of the states. It prevents the data reduction scheme from converging to

incorrect solutions. In the case of a linear optimization problem, there is only one
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optimal solution that minimizes the quadratic cost function. On the other hand, in case of
a nonlinear optimization problem, the Kalman filter has to linearize the measurement
equation about the estimated states and is called the extended Kalman filter. With an
extended Kalman filter, there can be multiple solutions that locally minimize tﬁe
quadratic cost function. If one gives an incorrect initial condition to the extended Kalman
filter, the steady-state estimate can converge to an incorrect solution in a stable manner.
Such a false convergence was discussed by H. W. Sorenson (Ref. 27) and K. W. Iliff and
R. E. Main (Ref. 28). The covariance resetting technique prevents the extended Kalman
filter from sleeping on the measurement and forces it to use the measurement to update
the estimate. Qin's two-step data reduction scheme is in an ideal form for applying this
technique because it consists of a series of short term, nonlinear, first-step filters and a
long term, linear, second-step filter. The initial estimate and covariance of each first-step
filter are reset so that each filter is independent of the others and the linearization process
is divided into short-term steps. The first-step filters estimate the linear combination of
the final states, including the relativistic precession terms, and the second-step filter takes
the results from the first-step filters as measurements that are linear in the state variables.
Qin's other main contributions were the sensitivity analysis of the roll phase error and the

initial gyroscope spin axis misalignment.

The limitations of Qin's work are similar to those of Vassar's, Duhamel's, and
DiEsposti's. Qin left many of the issues raised by Vassar unresolved, including
temperature-dependent bias drift and ambient magnetic field leakage. All four
researchers mentioned those issues as unresolved problems or future research topics but
they have never been analyzed thoroughly because to do so would be extremely difficult
without experimentation. All the previous work heavily relied on the modeling of error

sources, which resulted in similar limitations. The niobium bird experiment provides
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important experimental data for the modeling of temperature-dependent bias drift and

magnetic field leakage.

1.5 Contributions
The three major contributions of this thesis are:

(1) Systematization of the GP-B truth model;

(2) Improvement of the two-step Kalman filters and further analysis of the
data reduction;

(3) Establishment of the niobium bird experiment.

The truth model of the GP-B science mission was systematically established by the
following steps:
* Defining a standardized set of coordinate frames for the GP-B simulation
and hardware assembly;

» Developing and verifying random sequence generators for the GP-B
simulation;

» Modeling individual components of the truth model with unambiguous
documentation;

* Integrating individual models into the truth model.
The truth model provided the simulated science signal to test the data reduction scheme.

After completing the truth model, I developed the data reduction scheme in accord
with Qin's synthesis of the data reduction scheme. My contributions to the data reduction

synthesis are:
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+ Implementing a recursive algorithm to the two-step Kalman filters;
+ Analyzing the effects of trapped flux signal on the data reduction;
« Analyzing the effects of pointing error on the data reduction;

* Analyzing the effects of roll period on the data reduction.

After I verified the Kalman filters by simulation, I tested the filters with the
experimental data, which was the primary objective of the niobium bird experiment. My

last contribution, establishment of the niobium bird experiment, includes:

+ Assembling an end-to-end apparatus to verify total system behavior;

+ Calibrating the dc SQUID magnetometer manufactured by Quantum Design,
Inc.

» Testing the temperature-dependent bias in the readout instruments, such as
the A-to-D converter and the SQUID controller;

* Testing and tuning the Kalman filters with experimental data.

The subsequent chapters explain these contributions in detail following the outline

presented in the next section.

1.6 Thesis Outline

The subsequent chapters comprise three main topics and a conclusion.
Chapters 2, 3, and 4 detail the construction of the truth model; Chapter 5 explains the data
reduction scheme synthesis ;and Chapter 6 describes the experimental verification of the
data reduction scheme, that is, the niobium bird experiment. The last chapter, Chapter 7

summarizes the findings and implications of the thesis.

In regard to the construction of the truth model, Chapter 2 defines the
standardized set of coordinate frames that are the basis for developing the truth model.

Chapter 3 develops and verifies three random sequence generators that are used in the
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truth model to simulate random events such as sensor noise and control error. Chapter 4
develops the individual components of the truth model, which are based on the coordinate
frames defined in Chapter 2 and the random sequence generator derived in Chapter 3.
The individual components include the Earth motion model, the satellite motion model,
observational error models, and so on. The realistic and idealized measurement equations

are also derived in Chapter 4.

Chapter 5 reformulates the data reduction scheme that Qin proposed. A recursive
algorithm is introduced into the data reduction, and the filtering problem is converted to a
smoothing problem. Chapter 5 also investigates other factors such as the trapped flux

signal, the pointing error, and the roll period, and tests the Kalman filters by simulation.

Chapter 6 describes the niobium bird experiment in detail and presents the latest
results of the experiment. It then evaluates the results, specifying which hardware

requirements have yet to be met or need to be re-evaluated.

Chapter 7 summarizes the results of my thesis, stating conclusions, limitations of

the research, and recommendations for future work.
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CHAPTER 2. COORDINATE FRAME DEFINITION

2.1 Introduction

In late 1989, because the size of the GP-B group had grown, the need for a
standardized set of coordinate frames arose. Because of the larger number of engineers
working on various tasks such as computer simulation, experimental verification and
hardware assembly, miscommunication among the engineers regarding the coordinate
frames used in their simulation programs or assembly diagrams became inevitable. I
proposed a standardized set of fifteen coordinate frames on the basis of my previous
work. The reasons for constructing the standardized frame set were (1) to minimize the
possibility of miscommunication among engineers caused by inconsistent reference frame
definition, (2) to allow transformation among inertial frames and satellite body fixed
frames without ambiguity, and (3) to allow integration of simulation programs written by

different engineers without the burden of frame conversion. This chapter presents the
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standardized set of coordinate frames that is the updated version of the original set that I
proposed (Ref. 29). Subsequent chapters describe how the standardized set was used to

construct the truth models that simulate the science gyroscope signal.

The standardized set of frames comprises three categories labeled A, B, and C.
Category A consists of inertial coordinate frames whose orientations are determined by
the optical direction of Rigell. Category B consists of satellite body-fixed frames
determined by the structure of the satellite. Category C consists of conventional celestial
frames such as the barycentric celestial frame, geocentric celestial frame, satellite orbital

frame, and WGS 84 frame.

Each category has one reference frame, called the primary frame; all others are
called secondary frames. The secondary frames are defined with respect to the primary
frame through rotational matrices. By having only one primary frame in each category,
conflict and redundancy among frame definitions can be avoided. The three primary
frames of Categories A, B, and C are defined first in the next section; the secondary

frames are defined with respect to the primary frames in the sections that follow.

Each frame is defined by four elements: (1) I.D. number, (2) name, (3) origin,
and (4) orientation. An L.D. number is used to specify each frame without ambiguity
during the truth model construction. A name is then used to identify the characteristics of
that frame. The last two elements, origin and orientation, determine the origin of the
frame and the orientation of its three axes. The three axes of each frame follow the
right-handed rule of Cartesian coordinate frames; therefore, the direction of two axes

determines the direction of the third axis without ambiguity.

1 The optical direction of Rigel is defined as the direction of a vector which is drawn from an
observer to the apparent location of Rigel observed by an optical device such as a telescope Since an
optical device is used to determine the apparent location of Rigel, it depends on the position and velocity of

the observer with respect to Rigel.
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2.2 Primary Frames

There are three primary frames, each of which is assigned to one of the three
categories. They are labeled by I.D. number as A-0, B-0, and C-0. The letter indicates
the category and the number indicates the level of definition. Zero means that the frame
is at the most primary level in the frame definition hierarchy. The origins of A-0 (the Iy
reference frame) and C-0 (the barycentric celestial frame) are located at the solar
barycenter, while the origin of B-0 (the nominal control frame) is fixed to the geometric
center of the satellite proof mass cavity. The A-0 and C-0 frames are inertial frames and
the B-0 frame is a satellite body-fixed frame. Table 2.1 lists the definitions of the three
primary frames in terms of the four elements. The orientations of the three frames are

shown in Figures 2.1 and 2.2, and are explained in detail in Sections 2.2.1, 2.2.2, and

2.2.3.
Table 2.1 Definition of Primary Frames
Category A Category B Category C
[.D. Number A-0 B-0 C-0
Name | I, reference frame Nominal control Barycentric celestial
frame frame
Origin | Solar barycenter Geometric center of | Solar barycenter
proof mass cavity
Orientation | Defined in §2.2.1 Defined in §2.2.2 Defined in §2.2.3
(Figure 2.1) (Figure 2.2) (Figure 2.1)
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2.2.1 Orientation of the A-Q Frame

The orientation of the A-0 frame is determined by the optical direction of Rigel
from the solar barycenter at time ty at which the science mission will start. Let
X, ¥, and Z be the unit vectors along the three axes of the A-0 frame2. The y and z axes
are determined first in terms of the solar barycenter, the apparent direction of Rigel at
time to, and the mean equatorial plane at the Julian year 2000 (J2000.0). The remaining
axis, the x axis, forms a right-handed Cartesian coordinate frame. Table 2.2 gives

detailed definitions of X, y, and Z. The orientation of the A-0 frame is also shown in

Figure 2.1.

The purpose of the A-O frame is to provide a reference frame from which the
precession angle of the gyroscope spin axis is defined. The z axis of the A-0 frame is
fixed to the optical direction of Rigel at tp, and is fixed to the distant galaxy regardless of
the proper motion of Rigel for t> ty. Thus, it serves as a distant, inertial reference
direction from which the gyroscope's precession angle is defined. Any deviation of
gyroscope spin axis from z,, is owing to the Newtonian precession, the relativistic

precession, and the initial misalignment of the gyroscope's spin axis. These three terms

Table 2.2  Orientation of the A-0 Frame

» Zis parallel to the line which is drawn from the solar barycenter at time tg to
the optical direction of Rigel at ty as observed by an observer at the solar
barycenter

+y is perpendicular to Z and parallel to the mean equatorial plane of J2000.0
and points toward the vernal equinox

* X forms a right-handed Cartesian coordinate frame with ¥ and Z, which
satisfies X - N >0, where N is a unit vector pointing to the celestial north

2 The direction of %, ¥, and Z together with the position of origin completely determines the
coordinate frame without ambiguity.
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T

Dynamic vernal equinox of J2000.0
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Figure2.1  Orientation of the A-0 and C-0 frames with respect to solar barycenter,
vernal equinox, mean equator, and Rigel. A-0 is the I, reference frame,
and C-0 is the barycentric celestial frame.

are modeled in the A-0 frame and then estimated by the Kalman filters, as explained in

Chapters 4 and 5.

2.2.2 Orientation of the B-0 Frame

The orientation of the B-0 frame is determined by the structural configuration of

the quartz housing that contains four science gyroscopes and one proof mass. Let us
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define three unit vectors, n,, i,, and fi;, each of which is perpendicular to one of the
calibrated surfaces of the quartz block [see Figure 2.2 (a)]. Vector ii, is perpendicular to

the calibrated surface of gyro #1 and #2 sockets and points outward from the geometrical

center of the quartz block cavity. Similarly, i, is perpendicular to the calibrated surface

of gyro #3 and #4 sockets and points outward from the geometrical center of the quartz

block cavity. Vector n, is perpendicular to the telescope mounting surface at the

geometric center and points from the proof mass cavity toward the telescope interface

surface. After n, n,, and n, are determined by the geometric property of the quartz
block, the unit vectors X, ¥, and Z along the three axes of B-0 can be determined as
shown in Table 2.3. The orientation of B-0 seen from the outside of the satellite is also

shown in Figure 2.2 (b).

Table 2.3 Orientation of the B-0 Frame

« Z is determined by the normal vector of telescope interface surface as
follows:

-

-
Z=1N3

* y is determined by the normal vector of the calibration surfaces of gyros #3
and #4 as follows:

=2

X

N

1

34

X

Né¢

_y’=
|2

« X forms a right-handed Cartesian coordinate frame with y and Z as follows:
X=yXz

The purpose of the B-0 frame is to determine the orientation of the SQUID pickup
loops with respect to the calibrated surfaces of the quartz housing. The SQUID pickup
loops are located around the science gyroscope and are inductively coupled to the
magnetic flux created by the London moment of the spinning gyroscope. The change in

the direction of the spin axis is reflected in the change of the magnetic flux inside the
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pickup loop and measured by the SQUID magnetometer. Since the requirement for the
estimation accuracy of the precession angle is better than 1 milliarcsecond, the orientation
of the pickup loop has to be modeled to a submilliarcsecond precision in the simulation to
provide a realistic science signal to the Kalman filter. The B-0 frame serves as a
reference frame to determine the orientation of the pickup loops, and the misalignment

and creeping of the pickup loops are determined with respect to the B-0 frame.

2.2.3  Orientation of the C-0 Frame

The C-0 frame is the barycentric celestial frame, which is a very common frame
in astronomy along with the geocentric celestial frame. The barycentric and geocentric
celestial frames are used to determine the position of stars and galaxies as well as the
solar system planets with respect to the barycenter and the geocenter, respectively. These
two frames are often interchangeable through linear translation between the two origins,
the geocenter and the barycenter. The orientation of the C-0 frame is shown in Figure 2.1

together with the A-0 frame, and the unit vectors X, ¥, and Z along the three axes are

defined in Table 2.4.
The C-0 frame serves as a reference frame for the following purposes:

» To define the optical direction of Rigel observed from the solar barycenter;

* To define the motion of the Earth with respect to the Sun.

The optical direction of Rigel observed from the barycenter is determined by the right
ascension and the declination in the star catalogs. The star catalogs use the barycentric
frame (C-0) as the reference frame. The C-0 frame is also useful when the motion of the
Earth has to be defined, since the Earth travels about the Sun in a near-circular orbit [see

Figure 2.1].
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Calibrated surface
for gyro #3 and #4 housings o

XBo Calibrated surface
P " for gyro #1 and #2 housings

Telescope
~ — interface surface
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Proof mass
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() Orientation of the B-0 frame and definitions of calibration vectors, n,, ii,, and

fi,.
XB1 XBo
4 Stati/on 200
Yg1
E———————— 200 inches ——————J»

(b) Orientation of the B-0 and B-1 frames viewed from outside.

Figure 2.2  Orientations of body-fixed frames, B-0 and B-1. B-0 is the nominal
control frame, and B-1 is the assembly frame.
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Table 2.4 Orientation of C-0 Frame

+ X points from the solar barycenter to the dynamic equinox of J2000.0

*y is in a plane that goes through the solar barycenter and is parallel to the
mean equator of J2000.0

« Z=X Xy, which satisfies Z- N >0, where N is a unit vector pointing from
the barycenter to the celestial north.

2.24 Transformation Among Primary Frames

The three independent primary frames, A-0, B-0 and C-0, defined in Section 2.2,
can be related to each other by defining the rotational matrices among them. The
rotational matrices from C-0 to A-0 and from A-0 to B-0 are shown in Table 2.53. An

arbitrary vector T can be expressed either in A-0, B-0, or C-0 by translating the coordinate

frame as follows:

F=AT 7 @1
A Cco
£=BOTAD -;;- (2.2)
BO A0

3 Note that, to complete the transformation of two frames, the origin of the starting frame has to be

linearly translated to that of the destination frame in addition to the frame rotation.
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Table2.5 Rotational Matrices Among Primary Frames

Rotational matrix from C-0 to A-O:
—sindpcosA, -sindgsind, cosd,
ArCt = sin A, —cosAp 0

cosdysind,  cosdsind, sind,

where
Or: declination of Rigel at time t,
Ag: right ascension of Rigel at time t,

Rotational matrix from A-0 to B-0:
cosy, siny, —6,cosy,+ ¢, siny,
®r* =|-siny, cosy, @,siny,+¢,cosy,
6, -9, 1

where
¢as 6., Yo 1-2-3 Euler angles from A-0 to B-0, respectively
¢.: yaw angle with respect to A-0
0.: pitch angle with respect to A-0
y5: roll angle with respect to A-0

a*

2.3)

24)

2.3 Secondary Frames

The secondary frames are defined with respect to the primary frames through the
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rotational matrices. The purpose of secondary frames is to provide reference frames in
which various truth models can be constructed. Category A has six secondary frames,
labeled A-1 to A-6. Category B has three secondary frames, labeled B-1 to B-3, and
Category C also has three secondary frames, labeled C-1 to C-3. The next three
subsections define the secondary frames in Categories A, B, and C, respectively. As with
the primary frames, the secondary frames are also defined by four elements: (1) I.D.

number, (2) name, (3) origin, and (4) orientation with respect to the primary frame.




2.3.1 n Frames in ry A

Six secondary frames A-i (i=1,...,6) are defined with respect to the primary frame
A-0 through linear translation of the origin and axis rotation through the rotational
matrices. The transformation from A-0 to A-i (i=1,...,5) is completed by two
infinitesimal rotations about the xa0 and yap axes so that za; (i=1,...,5) points in the
optical direction of Rigel from the observer s; (i=1,...,5). The rotational matrices from

A-0 to A-i (i=1,...,5) are given by the following equations:

1 0 -g
W=l0 1 -a,| (i=]...5) @.5)
a, a, 1
@y =%y laill <1
where
Ay =V40 & Ia,.zl <1

Vector g, (i=1,...,5) is a vector-sum of various observational corrections in the
optical direction of Rigel from observer s; (i=1,...,5). The definition of observer
si (i=1,...,5) determines which observational corrections should be included in the error
vector E, (i=1,...,5). Table 2.6 lists the definition of observer s; (i=1,...,5) and

corresponding correction vector & (i=1,...,5). The other nomenclatures used in Table 2.6

are as follows:

g,: Observational correction vector caused by the proper motion of Rigel
€,: Observational correction vector caused by the deflection of starlight from

Rigel because of the mass of Sun
€;: Observational correction vector caused by the annual parallax

€°: Observational correction vector caused by the orbital parallax
€:°: Observational correction vector caused by the annual aberration

€,°: Observational correction vector caused by the orbital aberration
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€: Observational correction vector caused by the refraction of starlight

through the Earth's atmosphere

Table 2.6 Definition of Observer and Observational corrections for Frames A-1 to

A-5

Observer s;

-
Observational correction vector &

Observer at the solar barycenter
traveling with respect to the
distant galaxy

& =&

Observer at the geocenter who
is stationary with respect to the
solar barycenter at the time of
observation

- - - “es
=&+5+§

Observer at the geocenter who
is traveling with the geocenter
at the time of observation

- - - »es oS
B=&+E+E +&

Observer at the satellite proof
mass cavity who is stationary
with respect to the geocenter at
the time of observation

- - - a5 o5 »ve -

Observer at the satellite proof
mass cavity who is traveling
with the satellite at the time of
observation

-»> -+ - o5 —»es - - “pe
E=E+ETE +E +E tETE

The last secondary frame, A-6, can be obtained by rotating the A-5 frame about its

za5 axis by command roll angle ., which is measured counterclockwise from the XA5

axis. The rotational matrix from A-0 to A-6 is given by the following equation:
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[cosy,, siny, 0
0 SAO
0 0 1

6A0

1l
|
2]

“.
b=}
A
[«]
[=3
@
A

(2.6)
[ cosy,, sin V., -—a5Cosy, —assiny,,

=|-siny,. cosy, agsiny, —a,cosy,,

as, ds, 1

where
V... command roll phase with respect to the A-5 frame

a5, = Xpo " €5

s, = Y40 - Es

The A-6 frame serves as a reference frame for satellite pointing and roll control
because the orientation of the B-0 and A-6 frames should coincide if there have been no
control errors. Each secondary frame is defined in Table 2.7 in terms of its I.D. number,
name, origin, and orientation. The italicized components in the orientation column are
the additional effects of the preceding frame. In the case of the A-1 frame, the additional
effects are based on the A-O frame. The orientations of A-i (i=1,...,6) are also shown in

Figure 2.3.
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Table 2.7

Secondary Frame Definitions for Category A

ID#

Name

Origin

Orientation

Ip dynamic

Barycenter

Za1 points in the optical direction of
Rigel, including the proper motion of
Rigel after t,

A-2

Earth static

Geocenter

Za2 points in the optical direction of
Rigel, including the proper motion after
to, deflection of starlight, and annual
parallax

A-3

Earth dynamic

Geocenter

Z43 points in the optical direction of
Rigel, including the proper motion after
to, deflection of starlight, annual
parallax, and annual aberration

A4

Satellite static

Satellite center
of mass

Za4 points in the optical direction of
Rigel, including the proper motion after
to, deflection of starlight, annual
parallax, annual aberration, orbital
parallax, and refraction of starlight
through the atmosphere

A-5

Satellite
dynamic

Satellite center
of mass

Z4s points in the optical direction of
Rigel, including the proper motion after
ty, deflection of starlight, annual
parallax, annual aberration, orbital
parallax, refraction of starlight through
the atmosphere, and orbital aberration

A-6

Satellite roll

Satellite center
of mass

Za6 coincides with Zs, and the axes of
Xa6 and yae undergo rotation about z4s
by the command roll angle v,,
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(a) Orientation of the A-i frames (i=1,...,6) with respect to the A-0 frame.

@ Solar barycenter

= Y Optical direction of
Rigel observed by ss

(b) Orientation of the A-5 and A-6 frames.

Figure 2.3  Orientation of the A-i frames (i=0,...,6).
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232 Ccon Frames in rv B

The three secondary frames B-i (i=1,...,3) are defined with respect to the primary
frame B-0 through linear translation of the origin and axis rotation through the rotational
matrices. Each secondary frame, B-i (i=1,...,3), is fixed to the satellite body but has a
different origin and/or orientation. The following table shows the I.D. number, name,

origin, and orientation of each frame.

Table 2.8 Category B Secondary Frame Definitions

ID# Name Origin Orientation

B-1 Assembly frame | 200 inches behind | Same as B-0 frame
Station 200 along
the zgg axis

B-2 Control frame Proof mass Zp; points from the proof mass
position sensor toward the telescope parallel to the
null telescope readout null line

- _ Zp XN
Vo =
Izsz X ”1'

Xpy = Vo X Zp,

B-3 Mass property Satellite center of | Zg; points from the proof mass
frame mass toward the telescope parallel to the
principal axis of satellite inertia that
is closest to the axis of satellite
symmetry

Xp3 is along the minor axis of
inertia

YB3 = Zp3 X Xp;
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The B-1 frame has the same orientation as the B-0 frame, but the origin is moved
along the zpp axis to be consistent with the hardware assembly environment. The origin
of B-1 is placed 200 inches behind Station 200, which is the geometrical center of the
axial locking ring [see Figure 2.2(b)]. The B-1 and B-0 frames were initially proposed by
G. Ross of Lockheed in a FAXed letter to B. W. Parkinson on February 19, 1990, in an

effort to develop new assembly coordinate frames.

The B-2 frame is named the control frame because its origin is placed on the
sensor null point and the z axis is along the telescope readout null axis. The proof mass is
used as a gravity sensor in drag-free control, and the proof mass position sensor null point
does not necessarily coincide with the geometric center of the proof mass cavity that is
the origin of B-0. The drag-free control effort is performed about the origin of B-2
because the origin of B-2 is placed at the proof mass position sensor null. Similarly, the
telescope is used as a direction sensor in pointing control, and the telescope readout null
axis does not necessarily coincide with the zpg axis. The pointing control effort is
performed about the zp; axis, because the zp; axis is placed parallel to the telescope
readout null axis. The misalignment of the telescope readout null axis from the zgg axis
can be specified by the null trimming angles ¢y and 8,y about the xgo and ypo axes,
respectively. Figure 2.4 shows the relation between the B-0 and B-2 frames. The
transformation from B-0 to B-2 is completed by a linear translation of the origin and axis

rotations about the xgo and ygo axes by ¢y and Oy, respectively.

The B-3 frame is named the mass property frame because its origin is placed at
the center of mass of the satellite and its three axes are aligned with the principal axes of
inertia. The purpose of the B-3 frame is to provide a body-fixed frame for dynamic

analysis of the satellite.
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» Zpo = Telescope interface surface normal

> Zpy = Telescope readout null axis

Ygo @ Geometical center of proof mass cavity

© Proof mass position sensor null point

Figure 2.4  Orientations of the B-0 and B-2 frame with respect to the proof mass
cavity. B-0 is the nominal control frame, and B-2 is the control frame.

The rotational matrices from B-0 to B-i (i=1,...,3) are defined by the following

equations:

100
B°=(0 1 0 2.7
0 0 1
1 0 -6,
B=( 0 1 Ot 2.8)
enull _¢null 1



COS VW, s sin V mass _emass COS V55 + ¢ma.rs SIN Y, e
3n0 _ . ,
B" =|—sin Viass  COS Vs emass SIN Y/, 554 + ¢ma:: COS Y, 045 (2‘9)
emass _¢masx 1

where
Onuts Oz 1-2 Euler angles from B-0 to B-2: telescope null trimming
angles about xp, and yg,, respectively

Omasss Omass» Wmass:  1-2-3 Euler angles from B-0 to B-3: mass property trimming
angles about Xpo, Yo, and zg,, respectively

The orientations of the B-0 and B-1 frames are the same, and the rotational matrix is an
identity matrix. The rotational matrix from B-0 to B-2 is determined by the telescope
null alignment, and the telescope null has to be calibrated by preflight testing and
on-board calibration. The rotational matrix from B-0 to B-3 is determined by the satellite
mass distribution and should be estimated from the final configuration of satellite
hardware. Because the zg, axis is defined along the principal axis of inertia closest to the
satellite axis of symmetry, rotations about the x,, and y,, axes are assumed to be

infinitesimal.

Besides defining the sensor nulls, the B-2 frame plays an important part in
relating Categories A and B. In Section 2.2.4, the rotational matrix *°T*° (Equation 2.4)
was defined to relate the A-0 and B-0 frames. The matrix *°T*° is determined by three
angles: two absolute pointing error angles (¢a, 8,) and the absolute roll angle (y,), which
are the 1-2-3 Euler angles from A-0 to B-0. Since ¢,, 6, and y, are defined with respect
to the A-0 frame, these angles cannot be calculated directly. Instead, the actual pointing
error is defined with respect to the optical direction of Rigel from the satellite, that is, the
direction of the z,5 axis. The relative attitude of the B-2 frame with respect to the A-5

frame is determined by the relative pointing error angles (¢, 8;) and the relative roll
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angle (\f;), which are the 1-2-3 Euler angles from A-5 to B-2. The rotational matrix from

A-5 to B-2 is determined by the following equation:

[cosy, siny, 01 0 -6,
Pre¥=|—siny, cosy, 00 1 ¢,
0 0 1]6 -¢ 1

(2.10)
[ cosy, siny, —6,cosy,+¢,siny,

=|-siny, cosy, O,siny,+¢, cosy,

0 —¢ 1

where
9., 6., y,: 1-2-3 Euler angles from A-5 to B-2: relative yaw angle, relative
pitch angle, and relative roll phase, respectively

The relative pointing error angles ¢, and 6 are determined by the pointing controller
performance, and the relative roll phase v, is determined by the roll phase controller
performance. The performance of both controllers is discussed in Chapter 4, which

describes the truth models.
2.3.3 _Secon Frames in or,

The three secondary frames C-i (i=1,...,3) are defined with respect to the primary
frame C-0 through linear translation of the origin and axis rotation through rotational
matrices. The C-i (i=1,...,3) frames are conventional or predefined frames and include
the geocentric celestial frame, the satellite orbital frame, and the WGS 84 frame.

Table 2.9 shows the 1.D. number, name, origin, and orientation of each frame.
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Table2.9 Secondary Frame Definitions for Category C

ID# Name Origin Orientation
C-1 Geocentric Geocenter Same as for the C-0 frame
celestial frame

C-2 | Orbital frame Geocenter Yc, points in the instantaneous
direction of orbital angular
momentum
Z., points in the instantaneous
ascending node of the satellite orbit
X ¢, forms a right-handed Cartesian
coordinate frame

C-3 | WGS 84 Geocenter Z:, is parallel to the direction of the

conventional terrestrial pole (CTP)
for polar motion

X¢3 points at the intersection of the

WGS 84 reference meridian plane
and the plane of the CTP's Equator

Yc3 forms a right-handed Cartesian
coordinate frame

The geocentric celestial frame C-1 is interchangeable with the barycentric

celestial frame C-0 through linear translation of the origin. The star coordinates, such as

right ascension and declination, are given in the barycentric celestial frame and are called

catalog coordinates. In other words, the locations of stars are defined with respect to the

solar barycenter. On the other hand, the satellite orbits are defined with respect to the

geocenter, and the catalog coordinates of Rigel have to be converted into the C-1 frame to

obtain the apparent coordinates of Rigel from the geocenter.
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i,. = inclination of GP-B orbit
Q,. =right ascension of GP-B orbit

Figure 2.5  Orientations of the C-1 and C-2 frames. C-1 is the geocentric celestial
frame and C-2 is the orbital frame whose xz plane is parallel to the
orbit.

The C-2 frame is called the orbital frame because the instantaneous satellite orbit
determines its orientation. The instantaneous satellite orbit is determined by the orbital
perturbation about the nominal orbit caused by the Earth’s oblateness, the gravity fields
of the Sun and the Moon, the precession of equinoxes, and the satellite residual drag. The
origin of C-2 is placed at the geocenter and the y, axis points in the direction of the
instantaneous orbital angular moment. The Zc, axis points in the direction of the
instantaneous ascending node. The rotational matrix from C-1 to C-2 is, therefore,
determined by two orbital elements: inclination ive and right ascension Q.. of the

ascending node. Figure 2.5 shows the relation between the C-1 and C-2 frames.

The C-3 frame is called the Department of Defense World Geodetic System 1984
or WGS 84 for short. WGS 84 was defined by the Defense Mapping Agency (Ref. 30) in
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an effort to provide a frame of reference for the global navigation of ships, airplanes,
automobiles, and satellites. WGS 84 is fixed to the Earth and rotates about the z.; axis.
Even though WGS 84 is designed for military use, it is available for commercial use to a
certain extent; the most recent application of WGS 84 is the global positioning system
(GPS). P. Axelrad (Ref. 9) analyzed the GP-B satellite orbit, using the GPS for the
satellite navigation. Because the output of the GPS system is usually in WGS 84

coordinates, the WGS 84 has been included in the standardized set for the satellite

navigation analysis.

The rotational matrices from C-0 to C-1 and from C-1 to C-2 are defined by the

following equations:

1 00
c°=10 1 0 2.11)
0 01
—cosi,,sinQ, cosi,cosQ, sini,
°’C' =| sini,sinQ,, —sini, cosQ, cosi, (2.12)

cos§2, sinQ,, 0

where
i,.. Instantaneous inclination of GP-B satellite's orbit

lyer
Q,.: instantaneous right ascension of GP-B satellite's orbit
The rotational matrix from C-0 to C-1 is an identity matrix since the frames have the
same orientation but different origins. The C-3 frame (WGS 84) is fixed to the Earth, and
the transformation from C-1 to C-3 is completed by the rotation about the Earth spin axis
at the Earth’s spin rate wg. The exact rotational matrix from C-1 to C-3 (WGS 84) can

be found in the DMA Technical Report DMA TR 8350.2 (Ref. 30).
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2.4 Frame Definition Summary

The preceding sections defined a total of fifteen frames, including three primary
frames and twelve secondary frames. The frames are divided into three categories,
Categories A, B, and C. Each category is assigned one primary frame, which serves as a
reference frame for its secondary frames. The conversions among the frames are defined
by linear translation of the origin and axis rotation through rotational matrices.
Figure 2.6 summarizes the relations among the frames. Each coordinate frame is
indicated by a name and an L.D. number in parentheses. The arrows connecting the
frames indicate the relations among the frames. Two frames connected by an arrow are
related by linear translation of the origin and axis rotation through a rotational matrix.
The rotational matrices are defined in the direction of the arrows. The elements of the

rotational matrices are indicated beside the arrows.

The coordinate frames defined in this chapter serve as the reference frames upon
which the truth models are developed. The clearly defined rotational matrices among the
coordinate frames eliminate the error during the derivation of measurement equations in

Chapter 4.
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Category A Category C

Proper motion of Rigel I3x3

Deflection of starlight
Annual parallax

Annual aberration

Category B

Orbital parallax
Refraction of starlight

I x3

q’null q’mass

0
Orbital aberration mass

"’m ass

Command roll .

Figure 2.6  Hierarchical diagram of standardized coordinate frames. Each arrow
connecting two frames indicates the dependency. The frame that the
arrow points to is defined with respect to the other frame.
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CHAPTER 3. RANDOM SEQUENCE GENERATION

3.1 Introduction

The science signal from the SQUID magnetometer or the telescope signal from
the pointing controller includes deterministic and random signals. Deterministic signals
include telescope observational errors such as parallax, aberration, and deflection of
starlight. They can be modeled by an explicit function of time and/or spacz. Random
signals, on the other hand, cannot be modeled by an explicit function but only specified
by an expected value such as a root mean square (RMS) value. Such signals include
satellite pointing error, satellite roll phase error, SQUID readout noise, scale factor drift,
structural creeping, and so on. In order to simulate the science signal for the niobium
bird experiment, random signals had to be generated by the computer programs. I wrote

several C programs to simulate the three basic random sequences. This chapter describes
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these random sequence generators and verifies them both in the time domain and in the

frequency domain.

Three kinds of random signals are generated from a uniformly distributed random
sequence between zero and one that is readily available in any computer language. First,
a Gaussian random sequence is generated from the uniformly distributed random
sequence. Second, a Wiener random sequence, based on the Gaussian random sequence,
is generated. And last, a band-limited Wiener random sequence, based on the Wiener

random sequence, is generated.

Regarding the notation, random process denotes a continuous random variable as
a function of time, and random sequence denotes a group of samples from a continuous
random process. The sampling period is assumed to be At, and the random sequence is

indexed from zero according to the time of sampling.

3.2 Uniformly Distributed Random Sequence (UDRS)

Let us define the uniformly distributed random sequence first. It is the most basic
random sequence in the computer environment and a UDRS generator is usually
available as a built-in function in most of the high-level language compilers. The validity
of the computer-generated UDRS depends on the algorithm of the built-in function and
varies from one compiler to another. Verification of the simulated UDRS is especially
important because the other random distributions such as the Gaussian and Wiener
distributions are generated on the basis of the UDRS, . In this section, the UDRS
generator provided by the Sun Sparcstation 330 C compiler is described, and verified in
terms of time and frequency domain properties such as the probability density function

and power spectral density function.
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The conventional notation for a uniformly distributed random sequence between

zero and one is
u, =U(0,1) (i=0,1,...) (3.1

This equation denotes the fact that u; (i=0,1,...) has a probability density function (PDF)

given by the following equation:

0<u<li

1
fo(u)= {0 (3.2)

otherwise

The mean value m; and variance 6; of u; (i=0,1,...) are given as

% (i=0,1,...) 3.3)

o’ E(uf)—[E(u,.)f:l—lz- (i=0,1,...) (3.4)

where
m;: mean value of a UDRS
o;: standard deviation of a UDRS

Other useful properties of u; (i=0,1,...) can be expressed in terms of the
autocorrelation function, or equivalently, the power spectral density function. In order to
derive the autocorrelation function of the UDRS, y; (i=0,1,...) has to be divided into a

deterministic bias m; and a random offset u; as follows:
U, =m; + ou, (i=0,1,...) 3.5)

where
ou;: zero mean random offset

then

54—



,%) (i=0,1,...) (3.6)

E(du,)=0 (i=0.1,...) (3.7

If we assume that the random sequence du; (i=0,1,...) is serially independent, the

autocorrelation function of du; is given as

E(8u,6u,) = 5

= (ij=0,1,...) (3.8)

By using this independent property of du; (i=0,1,...), we can calculate the autocorrelation

function of u; (i=0,1,...) as follows:

Ry (i,) = E(ui;) = E[ m, + 8, ), + &)

=mm; + m,E(u,) +m,.E(5uj) + E(5u,-6uj) (3.9)
11, . L
—Z+1—2-6.j =R, (k) (k=j—i and i,j=0,1,...)

The constant term indicates the complete correlation of u; (i=0,1,...) through the bias m;,
and the impulse term indicates the whiteness, or independence, of random offset du;
around the bias. Since the autocorrelation function Ry(i,j) is expressed as a function of

k=j-1i, the uniformly distributed random sequence u; (i=0,1,...) is wide-sense

stationary (WSS).

Let us now derive the power spectral density function of u; (i=0,1,...) from the
autocorrelation function Ry(k) (k=0,%1,...), assuming that the random sequence
u; (i=0,1,...,%0) consists of samples from a uniformly distributed random process u(t) at a
sampling period of At. Then the power spectral density function of the original random
process u(t) can be obtained as a discrete Fourier transform of the autocorrelation

function Ry(k) (k=0,%1,...,+00) as follows:
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S,(f)= 3. R, (K)exp(- j27if)
=== (=fv < f < fy)3.10)

where

8(f): impulse function
fn: Nyquist frequency
The valid frequency range of Sy(f) is determined by the Nyquist frequency fy of
sampling. If we compare Equation 3.10 to Equation 3.9, the correlated term is now
expressed as an impulse function and the independent term as a constant term in the
frequency domain. This power spectral density function Sy(f) is used to check the

validity of the computer-generated UDRS presented in the next section.

3.2.1 neration of DR

The uniformly distributed random sequence analyzed above was generated by a
built-in function provided by the SunOS (Version 4.1) C compiler on a Sparcstation 330.

This section briefly describes this built-in function.

Although Equation 3.8 assumes that the random offset Su; around the bias m; is
independent, this assumption is not always true when the random variables u; (i=0,1,...)
are generated by a computer. The randomization algorithm often employs a feedback
random number generator and has a period as a result. I used the C language random
number generator random() that is provided by the C compiler on Sun Sparcstation 330
with SunOS Version 4.1. Random() uses a nonlinear additive feedback random number
generator and returns a uniformly distributed random number between zero and (23! - 1).
Thus, the uniformly distributed random sequence u; (i=0,1,...) between zero and one can

be obtained as follows:
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i

u, = 2311_ -random( ) (i=0,1,...) 3.11)

The C compiler manual claims that this generator has a period of 16(23! - 1), which is
adequately long for the GP-B simulation because the number of measurements is about
222 to0 223 for the two-year mission, but the periodicity of this random sequence generator

has to be tested to verify the claim.

Another feature of the randomization utility provided by the SunOS C compiler is
its ability to accept a user-defined seed!. In addition to random(), another built-in
function, srandom(i...,), is available from the C compiler. It takes an integer seed as an
argument for the randomization process performed by random(). After srandom(i.,.,)
sets the seed, a series of successive calls of random() generates a random sequence.
Since the seed determines the starting value of a random sequence, identical random
sequences will be generated if the same seed is used every time the sequence is restarted.
Thus, the seed itself has to be chosen randomly if we want a different random sequence to
be generated every time the program is restarted. The following is the algorithm I used to

generate a random seed for random():

t,, = elapsed time in second from 00:00 GMT, January 1, 1970

% (3.12)
= tscc + 10 tyscc
where
t.. = integer second of t,,
Lyse. = integer microsecond fraction of L,
then
iseed = tscc % t;tscc (3~13)

1 A seed is an integer value that is used as a starting value for the random sequence generated by
random(). If a seed is not specified by a user, the compiler assumes the default seed, i.e., one.
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Two integer values, t,.. and t,.., are available from the UNIX system call gettimeofday().
For example, if the random sequence is initiated at 21:51:23 PST on September 1992, the

seed is determined as follows:

From gettimeofday(),

t.. = 716183482 (second)
= 530000 (microsecond)

tu sec
thus

I.q = 716183482 % 530000

seed

=153482

According to this method, the seed is determined by the time of the program execution,
which is arbitrary. The actual program list of this generator is given in the appendix and

the validity of this method is verified in the next section.
3.2.2 Verification of Simulated UDRSs

The validity of a simulated random sequence can be checked in two ways. The
first method uses a histogram and the second uses power spectral density estimation. The
histogram method is useful when the probability distribution function (PDF) of a
simulated random sequence has to be tested. The percentage of occurrence in a specific
histogram bin should follow the integral of the PDF over the bin. If we assume that
u; (i=0,1,...,N-1) has a PDF fy(u), then the occurrence in a specific bin [a,b] should

follow the integral of the PDF in the following way:

(Number of occurence of u; in bin [a,b]
N

). [ £ ()au (3.14)

where
N: number of samples
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Figure 3.1 Histogram of a simulated UDRS (16384 samples).

Figure 3.1 shows a histogram of 16,384 samples created by the generator presented in the
preceding section. The histogram indicates that the simulated UDRS is uniformly

distributed between zero and one and has a valid PDF.

The second method uses the power spectral density (PSD) estimation called the
periodogram. This method is useful when frequency domain properties such as
whiteness and power distribution have to be tested. Let us assume that the random
process u(t) is sampled at time interval At to create the random sequence u; (i=0,1,...,N—
1). The sampled random sequence u; (i=0,1,...,N-1) is then divided into L segments
without an overlap, and each segment has M data points where N=LM [see Figure 3.2].
The power spectral density function Sy(f) of the original random process u(t) can be
estimated from the L segments of sampled data using a modified periodogram (Ref. 31).

This algorithm is summarized in Table 3.1. The mean and variance of the averaged

periodogram §U (f) were thoroughly investigated by Oppenheim & Schafer (Ref. 32) and
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Figure 3.2 Data segmentation for a modified periodogram.

Shanmugan & Breipohl (Ref. 33). The estimation bias and the variance approach zero as

the number of samples N — oo, Thus, §U(f ) is an asymptotically unbiased and consistent

estimator of Sy(f).

During the data segmentation (Equation 3.15), the dc component, that is, the bias
of the segment was subtracted from the data in order to avoid deformation of the PSD
estimate caused by spectral leakage. Spectral leakage is characterized as smeared edges
of a true PSD. Assume that a periodogram of a constant signal is calculated from the N
points of sampled data. If N is infinite, the periodogram shows an impulse function at the
origin. If N is finite as in realistic cases, the periodogram shows a blurred peak around
the origin that often conceals the true PSD at the higher frequencies. When a simulated
random sequence is to be verified by the PSD over a wide range of frequency, the
dc component often deforms the higher frequency estimate and should be subtracted.
Also, the dc component can be tested separately by taking an average value of the random

sequence.

The modified periodogram (Equation 3.20) is provided by MATLAB as the
spectrum function. This function requires M to be a power of two in order to use the FFT
algorithm and has a scaling error by a factor of the sampling period At. To correct the
error, the solution by spectrum has to be multiplied by At. Spectrum also does not correct

for the noise power leakage caused by the side lobes of the Hanning window. To correct
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Figure 3.3 Predicted vs. estimated power spectral density of a UDRS. Solid line:
predicted PSD, circles: estimated PSD of UDRS.

for the leakage, the solution by spectrum has to be divided by 1.5 [see Table 3.1].
Figure 3.3 shows the predicted PSD function of u(t) (Equation 3.10) and the estimated
PSD by spectrum based on u; (i=0,...,16383) with M=512. Again, the dc component of
u; was subtracted from the estimate to avoid deformation caused by the spectral leakage.

The flatness of the estimated PSD indicates that the random offset du; around the bias is

independent, or white.

From the two tests given in this section, the uniformly distributed random number
generator (Equation 3.11) was verified to have a uniform distribution between [0,1] and
an independent offset around the bias. The other random distributions, such as the
Gaussian, Wiener and band-limited Wiener random sequences, are generated based on

u; (i=0,1,...) in Sections 3.3, 3.4 and 3.5.
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Table3.1 PSD Estimation by Modified Periodogram

Data segment:
ol =M(I-1)+k
u(k)=u, ——Zu k=0,...M-1| (3.15)
I=1...,L
Hanning window:
27tk
h, (k) = O.S—O.SCosM_1 k=0,...M-1 (3.16)
0 otherwise

Weighted samples in the I-th segment:

x,(k)=h,(k)u,(k) (k=0,...M-1) (3.17)

Discrete Fourier transform of x,(k):
M-1
)= Y, x,(k)exp(~j2mkf) (I=1,...L)  (3.18)
k=0

where ves
M M M
Modified periodogram? (two-sided) of the I-th segment:
S,(f.0)= —A’——|U ([ (3.19a)
1 5[ Yk, 2(k)}
or one-sided periodogram:
A 24t
G, (f.l) =———U.(F)f (3.19b)
1.5[2 h,}(k)]
k=0
Averaged periodogram3 (two-sided) over L segments:
A 1< 2
So(f) =7 XSu(FD) (3.20a)
1=
or one-sided averaged periadogram
Gy(f) ——ZG (f.1) (3.20b)
2 The factor of 1/1.5 corrects the noise power leakage caused by the side lobes of the Hanning
window. This correction is necessary in the case of analyzing broad-band noise power (Ref. 59, 60).
3 This modified periodogram is a real, even, and non-negative function that satisfies the conditions

of areal signal PSD function.
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3.3 Gaussian Random Sequence (GRS)

The Gaussian random sequence is the most versatile random sequence in
engineering applications because of the central limit theorem?. This section describes the
generation of an independent Gaussian random sequence based on the uniformly
distributed random sequence developed in Section 3.2. The conventional notation for the

Gaussian random sequence with a zero mean and a unity standard deviation is as follows:
n; = N(0,1) (i=0,1,...) (3.21)

This equation is equivalent to the fact that n; (i=0,1,...) has a PDF given by the equation

Foln) = ﬁexp(—%} (3.22)

If we assume the independence or whiteness’ of the Gaussian random sequence

n; (i=0,1,...), then the autocorrelation function is given as follows:
Ry (k)= E(n‘.nj) = c‘)’,7 (k=j-iand ij=01,...) (3.23)

where

8;: Kronecker delta function
Let us assume that n; (i=0,1,...,00) are samples from a continuous random process n(t);
then the PSD function of n(t) can be obtained as a discrete Fourier transform of the

autocorrelation function as follows:

4 The central limit theorem is defined as follows. Let X}, X,,... be a sequence of independent and
identically distributed random variables each having mean . and variance 62. Then the distribution of
X+ -+X,—-nu

oNn
tends to the standard normal (Gaussian) as 1 — oo (Ref. 34).
5 Gaussian distribution does not necessarily indicate that the Gaussian random sequence is

independent. The Gaussian random sequence is independent, or white, if the covariance matrix of joint
Gaussian distribution function is diagonal.
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This PSD function is used to test the spectral composition of the simulated Gaussian

random sequence presented in the next section.

3.3.1 Generation of a GRS

Two methods of generating a GRS from a uniformly distributed random sequence
y; (i=0,1,...) between zero and one are presented in this section . The first method uses
the central limit theorem, which states that the sum of any independent, identically
distributed random sequence approaches the Gaussian distribution as the number of
samples increases. The following equation generates an approximated GRS by adding

twelve uniformly distributed random numbers.

n=Yu -6 (i=0,1,...) (3.25)

where
u;: uniformly distributed random sequence between zero and one
n;: Gaussian random sequence with zero mean and unity variance
The mean value of this model is zero and the standard deviation is one if the random
variables u; (j=0,...,11) are independent, that is, if E(uju;)=0 for i#j. The advantage of
this method is its simplicity and the disadvantage is its inability to provide any number

greater than 6 or less than —6.

The second method uses the transformation of random variables. Assume that

two random variables x; and x; have a joint distribution functionfy y (x,.x,). Then the

transformation, y; = g1(x1, X2) and y = go(x1, X3), creates two random variables y; and
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y2 with a joint distribution function fy y (y.,¥,). This distribution function is related to

the original distribution function in the following way:

dg, Jg B
ox, Ox,
dg, 9,
ox, o,

Fra,(Vo22) = Frx, (%1%, (3.26)

The second algorithm uses this transformation property and generates two jointly
Gaussian random variables n; and n; from two uniformly distributed random variables u;

and u; by the following transformation:

n, = +[-2logu, cos2mu,

n, =+/-2logu, sin2mu,

3.27)

where
u =U(0,1)

u, =U(0,1)

The proof of this algorithm can be found in Ross (Ref. 34). In contrast to the first
method, this method can provide two Gaussian random variables that range from —oo to oo
based on only two uniformly distributed random variables. A disadvantage is that this
method is more prone to a correlated random number generator because the central limit

theorem cannot be applied. Both methods presented above are tested in the next section.

3.3.2  Verification of Simulate S

The Gaussian random sequences generated by the two methods presented in the
preceding section can be tested in terms of the histogram and the power spectral density.
Figure 3.4 (a) and (b) show the histogram of 16,384 samples created by both methods.
The histogram distribution of the simulated GRS follows the ideal Gaussian distribution

for both methods. Even though both histograms match the ideal PDF very well, the range
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Figure 3.4 Histogram of a GRS generated by two methods.

of the GRS generated by the first method is only about 87% of that of the second method,
which reflects the inability of the first method to provide any number greater than 6 or

less than —6.

Let us now test the simulated GRS in terms of the PSD function. Assume that a
Gaussian random process n(t) is sampled at At=1 to create a Gaussian random sequence
n; (i=0,1,...). The PSD function Sy(f) of n(t) is then given by Equation 3.24.
Alternatively, Sn(f) can be estimated from the sampled sequence n; (i=0,...,N-1) by the
modified periodogram. Figure 3.5 compares the predicted PSD and the estimated PSD
based on the simulated GRS with N=16384 and M=512. The estimated PSD matches the
predicted PSD and verifies the whiteness of the simulated random sequence

n; (i=0,1,...,16383) for both methods.

With these two tests, I verified that the Gaussian random sequences generated by
Equations 3.25 and 3.27 have a valid PDF and a valid PSD of the GRS. The second
method (Equation 3.27) was used in the simulation program gpb.c because it provides a

wider random number range than the first method (Equation 3.25). Section 3.4 explains
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(b) PSD of a GRS generated by method 2.

Figure 3.5  Predicted vs. estimated PSD of a GRS generated by two methods. Solid
line: predicted PSD, circles: estimated PSD.

the generation of a Wiener random sequence based on the GRS generated by the second

method.

3.4 Wiener Random Sequence (WRS)

A Wiener random sequence is often called random walk in analogy to the path of
a drunk person trying to walk a straight line: the direction and length of his next step

cannot be predicted from his current position. This analogy is useful for modeling a
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random signal that drifts away from an original value. This section describes a method
used to generate a Wiener random sequence and verifies that method in the time and

frequency domains.

In order to describe the Wiener random sequence in detail, it is necessary to first
define the Wiener random process. It is a continuous random process with an
independent increment that has a Gaussian distribution with a zero mean and a covariance
proportional to time t. The definition is given by the conventional notation as

w(0)=0

(3.28)
w(t) = N(0,a,¢)

where
a,:. covariance coefficient of a WRS

The amount of increment w(t)-w(t') also has a Gaussian distribution with a zero mean and

a covariance proportional to (t-t') that can be expressed as
w(t)-w(t')=N(0,a, (t—¢)) fort>t20 (3.29)

These properties indicate that the Wiener process is both a nonstationary Markov and a
Martingale process. Since the Wiener process is nonstationary, the autocorrelation
function cannot be expressed as a function of T=t-t', but rather as a function of t and t', as

follows:
R, (t,t') = a, min(t,t') fort,t'20 (3.30)

The continuous Wiener random process is discretized by the sampling period At;
the next section presents a computer algorithm for generating the Wiener random

sequence.
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4.1 neration WR

If a Wiener random process is sampled at an interval At, it becomes a Wiener
random sequence, or a random walk. A difference equation for the Wiener random
sequence can be derived using the second property of the Wiener process

(Equation 3.29). Assuming that the sampling period is At, the difference equation is

given as
w, =0
(k=12,...) 331
W, =W, ++/0, At
where
n, = N(0,1) (k=12,...)

This difference equation® can be solved explicitly, and wy can be expressed as a function

of n; (/=1,...,k) as follows:

k

w, = e, A Y n, (k=12,...) (3.32)

1=}

This equation indicates that wy is a Gaussian random variable because it is expressed as a
linear combination of jointly Gaussian random variables n; (/=1,...,k). The mean value
and the covariance of wy can be calculated from Equation 3.32 under the assumption of

Equation 3.23 and are given in the conventional expression

w, =0
(k=1.2,...) (3.33)
w, = N(0,, (kAt))
6 The index of an input Gaussian random variable is equal to that of the output Wiener random

variable. This difference equation is not in a conventional discrete form but is acceptable for this case
because the input Gaussian sequence is independent and the index is irrelevant.
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This equation is consistent with the continuous Wiener process (Equation 3.28) evaluated

at t=kAt.

In addition to the time domain properties given above, the frequency domain
property, that is, the power spectral density, becomes important when a simulated random
sequence has to be verified. The PSD of w; (i=1,...) can be predicted from that of
n; (i=1,...) and the transfer function H(z), which can be obtained from the z-transform of
the difference equation (Equation 3.31) as follows:

W(z) _
_N(z) = H(z) (3.34)
where

o, At
1-z"

H(z)=
W(z)=Z[w,]
N(z)=Z]n,]

Given the PSD of n; (i=1,...) (Equation 3.24) and the transfer function H(z), the PSD of

w; (i=1,...) is predicted thus

SW (f) = IH(Z)I:::exp(prg'At) SN (f)

o, At
2(1 - cos2fAr)

(0<f<fy) 335

This PSD indicates that the crossover frequency fy is determined by a.,, and At as follows:
f.= Lcos-‘(l - -"iw—A-’-) (3.36)
2n 2

where
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Figure 3.6  Predicted vs. estimated PSD of a WRS (At=10 seconds, o,,=0.001).

Solid line: predicted PSD, circles: estimated PSD, f,=crossover
frequency, fy=Nyquist frequency.
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For At=10 seconds and ay=0.001, the cross-over frequency is 1.6e-3 Hz.

A WRS was generated by a C program using the difference equation
(Equation 3.31) based on the GRS simulated in the previous section. The predicted
covariance and the PSD of w; (i=1,...) (Equations 3.33 and 3.35, respectively) were used

to check the validity of the simulated WRS; the results are presented in the next section.

3.4.2 Verification of Simulated WRSs

I tested the WRS generated by the difference equation (Equation 3.31) based on

the simulated GRS in terms of the power spectral density. Figure 3.6 compares the
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Figure 3.7  Time history of Wiener random sequences (10 samples).

predicted PSD (Equation 3.35) with the PSD estimated by the periodogram based on
16,384 points of the simulated WRS for At=10 seconds and o,=0.001. The predicted
PSD and the estimated PSD match very closely; thus, the simulated Wiener sequence has

a valid frequency composition.

I also tested the simulated WRS in the time domain. Figure 3.7 shows the time
history of 10 different simulated WRSs with predicted one-sigma envelopes given by

t.Jo,t. About 90% of the random sequences stay inside of the predicted envelopes,

which verifies that the simulated WRS has a valid covariance.

These two tests prove that the random sequence simulated by the difference
equation (Equation 3.31) has valid WRS time and frequency properties. Another class of
random sequence, a band-limited Wiener random sequence, constructed on the basis of

the WRS developed above, is introduced in the next section.
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3.5 Band-Limited Wiener Random Sequence (BLWRS)

The time-varying covariance of the Wiener random sequence is useful when a
plant with a random drift has to be simulated. In fact, Wiener derived the Wiener process
to model the Brownian motion of a small particle in 1923. Another famous application of
the Wiener process is the thermal noise analysis in electrical circuits. As for the GP-B
program, random drifts can be found in the proper motion of Rigel, sensor scale factor
drifting, sensor bias drifting, structural creeping, and so on. These drift terms are usually
band-limited to very slow components with time constants of hours to months.
Unfortunately, the Wiener process itself has undesirable high-frequency components. As
shown in Figure 3.6, the crossover frequency of the WRS with At=10 seconds and
o,=0.001 is 1.6 mHz, which is equivalent to a time constant of about 10 minutes. This
means that any frequency components slower than 1.6 mHz have gain of more than one.
Also, the attenuation ratio of the higher frequencies is only —40 dB/decade. This weak
attenuation of the higher frequency components becomes a problem when a slowly
varying term such as the structural creeping of the satellite body has to be modeled. The
other problem with the WRS is that it does not allow one to choose the crossover
frequency. As shown in Equation 3.36, the crossover frequency f, is determined by the
sampling frequency and the covariance coefficient o, of the WRS. Thus, f, is not an
independent variable. I therefore constructed a band-limited Wiener random sequence in
order to overcome the limitation of the WRS. The following sections describe the
band-limited Wiener random sequence, which provides a better attenuation of the higher

frequency components and the flexibility of allowing one to choose the crossover

frequency.
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.1 neration of a BLWR

The band-limited Wiener random sequence can be generated by running the

Wiener random sequence through a first-order digital filter L(z) given as follows:

V(z) _
ek L(z) (3.37)

where

a —exp( At)
L= 7
TC

l1-a
Lz)= "k
-a,z

The difference equation corresponding to this transfer function is given as follows:

Vo =0
(k=12,...) (3.38)
ve =ay,, +(1-a,)w,

This difference equation can be solved explicitly in terms of wy as follows:
k
ve=(1-a,)) a"w, (k=01,...) (3.39)

m=0

If we substitute the explicit expression for wy (Equation 3.32), vy can be expressed in

terms of the Gaussian random sequence n; (/=1,...) as follows:

k

v =, At Y (1-af™ ), (k=12,..) (3.40)

I=1

Again, under the assumption of Equation 3.23, the mean and the covariance of

vk (k=1,...) can be calculated thus:
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Figure 3.8 Covariance coefficient function of a BLWRS.
E(v,)=0
(k=12,...) (3.41)

E(v;) = a,Atkf,(a,.k)
where

aL(l—a,'f)
(1-a})k

foag.k)=1- (2+a, -a}")

As shown by Equation 3.41, the covariance of the BLWRS is not equal to that of the
WRS but is modulated by the covariance coefficient function fy(a;,k). Figure 3.8 shows
fw(aL,k) plotted as a function of time for various time constants T, where t=kAt and
At=10 seconds. For T.=2 months, the predicted covariance of the BLWRS reaches 75%
of that of the WRS after one year. Figure 3.9 shows f,,(a;,k) as a function of the time
constant T, after a one-year simulation with At=10 seconds. As the time constant T.

increases, the covariance coefficient function after one year decreases from one toward
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Figure 3.9  Covariance coefficient function vs. T, after one year (At=10 seconds).

zero. This predicted covariance (Equation 3.41) is used to verify the simulated BLWRS

in Section 3.5.2.

Another approach to analyzing the random sequence uses the power spectral
density. The PSD function of the BLWRS can be predicted by the transfer functions L(z)
and H(z). If we substitute Equation 3.34 into Equation 3.37, we obtain the transfer

function from N(z) to V(z) as follows:

V@) _
NG L(z)H(z) (3.42)

Thus, the PSD function of vy (k=1,...) can be derived as follows:

=|LH(@), ey 2y S (F)

o, AM(1-a,) (3.43)

" 2(1—cos2afAr){1+a? - 24, cos2nfAt)
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Figure 3.10 Crossover frequency vs. 1/T, of a BLWRS with At=10 seconds,
a,=0.001.

The slope of the PSD curve is —-80 dB/decade for frequencies higher than the cut-off
frequency, and the BLWRS has better attenuation of the undesirable high frequencies
than the WRS. The crossover frequency of the BLWRS can be calculated from the

predicted PSD as follows:

f.= if—cos‘l {—l—[(l + aL)2 -(1-q, )\/(1 -q )2 + 4awAtaLJ} (3.44)

27 4a,

where
S,(f),.,. =1
Figure 3.10 shows f; as a function of 1/T, with At=10 seconds and o, =0.001. In contrast

to the crossover frequency of the WRS (Equation 3.36), that of the BLWRS can be
chosen arbitrarily by choosing the time constant T., even if the other parameters At and

o, are unchanged. This additional degree of freedom with the BLWRS is useful when
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Figure 3.11 Predicted vs. estimated PSD of a WRS and a BLWRS. Solid lines:
predicted PSD, x line: estimated PSD of a WRS, o line: estimated PSD
of a BLWRS (T.=100 seconds), f,=crossover frequency, T.=cutoff time

constant.

simulating a Wiener process with a slower crossover frequency. The predicted PSD

(Equation 3.43) is used in the next section to verify the simulated BLWRS.

3.5.2 Verification of Simulated BLWRSs

The band-limited Wiener random sequence simulated in the preceding section is
verified in terms of the power spectral density and the time history. Figure 3.11
compares the predicted PSD with the estimated PSD from wy (k=0,...,16383) and
vk (k=0,...,16383) using the periodogram. The predicted and the estimated PSD curves
match very closely, showing that the simulated BLWRS has a valid frequency

composition. Figure 3.11 also shows that the BLWRS has a better attenuation of the
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Figure 3.12 Time history of band-limited Wiener random sequence (10 samples).
T.=100 seconds, At=10 seconds, o.,=0.001.

higher frequency components than the WRS and that the crossover frequency of the

BLWRS is slower than that of the WRS.

Figure 3.12 shows the time history of ten different samples of vy (k=0,...,16383)

with At=10 seconds, a.,,=0.001, and T.=100 seconds. About 90% of the simulated
sequence stays inside of the predicted one-sigma envelopes given by :t\/awt f,(a..k).

Thus, Figure 3.12 indicates that the simulated BLWRS has a valid covariance.

These two tests verify that the BLWRS generated by Equation 3.38 has the

following properties:

» The BLWRS has a zero mean and a covariance that is proportional to time t
and is modulated by the covariance coefficient function;
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* The frequency components higher than 1/T, are attenuated at
—80 dB/decade;

+ The crossover frequency f, is determined by three parameters, that is, the
sampling period At, covariance coefficient o, and time constant T., which
provides a greater degree of freedom in comparison to the WRS.

3.6 Summary of Random Sequence Simulation

Three different classes of random sequence based on the uniformly distributed

random sequence were developed: the Gaussian random sequence, Wiener random

sequence, and band-limited Wiener random sequence. A computer algorithm for each

random sequence was derived and verified in both the time and frequency domains. The

properties of each random sequence are summarized in Table 3.2. These random

sequences are used in the truth model to simulate random signals such as satellite

pointing error, satellite roll phase error, structural creeping, sensor noise, and the proper

motion of Rigel. Chapter 4 constructs the truth model that simulates the GP-B science

signal including deterministic signals such as the aberration of starlight as well as random

signals based on the random number generator developed in this chapter.

‘Table3.2  Advantages and Disadvantages of the Three Random Sequences
Class Notation Advantages Disadvantages
Gaussian N (0 0) Universally applicable Unsuitable for
’ because of the central band-limited random
(Equation 3.21) limit theorem signals
Wiener Suitable for time-variant Weak attenuation of high-
N(O’ akat) random drift frequency components
(Equation 3.33)
Band-limited Strong attenuation of Modulated covariance as a
Wiener N(O’ a.kAlf, (aL ’k)) high-frequency function of crossover
; components and frequency
(Equation 3.41) flexibility for choosing
crossover frequency
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CHAPTER 4. TRUTH MODELING

4.1 Introduction

The niobium bird experiment (NbBird) consists of three vital parts: (1) truth
modeling, (2) filter synthesis, and (3) experimental verification. The construction of the
truth model was a crucial part of the niobium bird experiment in the sense that it would
provide a standard for the filter verification process. The purpose of the truth model is to
simulate the science gyroscope signal and the telescope signal, which in turn become the
inputs to the data reduction scheme. The data reduction scheme processes the simulated
gyroscope signal as if it were from the science mission. The results of the data reduction
scheme, the estimates of the gyroscope precession rates, are then compared with the true
values stored in the truth model to verify the estimation accuracy of data reduction

scheme.
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Various components of the science signal such as parallax, aberration, and
deflection of starlight were analyzed and modeled by R. Vassar (Ref. 7), T. G. Duhamel
(Ref. 18), R. S. DiEsposti (Ref. 19), and X. Qin (Ref. 20) in conjunction with the data
reduction scheme development, but the niobium bird experiment was the first attempt to
integrate those models into one computer program to generate accurate gyro! and
telescope signals. 1 wrote the truth model gpb.c in Clanguage on the
Sun Sparcstation 330. Although I first wrote the program in Pascal on the IBM-PC XT, I

converted it into C on the Sparcstation to attain the following benefits:

* Greater speed with the Sun Sparcstation 330 and SunOS C compiler;
* Better optimization with the SunOS C compiler;
+ The flexibility of C because of such aspects as the structure and the pointer;

+ The prospect of converting to C++.

Once gpb.c is compiled into an executable file named gpb, one can run the
program under SunOS (Version 4.0) which is the UNIX-type operating system provided
on Sun Sparcstations. Appendix A explains how to use gpb and includes a partial list of

programs.

This chapter describes in detail the models used in gpb.c, which are based on the
standardized coordinate frames developed in Chapter 2 and the random number

generators developed in Chapter 3.

4.2 Truth Models

This section defines and explains a model for each gyro signal component. The
modeling of each component is based on one of the coordinate frames defined in

Chapter 2. After all the models are defined, the science signal equation is derived for the

1 Hereafter, the terms, gyro and gyroscope, are used interchangeably.
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A-0 frame. All the models listed here are consistent with the truth model program gpb.c,

which is available on request.

4.2.1 Standard Units

In addition to defining a standardized set of coordinate frames, I defined standard
units for the niobium bird truth models in order to avoid combining different models that
are expressed in different units. For example, the position of the Earth with respect to the
Sun is best described in terms of astronomical units (AUs), while the position of the
satellite with respect to the Earth is best described in terms of kilometers. Regarding
units of time, relativistic precession rates are best described in terms of arcseconds per
year, the roll phase drift in terms of arcseconds per second. Even though each model uses
the units best suited to it, the output from each model is converted into standard SI units
for consistency. Table 4.1 shows the standard units for the niobium bird truth models.
Note that angles are measured in radians instead of arcseconds. Although many error
analyses have been conducted using arcseconds, for the niobium bird truth models, the
standard unit for measuring angles is the radian because the truth modeling involves an
intensive use of trigonometric functions. Table 4.2 shows the conversion factors among

different units that are used in gpb.c.

Table4.1 Standard SI Units for the Niobium Bird Truth Models

Parameter Unit
Time Seconds
Length Meters
Angle Radians
Velocity Meters per second
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Table4.2 Conversion Factors Among Units
Conversion from To Factor
Days Seconds 24 %3600
Years Seconds 365.25 %24 x 3600
AUs Meters 1.49597870e11
Arcseconds Radians —r
180 %3600

4.2.2 Models of Celestial Motion

Since the pointing control of the GP-B satellite employs the telescope as a
primary sensor, and the SQUID pickup loop is body-fixed to the telescope axis, the
direction of the gyro spin axis is measured with respect to the telescope axis. As a result,
the gyro signal includes observational corrections that are inherent in optical observations
of the celestial bodies, such as parallax, aberration, deflection of starlight, and proper
motion of the guide star. Except for the proper motion, these observational corrections
are each a function of the position and velocity of the observer with respect to the

reference point, which, in this case, is the Sun.

In order to model the observational corrections, I had to first model the motion of
the observer, that is, the GP-B satellite, with respect to the Sun. The observer's motion
was divided into annual and orbital motion. Annual motion is the motion of the Earth
with respect to the Sun; orbital motion is the motion of the satellite with respect to the

Earth. The models for these two types of motion are presented in the next two sections.
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4.2.2.1 Earth Motion

The motion of the Earth with respect to the Sun was modeled according to the
equations given in Astronomical Almanac (Ref. 35). The set of equations given in
Table 4.3 yields the apparent coordinates of the Earth with respect to the Sun between

1950 and 2050 to a precision of 0.01°.

Precautions have to be taken when this set is used in computer programs. First,
the coordinate frame used for the last set of equations (Equation 4.10), the C-0 frame, has
to be converted to the A-O frame using the rotational matrices given in Chapter 2 because
the measurement equation for the filter development is to be developed in the A-Q frame.
Second, angles are measured in degrees, which have to be converted to radians. Last,

position is measured in AUs, which have to be converted to meters.

The velocity of the Earth with respect to the Sun is obtained by differentiating the
last set of equations (Equation 4.10) in Table 4.3. The velocity components of the Earth
with respect to the Sun in the C-0 frame, in AUs per day, are shown in Table 4.4.
Precautions have to be taken for the velocity terms as well. First, the velocity terms
expressed in the C-0 frame (Equation 4.16) have to be converted into the A-0 frame
through the rotational matrix *°T°. Second, the time derivatives of angles are expressed
in radians per day instead of degrees per day in order to use the derivatives of
trigonometric functions. Last, the velocity terms are expressed in AUs per day, which

have to be converted to meters per second.
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Table4.3 Maodel of Earth's Position with Respect to the Sun

Number of days from J2000.0 (days):
n=—4749.5+ day of year + fraction of day from 0" UT “.1)

Mean longitude of the Sun, corrected for aberration (degrees):
L, =280.460° +0.9856474"n “4.2)

Mean anomaly (degrees):
g =357.528" + 0.9856003" » (4.3)

Ecliptic longitude (degrees):
A =Lg+1.915 sin g +0.020"sin2g (4.4)

Ecliptic latitude (degrees): B.=0 (4.5)

Obliquity of the ecliptic (degrees):
€ =23.439" -0.0000004" 1 (4.6)

Right ascension in the same quadrant as A (degrees):
o =tan" (cosetan 1) 4.7

Declination (degrees): 6 =sin™ (sin esinA ) 4.8)

Distance of the Earth from the Sun (AUs):
r, =1.00014 -0.01671cosg —0.00014cos2g 4.9)

Equatorial rectangular coordinates of the Earth? in the C-0 frame (AUs):
X=-r,CoSA

y =-r, cosEsinA 4.10)

z=-r,sinesinl

2 Equation 4.10 shows the position of the Earth with respect to the Sun, while the Astronomical
Almanac (Ref. 35) gives the position of the Sun with respect to the Earth. Thus, in Equation 4.10, the signs
are positive.

— 86—



Table4.4 Model of Earth's Velocity with Respect to the Sun

Time derivative of the mean longitude of the Sun (radians/day):
Ly = 0.0172027923 4.11)

Time derivative of the mean anomaly (radians/day):
£=0.0172019703 . (4.12)

Time derivative of the ecliptic longitude (radians/day):
A = L, +0.03342306 g cos g +0.00069813g cos2g 4.13)

Time derivative of the obliquity of the ecliptic (radians/day):
£=06.9813170e-9 4.19)

Time derivative of the distance from the Sun to the Earth (AUs/day):
F,. =0.01671gsing +0.00028¢sin2g (4.15)

Velocity components of Earth with respect to the Sun in the C-0 frame

(AUs/day):
X=—F, cosA+r, Asini

y=—F,cos€sinA +r,éEsinesinAd —r, AcosecosA (4.16)

2=—r,singsinA —r, EcosesinAd —r, AsinecosA

4.2.2.2 Satellite Orbital Motion

As described in Section 1.2.2, the nominal orbit for the GP-B program was
determined to be a polar orbit. Table 4.5 lists the nominal orbital elements: altitude,

inclination, eccentricity, and right ascension of the GP-B satellite.
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Table 4.5 Nominal Orbital Elements for the GP-B Satellite

Nominal altitude: P.. = 650km 4.17)
Nominal inclination: i, =90 (4.18)
Nominal eccentricity: e, =0 (4.19)
Nominal right ascension: Q.= (4.20)

The nominal values for the orbital altitude and eccentricity were chosen by
considering the trade-off between a larger precession rate and a smaller atmospheric drag
on the satellite. As indicated by Equation 1.1, a lower altitude results in a larger
relativistic precession rate, and thus a larger signal-to-noise ratio. But it also results in a
larger atmospheric drag, which in turn requires larger thrust to overcome the drag and
reduces the dewar lifetime. The nominal altitude of 650 kilometers was chosen for the
GP-B satellite to balance the larger signal-to-noise ratio and the smaller atmospheric
drag. Similarly, the nominal orbit was designated as circular, because a circular orbit

yields the minimum net atmospheric drag with a constant mean altitude.

Given these nominal orbital elements, the idealized satellite position and velocity
were simulated in the orbital frame C-2 as described in Table 4.6. The orbital initial
phase was chosen so that Rigel will be occulted by the Earth when the experiment is

started. Figure 4.1 shows the nominal orbit, along with the A-O frame3.

3 Note that the origin of A-0 is the barycenter and that of C-2 is the geocenter even though they are
shown together.
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Table 4.6  Nominal Satellite Position and Velocity

Nominal orbital radius (meters):
r.. = Ry +p,, =7021000.7900 4.21)

where
Ry: mean radius of the Earth

Nominal orbital rate (radians/second):

n, = Eo _ 1.07317460376 x 10~ (4.22)

3
ve

where
Ue: gravitational constant of the Earth

Initial phase of the nominal orbit (radians):
0, (t)=7 | 4.23)

where
to: time of mission initialization

Nominal satellite position in the C-2 frame (meters):

r. sin[nve (t-1,)+,(t, )]
= 0 4.24)

ve

2| ecosfn, (t~1,)+ @, (1, ) -

[‘H

]

Nominal satellite velocity in the C-2 frame (meters/second):

n,r, cos[nve (t - tO) + wve (tO )]
ve = 0 (4.25)

2 nt,. Sin[nve (t - tO) + wve (tO )]

i

<

I

@]
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Figure 41 Nominal GP-B satellite orbit.

The satellite orbital elements presented in Table 4.5 provide the nominal values
about which the orbital perturbation is calculated. P. Axelrad (Ref. 9) investigated the
orbital perturbation caused by the Earth's noncentral gravitational field, the gravitational
fields of the Sun and the Moon, the precession of the equinoxes, and the residual drag of
the spacecraft. Axelrad calculated the orbital perturbation of eccentricity, Je,.,
inclination, di,., and right ascension, 8Q,., both for the short term and the long term.
Axelrad also provided the MATLAB file outsim.m, which calculates 8i,. and 8Q,.. The
actual inclination and right ascension corrected for the long-term perturbations are as

follows:
i, =1I,+6i, (4.26)
Q,=9,+6Q, 4.27)

where 6i,. and 8Q,. are calculated by outsim.m. The actual inclination and right

ascension were then substituted into the rotational matrix *C! (Equation 2.12).

Since I did not consider the perturbation of the eccentricity, the eccentricity stays

at the nominal value throughout the simulation. Therefore, the orbit is always circular,
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Figure 4.2 Parallax caused by the position of the Earth with respect to the Sun.

and the nominal position and velocity equations (Equations 4.24 and 4.25) still hold in
the C-2 frame, which is corrected for &i,. and 8Q,.. Similar to the Earth's motion, the
satellite motion has to be expressed in the A-0 frame because the measurement equation
is to be developed in that frame. The rotation is completed through the two rotational

matrices *C' and A°T°,

4223 Parallax of Rigel

The parallax is caused by the position of the observer relative to the Sun (Ref. 36).
As the observer moves away from the line drawn from the Sun to Rigel (the line of sight
to Rigel observed from the Sun), the parallax angle increases as shown in Figure 4.2. The
observational correction caused by the parallax is included in the rotational matrices 'A°

(i=2,...,6) and is represented by the parallax vector €, as described in Section 2.3.1 [see

Table 2.6]. Table 4.7 defines the parallax vector in radians.

The position of the observer is approximated by the position of the Earth, since
the contribution from the position of the observer with respect to the Earth is less than
1072 milliarcsecond for the GP-B orbit at the altitude of 650 kilometers [see Table 4.10].

Note that the equation (Equation 4.28) is expressed in the form of a vector and has to be
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coordinated in the A-O frame. Thus, the position vector of the Earth has to be expressed

in the A-O frame.

Table 4.7 Equation for the Parallax Model

Parallax observational correction (radians):

- T
& » = —E
;.‘
=-
PR 4.28)
=_qf & 4 2
RBS RES
= g2
where
R,
o=
R
o parallax coefficient
R: distance from the Sun to Rigel
R.: astronomical unit (1 AU)
F,.: position vector of the Earth with respect to the Sun

3]

: position vector of the GP-B satellite with respect to the Earth

~

42.24 Aberration

In contrast to the parallax, the aberration is caused by the velocity of the observer
perpendicular to the line of sight to the guide star—Rigel (Ref. 36). The light from the
guide star travels at a speed of light, while the observer itself moves with respect to the
guide star with a finite velocity. Because of this observer motion, an observational

correction called aberration is created in the optical direction of the guide star [see
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Figure4.3  Aberration caused by observer's velocity.

Figure 4.3]. The observational correction caused by the aberration is included in the

rotational matrices ‘A° (i=3,...6) and is represented by the aberration vector €, as
described in Section 2.3.1 [see Table 2.6]. Table 4.8 defines the aberration vector in

radians.

The first term is a sinusoidal component at the annual frequency called annual
aberration. Similarly, the second term is a sinusoidal component at the orbital frequency
and called orbital aberration. The first term has a magnitude of about 20 arcseconds, the
second term about 5 arcseconds for the GP-B orbit [see Table 4.10]. As does the parallax
vector, the aberration vector has to be expressed in the A-0 frame, which implies that the

velocity vectors of the Earth and the satellite have to be expressed in that frame as well.

Duhamel pointed out that the higher order terms of the aberration of starlight in

v/c could be calculated from special relativity and that the second-order term could not
be neglected for this experiment (Ref. 18). Duhamel presented the formula for the

aberration calculated from special relativity as follows:
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Table 4.8 Equation for the Aberration Model

Aberration observational correction (radians):

-V
E,=—
c (4.29)
Ve ¥
=Jes 4 Tve
c ¢
where
c: speed of light in vacuum
V.. velocity vector of the Earth with respect to the Sun
v,.: velocity vector of the GP-B satellite with respect to the Earth
ﬁz 3
48, = fsin 6 - =-5in26 — sin (1 + 2cos’ 6) (4.30)
where

B

af TV
6 = cos ’(————)
cv

]
o<

Duhamel showed that the second term of Equation 4.30 was 0.5 milliarcsecond for the

annual aberration and 0.03 milliarcsecond for the orbital aberration. The second order

term of the annual aberration is larger than the required estimation accuracy and, thus,

cannot be neglected. For the niobium bird experiment, to simplify the equation, this

second-order term was not included in the truth model, but the term has to be corrected

for the actual science mission. Duhamel also suggested that the Earth's velocity could be

obtained by the JPL ephemeris DE96 to a precision of 10 cm per second which

corresponds to an error in aberration of 0.07 milliarcsecond. The model of the Earth's
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Figure 4.4  Deflection of starlight caused by the Sun's gravity. The treatment of the
light as a particle explains only a half of the effect. General relativity
explains the other half.

motion of the niobium bird experiment does not use this precise ephemeris but uses an
approximated model as shown in Section 4.2.2.1. Using the approximate model does not
hinder the main objective of the niobium bird experiment, because the data reduction
scheme can still be verified as long as the truth model provides a realistic reference

against which the estimation results are compared.

4.2.2.5 Deflection of Starlight

The third observational correction, the deflection of starlight, is predicted by the
General Theory of Relativity, as were the geodetic and frame-dragging precessions of
spinning gyros. If we consider the light from the guide star as a traveling particle, we can
say that it undergoes gravitational forces as a point mass [see Figure 4.4]. If the observer
is measuring the optical direction of the guide star from an Earth-orbiting satellite as in
the GP-B program, the observer receives the light after the large masses in the solar

system, such as the Sun, Jupiter, and Saturn, have deflected the trajectory of the light
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particle. This explains only half of the deflection of starlight. General relativity*
explains the other half of the deflection of starlight, which is related to the space
curvature around the Sun. V. A. Brumberg (Ref. 37) predicted the amount of deflection
caused by the solar mass; the equation Brumberg derived is shown in Table 4.9. The
deflection of starlight vector is divided into components of the A-0 frame. Note that the z
component is constant and does not have any effect on the telescope pointing, even

though it is shown along with the x and y components.

Table 4.9 Equation for the Deflection of Starlight Model

Deflection of starlight observational correction (radians):

g = K [z +ﬂx——)J
Fos — (ZAO * res)

F R Fes'on

K—————
Fes Ves : (ZA_? ' res) (4.3 1)

KR res.yAO

Fes _(EAO 'Fes)

es
€s
es

I3

where

coefficient of deflection of starlight
gravitational radius of the Sun
astronomical unit (1 AU)

distance from the Sun to the Earth
: position vector of the Earth with respect to the Sun

‘“8’-’&?5?{

Xa0> Yao> Z40: unit vectors of the A-Q frame

4 L. I. Schiff argued that the deflection of starlight can be explained by special relativity and thus
did not provide proof for general relativity (Ref. 8).
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4.2.26 Proper Motion of Rigel

The last effect, the proper motion of the guide star, is caused by the motion of the
guide star itself with respect to distant galaxies. The proper motion of Rigel was
investigated by J. T. Anderson and C. W. F. Everitt (Ref. 38), and the result was
presented in R. Vassar (Ref. 7). The best estimate they obtained had an uncertainty of
1.7 milliarcseconds per year in the east-west direction and 0.9 milliarcsecond per year in
the north-south direction in rms (16). The proper motion of Rigel over two years can

also be expanded in a Taylor series as follows:

for0<t<2years (4.32)

The first-order term in (t-t,), unfortunately, cannot be distinguished from the relativistic
precession terms by the Kalman filter because the relativistic precession terms are also
linear in time. Thus, the first-order term of Rigel's proper motion has to be calibrated by
a separate measurement or experiment. Since the main focus of the niobium bird
experiment is on the experimental verification of the Kalman filters, the proper motion of

Rigel was not modeled in the simulation program gpb.c.
4.2.2.7 Summary of Observational Corrections

The four observational corrections discussed in the previous section, parallax,
aberration, deflection of starlight, and the proper motion of Rigel, are summarized in
Table 4.10 (Ref. 39), which shows approximate magnitude of each error except the

proper motion.
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Table 4.10 Summary of Observational Corrections

Observational Corrections Magnitude
Annual parallax 0.003 arcsecond
Orbital parallax 0.002 milliarcsecond
Annual aberration 20.7 arcseconds
Orbital aberration 5.4 arcseconds
Deflection of starlight caused by the Sun 0.014 arcsecond
Deflection of starlight caused by Jupiter> 0.004 milliarcsecond

4.2.3 Structural Model of SQUID Readout System

The structural models of the readout apparatus such as the quartz housings, the
quartz block, and the SQUID readout loops, are developed in this section. Since the
accuracy requirement on the precession estimate is on the order of 0.1 milliarcsecond per
year, structural misalignment and creeping play important parts in the error budget. The
following sections describe the models for a stationary misalignment and a time-variant

misalignment of the gyro pickup loops.

4.2.3.1 Misalignment of Gyro Pickup Loop

The nominal alignment of the SQUID pickup loops is defined with respect to the
nominal control frame B-0. For gyros #1 and #2, the nominal pickup loop plane is
parallel to the yz plane of the B-0 frame. Similarly, for gyros #3 and #4, the nominal

pickup loop plane is parallel to the xz plane of the B-0 frame. Any orientation error of

5 The deflection of starlight caused by Jupiter's gravity was estimated by R. Vassar (Ref. 7).
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the pickup loop with respect to the nominal alignment is defined as a misalignment of the

pickup loop and is modeled in this section.

Pickup loop misalignment can be categorized as longitudinal and lateral
misalignment. Longitudinal misalignment is defined as a rotational misalignment of the
pickup loop plane about the zg, axis. It has the same effect on the Kalman filtering as roll
phase bias does. In other words, the Kalman filter cannot distinguish longitudinal
misalignment from roll phase bias. Lateral misalignment, on the other hand, is defined as
a rotational misalignment of the pickup loop plane about the yg, axis for the gyros #1 and
#2, and about the xg, axis for the gyros #3 and #4, respectively. Lateral misalignment has
the same effect on the Kalman filtering as the gyro readout bias does. In other words, the

Kalman filter cannot distinguish lateral misalignment from the gyro readout bias.

The GP-B Twelve Science Requirements (Ref. 40) suggests the following
requirements on the accuracy of the pickup loop alignment:
+ Pickup loops for gyros #1 and #2 should be parallel to each other to within

10 arcseconds and measured within 3 arcseconds; the same should be true for
gyros #3 and #4;

* Pickup loops #1 and #2 should each be perpendicular to pickup loops #3 and

#4 to within 10 arcseconds and measured to within 5 arcseconds.
In terms of estimating the relativistic precessions, the longitudinal and lateral
misalignments are not corruptive errors since they are included in the estimates of the roll
phase bias and the gyro readout bias, respectively. Thus, the requirements on the pickup
loop alignments could be looser as long as the misalignments were calibrated to

3 arcseconds. This claim is verified in Section 4.3.1, where the measurement equation is

constructed.
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4.2.3.2 Structural Creeping of the Gyro Pickup Loop

Structural creeping is structural deformation of the readout apparatus as a function
of time. Even though quartz is a very stable material in terms of temperature and aging,
modeling of structural creeping is important because of the required accuracy of the
estimation. [ modeled the structural creeping of the gyro readout structure using the
band-limited Wiener random sequence with a time constant of a few months. Similar to
the pickup loop misalignment, structural creeping can be categorized into longitudinal
and lateral creeping. Longitudinal creeping is sensed as a roll phase drifting by the
Kalman filter and can be estimated by adding a process noise to the phase offset state.
Lateral creeping has the same effect as the bias drift to the Kalman filter and can be
estimated by adding a process noise to the bias state. This claim is also verified in

Section 4.3.1, where the measurement equation is constructed. The simulation model for

Table 4.11 Models for the Structural Misalignment and Creeping of Gyro Readout

Lateral misalignment and creeping for gyro #1 or #2:
00, = 60, + 86,() (4.33)

Lateral misalignment and creeping for gyro #3 or #4:
O0r = OPro + 09, (2) (4.34)

Longitudinal misalignment and creeping:
SYg = 6o + OWR(2) (4.35)

where
O0ro> 06> OWro initial misalignment terms

00 (t), 66,(1), Oyy(r) band-limited Wiener random sequences
with following parameters:

e, =1x107 (arcsecond / +/year)
At =10 (second)
T. =1 (month)
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the structural misalignment and creeping is given in Table 4.11. The constant terms
represent the initial misalignment, and the time-variant terms represent the creeping.
Even though longitudinal and lateral creeping have different stability, I used the same
parameters to simulate them for this thesis. Longitudinal creeping may have much worse
stability than lateral creeping because it is referenced by the star blipper, which is
mounted on the outside of the dewar and subject to heat expansion of the structure.
Hence, longitudinal creeping must be analyzed and modeled more carefully for further

investigations.

4.2.4 Models of the Satellite Dynamic

The dynamic behavior of the GP-B satellite has been investigated by N. J. Kasdin
(Ref. 26) and J. R. Crerie (Ref. 11). Kasdin designed the pointing controller, and Crerie
designed the roll phase controller for the GP-B satellite. Because the numerical
integration of equations of motion requires extensive computational time, the truth model
does not include the dynamic models of the satellite but only the stochastic models of the
pointing and roll phase control errors. The next two sections describe the stochastic

models for the pointing and roll phase control of the GP-B satellite.

4.2.4.1 Pointing Control

The GP-B Twelve Science Requirements (Ref. 40) suggests that the satellite
pointing accuracy should be within 20 milliarcseconds rms about the optical direction of
Rigel during Rigel valid (explained in Section 4.3.2.1) and within 2 arcseconds rms
during Rigel invalid. N.J. Kasdin (Ref. 26) demonstrated that the required pointing
accuracy during Rigel valid can be achieved by using a pointing controller with the

telescope as a sensor and a controller band-width of about 0.2 Hz.
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Telescope pointing error was modeled by a band-limited white noise with zero
mean, 20 milliarcseconds rms, and a time constant of 2 seconds. The pointing errors in
the x, direction and y,, direction were assumed to be uncorrelated and were updated

every 0.5 second in the truth model by the difference equations given in Table 4.12.

Table 4.12 Model of Satellite Pointing Error

Initial conditions:
$,(0)=0

6.(0)=0 (4.39)

Differential equations:
0, (k+1)=a,0,(k)+c,(1-a,)m (k)

(k=0,...) (4.40)
6,(k+1)=a,b,(k)+ cp(l - ap)nz(k)

where
o.(k): k-th sample of the telescope pointing error in the x,,
direction (k=0,...);
0.(k): k-th sample of the telescope pointing error in the y,,

direction (k=0,...);
n, =N(0,1) independent GRS;
n, =N(0,1) independent GRS;

At,=0.5 pointing model update period (seconds);
T,=20 pointing model time constant (seconds);
0,=0.020 expected rms error (arcseconds)
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4.2.4.2 Roll Phase Control

The GP-B Twelve Science Requirements (Ref. 40) suggests that the satellite roll
phase control accuracy should be within 10 arcseconds (rms) and that the roll frequency
should be accurate to one part in 104, J. R. Crerie (Ref. 11) designed the roll phase
controller and demonstrated that the roll phase could be controlled within 10 arcseconds.

I assumed zero mean, 10 arcseconds (rms) error in the roll phase with a time constant of

10 seconds.

I modeled the roll phase error using a band-limited white noise with zero mean,

10 arcseconds rms, and a time constant of 10 seconds. I updated the model every second

in the truth model using the difference equation given in Table 4.13.

Table 4.13 Model of the Satellite Roll Phase Error

Initial condition: oy, (0)=0
Difference equation:

oy, (k+1)=a,by,(k)+c,(1-a)n(k) (k=0,...)

where
oy (k): k-th sample of the roll phase control error (k=0,...);
n,=N(0,1)  independent GRS;

- TC"

l+a,
cr = __Ur
l1-a,

At,=1.0 roll model update period (seconds);
T, =10.0 roll model time constant (seconds);
o, =10.0 expected rms error (arcseconds)

(4.41)

(4.42)
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4.2.5 Model of Satellite Data Acquisition

[ modeled the noise characteristics of the satellite data acquisition hardware,
including the SQUID magnetometer and the A-to-D converter, to develop the data
reduction scheme. Since the main objective of the niobium bird experiment is to verify
the data reduction scheme with actual readout hardware, the models for the SQUID
sensor and the A-to-D converter were constructed strictly for the debugging of data
reduction programs. Before the data reduction programs were applied to the actual
niobium bird data, they were tested with a simulated SQUID noise and a model of an
A-to-D converter. The next two sections describe the SQUID noise model and the

A-to-D converter model used in the simulation.

4.2.5.1 SQUID Magnetometer

I modeled the sensor noise of the SQUID magnetometer to evaluate the data
reduction scheme before I applied the scheme to the actual experimental data. Accurate
modeling of the SQUID sensor noise was critical in evaluation because R. Vassar (Ref. 7)
determined that the SQUID noise was the dominant error for the data reduction. This

section describes the modeling procedure that I employed to simulate the SQUID noise.

The SQUID noise generally has a 1/f power spectral density for the lower
frequencies and a flat power spectral density for the higher frequencies; typical noise
power spectral densities of several SQUIDs are shown in Figure 1.5. The corner
frequency typically ranges from 0.1 Hz to 1 Hz. DiEsposti modeled the SQUID noise
with a three-pole linear filter (Ref. 19), and Qin used DiEsposti's model for his error
analysis. N.J. Kasdin (Ref. 26) developed a more precise model of the 1/f noise. I
simulated the SQUID noise with a combination of a four-pole 1/f shaping filter and a
band-limited Wiener random sequence [see Figure 4.5], as given by the following

equation:
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Random

bias drift by
Input 1/f shaping filter
white Pseudo /l\,,_
noise Hyq@ | 1/£ noise Eq . Ul_j . gimll;llgted '
N(0,Q) + Q noise ng,

Figure 4.5 SQUID sensor noise simulation.

nsq = gsq + b:q (4'43)
where

&,,: pseudo %c noise term

b,,: bias drift term

The background white noise over the corner frequency was not simulated in the niobium
bird experiment because the Nyquist frequency® was below the corner frequency. The
band-limited Wiener random sequence was added to simulate the dc drift because the 1/f
shaping filter has a finite dc gain. The next two sections describe the 1/f shaping filter

and the dc drift term.
1/f Shaping Digital Filter

I first designed an analog 1/f shaping filter, matching the gain at the roll frequency
to 0 dB, and then converted it to a digital filter by Van Loan's algorithm (Ref. 41, 42).
Continuous 1/f noise &(t) was simulated by white noise n,(t) and a shaping filter H(s)

as follows:

6 The nominal sampling rate for the niobium bird experiment is 0.1 Hz, and, therefore, the Nyquist
frequency is 0.05 Hz, which is lower than the typical corner frequency of SQUID noise. Thus, the
background white noise is attenuated by the anti-alias lowpass filter and does not affect the data reduction

scheme.
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Figure 4.6 (a) shows the power response

Ef-”-(—s-)- =H,(s) (4.44)

N,(s)
where
E,(5)= L[, ()]
N,(s)=L[n,()]
_ ksq(s"zx)(s"zz)(s“zz)
= =)o~ p)o- 1)
k, =5.19126

zy=6xx107, 2, =62x107, z, =62 %107

p=2xx10%, p, =27 x107, p, =272%x1072, p, =22 %x10™

H,, (s)l;m, which approximates the 1/f power

spectral density. The locations of poles and zeros were determined by trial and error to

satisfactorily fit the power spectral density to the 1/f power. The coefficient k., was

chosen so that the gain at the roll frequency would be unity. Thus, &(t), the output of

H;,(s) is a pseudo 1/f noise given an input white noise n,(t). I assumed a 5-hour SQUID

noise to determine the power spectral density of the input white noise. The SQUID

magnetometer with a 5-hour integration time gives a 1-milliarcsecond resolution at the

roll frequency after 5 hours of averaging (Ref. 43). Thus, the power spectral density of

the input white noise is given by the following equation:

where
n,()=N(0,0,) (4.45)

0, =(1x10" (arcsecond))2 x (53600 (second))
=0.018 arcsecond® | Hz
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The analog shaping filter (Equation 4.44) was then expressed in a state-space format as

follows:
x ()=F x, (t)+G, n,[(t
(D =F x, (t)+G, n(t) (4.46)
E(O=H x,(t)
where
-6.9806x10" 1.0 0 O 1.2081x10™ Lo
poo|44259%10% 0 10 0 _|2.5276 x107 |0
1-2.7558x10"% 0 0 10[ ¥ |4.7645x10%[ 7 |0
-1.5585x107 0 0 O 8.0908 x 10’ 0

Table 4.14 Pseudo-1/f-Noise Model for a 5-Hour SQUID Magnetometer

ro

Initial condition: x,,(0)= 4.47)

S O O

Difference equation:

x,(k+1) = x, (k)+ I, n, (k)
(k=0,...) (4.48)
gsq (k) = H:qxsq (k) + Dsqn4 (k)

where
n,(k)=N (O,l (arcsecondz))

E[nd (), (I‘)] =9,
[6.3260x10  8.7088x10™  9.9898x10°  4.7779 x 10"
—4.1305%107  5.4467x10™"  7.8444x10°  4.3343x10"

7| 22.4156x10™  —2.7605x10°  9.8681x10"  9.9591x10°
| ~1.3573x 107 -1.5570x10° —7.4466 x10° 9.9998 x 10"

1.9065 %1072 .07

7.0900 x 1073 0 2
r, = 17505 x 10 H,, = 0 , D, =1.5153x10

3.2689 107 0
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The analog pseudo 1/f noise &,(t) was discretized by the Van Loan's algorithm,
and the discrete pseudo 1/f noise &,,(k) was simulated by the difference equation given in
Table 4.14. Figure 4.6 (b) shows the power spectral density of the 1/f noise simulated by
Equation 4.45 and the predicted spectral density. Even though distortion of the power
spectral density by the Nyquist frequency was apparent at the higher frequencies, the
spectral density of the simulated noise matched with the predicted density at the lower
frequencies where the science signal is located. I listed the MATLAB program gsquid.m,

which I used to design the discrete shaping filter, in Appendix B.
SQUID Bias Drift

The SQUID bias drift had to be simulated separately from the pseudo 1/f noise

because the 1/f shaping filter has a finite dc gain and does not model the dc drift of the

Table 4.15 Bias Drift Model for Science SQUID Magnetometer

Initial condition: b,(0)=0 (4.49)

Difference equation:

b, (k+1)=a,b, (k) +(1-a,)w (k) (4.50)
where
b (k): k-th sample of the readout bias in the SQUID
magnetometer;

wi(k)=N (O, asqkAt) WRS with parameter o,;

a, =ex Aty
sq — p qu

At =10.0 SQUID bias drift update rate (seconds);
T, =10.0 SQUID bias drift time constant (hours)
a,=10 WRS expected covariance (arcsecond?/year);
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SQUID magnetometer readout. The bias drift is a very important part of the science
signal because it is estimated by the Kalman filter and has a significant effect on the final
estimation accuracy of the relativistic precession rates. The SQUID bias drift was
simulated by an additional band-limited Wiener random sequence using the difference

equation given in Table 4.15.

Equation 4.43 simulates the total SQUID readout noise by combining the pseudo
1/f noise and the bias drift. The data reduction scheme analysis in Chapter 5 is based on

this simulated SQUID noise.
4.2.5.2 Analog-to-Digital Converter

Similarly to the SQUID readout noise, the A-to-D converter was modeled in the
truth model to verify the data reduction scheme before the scheme was applied to the
actual experimental data. The nominal values for the A-to-D converter are shown in

Table 4.16.

The nominal converter range was determined to allow the full range of the science
signal, which is about 25 arcseconds, and the additional margin of about 300% of the
science signal. The additional margin gives the converter a conservative operational
range in case of flux jumps of the SQUID magnetometer’ (explained in Section 4.3.2.2)

or large pointing error caused by failure of the pointing controller.

The nominal resolution was determined according to the results obtained by Qin8
(Ref. 20). Qin showed that the quantization error introduced by the 14-bit A-to-D

converter has little effect on the final estimation accuracy compared with the effect of the

7 The SQUID output will be saturated in the case of flux jumps and can be reset by the SQUID
controller. Thus, the A-to-D converter for the science mission can have an input range of less than

200 arcseconds (Ref, 44).
8 Qin did not consider other errors in the A-to-D converter such as nonlinearity, scale error, and

differential nonlinearity (Ref. 45, 46).
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S-hour SQUID noise, and that quantization error did not become a dominant error with
14-bit or better resolution. Thus I chose 16-bit resolution in case a better SQUID sensor
with a lower integration time was constructed or a wider-range A-to-D converter was
required. The quantization level of the 16-bit converter is given as follows:

—-— Rad
Goa = 2344 (4.51)

=3.1 (milliarcsecond)

where
R.i: range of A-to-D converter
B.::  number of bits in A-to-D converter
q.a: quantization bin size in A-to-D converter

Thus, the rms value of the quantization error is given by the following equation (Ref. 47):

_ Yad
o'rzd -

V12 4.52)

=0.9 (milliarcsecond)

where

Table 4.16 Nominal Parameters for the Science Signal A-to-D Converter

Nominal range: 200 arcseconds (+100 arcseconds)

Nominal resolution: 16 bits
Nominal bias: 0 arcsecond
Nominal scale factor: 1 voltiarcsecond
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C.s. Standard deviation of quantization error in A-to-D converter

This quantization error is much smaller than the 5-hour SQUID noise and does not
become a dominant error. The only problem with the 16-bit A-to-D converter is the lack
of space applications because it became available as a space-qualified unit only a few
years ago (Ref. 48). A case study has to be conducted to determine actual space

applications of the 16-bit A-to-D converter.
4.2.53 Anti-Aliasing Lowpass Filter

A lowpass filter has to be applied to an analog signal prior to discretization to
avoid aliasing of higher frequency components. This is a common practice for digital
controller/estimator application; the niobium bird experiment is no exception. Because
the sampling rate for the niobium bird experiment is 0.1 Hz, the Nyquist frequency is
0.05 Hz, and the cutoff frequency of the lowpass filter must be equal to or lower than the
Nyquist frequency. The lowpass filter installed for the niobium bird experiment was not
modeled in the truth model for following reasons:

+ The lowpass filter would introduce gain change and a time delay to the

science signal that would not change the formulation of the data reduction
scheme;

« It is generally difficult to construct a digital filter that represents an analog
filter correctly;

+ The science signal is modulated at the roll frequency, which is only about
3% of the Nyquist frequency, and the lowpass filter has little effect on the
science signal.

The actual analog filter installed for the niobium bird experiment is described in

Chapter 6.

-112 -



42 Model

Because the London moment is aligned to the instantaneous spin axis of the
gyroscope, the science signal includes not only a relativistic precession but also a
torque-free motion of the spin axis with respect to the angular momentum vector. In
order to analyze the effects of the torque-free motion on the data reduction, the simulated
science signal must include that model. The torque-free motion of the spin axis can be
divided into two components, the herpolhode and the polhode (Ref. 49, 50). The
herpolhode is represented by the motion of the spin axis in inertial space with respect to
the angular momentum and has a frequency close to the spin speed. The polhode is
represented by the motion of the spin axis in the body-fixed frame and has a very slow
frequency ranging from several minutes to several days. The London moment aligned to
the instantaneous spin axis follows the herpolhode trace in inertial space around the
angular momentum vector. Thus, the science signal is modulated by the herpolhode
frequency. However, because the separation angle between the London moment and the
angular momentumn vector is small (= 10~ radian), and the high-frequency components
are attenuated by the anti-alias lowpass filter, I did not simulate the herpolhode motion in

the truth model.

In addition to the London moment, there exists another kind of magnetic field in
the gyroscope, which is that of the trapped flux. The trapped flux is flux literally trapped
on the surface of the superconducting gyroscope and is fixed to the body frame of the
gyroscope. Thus, the science signal includes reading not only from the London moment
but also from the trapped flux. Because the trapped flux is fixed to the body frame, the

trapped flux signal is modulated at the polhode frequency?®, which is too slow to be

9 Even though the trapped flux signal is also modulated at the spin frequency of the gyroscope, I
assumed that the spin frequency components were attenuated by the lowpass filter.
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attenuated by the anti-alias lowpass filter. Chapter 5 analyzes the effect of this trapped

flux on the science signal and the data reduction scheme.

4.3. Simulation of the Science Signal

The individual models developed in the previous sections are integrated to
simulate the science signal for the niobium bird experiment. First, the measurement
equations for the science signal are derived according to the standardized coordinate
frames developed in Chapter 2. Then, the availability of the science signal to the data
reduction scheme is discussed in terms of the occultation of the guide star and the

hardware characteristics.

4.3.1 Measurement Equation

I developed two measurement equations for the science signal, each of which was
intended for a different purpose. The first is an idealized measurement equation; the
second is a realistic measurement equation. The idealized equation was developed to
formulate the data reduction scheme and, therefore, to simplify the equation, some of the
error models are not included. The realistic measurement equation was developed to
analyze the effects of various error sources and thus includes all the error models

described earlier in this chapter.

The measurement equation for the science signal was initially developed by
Vassar, and his equation was modified by Duhamel, DiEsposti, and Qin. There seemed
to be some confusion about the signs and the phase of the science signal, because each
researcher used a different coordinate frame definition. The equations I formulated,
which were based on the standard coordinate frames presented in Chapter 2, remove the

ambiguity regarding the sign and phase of the measurement equation.
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Figure4.7 Definition of spin direction vectors s;, readout vectors R;, and readout
angles 6, (i=1, 2, 3, 4).

In order to derive the measurement equations, eight unit vectors are defined. Four
unit vectors §, (i=1,...,4) are defined, each of which is aligned to the i-th science

gyroscope spin direction. The other four unit vectors ﬁi (i=1,...,4) are defined so that

each is perpendicular to the pickup loop plane of the i-th gyroscope. Figure 4.7 shows

the orientation of §, and ﬁi (i=1,...,4) with respect to the B-0 frame, whose definition is
shown in Figure 2.2. Each of ﬁi (i=1,...,4) points from the center of the quartz housing

toward the calibrated surface [see Figure 2.2]. Thus, if there is no structural

misalignment, ﬁ, and ﬁ2 are aligned to the xg, axis and ﬁ3 and R 4 are aligned to the yg,
axis. The angle between the gyroscope spin axis and the pickup loop is given by the

following equation:

6.=5 R (i=1,....4) (4.53)
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6| < 1

where
6:: angle between the London moment and the SQUID pickup loop
for the i-th science gyroscope
8,7 a unit vector aligned to the spin direction of the i-th science
gyroscope
R.: aunit vector perpendicular to the pickup loop plane of the i-th

science gyroscope

Thus the output of the SQUID magnetometer is proportional to 6; and the science signal

for the i-th gyroscope is given as follows:

yGi =fR(9i) (i=1,'--’4)

where

Yai: Science signal from the i-th gyroscope

The function fz(6;) includes the scale factor, bias, noise, and nonlinearity of the readout

system. This science signal is elaborated in two different forms in the following sections

by expreséing 8, and ﬁi in the B-0 frame.

4.3.1.1 Idealized Measurement Equation

The idealized measurement equation for the science signal was developed to

formulate the data reduction scheme. The assumptions listed in Table 4.17 were made in

formulating the idealized equation.
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Table 4.17 Assumptions and Their Effects for Idealized Measurement Equation

Assumptions Effects
No misalignment of the null axis of 1 0 0]
the telescope readout with respect to 2p0 _
the zg, axis B=10 10 (4.54)
0 0 1]
No misalignment or creeping of the [1 0 O]
telescope structure with respect to 4p0 _
the B-0 frame B =10 10 (4.55)
0 0 1
No misalignment or creeping of the R.=%
gyro readout structure with respect Al'z 50 (4.56)
to the B-0 frame Ry, =¥
A linear science signal readout Yo =Cg0: +b,+n,, (4.57)
where
Cgi: i-th gyro scale factor
b;: i-th gyro readout bias
n,: SQUID readout noise
No satellite pointing error cosy, siny, 0
T4 =|—siny, cosy, 0] (4.58)
0 0 1
where
YV, =Y. +oy,

Y, actual roll phase
¥,.. commanded roll phase
Oy,: control error of roll phase

No refraction of starlight through the
atmosphere

g =0 (4.59)

No mass unbalance, no electrical
moment, and no external torque
acting on the gyroscope

The gyroscope has no Newtonian
precession. The London moment is aligned
with the angular momentum vector.
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The idealized measurement equation was derived by expressing the gyroscope spin vector
in the B-0 frame using the rotational matrices defined in Chapter 2. From Equation 4.56,

the readout normal vectors ﬁi (i=1,...,4) can be expressed in the B-0 frame as follows:

[1]
R,=|0 (4.60a)
B0

L.~ JB-0

F‘O"
R, =1 (4.60b)
% -0.|B—0

The spin vectors §; (i=1,...,4) can be expressed in the A-0 frame through the relativistic

precession angles and initial misalignment angles as follows:

4
5 =|¢, (i=1,...,4) 4.61)
a0 |
A-0
where
Cl = NSO + QGI

CZ = EWO + thcosak

NSo: initial misalignment of gyroscope's spin axis in North-South
direction

EW,: initial misalignment of gyroscope's spin axis in East-West
direction

£;: geodetic precession rate
§2p: frame-dragging precession rate
t: elapsed time from the mission initialization

&: declination of Rigel

Note that the spin vectors do not include the Newtonian precession angles. The spin

vectors §, (i=1,...,4) coordinated in the A-Q frame (Equation 4.61) can be expressed in

the B-0 frame through the rotational matrices *A°, B2T*%, and ?B° as follows:
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§ = (2Bo)TBzTAs SA° 5,
B0 40
[1 0 0 cosy, siny, O1 0O -a
0 1 Off-siny, cosy, O[O0 1 -a,l|{,
00

1 0 0 lja, a, 1

F—(aﬁ -§ )COS v, - ((152 -, )siny,
= (051 - CI)Sin v, —(asz - Cz)cos v,

1

B0
where
Y, =y, +0v,
Qs = Xg0°Es
Qs; = Y0 Es

Assuming no refraction of starlight through the atmosphere (Equation 4.59), the

observational correction vector €; for the A-5 frame can be expressed by the following

equation:

Es=E +E,+E,+E+ES 4.63)

By substituting Equations 4.28 and 4.31 into £, and &,, respectively, the two terms as,

and as, can be calculated as follows:

where

r R r
asl=8rl+zl‘—a X +K'"—e'§‘_x—"
es Fes Tes =1,
(4.64)
05»,—8,24"12—“—'1"*"( £ Y
es Pos Ves =1,

rx = A0 rcs’ ry = A0 'rcs’ rz EZAO res
— 2 2 2
res= rx +ry +rz
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o: parallax coefficient [see Table 4.7].

k: deflection of starlight coefficient [see Table 4.9].

By substituting Equations 4.60 and 4.62 into Equation 4.53, we obtain the angle between

the London moment and the gyro pickup loop thus:

6, = —(a5, - {,)cos v, —(as, ~ &, )sin y, fori=1,2 (4.65)

6, =(a5, -, )siny, — (a5, - &, )cos v, fori=3,4 (4.66)

Finally, the idealized measurement equation for the i-th gyroscope can be obtained by

substituting Equation 4.65 or 4.66 into Equation 4.57 as follows:

Yoi = Coi| ~(NS5 + A, )cos(w,, + 8v,) — (EW + A, )sin(y,. + 8y, )|+ b, +n,, (4.67)
for i=1,2

Yor = Cai| (NSs + 4, )sin(w,, + 8y, )~ (EW, + 4, )cos(y,, + 8y, )] +b,+n,, (4.68)
for i=3,4

where

r R r
NSs = —(NS, + 25t)+€, — @ —= + k=& —=
es Fos Ves — 7T,

r r
EWg = ~(EW, + Qptcosby ) +€,, — Ry + K&——f—-

es Ves VFos — T,

Note that the measurement equations for gyros #1 and #2 are 90 degrees out of phase

from the measurement equations for gyros #3 and #4. Two aberration terms, A, and A,,

are not included in the common terms NSs and EWs,10 respectively, because these

I call NSg and EW; north south static and east west static, respectively. The term static is used to

emphasize that these two terms do not include the aberration effects, which are caused by the motion of
observer.
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aberration terms are known to 0.07 milliarcsecond or better in uncertainty (Ref. 19). The
data reduction scheme uses the aberration terms to calibrate the gyro scale factor Cg; for
each gyroscope. The data reduction scheme is developed in Chapter 5 on the basis of the

idealized measurement equations (Equations 4.67 and 4.68).

4.3.1.2 Realistic Measurement Equation

I developed the realistic measurement equation for the science signal to analyze
the effects of various error models neglected in the idealized equations. Thus, the
assumptions made for the ideal equation were discarded in formulating the realistic
equation. I derived the realistic measurement equation by expressing the spin vectors

§, (i=1,...,4) and the readout normal vectors ﬁi (i=1,...,4) in the B-0 frame. The readout

normal vectors are expressed in the B-0 frame as follows:

.
R =| by fori=1,2  (4.69a)
% _59RU5-0

A ~6Vy, |

R=| 1 fori=3,4  (4.69b)
5o 5¢Ri JdB-0

where the structural misalignment and creeping terms, 8Qg;, 86g;, and Syy;, are given by

Equations 4.32, 4.33, and 4.34. Now, the spin vectors can be expressed in the A-0 frame

as follows:
¢
5= (4.70)
1 A-0
where
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G =NS, +p, + 25t
G =EW,+p, + Qpfo(t)

fo(t)=tcosé, - —2%-sin 2(n, .t + @, (t,))cos 8, + 2’11

ve ve

cos2(n,t+@,,(t,))sin &

The frame-dragging precession term in {, assumes the nominal satellite orbit given in
Table 4.6. The spin vectors can now be expressed in the B-0 frame through the rotational
matrices, *A°, *T*’, and *B°, which include the error sources ignored in the idealized
measurement equation such as pointing error and structural misalignment. The spin
vectors expressed in the B-0 frame are then given by the following equation:
=(2BO)TBZI~A5 540 5,

AC
1 0 6,y |[cosy, siny, -6,cosy,+¢,sin w,} 1 0 -g5 r'l

2|2
B|&

0 1 _¢null ~sin Yy, cosy, gr sin v, + ¢r cosy, 0 1 —Gs; {2} (4 7 1)
L™ Ynull ¢null 1 9, _¢r 1 as; dQasy 1 1 A-0 '
—(asy - £, + 6, )cos y, ~ (a2 - 82— 0, )siny, + 6,

= (a5l - 4’1 + er)Sin ‘Vr _(052 - C2 - ¢,)COS V’r - ‘pnull
1

Thus, the angles between the London moment and the gyro pickup loop can be obtained

by substituting Equations 4.69 and 4.71 into Equation 4.53 as follows:

6, = (a5~ £, +6,)cos y, - (- & - ¢,)siny, +6,,,— 86, (4.72a)
for i=1,2

9‘~ = (a51 - {1 + 9,- )Sin v, - (a52 - 42 - ¢r)COS v, - ¢null + 6¢R (4'72b)
for i=3,4

The second-order terms are neglected in Equations 4.71 and 4.72. Finally, the realistic
measurement equations are given by the following equations employing the same

notation as the idealized measurement equation:
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y, = CG,.[—(NSS +4,+6,)cosy, —(EW; + 1, - ¢,)siny, +96,,,— 86, |+ b, +n,
fori=1,2 (4.73a)

Yi = CG:'[(NSS +2,+86,)siny, - (EWs+2, - @, )cos ¥, — B, + 6¢R]+bf +ng,
fori=34  (4.73b)

where

r R r
NS, =—(NS,+p, + 2 t)+¢ +€, 0=+ K= —x
s ( o TP G) rl fi R r, r,—r,

es

r r
EW;=—~(EW,+p,+ Q2. fo(t) +¢,, + Epy — aR—’ + K-R—'-"-—’—

es Fos Vs =1,

Ep = Xpo €y

€r2 = Va0 &y

The realistic measurement equation (Equation 4.73) includes the error sources that are not
included in the idealized measurement equation. The data reduction scheme is developed
in Chapter 5 on the basis of the idealized measurement equation but processes the data

simulated by the realistic measurement equation (Equation 4.73).

4.3.2 _ Signal Availability

The usefulness of the science signal for the estimation is defined as signal
availability in this section. During the science mission, the science signal is not always
available to the ground station, or it may be invalid as a measurement even though it is
available. In either case, if the data reduction scheme cannot use the science signal to
estimate the relativistic precessions, we refer to the condition as signal unavailable. The

science signal becomes unavailable when the following conditions occur:

* Rigel is occulted by the Earth and the telescope cannot be used as a sensor:
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>~

GP-B orbit ——~__" ~———"

Occultation limit circle

Figure 4.8 Definition of occultation limit circle around the Earth. Shaded part of
the orbit is called Rigel invalid.

* Flux jumps cause a loss of the lock of the SQUID magnetometer or the
saturation of readout hardware components;

+ Transmission to the ground station is interrupted by hardware failure or
signal interference.
Each case is discussed in the following sections, which describes the final steps of the

truth modeling.

4.3.2.1 Occultation

Occultation of the guide star—Rigel occurs when the GP-B satellite is behind the
Earth and the view of Rigel is blocked by the Earth itself or the atmospheric layer.
During the occultation, the telescope loses the lock to Rigel and cannot be used as the
pointing control sensor. This period is called Rigel invalid. On the other hand, when
Rigel is visible from the satellite and the telescope can be used as the pointing control

sensor, the period is called Rigel valid. N.J. Kasdin (Ref. 26) proposed the use of the

~124-



science gyroscopes as the pointing control sensor during Rigel invalid, but even with the
gyroscopes, the pointing accuracy is much worse than during Rigel valid. In fact, the
current hardware requirement on the pointing accuracy during Rigel invalid is
2 arcseconds rms (Ref. 26). Thus, the gyroscope signal during Rigel invalid is corrupted

by the lack of a pointing reference and is not useful for the relativistic precession

estimate.

The condition of Rigel invalid is determined by the position of the satellite
relative to the Earth and the apparent direction of Rigel. A circle I call the occultation
limit circle is defined around the Earth, as shown in Figure 4.8. The portion of the
satellite orbit within the shaded area is the region of Rigel invalid. The validity of Rigel

is checked by the following conditions:

If
(Fro-Zaa) + (P 3ua) <02 4.74)
and
Foo 24350 4.75)
then Rigel is invalid.
where

7,.. position vector of the GP-B satellite with respect to the Earth

ve *

P,.: radius of the occultation limit circle [see Figure 4.8]
X 43> Ya3» Z43¢ Uit vectors parallel to the xyz axes of the A-3 frame

The validity of Rigel is checked every time the truth model simulates the science signal.

If Rigel is invalid, the truth model returns no measurements.

4322 Flux Jumps

Flux jumps within the SQUID magnetometer, which can cause an interruption of

the measurement, may occur during the science mission. The SQUID magnetometer is a
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flux-to-voltage converter that uses a superconductive loop with one or two Josephson
junctions!! (Ref. 15, 16, 17). The voltage across the SQUID loop is a nonlinear, periodic
function of the total flux within the SQUID loop, and the period is the flux quantum ®,.
Because the transfer function from flux to voltage is periodic, there exist multiple flux
states separated by @, that yield the same output voltage. In order to avoid this ambiguity
and to linearize the transfer function, the total flux within the SQUID loop is regulated to
a constant value by the SQUID electronics. As shown in Figure 1.4, the total flux within
the SQUID loop is the sum of the input flux from the pickup loop and the control flux
from the feedback loop!2. Because the total flux within the loop is regulated to be
constant, the voltage across the loop is constant, and the feedback current is thus
proportional to the input flux. Instead of measuring this feedback current, the SQUID

magnetometer measures a proportional voltage across the feedback resister R;.

As long as the total flux within the loop is constant, the feedback voltage is a
continuous, linear function of the input flux and we say that the SQUID is flux-locked.
This lock can be lost in the case of sudden changes in the input flux (i.e., the external
magnetic field), or of fluctuation of the electric ground. This phenomenon is analogous
to that of the attitude controller of a model aircraft becoming unstable because of gusting
wind. The loss of lock is usually temporary and the lock can be recovered quickly. But
after the lock is recovered, the total flux has shifted by n®, (n=%1,2,...). Becaﬁse all of
this happens almost instantaneously, the phenomenon is called a flux jump. Flux jumps
cause spikes and/or steps in the measurement and affect the data reduction scheme by

introducing extra noise or a data interruption.

1 A superconductive device that uses one Josephson junction is called rf SQUID; one that uses two
Josephson junctions is called a dc SQUID. For the GP-B science mission and the Niobium bird experiment,
a dc SQUID magnetometer is used as the primary sensor.

12 The SQUID feedback loop is called a flux-lock loop because it tries to keep the total flux within
the superconductive loop constant.
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The flux jump was not modeled in the truth model because it is difficult to model
and can be observed in the SQUID magnetometer used in the niobium bird experiment.
Flux jumps can be suppressed by providing adequate magnetic shielding and a stable

electrical ground and by reducing the band-width of the flux-locked loop!3.

4.3.2.3 Signal Interruption

In addition to the occultation of the guide star and the flux jumps, signal

interruption can also be caused by other factors such as:

 Telemetry failure
+ Abnormal pointing error
» Abnormal roll phase error

» SQUID hardware failure

In these cases, the science signal is either not available at the ground station or is
corrupted by an unexpectedly large error, and the data reduction scheme cannot process
the science data successfully. These cases are not discussed in this thesis, but the effects

of such signal interruptions were analyzed by T. G. Duhamel (Ref. 18).

13 J. M. Lockhart suggested that the size of jump is likely to be a fraction of a quantum, and reducing
the controller band-width may not be effective depending on the cause of jumps.
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CHAPTER 5. DATA REDUCTION SCHEME SYNTHESIS

5.1 Introduction

In this section, I develop the data reduction scheme designed for the
Gravity Probe B program with modifications to X. Qin's work (Ref. 20). The data
reduction scheme is one of the three important components of the niobium bird
experiment in the sense that it estimates the relativistic precession rates and determines
the final estimation accuracy. It has been investigated by many people including
C. W.F. Everitt et al. (Ref. 51) who started the error analysis as a part of the preliminary
investigation of the relativity gyroscope experiment. J. V. Breakwell and R. Vassar (Ref.
7) developed a measurement equation for the science signal and conducted a covariance
analysis, which showed that the SQUID noise was the dominant error source.
T. G. Duhamel (Ref. 18) extended Vassar’s analysis and developed a square root

information filter, followed by R. S. DiEsposti (Ref. 19) who created a truth model for
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simulation and developed a single-step Kalman filter. X. Qin (Ref. 20) then developed
the two-step Kalman filter that gave better insights to the filter states and faster
processing speed than DiEsposti's single step filter. Itook Qin’s approach to develop the
two-step Kalman filters with slightly different filter states. The following sections
describe the formulation of the two-step Kalman filters based on the idealized

measurement equation (Equation 4.68) developed in Chapter 4.

5.2 Filter Formulation

I reformulated the two-step Kalman filters based on Qin’s work. I used the SRIF
(square root information filter) algorithm to implement the Kalman filters. The SRIF
algorithm (Ref. 52) is numerically more stable than the conventional algorithm that
propagates a covariance matrix. It is also less sensitive to the round-off errors within a
computer and improves estimation accuracy. Qin chose the SRIF algorithm to implement
the filters for the GP-B program because of these two advantages. Even though the SRIF
algorithm requires intensive calculation involving matrix inversion, computational speed
is not a limiting factor for the GP-B application because the GP-B program does not
require real-time estimation during the mission. Qin formulated the step 1 and step 2
filters based on his own measurement equation. I reformulated the step 1 and step 2
filters based on the idealized measurement equation for gyros #3 and #4 (Equation 4.68).
I did not derive the filters for gyros #1 and #2 because the measurement equations for
these gyroscopes (Equation 4.67) are similar, and the filter can be converted through
simple phase shifting by 90 degrees. The following sections describe the estimator states

and develop the process models for the step 1 and step 2 filters.
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Step 1 Step 2

filter states filter states
Step 1 filter i é ] Step 2 filter ( Co
initial estimates | <C | initial estimates <G
(Table5.2)  [8YR|  (Table5.3)
Measurements: X; P b X, P
. . 2
« Science signal

« Roll phase

SH’R

NS,

EW,

1l ]

y(1), wi(1) Qr
o a

¥6(2), Yr(2) ——» STEP 1 R
o sepa| LR

YG(N), Yr(N) ——» : |

Figure 5.1 Diagram of two-step Kalman filters.

v

5.2.1 Formulation of Step 1 Filter

The step 1 filters receive the science signal from the SQUID magnetometer and
estimate slowly varying terms by assuming them to be constant over one orbital period.

The estimator state vector for the step 1 filtering is given by
x=[C; 8y, b NS; EW,| (5.1)

where
Cq: scale factor of SQUID magnetometer (volts per arcsecond)
Oy, phase error of satellite roll (radians)
b: readout bias in SQUID magnetometer (volts)
NSs: North-South static term defined in Equation 4.68 (arcseconds)
EW;s: East-West static term defined in Equation 4.68 (arcseconds)

Each variable is slowly varying and assumed to be constant over one orbital period.
During the one-year mission, the GP-B satellite orbits around the Earth about 5400 times,

and there are as many step 1 filters as orbits. Each step 1 filter processes the science
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signal sampled during one orbit and estimates the five parameters [see Figure 5.1]. The
input to the step 1 filter comprises the roll phase measurement from the star blipper and
the science signal from the SQUID magnetometer. The output comprises the estimates of
the five states and the covariance matrix of the estimated states. The process model for

the step 1 filter is given by the following equation:

x,(k+1)= D x (k) + I w, (k) (5.2)

where

I
D, =1l I =[®3x3}
2x3
wcl (k)
wl (k) = rl(k)
w, (k)

wei(k): discrete equivalent of process noise on scale factor over sampling
period At of step 1 filter, which is modeled by a Gaussian noise

N(0,0%)
wq(k): discrete equivalent of process noise on roll phase over sampling period
At of step 1 filter, which is modeled by a Gaussian noise N(O, 0',2,)

wy(k): discrete equivalent of process noise on SQUID bias over sampling
period At of step 1 filter, which is modeled by a Gaussian noise

N(0,07)

The first three states are assumed to be slowly varying driven by white noise terms, and
the other two states are constant without process noise. The standard deviations of three
driving white noise terms are determined so that the final estimation accuracy of the

relativistic precession rates is better than 1 milliarcsecond per year.

The input to the step 1 filters is the science signal given by Equation 4.68, which
is a nonlinear function of step 1 filter states. Let us define the measurement function as

follows:
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y(K) = h(x,(0)) + n,y (k) (53)

where
ng: sensor noise in SQUID magnetometer (volts)

h(x,)= CG[(NSS +A,)sin(y,, + 8y, ) - (EW, + A, )cos(y,, + 51;/,)] +b

Qin formulated each step 1 filter as an extended Kalman filter linearizing the
measurement equation around an a priori estimate. I took the same approach to linearize

the measurement equation as follows:

z2(k) = H, (k)x, (k) + nsq(k)

= y(k) - h(%,(k)) + H, (k)% (k) + n,, (k) 54)

where
dh(x)

H(k)= i
x=%, (k)

With the measurement equation given in a linear form (Equation 5.4) and the linear

process model (Equation 5.2), I used the SRIF algorithm to implement the step 1 filters.

The function of the step 1 filters is characterized by demodulation of the science
signal. If I expand the idealized measurement equation (Equation 4.68) neglecting the
measurement noise, the science signal can be represented by three terms according to the

frequency modulation as follows:

Y6 = Cg(NSssiny, — EWscos v, )
+Co (4, sin y, — A, cos v, ) (5.5)

+b

sq
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The first term is spectrally located at the roll frequency f, of the GP-B satellite,
which is about 1.7e-2 Hz to 1.7e-3 Hz, and includes the relativistic precession terms. I
call this term roll signal to distinguish from the other terms. Since the aberration terms,
A; and A,, include the orbital aberration, the second term is spectrally separated from the
roll signal by the orbital frequency f,, which is about 1.7e-4 Hz. I call this term the
calibration signal because the aberration terms are known to an accuracy of
0.07 milliarcsecond or better (Ref. 18) and are used to calibrate the scale factor by the
step 1 filters. The last term is a bias located at dc. This term is spectrally independent of
the first two terms and is the only term that is linear in step 1 filter states. Figure 5.2
shows the spectral locations of the first two terms. Note that the amplitude of the peaks is
not to scale. The calibration signals appear as the sidelobes to the center frequency. The
step 1 filters use these sidelobes to calibrate the scale factor Cg and the roll phase bias
dy,. Therefore, it is important that these sidelobes are spectrally separated from the
center frequency over the integration time of each step 1 filter. With current design
specifications, the integration time of each step 1 filter is one orbital period, that is, each
step 1 filter processes the science signal sampled during one orbital period. I call the time
span of each step 1 filter step 1 window and have defined the size of each step 1 window
W, as the time duration during which each step 1 filter processes the science signal.

Considering the occultation of Rigel during each orbit, the nominal value of W, is given

by

W, = 61 minutes
= 3660 seconds

Thus, the frequency resolution of each step 1 filter is determined by the frequency bin

size Af}, which is given by:

af, = (5.6)

L
W,
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Amplitude

Demodulation

1} / of roll signal ~_ Roll signal

by Step I filters A Calibration signals

fo=17e-4Hz
Frequency
: >
dc fr—fog f.+f,

f =0.0167 Hz

Figure 5.2  Frequency components of a science signal and demodulation by step 1
filters (f,=roll frequency, f,=orbital frequency).

The nominal bin size is then

4f; =2.73e-4 Hz

This nominal value barely gives the frequency resolution needed to separate the roll and
calibration signals, which are separated only by the orbital frequency f,=1.7e-4 Hz. In
this scenario, it seems that a longer step 1 window gives finer frequency resolution, and
that each step 1 filter can distinguish the roll and calibration signals with less frequency
leakage from each other. Even though this claim is true, a longer step 1 window violates
the assumption that the static terms, NSs and EWj, are constant over the window because
they are modulated at the annual frequency. There is, hence, a trade-off between the
higher frequency resolution and the assumption of constant parameters. The effects of

longer step 1 window are discussed in Section 5.3.2.

—134-



After the scale factor and the roll phase bias are estimated from the calibration

signal, the static terms, NS5 and EWj, are estimated from the roll signal. The step 1

filters effectively demodulate the science signal from the roll frequency to dc, which is

now processed by the step 2 filter. The output from the step 1 filter is now a dc signal

and is linear in the step 2 filter states as explained in the next section.

5.2.2 Formulation of Step 2 Filter

The step 2 filter processes the output from the step 1 filters and estimates final

parameters including the relativistic precession rates. The estimator state vector for the

step 2 filter is given by

where

x,=[C; 8y, NS, EW, 2, @ a «| (5.7)

: scale factor of SQUID magnetometer (volts per arcsecond)
: phase error of satellite roll (radians)

NS,:
: East-West initial misalignment of gyroscope's spin axis (arcseconds)

North-South initial misalignment of gyroscope's spin axis (arcseconds)

geodetic precession rate (arcseconds per year)

: frame-dragging precession rate (arcseconds per year)

parallax coefficient
deflection of starlight coefficient

2m M
===, g=—= m==5

R R, c

: gravitational radius of the Sun

: distance from the Sun to Rigel

: astronomical unit (1 AU)

: gravitational constant of the Sun

speed of light in vacuum
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As shown in Figure 5.1, the input to the step 2 filter comprises the estimates of step 1

filter states. The input vector to the step 2 filter is given by

P =[Colk) 87,(K) NS(K) EW,W)] (5:8)

where
Co(k): a posteriori estimate of SQUID scale factor from k-th step 1 filter

3 (k): aposteriori estimate of roll phase bias from k-th step 1 filter
N§s (k): a posteriori estimate of North-South static term from k-th step 1 filter
EW,(k): aposteriori estimate of East-West static term from k-th step 1 filter

Note that the bias term from the step 1 filters is not included in the input to the step 2
filter because the bias term has little effect on the estimation accuracy of the relativistic
precession rates as long as the step 1 filters successfully separate the bias from the roll
signall. Each element is a linear combination of the estimator states of the step 2 filter.
Thus, the step 2 filter is a linear Kalman filter and does not involve linearization of the
measurement equation as was required for the step 1 filtering. Similar to the step 1 filter
states, the estimator states for the step 2 filter are assumed to be constant?; the process

model for the step 2 filter is given by the following equation:

x,(k+1)= D,x, (k)+ Lw, (k) 5.9
where
Ly
D, =1y, I, = g:xzjl
w_,(k
Wz(k) =|: c2( )J

wr2 (k)

1 Linitially included the bias term in the measurement of the step 2 filter, but excluded it later

because the estimation accuracy of the relativistic precession term did not degrade without it as long as the
step 1 filters successfully separate the bias term from the roll signal. In the case of a large bias drift, with
which the step 1 filters may not be able to separate the bias term, it should be included in the step 2 filter

[see Section 6.3.3].
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weo(k): discrete equivalent of process noise on scale factor over integration
time of step 1 filter, which is modeled by a Gaussian noise N(O, ofz)

w(k): discrete equivalent of process noise on roll phase over integration time
of step 1 filter, which is modeled by a Gaussian noise N(O, 0;22)

Given the measurement equation (Equation 5.8) and the process model (Equation 5.9), I
used the SRIF algorithm to reformulate the step 2 filter. Again, the step 2 filter is a linear

filter and does not involve linearization of the measurement equation.

5.2.3 Results of Two-step Filter Simulation

Before testing the two-step filters with experimental data in the niobium bird
experiment, I tested them with a science signal simulated by the realistic measurement
equation (Equation 4.73) that I developed in Chapter 4. I conducted more than twenty
Monte Carlo simulations and evaluated the final estimation error and the time history of
estimation. I found that the filters yielded final estimation accuracy of better than
1 milliarcsecond per year at the end of one-year simulation, which satisfied the mission
requirement on the estimation accuracy. This section presents the results of one of the

Monte Carlo simulations.

5.2.3.1 Condition of Simulation

I conducted the Monte Carlo simulations with a ten-minute roll period under the
statistical conditions given in Table 5.1. I used the error models that I developed in
Chapter 4 to simulate various noises. The initial conditions and noise parameters given to
the step 1 filters are summarized in Table 5.2, and those to the step 2 filter are

summarized in Table 5.3.

2 The first two states, Cg and dy,, are assumed to be first order Markov driven by white noise
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Table 5.1 Statistical Conditions of Truth Model

SQUID magnetometer Approximated 1/f 5-hour integration time,
noise + BLWRS 0.1 Hz corner frequency

Roll phase drift Band-limited white o =10.0 arcseconds
noise

T, =10.0 seconds

Roll phase measurement noise White noise

o =10.0 arcseconds

Telescope pointing error Band-limited white
noise

o = 20.0 milliarcseconds
T, = 2.0 seconds

Table 5.2 Initial Conditions and Noise Parameters to Step 1 Filters

Scale factor, Cg (vo-;t.s-/—arc;;nd) 1.0 0.01

Roll phase bias, dy, (radians) 0.0 0.0005
Readout bias, by, (arcseconds) 0.0 100.0
North-South static, NS (arcseconds) 0.0 100.0
East-West static, EW; (arcseconds) 0.0 100.0

Process noise on scale factor, w,, le-10
(volts/arcsecond)
Process noise on roll phase bias, w, le-9
(radians)
Process noise on readout bias, w, le-20
(arcseconds)

3 Process noise level for the step 1 filter is indicated by the noise standard deviation of the

continuous process noise integrated over the sampling period of step 1 filter, which is 10 seconds. All of

the process noise within the filter is assumed to be Gaussian.
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Table 5.3 Initial Conditions and Noise Parameters to Step 2 Filter

Scale factor, Cg (volts/arcsecond) 1.0 0.01
Roll phase bias, dy, (radians) 0.0 0.0005
North-South initial misalignment, NS, 0.0 50.0
(arcseconds)
East-West initial misalignment, EW, 0.0 50.0
(arcseconds)
Geodetic precession rate, Qg 0.0 30.0
(arcseconds/year)
Frame-dragging precession rate, Q¢ 0.0 30.0
(arcseconds/year)
Parallax coefficient, o 3e-3 le-3
Deflection-of-starlight coefficient, k 4.1e-3 Se-4
Process noise on scale factor, w,, le-3
(volts/arcsecond)
Process noise on roll phase bias, w,, 5e-5
(radians)

4 Process noise level for the step 2 filter is indicated by the noise standard deviation of the

continuous process noise integrated over the sampling period of step 2 filter, which is one orbital period.
All of the process noise within the filter is assumed to be Gaussian.
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5.2.3.2 Results of Step 1 Filtering

Figure 5.3 shows the results of step 1 filters. The estimates of the North-South
static term NSs and the East-West static term EWS are plotted in the xy plane of the A-0
frame. The origin is located at the observer, the GP-B satellite. A unit vector that is
aligned with the gyroscope's spin axis is projected on the plane. The solid line indicates
the trajectory of the gyroscope precession observed with respect to the telescope axis over
the one-year mission. The hollow circle represents the two components at the beginning
of the mission, and the filled circle represents them at the end of the mission. The x's
scattered around the solid line show the estimates from the step 1 filters. Each point
represents the estimates of NSs and EW; from a step 1 filter. The dotted lines show the

envelopes of the expected estimation error (10 rms error). The expected estimation error

Celestial North

North-South component (arcseconds)

>
Vemal Equinox

0.1 0 0.1

East-West component (arcseconds)

Figure 5.3  Results of step 1 filtering from a one-year simulation: true values of
NSs and EWj (solid line) vs. estimated values (x's). Dashed lines
indicate one-sigma envelope of the estimation accuracy.
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is minimized at the beginning, in the middle, and at the end of the one-year mission
because the annual aberration, which the step 1 filters use as a calibration signal, is
modulated at the annual frequency and has maxima at these points. The maximal
estimation error is about 80 milliarcseconds and is modulated at the annual frequency.
The North-South and East-West components, NSs and EW, comprise the slowly varying
terms such as parallax, deflection of starlight, and relativistic precessions, which are now

estimated by the step 2 filter.

5.2.3.3 Results of Step 2 Filtering

The step 2 filter processed the estimates from the step 1 filters by treating them as
new measurements and estimated the final parameters given in Equation 5.7. Figures 5.4
(a), (b), and (c) show the estimates of the relativistic precession, the parallax, and the
deflection of starlight, respectively. Again, the estimated values were plotted in the xy
plane of the A-O frame. The solid lines indicate the true values and the x's indicate the
estimated values. The hollow circles represent the values at the beginning of the mission,
and the filled circles represent them at the end of the mission. The North-South
component of the relativistic precession is geodetic, and the East-West component is
frame-dragging. The other two elements, parallax and deflection of starlight, are
modulated at the annual frequency and are as small as the frame-dragging precession
term. The final estimation errors and the expected rms errors calculated by the step 2
filter in a Monte Carlo simulation are listed in Table 5.4. For this Monte Carlo
simulation, even though the final estimation error of the parallax was larger than the
expected estimation error (16), those of the relativistic precession rates and the deflection
of starlight were smaller than or equal to the expected error. Iran at least 20 Monte Carlo
simulations and obtained the final estimation accuracy of Q¢ and Qy better than
0.5 milliarcsecond per year from each run. Figures 5.5 (a) and (b) show the time histories

of g and Q. estimation, respectively. The dotted lines indicate the one-sigma envelope
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of the expected estimation error, and the solid lines indicate the actual estimation errors.
For both relativistic precession rates, the estimation error stayed within the one-sigma
envelope about 60% of the one-year simulation, which indicated proper tuning of the
Kalman filters. Thus, I verified that the two-step filters developed in Sections 5.2.1 and

5.2.2 yielded satisfactory final estimation errors with simulation.

Although I used a science signal from only one gyroscope for the simulation,
there will be four gyroscopes each with an independent SQUID readout system on-board
for the science mission. It may be, hence, possible to improve the final estimation
accuracy by a factor of two by combining the measurements from four readout systems

assuming each measurement is independent.

Table 5.4  Final Estimates and Estimation Accuracy of Step 2 Filter

North-South initial misalignment NS, —0.04 milliarcsecond 0.35 milliarcsecond
East-West initial misalignment EW, 0.06 milliarcsecond 0.22 milliarcsecond
Geodetic precession rate Qg 0.17 milliarcsecond per year | 0.53 milliarcsecond per year
Frame-dragging precession rate Qg 0.14 milliarcsecond per year | 0.42 milliarcsecond per year
Parallax coefficient o 0.29 milliarcsecond 0.18 milliarcsecond
Deflection-of-starlight coefficient x 0.12 milliarcsecond 0.12 milliarcsecond
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Relativistic precession in East-West direction (arcseconds)

Relativistic precession in North-South direction (arcseconds)

(a) Trajectory of relativistic precession - true values (solid line) vs. estimated
values (x's).

Parallax in North-South direction (arcseconds)

4 ) 0 2 4

-3
Parallax in East-West direction (arcseconds) x10

(b) Trajectory of parallax - true values (solid line) vs. estimated values (x's).

Figure 5.4  Results of step 2 filtering from a one-year simulation: true values (solid
lines) vs. estimated values (x's) of relativistic precession, parallax, and
deflection of starlight (continued on next page).
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Deflection of starlight in North-South direction (arcseconds)

Deflection of stalight in East-West direction (arcseconds)

() True values (solid line) vs. estimated values (x's) of deflection of starlight.

Figure 5.4 Results of step 2 filtering from a one-year simulation: true values (solid
lines) vs. estimated values (x's) of relativistic precession, parallax, and
deflection of starlight (continued from previous page).
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(a) Time history of estimation error (solid line) and 16 envelope (dashed lines) of
geodetic precession rate Qg. Final estimation accuracy = 0.53 (milliarcsecond
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(b) Time history of estimation error (solid line) and 16 envelope (dashed lines) of
frame-dragging precession rate Q. Final estimation accuracy = 0.42
(milliarcsecond per year).

Figure 5.5 Results of step 2 filtering from a one-year simulation. Time history of
the estimation error and 16 envelope of the relativistic precession rates.
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5.3 Recursive Algorithm

I developed a recursive algorithm for the data reduction, which further optimizes
the estimation by providing better initial estimates to the step 1 and step 2 filters. The
final estimation accuracy of two-step Kalman filters is mainly determined by three
conditions: noise level of SQUID sensor, stability of SQUID readout parameters such as
scale factor and bias, and accuracy of initial estimates. The effect of the last condition,
the accuracy of initial estimates, is significant for the step 1 filters, which are extended
Kalman filters. Extended Kalman filters linearize the measurement around a priori
estimates, and the error associated with the linearization is proportional to the quadratic
function of the estimation error. Thus, if the initial estimation error is too large, the
linearization error becomes dominant compared with the measurement noise, and the
solution of extended Kalman filter may converge to a false solution or the final
estimation error may not be satisfactory. By giving better initial estimates to the
extended Kalman filters, one can avoid such false convergence or unsatisfactory final

estimation error.

5.3.1 Formulation of Recursive Filters

I modified the two-step filters to give them better initial estimates by feeding the
output of step 2 filter back to restart the step 1 and step 2 filters. Figure 5.1 shows the
diagrams of original two-step Kalman filters, and Figure 5.6 shows the modified filters.
With the original filters, the initial conditions for the step 1 and step 2 filters are given by
an operator and are summarized in Tables 5.2 and 5.3. The accuracy of the initial
estimation depends on how well the operator knows the filter states prior to the
estimation. Once the two-step filtering is completed using the initial conditions given by
the operator, one obtains estimates of filter states with better accuracy and can use the

estimated values to restart the step 1 and step 2 filters. Since the estimated states after
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Figure 5.6  Diagram of recursive two-step Kalman filters.

one-year mission have much better accuracy than the initial estimates given by the
operator, the linearization error of the second iteration (Figure 5.6) is decreased so that it
does not become the dominant error compared with the SQUID sensor noise. Note that
the final estimation accuracy terms, /P, (i,i) (i=1,...,5) and B,(i,i) (i=1,...,8), are
multiplied by the relaxation factors, p, and p,, respectively, when fed back to restart the
step 1 and step 2 filters. The relaxation factors range from 15 to 40 and prevent the
two-step filters from closing on the measurements. If the relaxation factors are set to one,
the filters do not use the measurements to improve the estimation because the initial

estimation error becomes smaller than the SQUID noise.

This iterative approach is possible because the GP-B program does not require
real-time estimation of relativistic precession, and the data reduction can employ not only

filtering but also smoothing. The following section presents the simulation results of this

recursive algorithm.
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2 1 Recursive Filter Simulation

The recursive filters were tested with five Monte Carlo simulations, and this
section presents the results of one of those simulations. The recursive filters consistently
showed 18% better accuracy for the estimate of geodetic precession rate and 15% better
accuracy for the estimate of frame-dragging precession rate. Figure 5.7 shows the time
histories of £ estimation error and Qy estimation error. The one-sigma envelopes were
narrower and showed faster convergence than those of the original filters. Table 5.5
compares the final estimation accuracy of the original filters and the modified filters.
Even though the first recursion showed consistent improvement over the original
filtering, the second recursion and later did not show any further improvement because

the linearization error was already smaller than the SQUID noise with the first recursion.

Table 5.5 Final estimation accuracy of original filters and recursive filters

Final estimation accuracy | Final estimation accuracy
Filter states of original filters of recursive filters
(milliarcseconds per year) (milliarcseconds per year)
Geodetic precession rate g 0.53 0.43
Frame-dragging precession rate Qg 0.42 0.35
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(b) Time history of estimation error (solid line) and 16 envelope (dashed lines) of
frame-dragging precession rate Q. Final estimation accuracy = 0.35
(milliarcsecond per year).

Figure 5.7  Results of recursive two-step filtering from a one-year simulation.
Time history of the estimation error and 10 envelope of the relativistic
precession rates.
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5.4 Polhode Modeling and Estimation

I investigated the effects of the polhode motion of the gyroscope on the final
estimation accuracy of relativistic precession rates. As I pointed out in Section 1.2.5, the
polhode motion of the gyroscope affects the science signal through the trapped flux. In
this analysis, I modeled the effects of the polhode motion on the science signal by the
scale factor variation of SQUID readout (Ref. 53). I tested the two-step Kalman filters
with the scale factor variation and also modified the filters to estimate the variation terms.
Even though the model I used was over-simplified>, it provided a good first-cut analysis

and helped understand the data reduction from the frequency-separation point of view.

5.4.1 Modeling of Polhode Motion in Science Signal

I assumed a symmetrical rotor, for which the polhode motion is a sinusoidal
motion of the spin axis in the gyro-body fixed frame. Therefore, a new measurement

equation for the science signal is given by the following equation:
Yo = CG[I +£,cos(@,t + 9, )][(EWS +4,)sin g, ~(NSs +A,)cos y, [+ b, +n,, (5.10)

where €,: amplitude of polhode modulation
,: angular velocity of polhode motion (radians/second)
¢p0: initial phase of polhode motion (radians)

As an initial investigation, I assumed these three parameters to be constant throughout the
mission, which may not be true for the actual experiment. I simulated the science signal
according to Equation 5.10 and tested the original two-step filters developed in

Section 5.1. In addition, I modified the two-step filters to accommodate the new

5 J. P. Turneaure pointed out that “over-simplified” might not describe the limitation of this study
accurately because the actual trapped flux signal includes many harmonics in ), with comparable signal
strength. 1 agree that the model I used may not lead to the heart of the problem because we don't know
whether it has the same effect on data reduction as the actual trapped flux signal. This study is significant
in the sense that it demonstrated the need for serious investigation.
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unknown parameters such as €, and ¢0. The modified two-step filters have extra states to
estimate the polhode terms. The new state vectors for the step 1 and step 2 filters are

given by the following equations, respectively:
T
x=[C; 8, b NS, EW; ¢, 9,] (5.11)
xn=[C; 8¢, NS, EW, 2 2 a x & 0,] (5.12)

Thus, I tested two sets of two-step filters; one with original state vectors (Equations 5.1
and 5.7) and the other with modified state vectors with polhode states (Equations 5.11
and 5.12). I also investigated the effect of longer step 1 window on the estimation of
polhode terms. The following section summarizes the results of two-step filtering with

polhode simulation.

5.4.2 Results of Two-step Filtering with Polhode Simulation

I tested three polhode periods, 0.1 hour, 1 hour, and 10 hours with 1% modulation
amplitude, i.e., €,=0.01. The results showed that the one-hour polhode period yielded the
worst estimation accuracy at the end of a one-year simulation. The modified two-step
filter consistently showed better accuracy than the original filters. Figures 5.8 (a) and (b)
shows the final estimation error of relativistic precession rates with three different filter
schemes: (1) original two-step filters with one-orbit step 1 window, (2) original two-step
filters with fifteen-orbit step 1 window, and (3) modified two-step filters with
fifteen-orbit step 1 window. The first scheme, the original filters with one-orbit window,
became unstable with all polhode periods. The second scheme, longer window with
fifteen orbits, stabilized the filters, but the final estimation accuracy was still worse than
the expected accuracy, which is indicated by the dashed lines in Figure 5.8. The last
filtering scheme, the modified two-step filters with a fifteen-orbit window, was stable for

all the cases and yielded the best results.
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Figure 5.8  Final estimation error of the relativistic precession rates after a one-year
simulation with polhode modulation of the scale factor.
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The longer step 1 window clearly helped the filters by stabilizing them. I
analyzed the frequency components of the modulated science signal to assess the effect of
the window size and the polhode period. If I expand the science signal with polhode
terms (Equation 5.10) according to the frequency modulation, the science signal is now

represented by five terms as follows:

Y = Co(NSssiny, — EWcos y,)
+Cy(A,siny, — 4, cos y,)
+b (5.13)

sq

+€,C cos(wpt +90, )(NSS siny, — EWcosy,)

+£,C cos(wpt +¢, )(/’I.l sin y, — A, cosy, )

The first three terms are the same as the original science signal (Equation 5.5), but the last
two terms represent the modulation of the scale factor induced by the polhode motion of
the gyroscope. Similarly to Equation 5.5, the first term is the roll signal located at the roll
frequency f;, the second term is the calibration signal located at f+f,, where fo is the
orbital frequency, and the third term is bias at dc. I call the last two terms polhode
signals, and they are spectrally located at f2f, and at f2f +f,, respectively, where f, is the
polhode frequency. Figure 5.9 shows the frequency peaks of the modulated signal. Each
peak corresponds to one of the five terms in Equation 5.12 and is labeled by the number
of the corresponding term, i.e., the roll signal corresponds to the first term in
Equation 5.13 and is labeled by No.1, and so on. Again the amplitude is not to scale.
The peaks of polhode signals exist around the roll signal separated by the polhode
frequency. As the polhode period increases, the polhode signals move closer to the roll
signal and start to interfere with it. In order to predict the amount of interference, |
defined a spectral vicinity around the roll and calibration signals, whose width is

determined by the frequency bin size Af, of step 1 filters. Figure 5.9 shows the spectral
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Figure 5.9  Frequency components of a science signal with polhode modulation of
the scale factor (f=roll frequency, f,=orbital frequency, f,=polhode
frequency).

vicinity by the shaded area around the roll signal for one-orbit step 1 window, which is
the default window size. If the polhode signals are located outside of the vicinity, the
step 1 filters should be able to resolve the roll and calibration signals because each step 1
filter provides finer frequency resolution with Af, smaller than the polhode frequency. If
the polhode signals move into the vicinity, the step 1 filters can no longer distinguish the
roll signal from the polhode signals. Therefore, one can predict interference from the

polhode signals by examining the location of polhode signals with respect to this vicinity.
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Figures 5.10 (a), (b), and (c) show the spectra of the science signal with 0.1-hour,
1-hour, and 10-hour polhode periods, respectively. At 0.1-hour period, the polhode
frequency f,=2.8e-3 Hz is about sixteen times higher than the orbital frequency
f.=1.7e-4 Hz. Thus, the polhode signals exist outside of the vicinity and have little effect
on the step 1 filtering [see Figure 5.10 (a)]. The last scheme with a fifteen-orbit window
and a polhode estimation resulted in the best accuracy while all the schemes were stable.
Note that the lower peak of the polhode signal is a reflection of it at the negative
frequency. At one-hour period, the polhode frequency f,=2.8e-4 Hz is close to the orbital
frequency, and the polhode signals are within the vicinity of the roll signal [see
Figure 5.10 (b)]. The step 1 filters could not calibrate the scale factor and the phase bias
and yielded the worst results because of the corruption of the calibration signals by the
polhode signals. The first two schemes became unstable, and the last scheme was stable
but gave unsatisfactory results. At ten-hour period, the polhode frequency f,=2.8e-5 Hz
is about 6.5 times slower than the orbital frequency. Thus, the polhode signals move
further into the roll signal [see Figure 5.10 (c)]. Even though the calibration signals are
corrupted by the polhode signals, the estimation accuracy was slightly improved over the
case with one-hour polhode period. All the schemes were stable but the final estimation

accuracy was worse than the expected accuracy.

According to the results summarized in Figure 5.8, the faster polhode period
showed better results by spectrally separating the polhode signals from the roll and
calibration signals, and the longer step 1 window improved the estimation accuracy by
providing finer frequency resolution. The optimal polhode period can be determined by
examining the location of the polhode signals with respect to the vicinity of roll signal.
The polhode signals should be as far as possible from the vicinity without causing the

reflection of the spectrum. The polhode frequency that satisfies this condition is given by
f, =1, (5.14)
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(b) Spectral decomposition of the science signal with a 1-hour polhode period.

Figure 5.10 Spectral decomposition of the science signal with various polhode
periods (continued on next page).
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(c) Spectral decomposition of the science signal with a 10-hour polhode period.

Figure 5.10 Spectral decomposition of the science signal with various polhode
periods (continued from previous page).
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Figure 5.11 Spectral decomposition of the science signal with an optimal polhode

period 0.2 hour. Spectral separation between the roll signal and the
polhode signals is about 1.4 mHz.
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For the ten-minute roll period, the optimal polhode period is about 0.2 hour. Figure 5.11
shows the spectrum of the science signal with f,=1.4e-3 Hz. The lower peak of the
polhode signal is now located near dc, and the polhode signals are spectrally separated
from the roll/calibration signals. I should point out that this conclusion is based on the
signal model (Equation 5.10), which assumed that the trapped flux on the gyroscope with
a polhode motion affected the readout scale factor. As I mentioned at the beginning of
this section, this model is over-simplified, and a more precise model for the trapped flux
signal has to be used to verify the claim (Equation 5.14). L.L. Wai and Y. M. Xiao
developed more precise models of the trapped flux signal, which should be implemented

in the niobium bird truth model (Ref. 54, 55).

5.4.3 Effects on Gyroscope Dynamics and Requirements of Readout System

The analysis in the previous section showed that the optimal polhode period is
about 0.2 hour for ten-minute roll, and I will discuss the effect of shorter polhode period
on the gyroscope dynamics and the requirements of the readout system. I assume a
symmetric rotor to simplify the analysis. The polhode frequency can be determined by
the spin frequency, the inertia matrix of a gyroscope, and the separation angle between
the spin axis and the inertia principal axis. The inertia matrix of a symmetric rotor in

principal axes is given by

r o 0
I=[0 (1+&)f 0 (5.15)
0 0 (l+g)

where €;: inertia unbalance coefficient of rotor

Then, the polhode frequency is given by the following equation (Ref. 50):
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Figure 5.12 Poinsot's inertia ellipsoid and an invariable plane.

o, =—iwscost9s
1+¢ for0<0,<nm (5.16)

= £,0,cos 0,

where w,: polhode frequency (radians per second)
w;: spin frequency (radians per second)
0. separation angle between spin vector and inertia principal axis of
symmetry (radians) [see Figure 5.12]

Assuming that the separation angle is small, which is likely when friction causes an

energy dissipation, Equation 5.16 can be further approximated as

(5.17)
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Thus, faster polhode means larger inertia unbalance &, or vice versa, given constant spin
frequency. If I assume 170-Hz spin frequency and 0.2-hour polhode period, the inertia

unbalance coefficient is
g =82x10" (5.18)

This coefficient corresponds to about 1.7 arcseconds of displacement between the
gyroscope’s spin axis and the angular momentum vector. This angle is better described
by a Poinsot’s inertia ellipsoid [see Figure 5.12]. The angle between the instantaneous
spin vector @, and the angular momentum vector H is about 1.7 arcseconds, and the spin
vector travels around the angular momentum vector at about the spin frequency in inertial
space; this motion is called herpolhode. In Figure 5.12, note that the general relativity
influences the direction of angular momentum. Even though we are trying to measure the
relativity effects on the angular momentum, the SQUID readout system measures the
direction of the instantaneous spin axis, to which the London moment is aligned. Thus,
the output of the SQUID magnetometer, the science signal, includes not only the
relativistic precession of the gyroscope but also the herpolhode of the spin axis. During
the data reduction synthesis in Chapter 4, I neglected the herpolhode because it is
modulated at the spin frequency and can be averaged by integrating over the ten-second
sampling period. Even though this claim is valid during the filter synthesis, the SQUID
still has to track the herpolhode signal. If the polhode frequency becomes higher, the
angle of herpolhode €; becomes larger, and the slew rate of the signal increases as a result.
Thus, higher polhode frequency imposes a tighter requirement on the slew rate of the
SQUID, which reduces the stability of SQUID operation. I did not investigate this issue
any further, but one should address the slew rate requirement on the SQUID in

determining the requirement on the polhode frequency of the science gyroscope.

—-160 -



50% probabxhty """"" ...... }
|

10

Normalized polhode period T, @, /T, @, = 0°)

0 10 20 30 40 50 60 70 80 90

Separation angle 0, (degrees)

Figure 5.13 Normalized polhode period vs. separation angle between the spin vector
and the inertia principal axis of symmetry with =170 Hz,
£=8.2x107°,

Another important case regarding the gyroscope dynamics is the polhode with a
large separation angle between the spin vector and the inertia principal axis. This
scenario is possible for the GP-B program because the gyroscope is levitated in vacuum
with almost no energy dissipation. Thus, depending on the spin-up condition, the spin
vector can be close to the separatrix (or separatrices for an asymmetric gyroscope). In
this case, the approximation made by Equation 5.17 is not valid anymore, and the

polhode period T, is given by

27

T
—_— 0<0,<— 5.1
£,m,c0s0, for 0<9, < 2 (5-19)

=

where

€: inertia unbalance coefficient of rotor
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w,: spin frequency (radians per second)
8.: separation angle between spin vector and inertia principal axis
of symmetry (radians)

As shown in Figure 5.13, the polhode period goes to infinity as the separation angle
approaches 90 degrees with a constant €. Assuming that there is no energy dissipation
so that the probability distribution function of the spin vector is uniform over the surface
of the gyroscope, the dashed lines in Figure 5.13 indicate 50% and 75% cumulative
probability boundaries. The separation angle will be less than 60 degrees with 50%
probability and less than 76 degrees with 75% probability. The actual polhode period is
two times longer at 60 degrees and about four times longer at 76 degrees than that at
8.=0°. This implies that, although we can choose a gyroscope with 0.2-hour polhode
period at ©.~0° so that the Kalman filter can separate the trapped flux signal better, the
actual polhode period can be much longer than what we expect depending on the
separation angle 8,. Note that I made a very crude assumption on the distribution of the
spin axis when I calculated the cumulative probability. There will be an energy
dissipation during the spin-up caused by the friction of helium gas, which may bring the
spin vector close to the maximum inertia axis. Then, the probability distribution function
of the spin vector is not uniform over the gyroscope surface. Since the spin-up condition
is hard to simulate, this needs to be tested by the experiment. One should spin up the
gyroscope many times and observe the separation angle between the spin vector and the
maximum inertia axis. The actual probability distribution function can be estimated from

these experimental results and used to calculate the mean polhode period with a constant

£,
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5.5 Effects of Pointing Error

The realistic measurement equations of the science signal (Equations 4.73a and
4.73b) include the pointing error terms because the SQUID magnetometer measures the
angle between the gyroscope’s spin axis and the satellite’s telescope axis. These pointing
error terms can affect the final estimation accuracy of two-step Kalman filters depending
on their magnitude. I investigated the effect of the telescope pointing error on the filters

by varying its rms value, and this section presents the results of that analysis.

R. S. DiEsposti (Ref. 19) initially investigated the telescope pointing error and
developed the gain-matching scheme to subtract the pointing error terms from the science
signal. Even though he demonstrated that the scheme successfully matched the gyro and
telescope scale factors within 1% after a few days of integration, he did not discuss how
much improvement in the final estimation accuracy he could attain by implementing the
matching scheme, which lead to the ongoing debate whether we need to subtract the
telescope pointing error from the science signal. N. J. Kasdin (Ref. 26, 56) later designed
the telescope pointing controller and showed that the telescope axis can be controlled
within 20-milliarcsecond rms of the optical direction of Rigel. Kasdin selected 10 Hz as
the sampling frequency for the controller. I tested the two-step filters with various
pointing errors around the nominal rms value, which is 20 milliarcseconds, and found that
the nominal pointing error had little effect on the final estimation accuracy and, therefore,
that the gain-matching scheme may not be necessary during normal operation. The

following sections present the results from the Monte Carlo simulations that I conducted.

The simulations were based on the truth model that I developed in Chapter 4. |
tried four cases with different pointing error levels; 5, 20, 35, and 50-milliarcsecond rms
values. Figures 5.14 (a) and (b) show the time history of geodetic and frame-dragging

precession estimation, respectively. The pointing error with 20-milliarcsecond rms value
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showed very little effect on the time history of estimation error compared with the
S-milliarcsecond rms value. With 35-milliarcsecond rms value, the pointing error
became dominant compared with the 5-hour SQUID noise, and the estimation error
started to show large deviation from the 5 and 20-milliarcsecond cases. Thus, these
Monte Carlo simulations showed that the pointing error with 20-milliarcsecond rms value
did not degrade the final estimation accuracy of relativistic precession rates. Even though
these results suggest that we do not need to implement the gain-matching scheme under
current design specifications, further investigation is still needed in determining whether
we should abandon the gain-matching scheme because we may still need the scheme in
four cases: (1) faster satellite roll, (2) better SQUID with higher signal-to-noise ratio,
(3) unexpectedly large pointing error caused by abnormal operation of the control system,
and (4) bias in the pointing error. In the case of faster satellite roll, the SQUID noise has
less power at the roll frequency because of the 1/f noise characteristics explained in
Chapter 4. Thus, the pointing error with a 20-milliarcsecond rms can become dominant
compared with the SQUID noise because of improved signal-to-noise ratio in the SQUID.
In this case, we need to subtract the telescope pointing error terms from the science signal
or improve the pointing accuracy accordingly. For the same reason, the better SQUID
with higher signal-to-noise ratio implies the need for subtracting the pointing error. The
last case, the unexpectedly large pointing error can pose a threat to the whole program,
but with the gain-matching scheme, we may be able to subtract the pointing error larger

than the nominal value.

I mentioned the need for further investigation of the effect of the pointing error on
the final estimation accuracy in this section. Along with the data reduction analysis, we
need to clarify the meaning of the 20-milliarcsecond rms for the pointing error. Kasdin
did not show the power spectral density of the pointing error of his simulation and did not

state the integration time he used to calculate the rms value. The integration time of my

- 164 -



simulation were 10 seconds, and the scaling I used for the pointing error might not be
correct if Kasdin's integration time was other than 10 seconds. In order to calculate the
rms value for the pointing error correctly, we need to define the power spectral density of
the pointing error in the continuous domain and convert it to its discrete equivalent

according to the integration time.
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Figure 5.14 Time history of the estimation error of the relativistic precession rates
with various telescope pointing errors.
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5.6 Effects of Roll Period

I investigated the effect of the satellite's roll period on the final estimation
accuracy of relativistic precession rates. The science signal is modulated at the roll
frequency, and the signal-to-noise ratio can be improved by speeding up the satellite's roll
because the SQUID noise has 1/f power spectral density. I tested the data reduction
scheme with a one-minute roll period and a ten-minute roll period. The following

sections describe the results of these simulations.

Figures 5.15 (a) and (b) show the estimation errors of the geodetic and
frame-dragging precession rates, respectively, during a one-year simulation. The solid
line in each figure indicates the estimation error with a ten-minute roll period, and the
dashed line indicates that with a one-minute roll period. The estimation errors are
bounded by the one-sigma envelopes of the expected estimation accuracy calculated by
the Kalman filters. The outside envelopes are for the ten-minute case and the inner ones
are for the one-minute case. Table 5.6 compares the final estimation accuracy for both
roll periods. I could improve the final estimation accuracy of the geodetic precession rate
by 24% and that of the frame-dragging precession rate by 22% when I speeded up the roll
period from ten minutes to one minute. However, these improvements were not as
impressive as 1 expected given the gain of signal-to-noise ratio in the SQUID
magnetometer. If the satellite's roll is speeded up by a factor of 10, the noise power at the
roll frequency is reduced by the same factor as shown in Figure 1.5. Thus, the final
estimation accuracy should be improved by a factor of 4/10. The simulation showed less
improvement because of following reasons®:

» Conservative tuning for the one-minute roll case;

¢ Linearization error became dominant compared with the SQUID noise;

6 1 did not have time to investigate each effect to determine the dominant error source because the
investigation of the one-minute roll started too late for the publication of this thesis.
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» Other error sources such as telescope pointing error, roll phase error, and
quantization error became dominant compared with the SQUID noise.

The linearization error is especially large at the beginning of the filtering and is
proportional to the quadratic function of the estimation error. Even though the estimation
error associated with the initial error decays exponentially for the linear filters, it decays
slower for the non-linear filters and has larger effects on the final estimation accuracy.
Thus, the requirements on the initial estimation errors have to be re-investigated for the
one-minute roll case. The same argument is possible for the other error sources such as
the telescope pointing error, roll phase error, quantization error, etc. For example, I
found that the telescope pointing error with a 20-milliarcsecond rms had little effect on
the final estimation accuracy for the ten-minute roll case, but this claim may not be true
for the one-minute roll case. The nominal value for the telescope pointing error should be
improved according to the improvement of the SQUID's signal-to-noise ratio, i.e., the
nominal value should be about 6-milliarcsecond rms for one-minute roll. Another
example is the quantization error in the A-to-D converter. Qin (Ref. 20) found that the
quantization error in an A-to-D converter with a 14-bin resolution has equivalent rms
value of the 5-hour SQUID noise with ten-minute roll. In my simulation, I assumed an
A-to-D converter with a 16-bit resolution, which leaves about two bits in resolution
before the quantization error becomes dominant compared with the SQUID noise. Two
extra bits of an A-to-D converter reduces the quantization error by a factor of four, but
the SQUID noise is improved by a factor of /10 at the same time with one-minute roll.
Thus, the 16-bit resolution becomes marginal with one-minute roll and may not provide
sufficient accuracy. These issues have to be investigated more thoroughly when

determining the roll period for the GP-B satellite.
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Table 5.6  Final estimation accuracy of two-step filters with various roll periods

Final estimation accuracy | Final estimation accuracy
Filter states with ten-minute roll with one-minute roll
(milliarcseconds per year) (milliarcseconds per year)
Geodetic precession rate Qg 0.53 0.40
Frame-dragging precession rate Qp 0.42 0.33

5.7 Summary of Data Reduction Synthesis

In Chapter 5, I reformulated Qin's two-step filters with slightly different filter
states and implemented the recursive algorithm. I verified the two-step filters with the
truth model that I developed in Chapter 4 and found that the final estimation accuracy
was better than 0.5 milliarcsecond per year for the relativistic precession rates. The
recursive algorithm consistently showed 15 to 18% better results. I investigated the
effects of gyroscope's polhode motion on the filters. I modeled the polhode signal with a
scale factor variation and modified the filters to estimate polhode parameters. The
modified filters with extra polhode states showed more stability and better results than the
original filters. The optimal polhode period that I found from my model was about
0.2 hour, but a more precise model of the trapped flux signal has to be used to verify this
claim. I also investigated the effects of the telescope pointing error and the roll period.
The telescope pointing error with a 20-milliarcsecond rms had little effect on the final
estimation accuracy, and the gain-matching scheme may not be necessary to improve the
accuracy. The final estimation accuracy was improved by 22 to 24% with a one-minute
roll, but the improvement was not a factor of 4/10 as I expected. A complete error
analysis must be conducted to determine which error sources become dominant under

current specifications if the roll period is shortened to one minute.
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CHAPTER 6. EXPERIMENTAL VERIFICATION

6.1 Introduction

In Chapter 6, I will describe the set-up, the calibration, and the results from the
latest niobium bird experiment. I tested the two-step Kalman filters that I formulated in
Chapter 5 with the experimental data measured by a commercially available dc SQUID
magnetometer. The experimental verification of the data reduction scheme was the most
important task among the three objectives of the niobium bird project [see Figure 1.6 (b)]
because this was the first time that the full-size Kalman filters were tested with actual
SQUID measurements. The niobium bird experiment enabled us to sort out unforeseen
requirements on the readout hardware by testing the data reduction scheme with a real
SQUID signal. The first phase of the niobium bird experiment was to test the filters with
a commercially available SQUID magnetometer, and it revealed some interesting

requirements on the temperature sensitivity of the SQUID system.
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The following sections describe the experimental configuration of the niobium
bird experiment, the calibration results of the readout instruments, and the results of the

latest niobium bird experiment with the Kalman filters.

6.2 Experimental Configuration

As the conceptual diagram of the experiment shows in Figure 1.6 (a), the
programmed current generated by the D-to-A converter was injected into a coil
inductively coupled to the SQUID readout system, and the readout system measured the
magnetic flux induced by the current. The Kalman filters then processed the SQUID
measurement data, and I evaluated the estimation accuracy. In order to conduct a
credible testing of the Kalman filters, I had to establish a realistic readout system similar
to that of the science mission and, therefore set up a cryogenic dewar to keep the critical
components, such as the SQUID probe, pickup loops, and niobium shielding,

superconducting throughout the experiment.

Figure 6.1 shows the configuration of the niobium bird experiment, which
consists of three parts: (1) data injection instruments, (2) SQUID instruments, and
(3) data sampling instruments. The data injection instruments generated the simulated
science signal and controlled the timing of data injection to the SQUID readout system.
The next block of the experiment was the cryogenic instruments, which included the
pickup loops and the SQUID probe. The last block was the data sampling instruments,
which digitized the output of the SQUID magnetometer through an anti-aliasing lowpass

filter and sent the data to the Kalman filters. The following sections explain each block

in detail.
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Figure 6.1  Experimental configuration of the niobium bird experiment.
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2 Data Injection [

The data injection instruments included a Sun Sparcstation 330, a PC-386, a
waveform generator, and a voltage divider. The truth model developed in Chapter 4 and
the Kalman filters developed in Chapter 5 resided in the Sparcstation. The PC-386,
which was connected to the Sparcstation via Ethernet, controlled the timing of data
injection and sampling through an IEEE488 interface. The truth model within the
Sparcstation created a simulated science signal, and the PC read the ASCII file that
contained the science signal over the Ethernet. I used Hewlett-Packard’s Universal
Source, Model HP3245A, as a waveform generator. It accepted the GPIB command to
generate a programmed voltage according to the simulated science signal. The data
injection update rate was 1 Hz, that is, the HP3245A accepted each GPIB command every
second to output new voltage. The voltage divider then converted the voltage to a
current, which, in turn, was injected into the calibration coil around the gyroscope. The
programmed current injected into the calibration coil induced a magnetic flux within the
loop, which was equivalent to the London moment signal of the science mission, and the
SQUID magnetometer measured the magnetic flux. This last part was conducted in a

cryogenic environment and will be explained in the next section.

6.2.2 Cryogenic Instruments

The cryogenic instruments were the most critical components of the niobium bird
experiment because they included the SQUID probe, the pickup loop, and the calibration
coil. They can be categorized into three blocks: the supporting structures, the SQUID
sensor, and the temperature control system. I will explain each block in detail in the

following sections.
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Figure 6.2  Quartz housing and gyroscope with niobium coating.

6.2.2.1 Supporting Structures

The supporting structures consisted of a cryogenic dewar, an outer frame, and
p-metal! shield. The dewar held about 80 liters of liquid helium and kept the niobium
parts such as pickup loops and gyroscope superconducting for three to four weeks
without refilling with liquid helium. The outer frame was standing on the lab floor
through three contact points to eliminate any skew and supported the dewar through
rubber pads in order to isolate the dewar from vibration in the floor. The dewar had a
p-metal shield, which had been installed by the manufacturer, to attenuate the external

magnetic field.
6.2.2.2 SQUID Readout System

The readout instruments included SQUID probe, one-turn pickup loop, one-turn

calibration coil, gyroscope, niobium shielding, rf filters, and SQUID controller. All but

! Mu-metal is an iron alloy with high permeability (u value), which is often used for magnetic
shielding purposes.
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Figure 6.3 Simulated London moment and SQUID readout system for the niobium
bird experiment.

the rf filters and the SQUID controller were immersed in liquid helium and were kept at a
temperature of 4.2 K or less. As I explained in Section 1.2.6, the SQUID magnetometer
is a flux-to-voltage converter, and the output is a voltage proportional to the magnetic
flux within the SQUID loop. Figure 1.4 shows the SQUID readout system for the science
mission. The London moment created by the spinning superconducting object induces a
current in the pickup loop, which is, in turn, coupled to the input coil of the SQUID.
Then, the output of the SQUID magnetometer is a voltage proportional to the component
of the London moment that is perpendicular to the plane of the pickup loop. In the
niobium bird experiment, I used a commercially available dc SQUID magnetometer

manufactured by Quantum Design, Inc.
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Figure 6.2 shows the quartz housing and the gyroscope installed in the dewar.
Figure 6.3 shows the core of the niobium bird's readout system. Compared with the
actual readout system for the science mission (Figure 1.4), the niobium bird's readout
system had an essential difference, which was the non-spinning gyroscope. The quartz
housing, which contained the gyroscope, was installed in the dewar for the niobium bird
experiment [see Figure 6.2]. Even though the gyroscope was coated with niobium and
superconducting, it was not spinning, and, therefore, it did not have a London moment.
The levitation of the gyroscope under 1-g environment would have required a high
voltage suspension system, which would have introduced an unacceptable level of
interference to the SQUID. Instead of spinning the gyroscope and measuring the London
field, [ measured an artificially created magnetic field within the pickup loop. I had an
extra loop around the gyroscope called the calibration coil, located just outside the
pickup loop [see Figure 6.3]. The waveform generator at room temperature was
connected to the calibration coil and injected the programmed current. The injected
current generated a magnetic field near the coil, which was inductively coupled to the
pickup loop. As a result, any change in the injected current induced a change in the
current in the pickup loop. I programmed the waveform generator so that the induced
magnetic field within the pickup loop was equivalent to the London moment of the
science mission. Thus, I called the magnetic field of the niobium bird experiment the
simulated London moment, which assures the main objective of the niobium bird
experiment: to provide a realistic input to the SQUID readout system. The SQUID
magnetometer measured the flux of the simulated London field. The scaling of the
injected current, so that the resulting simulated London field would be equivalent to that
of the science mission, depended on the configuration of the calibration coil, the pickup
loop, and the gyroscope, which is shown in Figure 6.4. 1 will discuss this scaling issue in

Section 6.3.
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In order to isolate the simulated London field from the ambient magnetic field, I
had to shield the core elements magnetically, including the pickup loop, the calibration
coil, and the SQUID probe. I used three layers of niobium and lead shielding (Ref. 57) in
addition to the p-metal shielding and self-shielding of the gyroscope. Two inner layers
were niobium tubes, and I used a lead sheet to wrap the quartz housing and the SQUID

probe.
6.2.2.3 Temperature Control System

I implemented a temperature control system to reduce the bias drift in the SQUID
readout that depended on the temperature of the SQUID probe. The SQUID probe was
immersed in liquid helium, and I stabilized the temperature of the probe by regulating the
temperature of liquid helium. Figure 6.5 shows the diagram of the temperature control
system. A vacuum pump and a butterfly valve were used to keep the gas pressure below
atmospheric pressure, and a germanium resistance thermometer (GRT) and a temperature
bridge were used measure the temperature. The GRT was attached to the SQUID probe
to measure the temperature of the probe. To measure and regulate the temperature, I used
a temperature bridge and a PID controller manufactured by Linear Research Inc.,
Model LR-400-20K/130. The temperature of liquid helium at atmospheric pressure is
about 4.2 K, and I selected the controller set point below that temperature. The vacuum
pump kept the helium gas pressure below atmospheric pressure and the temperature under
4.2 K, while the PID controller sent a current to the heater in the liquid helium to regulate
the temperature. I adjusted the opening of the butterfly valve for the appropriate

temperature range. The results of temperature regulation are presented in Section 6.3.
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Figure 6.5 Temperature control system of liquid helium with vacuum pump, Ge
resistance thermometer, heater, temperature bridge, and PID controller.

6.2.3 Data Sampling Instruments

The data sampling instruments included the lowpass filter, the A-to-D converter,
and the PC-386. The lowpass filter prevented aliasing in the digitized data, and the PC
controlled the timing of the sampling through IEEE488 so that the sampling was always
synchronized with data injection. The sampling frequency was 0.1 Hz, which was ten
times slower than the data injection rate. The cut-off frequency of the lowpass filter was
0.04 Hz, which was 80% of the Nyquist frequency. Iused a Keithley' Model 196 Digital
Multimeter as the A-to-D converter and a Krohn-Hite Model 3905B with Model 30A-3 as
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the lowpass filter. The lowpass filter used a 7-th order elliptical function and provided

115 dB/octave attenuation above the cut-off frequency.

6.3 Calibration of Niobium Bird Experiment

I conducted the calibration of most of the instruments used in the niobium bird
experiment. The calibration process isolated the source of errors within the experiment
and the error budget was compared with the assumptions made in the Kalman filters. The

calibration included

* Temperature regulation of liquid helium;
+ Setting of SQUID magnetometer and analysis of SQUID noise;
+ Stability analysis of scale factor and bias in SQUID magnetometer;

* Scaling of input current to the calibration coil, which induced the simulated
London moment;

+ Calibration and noise analysis of data injection instruments such as the
HP3245A and the voltage divider;

+ Calibration and noise analysis of data sampling instruments such as
Keithley's Model 196, Krohn-Hite's lowpass filter.
The results of these calibrations are presented in the following sections.

3.1 Results of Temperature Regulation of Ligui lium

The temperature of the liquid helium within the dewar was regulated about the set
point by the control system explained in Section 6.2.2.3. Ichose 1.93 K as the set point,
and Figure 6.6 shows the temperature regulation error around the set point over five
minutes. Even though the error showed larger spikes on one side, the PID controller
regulated the temperature within £2 pK rms. The PID controller manufactured by Linear
Research Inc. had adjustments for the feedback gain, and the gain was adjusted by

trial-and-error. Below 2 K, the liquid helium becomes superfluid, which means that the
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Figure 6.6 Temperature regulation error of liquid helium with a set point of
1.93 K.

effective heat conductivity of the liquid becomes very large. At 1.93 K, the liquid helium
is a superfluid, and the temperature of the liquid is very uniform within the dewar. Thus,
the delay which is usually associated with a temperature gradient, was minimized, and the

control loop was stable throughout the experiment.

Noi of

I conducted the first phase of the niobium bird experiment to test the Kalman
filters with a commercially available SQUID magnetometer. I used a dc SQUID
magnetometer Model 5000 manufactured by Quantum Design, Inc., which had an
auto-tuning function for the bias current. The settings of the magnetometer were selected

from the key pads on the front panel. Some of the settings that I used were:

* Reversing bias current option on (YAMS)
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Figure 6.7  Square-root power spectral density of Quantum Design dc SQUID
noise (indicated by o's).

e Internal filter: 1 kHz cutoff frequency
* Range: 5 flux quanta full scale with stability option (5S)

* Output gain:  7.50 volts per flux quantum?

With the settings above and the temperature regulation of the liquid helium presented in
Section 6.3.1, I sampled the output of the SQUID magnetometer for 10 hours at 1 Hz3
with the data injection instruments disconnected from the calibration coil so that no input
signals were present. Thus, the measured noise in the output of the SQUID

magnetometer represented the noise floor of the SQUID readout system. I calculated the

2 Even though the manual provided by Quantum Design Inc. implies that the gain is 10 volts per
flux quantum, a calibration test by J. M. Lockhart and B. Muhlfelder (Ref. 58) showed that the actual gain
is only 7.50 volts per flux quantum with about 2% uncertainty.

3 While the nominal sampling rate for the niobium bird experiment was 0.1 Hz, I used a faster
sampling rate for the noise calibration to observe the noise floor of the dc SQUID.
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power spectral density of the SQUID noise using the method presented in Section 3.2.24.
Figure 6.7 shows the square-root power spectral density of the measured SQUID noise in
units of ®,/vHz. It also shows two linear slopes, I/f and 1/v/f slopes, in square-root
power. Even though the square-root power spectral density of the measured SQUID
noise showed a 1/+/f trend at higher frequencies, it clearly showed a 1/f trend at lower
frequencies, which may have been caused by the temperature drift in the readout system.
As indicated by the dashed line in the figure, the noise level at the roll frequency was
about 60 ud, / vHz, and the integration time required to resolve a one-milliarcsecond
signal was thus about 11 to 14 hours for the Quantum Design dc SQUID. As far as the
signal-to-noise ratio at the roll frequency is concerned, the experimental measurements
should yield the estimation accuracy which is only a few times worse than the simulation.
This claim will be tested in Section 6.3. If we can remove the 1/f trend at lower
frequencies by reducing the temperature drift in the readout system, it may improve the

noise level at the roll frequency to about 40 u®, / vHz, which corresponds to a 5 to

7-hour SQUID.

6.3.3 Stability of Scale Factor and Bias in SQUID Readout

The stability of the scale factor and the bias in the SQUID readout affects the
estimation accuracy of the Kalman filters because the step 1 filters estimate the scale
factor and the bias as slowly varying constants as described in Section 5.2.1. Within the
process model of the step 1 filter, I modeled the SQUID scale factor and the bias as
constant parameters with driving white noises, which I assumed to be independent
Gaussian. The strength of the driving noise, i.e., the process noise, is determined by the
stability of each parameter over the sampling period and is specified by the rms value. If

the process noise of the filter model correctly represents the actual drift, the solutions of

4 The window size M was 4096 with an overlap among segments by a half window size (2048 data
points). The sampling frequency was 1 Hz with an anti-alias filter at 0.4 Hz. I used the Hanning window
to condition the data and corrected the PSD estimate for the noise equivalent band-width (Equation 3.19),
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the Kalman filters are optimized between the measurement noise and the uncertainty in
the filter model, and the filters are properly tuned. If the filters are not properly tuned, the
resulting estimation accuracy can be too conservative or too optimistic. Thus, even
though I verified the Kalman filters by the simulations in Chapter 5, I had to verify that
the filters are correctly tuned by comparing the assumption that I made for the
simulations and the actual drift in the SQUID readout in the niobium bird experiment. In
this section, I will discuss the assumptions that I made for the stability of these
parameters when I verified the filters and compare them with what I observed in the

actual SQUID signal.

In order to calibrate the stability of the scale factor and the bias in the SQUID
signal, I injected a square wave into the calibration coil and sampled the output of the
SQUID magnetometer, which was a delayed square wave with the same frequency. I
could calibrate the scale factor by comparing the amplitude of input and output square
waves, and calibrate the bias drift by averaging the output square wave over each period.
The frequency of the square wave was 0.05 Hz, and the sampling frequency was 1 Hz.
Figure 6.8 shows the setup for the calibration. With the same setting for the SQUID

controller as given in Section 6.3.2, the overall scale factor was

“//""‘ =0.995857+0.000013 6.1)

in

where
V.u:  output voltage at the SQUID controller

Vi.:  input voltage at the voltage divider

Figure 6.9 shows the calibration results of the scale factor. I changed the input voltage
amplitude from —10 volts to +10 volts and calculated the scale factor at each point. I

calculated the overall scale factor by averaging all the data points.
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Figure 6.8  Calibration of scale factor and bias drift in the SQUID readout system.

I conducted the calibration for a day and investigated the stability of the scale
factor and the bias. Then, I compared the assumptions that I made for the simulations
with the actual stability in Table 6.1. The stability of the scale factor was about the same,
but that of the bias drift was about twenty times worse than I assumed in the simulation,
which means that the process noise that I gave to the bias state of the Kalman filters was
too small compared with the actual bias drift. If I increase the process noise on the bias
state by a factor of twenty, the final estimation accuracy will be degraded. As a
hypothetical case, if we use Quantum Design's SQUID controller for the science mission
instead of flight instruments, I expect that the final estimation accuracy of the relativistic

precession rates will be about 10 milliarcseconds per year.

Table 6.1  Stability of SQUID Scale Factor and Bias -- Comparison Between
Simulation and Experiment

Simulation Experiment
Scale factor stability 5e-3 %/day 7e-3 %/day
Bias drift stability 0.05 arcsecond/day 1 arcsecond/day
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Figure 6.9 Calibration results of the SQUID scale factor.
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Figure 6.10 Correlation between the bias in the SQUID readout and the temperature
of the SQUID controller.
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The large bias drift observed in the SQUID signal did not improve even with the
temperature regulation of the liquid helium, which was supposed to attenuate the
temperature-dependent bias drift in the SQUID probe. This fact lead to the investigation
of additional temperature dependency within the readout system. I measured the
temperature of the SQUID controller, which was kept at room temperature, during the
calibration and investigated the correlation between the controller temperature and the
bias drift in the SQUID readout. Figures 6.10 (a) and (b) show the bias drift in the
SQUID readout and the temperature drift of the SQUID controller in 24 hours,
respectively. The bias and the controller temperature showed strong correlation with a

cross-correlation coefficient of 0.968, and the temperature coefficient of the SQUID bias

was

b
—ﬁ = 1 arcsecond per Kelvin (6.2)

According to this coefficient, the temperature of the SQUID controllerS has to be
regulated within £100 mK at dc® in order to isolate the bias drift from the relativistic
precession rates. The SQUID controller that I used, Quantum Design's Model 5000, did
not have internal temperature regulation, and the room temperature mainly determined
the controller's temperature. Even though the temperature-dependent bias drift in the
Model 5000 was considerably larger than what the Kalman filters assumed (Table 6.1), it
can be reduced for the science mission by using a SQUID controller with a smaller
temperature coefficient and installing a temperature regulation system to the controller.
The temperature coefficient of the readout bias can be reduced by selecting controller

components that are less sensitive to the temperature variation. Thus, the design of the

5 A SQUID controller designed for the science mission will have a smaller temperature coefficient,
which will relax the requirement on the temperature regulation.
6 I calculated the requirement on the temperature regulation from the assumptions that I made for

the simulation [see Tables 5.1 and 5.2].
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Figure 6.11 Inductive coupling of the SQUID readout system for the science
mission.

SQUID controller for the GP-B program should include (1) installation of a temperature

regulation system and (2) a design with a smaller temperature coefficient.

6.3.4 Scaling of Injection Current to Calibration Coil

After I calibrated the scale factor of the SQUID readout system, I calculated the
scaling of the voltage output from the waveform generator (HP3245A). I adjusted the
gain of the waveform generator so that the resulting simulated London moment was
equivalent to that of the science mission. The inductive coupling of the SQUID readout
system designed for the science mission has a different configuration from that for the
niobium bird experiment [see Figure 6.11]. For example, the inductance of the pickup
loop and that of the input coil are balanced at 2 puH for the science mission, but they have
different values in the niobium bird experiment. I made the following assumptions for

the SQUID readout system used in the science mission:
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ro =19.05 mm

fs =170 Hz
N =5 turns
. 6.3)
N’ =4.4 turns
L,=2 uH
L =2uH
where Ip: mean radius of the pickup loop
f;: gyroscope's spin frequency
N: number of turns in the pickup loop
N*: effective number of turns in the pickup loop (Ref. 57)
L,: self inductance of the pickup loop
Li: self inductance of the input coil in the SQUID probe
Under these assumptions, the magnitude of London field B is given by
B, =1.22x10"® Tesla (6.4)

According to the formulation by J. M. Lockhart (Ref. 57), the total magnetic flux within

the pickup loop, the induced current, and the flux coupled to the SQUID loop can be

calculated as follows:

@ =N'B, mr?
? e (6.5)
=6.12x10™"! Weber
e/ S (e)] .
I, = m: 1 sin@, = z}ﬁsm 6, 6.6)

: total magnetic flux within the pickup loop
: induced current in the pickup loop
: angle between the London moment and the pickup loop
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The angle between the London moment and the pickup loop is very small because the

nominal spin-up axis is in the pickup plane. Thus,

[ ~—2_9, 6.7)

For 6, =1 arcsecond, the induced current in the pickup loop is
1,=7.42x10"° mA (6.8)

Thus, a one-arcsecond displacement of the London moment corresponds to about
7x10” mA of the induced current in amplitude for the science mission. If I inject this
current into the input coil of the Quantum Design's Model 5000, the flux coupled to the
SQUID loop can be calculated as follows. The coupling of the input coil to the SQUID

loop for the Model 5000 was calibrated by the manufacturer? and was given by

M, =50 &,/uA (6.9)

where M.: mutual inductance of input coil to SQUID loop
@,: flux quantum = 2.07x10™° Wb

Hence, the change in flux in the SQUID loop resulted from a one-arcsecond displacement
of the London moment is
S, =M1,

=0.37x10°®, (in ampli @10
=0. A mplitude)

where
®: change in flux in the SQUID loop coupled from the input coil for
1 arcsecond
7 Serial number: dc SQUID A4.17. Manufacturing date: 01/07/92.
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or in rms value
P, =0.25x107° P, (in rms) (6.10b)

Now, I can calculate the transfer function of the waveform generator from the gain of the
niobium bird's readout system (Equation 6.1) and the transfer function of the science
mission's readout system (Equation 6.10a) so that the magnitude of the simulated London

moment becomes equivalent to that of the London moment.

According to the setting of the SQUID controller presented in Section 6.3.2, the

transfer function of the SQUID controller (Ref. 58) is given by

Vau 1
@

N

=7.50 volts/ P, 6.11)

I also know the overall gain of the SQUID readout for the niobium bird experiment from

Equation 6.1. Thus, the gain from the input voltage to the input flux can be calculated as

=—2.—% =013 @,/volt (6.12)

From Equation 6.10a, we know that a one-arcsecond displacement corresponds to

0.37x107 @, of SQUID flux. Therefore, the transfer function of the waveform

generator is given by

Vi - 2.8 mV/arcsecond

6, (6.13)
= 3 mV/arcsecond

- 193 -



I used 4 mV per arcsecond to scale the input to the calibration coil®. That is, if the
amplitude of the simulated science signal at time t is one arcsecond, then the waveform
generator (in this case an HP3245A) outputs 4 mV, and the current injected into the
calibration coil induces an simulated London moment whose amplitude is equivalent to

the normal component of the London moment with a one-arcsecond?® displacement.

6.3.5 Calibration of Data Injection Instruments

I calibrated the data injection instruments including the waveform generator
(Hewlett Packard Model HP3245A) and the voltage divider in terms of the noise
performance. The HP3245A provides a programmed voltage output with one-microvolt
resolution, which corresponds to 0.25 milliarcsecond of displacement of the London
moment according to the input scaling (Equation 6.13). Thus, it provides adequate
resolution to generate an simulated London moment equivalent to a displacement angle
less than one milliarcsecond. I measured the output and the temperature of the Model
HP3245A for 24 hours. Figures 6.12 (a) and (b) show the output noise and the
temperature drift, respectively. The rms value of the output noise was about
0.28 milliarcsecond with a cutoff frequency of 0.5 Hz, which agreed with the resolution
of the waveform generator, and the temperature drift of the waveform generator had no
significant effects on the output drift. Figure 6.13 shows the power spectral density of
Quantum Design's SQUID and that of the HP3245A output. The power spectral density
of the waveform generator was about 40 dB better than that of the SQUID noise, and,
therefore, the Model HP3245A provided adequate resolution and noise performance to

generate the simulated London moment for the niobium bird experiment.

8 I determined the scale by a previous calculation, which assumed the transfer function of the
SQUID controller to be 10 volts per &, in Equation 6.11. A calibration test conducted by J. M. Lockhart
and B. Muhlfelder later revealed that the actual value was only 7.50 volts per ;.

9 If T use the actual transfer function (Equation 6.13), which was corrected for the gain in the
controller, 4 mV output corresponds to a displacement of about 1.4 arcseconds.
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In addition to the waveform generator, I also calibrated the resistor box, which
was used as a voltage divider. The voltage divider converted the voltage from the
waveform generator to a current, which was injected into the calibration coil of the
niobium bird experiment. Similar to the calibration of waveform generator, I measured
the output and the temperature of the voltage divider, which are shown in Figures 6.14 (a)
and (b), respectively. Even though the temperature drift had no significant effects on the
output drift, the output of the voltage divider was much noisier than that of the waveform
generator. Figure 6.15 shows the power spectral density of the output noise. The power
spectral density of the output noise of the voltage divider was marginal compared with
the SQUID readout noise. I also found glitches in the output signal as I tapped the
resistor box, which suggested that the higher noise could have resulted from improper
grounding of the resistor box. I should mention that I measured the output of the resistor
box with an open end, which also may have increased the noise level. Even though the
noise introduced by the resistor box was not a dominant noise, the grounding still needs

to be improved for later experiments.
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Figure 6.12 Output noise and temperature of the waveform generator HP3245A.
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Figure 6.13 Power spectral density of the SQUID noise (Quantum Design Model
5000) and the output noise of the waveform generator (HP3245A).
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Figure 6.14 Output noise and temperature of the voltage divider.
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Figure 6.15 Power spectral density of the SQUID noise (Quantum Design Model
5000) and the output noise of the voltage divider.

6.3.6 _Calibration of Data Sampling Instruments

I calibrated the data sampling instruments, including the anti-alias lowpass filter
and the A-to-D converter (Keithley's Model 196). The Model 196 provided
approximately 22-bit resolution, which was equivalent to 0.1 milliarcsecond assuming the
gain of 7.50 volts per flux in the SQUID controller and unity gain in the lowpass filter.
Similar to the calibration of the data injection instruments, I shorted the input to the
Model 196 and measured the voltage and the temperature for 10 hours. The temperature
drift did not have any significant effect on the measurement bias drift, and the power
spectral density of the measurement noise was about 100 dB better than the Quantum

Design SQUID and about 50 dB better than the waveform generator [see Figure 6.16].
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Figure 6.16 Comparison of noise performance among signal generator (HP3245A),
sensor (Quantum Design SQUID), and signal sampler (K196).

Thus, the Keithley's Model 196 provided adequate stability and resolution for the

niobium bird experiment.

The last instrument that I tried to calibrate was the lowpass filter, which I found
the most difficult to calibrate. The lowpass filter was necessary for the readout system to
avoid aliasing in the sampled data. I tried several commercially available lowpass filters,
but the first two filters including one manufactured by Wavetek, Inc., did not provide
adequate stability in phase and gain, and I observed glitches in the output. Then, I
switched to the main-frame filter manufactured by Krohn-Hite Co., a combination of
Model 3905B and Model 30A-3, which provided the best stability among the lowpass
filters that I tested. For the science mission, the same stability requirements are imposed

on the lowpass filter as the SQUID magnetometer because the science signal is sampled
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at the output of the lowpass filter. Thus, the lowpass filter should be designed so that the
following requirements, which are imposed by the Kalman filters, are satisfied:

* Scale factor drift < 5e-3%/day

» Bias drift < 0.05 arcsecond/day

« Phase noise < 10 arcseconds after 10-second integration

6.3 Experimental Results

After the calibrations described above, I injected the simulated science signal into
the calibration coil and measured the output of the SQUID magnetometer. The SQUID
magnetometer was the same unit that I calibrated, Model 5000 manufactured by Quantum
Design, Inc. Even though this unit was a commercially available unit, and its design and
specifications did not necessarily meet our requirements, the experiment revealed
important design issues such as the temperature-dependent bias drift. The findings in the
niobium bird experiment will be taken into account when we design the readout system

for the science mission.

I processed the sampled data through the Kalman filters that I developed in
Chapter 5 and evaluated the filter performance against the simulation results. I ran two
sets of Kalman filters: one with nominal parameters as the simulations in Chapter 5 and
the other with modified parameters according to the actual stability of the readout system.
The results showed that the filters became unstable with nominal parameters because the
process noise given to the Kalman filters was too small compared with the actual drift,
especially the temperature-dependent bias drift. By increasing the process noise on the

bias term of the filter states, I could stabilize the filters but the estimation accuracy

degraded accordingly.
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Figure 6.17 Sampled science signal in the niobium bird experiment.

I sampled the SQUID measurement for about five hours, which corresponded to
three orbits of data [see Figure 6.17]. 1 divided the data into three segments each of
which corresponded to a Rigel-valid period during each orbit and processed three
segments through the step 1 filters. Each segment consisted of about 370 data points at a
0.1 Hz sampling rate. The gain setting of the SQUID magnetometer was 7.50 volts per
flux quantum, and I increased the input gain of the lowpass filter to 30 dB in order to

increase the signal-to-noise ratio in the filter.

Once 1 obtained the measurements, I tested the step 1 filters with the initial
conditions given in Table 6.2 and two different sets of process noise, Case I and Case I,
given in Table 6.3. Case I used the same process noise as used in the simulations in
Chapter 5. Case Il used the adjusted process noise according to the calibration of the

readout system. Although the process noises for the scale factor and the phase bias were
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unchanged for Case II, the process noise for the bias was increased to track the

temperature-dependent bias drift found in the SQUID magnetometer [see Table 6.1].

Table 6.2  Initial Conditions for Step 1 Filters in the Niobium Bird Experiment

State Variables (Units) Initial Estimates Estimation Accuracy
Cg (volts/arcsec) 0.126 0.0005
09, (radians) -0.2094 0.005
b, (arcseconds) -0.01 0.5
NS; (arcseconds) 0.0 5.0
EW; (arcseconds) 0.0 5.0

Table 6.3 Nominal (Case I) and Adjusted Process Noises (Case II) for Step 1
Filters in the Niobium Bird Experiment

Process Noise Process Noise

State Variables (Units) Case I (Nominal Values) Case II (Adjusted Values)

Cg (volts/arcsec) 1.0e-10 1.0e-10
99, (radians) 1.0e-9 1.0e-9
by, (arcseconds) 1.0e-10 1.0e-2

6.3.1 Step 1 Filtering with Nominal Process Noise (Case I)

I processed the experimental data through three step 1 filters with nominal process
noise given in Table 6.3. Figures 6.18 (a) and (b) show the estimation errors of NSs and
EWj, respectively. The dashed lines are the envelopes of the expected estimation

accuracy, and the solid lines are the actual estimation errors. Even though the estimation
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errors at the end of each orbit were mostly within the expected accuracy, the intermediate
estimation errors overshot widely outside the expected accuracy. In fact, as Figure 6.19
shows, these step 1 filters were unstable because the estimation residuals diverged. The
filters diverged mainly because the process noise on the bias term was too small
compared with the actual bias drift. As a result, the estimated bias always lagged the
actual bias, and the estimation error grew with time. Another cause was the unmodeled
lowpass filter within the Kalman filter. The phase delay in the lowpass filter, which I
used as an anti-aliasing filter, depended on the frequency of the input signal, and the
science signal contained three spectrally separated signals, the roll signal at f, and the
calibration signals at f£f, as shown in Figure 5.2. Thus, the phase delays in the roll and
the calibration signals were different. On the other hand, the step 1 filters estimated the
overall phase delay as a roll bias!0 that effectively included the phase delays introduced
by the roll controller, the SQUID readout, and the anti-alias lowpass filter, and the filters
assumed the phase delay to be the same for the roll and the calibration signals. The lack
of modeling of the phase delay explains the repeated pattern in the estimation errors over
three orbits because the phase delay was the only factor that was repeatable over multiple

orbits.

10 The step 1 filters included the roll bias as the second element of the state vector (Equation 5.1).
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Figure 6.18 Estimation errors of NS and ES; terms by three step 1 filters with
nominal process noise (Case I) and SQUID measurements from the
niobium bird experiment.
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Figure 6.19 Estimation residual of three step 1 filters with nominal process noise
(Case I) and SQUID measurements from the niobium bird experiment.

6.3.2 _Step 1 Filtering with Adjusted Process Noise (Case II)

I adjusted the process noise in the step 1 filters as shown in Table 6.3 and
processed the experimental data through three step 1 filters. Figures 6.20 (a) and (b)
show the estimation errors of NSs and EWg, respectively, and Figure 6.21 shows the
estimation residual of the three step 1 filters. The maximum value of estimation residual
was reduced by a factor of more than 36, and the step 1 filters were successfully
stabilized by increasing the process noise on the bias term. The estimation errors of NS
and EWj; always stayed within the expected estimation accuracy. Table 6.4 compares the
final estimation accuracy of each step 1 filter with the experimental science signal (Case
II) and the simulated science signal. The expected estimation accuracy obtained from the
experimental data was about four times worse for the North-South static term, NSs, and
about eleven times worse for the East-West static term, EWj, compared with the

simulation results.
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(b) EW; (East-West static term) estimation error by three step 1 filters (Case II).

Figure 6.20 Estimation errors of NS and ES; terms by three step 1 filters with
adjusted process noise (Case II) and SQUID measurements from the
niobium bird experiment.
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Figure 6.21 Estimation residual of three step 1 filters with adjusted process noise
(Case II) and SQUID measurements from the niobium bird experiment.

Table 6.4  Final Estimation Accuracy of Step 1 Filter — Simulation vs. Experiment

(Case II)
i Expected Estimation Accuracy | Expected Estimation Accuracy
Filter States (arcseconds) at the End of a (arcseconds) at the End of a
Step 1 Filter: Simulation Step 1 Filter: Experiment
NSs 0.018 0.076
EW; 0.008 0.084
m f Ex 1

I tested the performance of the dc SQUID magnetometer manufactured by
Quantumn Design, Inc., by processing the experimental data through the step 1 filters. As
the calibration of the magnetometer revealed, the bias drift in the SQUID signal was

much bigger than what was assumed in the simulation, and the step 1 filters became

-208 -



unstable as a consequence when the process noise on the readout bias term was too small.
Although I could stabilize them by increasing the process noise, the resulting estimation
accuracy degraded accordingly and was four times worse for the NSg term and eleven
times worse for the EWs term. As a hypothetical case, if we use the Quantum Design's
SQUID magnetometer for the science mission, the final estimation accuracy of the
geodetic precession rate will be about 2 milliarcseconds per year, and that of the
frame-dragging precession rate will be about 5 milliarcseconds per year. When we
design the SQUID magnetometer for the science mission, we can reduce the
temperature-dependent bias drift by implementing a temperature regulation system to the
magnetometer and by reducing the temperature coefficient of each component. The final
estimation accuracy can also be improved by modeling the phase delay in the lowpass

filter in the Kalman filter's model.
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CHAPTER 7. CONCLUSIONS

7.1 Conclusions

I designed and conducted the niobium bird experiment that comprised the truth
model, the Kalman filters, and the prototypical readout system with a commercially
available dc SQUID magnetometer and an anti-aliasing filter. The truth model simulated
the science signal that was injected into the SQUID readout system through a waveform
generator. The SQUID magnetometer measured the magnetic flux created by the injected
current, and the measurement was sampled and stored. The step 1 filters processed the

sampled data, and I evaluated the filter performance by analyzing the estimation time

history.

I constructed the truth model by defining the standardized coordinate frames and
the rotational matrices among them and by defining and generating the random sequences

to simulate error signals. The standardized coordinate frames clarified the simulation of

-210-



the science signal with no ambiguity in signs, and the careful analysis and generation of
the random sequences gave credibility to the noise simulation. This truth model should
provide a solid platform for the future testing, and the source codes are available on

request.

I extended X. Qin's work and reformulated the two-step Kalman filters. My
two-step filters used the same algorithm, the square-root information filter, but had
simplified states and a better initialization scheme. 1 first verified the filters by
simulation using the truth model that I developed. With a 5-hour SQUID and a
ten-minute roll period, the two-step filters yielded the estimation accuracy of
0.5 milliarcsecond per year for the geodetic precession rate, Qg, and 0.4 milliarcsecond
per year for the frame-dragging precession rate, Qp, after a simulation of a one-year
mission. In addition to Qin's filters, I installed the recursive algorithm that improved the
final estimation accuracy by 18% for Qg and 15% for Q. I also investigated the effects
of other factors such as the polhode signal induced by trapped flux, the pointing error,
and a faster roll period. I modeled the polhode signal by modulation of the scale factor
and reached the following conclusions:

* A 0.1-hour polhode period, which was closest to the roll period among
0.1-hour, 1-hour, and 10-hour polhode periods, gave the best estimation

accuracy because the spectral separation of the polhode signal from the
science signal was maximized,;

» Estimation of the amplitude and the phase of the polhode signal with extra
filter states improved the estimation accuracy;

* A longer step 1 window improved the estimation accuracy because the
longer window gave a better frequency resolution.
I tested the two-step Kalman filter with various pointing errors whose rms value ranged
from 5 to 50 milliarcseconds. Even though DiEsposti demonstrated the effectiveness of
his gain matching scheme using the satellite's dither motion, I concluded that the gain

matching scheme was not necessary because the readout noise with a 5-hour SQUID was
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larger than the error introduced by the telescope's pointing error with 20 milliarcseconds
rms. The simulations showed that the final estimation accuracy did not degrade even
when the pointing error terms were not subtracted from the science signal. I should note
that T assumed a zero mean of the pointing error during the simulation, which may limit
the validity of the conclusion and may require further investigation of the effect of a
non-zero mean pointing error. The last issue that I investigated by simulation was the
effect of the faster roll period. I speeded up the roll period from ten minutes to one
minute, which effectively increased the signal-to-noise ratio by a factor of V/10. The
simulations showed that the final estimation accuracy was improved by 24% for Q; and
by 22% for Qr. These improvements were not as dramatic as I expected compared with
the gain in the signal-to-noise ratio. Although the ten-time better signal-to-noise ratio
suggested that the estimation accuracy should be improved by /10, the actual estimation
accuracy did not improve as much because the other error sources such as the telescope
pointing error, the quantization error in the A-to-D converter, and the roll phase error
could become dominant over the SQUID readout noise. Thus, one should conduct a
complete error analysis for the one-minute roll period to assess the realistic improvement

in the estimation accuracy.

Finally, I conducted the first phase of the niobium bird experiment that employed
a commercially available dc SQUID magnetometer. I first calibrated the data injection
instruments, the SQUID magnetometer, and the data sampling instruments to isolate the
error sources. I found a large temperature-dependent bias drift in the SQUID
magnetometer, Model 5000, manufactured by Quantum Design, Inc. The bias drift was
about twenty times worse than what was assumed in the simulations. I then injected the
simulated science signal into the readout system and sampled the output of the SQUID
magnetometer. I tested the step 1 filters with the experimentally sampled science signal.

The step 1 filters became unstable when the process noise on the bias term was too small.
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Even though I could stabilize the filters by increasing the process noise, the estimation
accuracy of step 1 filters degraded by a factor of four in the North-South direction and by
a factor of eleven in the East-West direction. As a hypothetical case, if I project the
performance of the Quantum Design dc SQUID magnetometer for the one-year mission,
the final estimation accuracy will be 2 milliarcseconds per year for the geodetic
precession rate and 5 milliarcseconds per year for the frame-dragging precession rate.
The final estimation accuracy can be easily improved to 0.5 milliarcseconds per year by
installing less temperature-sensitive components and a temperature regulation system to

the SQUID magnetometer for the science mission.

Although the first phase of the niobium bird experiment showed that the bias drift
in a commercially available dc SQUID magnetometer was too large to accomplish the
mission requirements, the experiment was a significant success in the sense that it
revealed an important design issue that was previously overlooked and established a
baseline for an integrated test environment. With less sensitive circuits and a tighter
temperature control, the bias drift should meet the GP-B specification, but this must be

verified.

7.2 Limitations of This Study and Recommendations for Future Work

Even though I completed the first phase of the niobium bird experiment, it only
marked the beginning of a series of tests conducted within the niobium bird experiment.
In this section, I will discuss the limitations of my work and recommendations for future
research. The truth model that I developed in Chapter 4 provides a solid baseline for a
long-term analysis, however, it does not model the short-term effects such as the trapped
flux signal at the spin frequency and the interference from the suspension system. In
Section 5.3, I stated that the Kalman filters yielded best results when the polhode

frequency was closest to the roll frequency. This analysis was based on a simplified
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model of the trapped flux signal, the modulation of the scale factor at the polhode
frequency. Although this model was adequate for the preliminary investigation, a more
precise model that the spin frequency signals and the flux jumps should be used to test
the validity of my claim. G. M. Gutt and G. Haupt are currently working on a more
precise model of the trapped flux signal, which includes random distribution of flux
quanta on the gyroscope's surface and a universal curve of the coupling between the
trapped flux and the pickup loop (Ref. 54). Their model should provide better tool for
investigating the effects of the trapped flux on the data reduction. In Section 5.5, I found
that the final estimation accuracy was improved only by 22 to 24% when the satellite's
roll speeded up from ten minutes to one minute. Although I listed the possible error
sources other than the SQUID noise that contributed to the unexpectedly small
improvement, I could not isolate the error source that contributed the most because the
investigation started too late to be included in this thesis. The faster roll period is
advantageous in the sense that one can increase the signal-to-noise ratio by moving the
science signal to a higher frequency because the SQUID noise has 1/f spectral power
density. However, the other factors such as the pointing error and the quantization error
start to affect the final estimation accuracy. It may be possible to improve the final
estimation accuracy as much as the improvement in the SQUID noise if all the factors are

taken into consideration and tuned accordingly.

The niobium bird experiment completed its first phase successfully. The second
and later phases should include the science mission instruments such as the SQUID
controller, the lowpass filter, the A-to-D converter and the clock generator that we design
for the Gravity Probe B program. As I pointed out in Section 6.3, the design of the
SQUID controller should minimize the temperature-dependent variation in the SQUID
readout and should implement a temperature regulation system. One should test the

two-step Kalman filters with the niobium bird experiment as more and more flight
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instruments replace the commercially available units. The experiment should also test the
interference between the suspension system and the SQUID readout system. The
niobium bird experiment has enough injection terminals to the low temperature core so

that the simulated suspension signals can be injected into the electrodes.

The data reduction for the GP-B program was developed and analyzed by many
GP-B staff members including former graduate students, R. Vassar, T.G. Duhamel,
R. S. DiEsposti, and X. Qin. Late J. V. Breakwell inspired many of us in this effort, and
Qin, who developed the two-step filters, was the last Ph.D. student he advised. Research
by each individual was closely related and formed a firm foundation for the success of
this mission. The niobium bird experiment was established on the basis of these efforts
and provides a low cost, realistic, integrated test environment for the data reduction and
the readout system. I sincerely hope this experiment will become an irreplaceable asset

for the Gravity Probe B program.
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APPENDICES

Appendix A. Program Lists of Truth Model

The truth model comprises two C programs, gpb.c and crandom.c. Gpb.c
contains the various models that were discussed in Chapter 4 such as the earth motion
model, the satellite motion model, the pointing error model and so on. Crandom.c

contains the random number generators that were discussed in Chapter 3.

Gpb.c produces the simulated science signal at a user-specified sampling rate and
stores the data in an output file, meas.bin. A user can specify the sampling rate and the
duration of simulation by specifying input arguments. The error models such as the
pointing error, the roll phase error, the SQUID noise can be toggled by flags stored in an
input file, cond.dat. The header file, globals.h, contains constants such as astronomical

unit, Rigel's right ascension and declination, starting date of science mission and the
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declaration of various structures. The followings are an example of cond.dat, the

program list of globals.h. The program list of gpb.c is available on request.

A.l Example of Conditional File COND.DAT

The last column of cond.dat contains the conditional flags for the error models. If
the flag is asserted, the corresponding error model is active in the simulation. Otherwise,
the error model is turned off during the simulation, and that specific error becomes zero.

For the example below, the simulation includes the SQUID readout noise only.

(1) Squid Noise Flag % 1
(2) A/D Error Flag % 0
(3) Proper Motion of Rigel % 0
(4) Roll Phase Control Error Flag % 0
(5) Control! Error Flag % 0
{6) Fixed Random Number Flag % 0
(7) Trapped Fiux Flag % 0
(8) Scale Factor Variation Flag % 0
(9) Roll Phase Measurement Noise Flag % 0
(10) Rigel Initial Misalignment % 0

A.2__ Program List of GLOBALS H

Globals.h contains the definition of constant values that are necessary for the
simulation such as the celestial coordinates of Rigel, the satellite's altitude, the

gravitational constant, the speed of light, and parameters used for the error models.

/ﬁ

CONSTANTS

i

/**** Constants b e kbbb *

AUNIT : astronomical unit (meter/au)

RAD2SEC : radian to arcsecond conversion factor

SEC2RAD : arcsecond to radian conversior factor

DEG2RAD : degree to radian conversion factor
.t'Q'.'ttt't!i'tt.t't't'tt..t'tl.'.."t'i.ﬁ'ﬁi'ﬁ'tt.t!titt.t..ﬁ'tt‘.t..ﬁ'tttt/
#define pi 3.14159265358979
#define AUNIT 1.49597870e11 /* meter/au */
#define RAD2SEC (180.0*3600.0/pi) I* arcsec/rad */
#define SEC2RAD {pi/180.0/3600.0) /* rad/arcsec */
#define DEG2RAD (pi/180.0) /* rad/deg */
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hhh H H L A I 22222231321 i 221217 ARAAR
/**** Mission Constants kbl bbbl

SDATE : day of year when the science mission is started (day)

LAMDA_RIGEL : right ascension of Rigel (radian)

DELTA_RIGEL : declination of Rigel (radian)

DISTN_RIGEL : distance from earth to Rigel (meter)

DAYS_OF_YEAR :number of days per year (day)

YEAR2SEC : year to second conversion factor

e phRRaRmmaAAR . /

#define SDATE 245.0
#define LAMDA_RIGEL 1.36980711901732
#define DELTA_RIGEL -1.433884943249560e-1
#define DISTN_RIGEL 8.21571285740899%e+07
#define DAYS_OF_YEAR 365.25
#define YEAR2SEC (DAYS_OF_YEAR*24.0*3600.0)

/ﬂ'ttt Physica, COﬂStantS RRRRRRR R AR R AR R R AR AR AR AR AARNRATRARR NN A RARR N AR PSR RAN S

Mrad™/

/Mrad*/

/" au (=1300lty) */
/" day */

I* seclyear */

YCLIGHT : speed of light (meter/sec)

GRUD_SUN : gravitational radius of sun (meter)

GCON_ETH : gravitational constant of earth (meter~3/sec2)

RDIUS_ETH : mean radius of earth (meter)

SPIN_ETH : spin angular velocity of earth (rad/sec)
..... RS AR AR - /
#define VCLIGHT 299792458.0 /* meter/sec */
#define GRUD_SUN 1476.625016 I* meter */
#define GCON_ETH 3.986005e14 /* meter*3/sec2 */
#define RDIUS_ETH 6370998.9 " meter */
#define SPIN_ETH 0.7292115147e-4 /* rad/sec */

/'nt.t Sate"ite Parameters ARARE AR RER R AR AR AR AR AR AT I AN RN NNRN G RN

ANVEL_SAT
RDIUS_SAT
IPHAS_SAT
INCTN_SAT
OMEGA_SAT
OCL_RDIUS
ROLL_PRD

: satellite’s angular velocity (rad/sec)

: radius of GPB orbit (meter)

: initial phase angle of GPB orbit (rad)

: inclination of GPB orbit (rad)

: right ascension of GPB orbit (rad)

: occultation radius of GPB orbit (meter)

: satellite’s roll period (sec) (default value)

tnntntiin.itnttn'ttttttntnt.tnntn'ttt'ttt'tntn.ttt"nt't't't"tttttn't't"n/

#define ANVEL_SAT 1.073175037¢-3 /* rad/sec */
#define RDIUS_SAT 7020998.9 /* meter */
#define IPHAS_SAT pi [*rad */
#define INCTN_SAT 1.57079632679490 /* rad */
#define OMEGA_SAT  1.36980711901732 [*rad*/
#define OCL_RDIUS (RDIUS_ETH+100.0e3) /* meter */
#define ROLL_PRD 600.0 I* sec*/

/#**** AID converter pa

A2D_RANGE = 200arcsec

A2D_BITS = 16bit

A2D_BIAS = 0.0arcsec

A2D_SF =1

RAFEAR AR AR ERAIR A AN AN S

LA iR R R I I 22 2322223
rameters

: A/ID conversion range
S : A/D resolution bits

: A/D bias

: A/D scale factor

t'uttt-ttatntatt-ttt"ttt'Q'tttnttttttﬁt'.tttt'nttcn/
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#define A2D_RANGE  (200.0*SEC2RAD) [ rad*/

#define A2D_BITS 16.0 /" bits */
#define A2D_BIAS 0.0 I rad */
#define A2D_SF 1.0 I* rad/rad */
/**** RIGEL initial misalignment parameter

RGLMSL_RMS = 5 arcsec : Rigel initial misalignment rms
t'Ql'Q'ﬁﬁ'!l'.tt."tt.t'.t'..t...Q..'ﬂit"'Ql‘..t'tl't-.tQQ.Q-‘......".Q.'...ﬁt.t./
#define RGLMSL_RMS 5.0 " arcsec */

/ﬁtttt SQUID bias variation pafameters RERRRARRR R RN AT AN A RN R RN SRR AR AR
SQD_ALPHA = (1arcsec)*2/year  : larcsec variation over one year

SQD_TCNST =10 hrs : variation time constant
Q'tQ.'..t'.'.tﬂ!‘.‘.ﬁ'tﬁ'.'ﬂ'."'.'"'i.'tt.tt't.'.""..ﬁ"".'t"t.."'.i't....'tt/
#define SQD_ALPHA (1.0/YEAR2SEC) I* arcsec”2/sec */
#define SQD_TCNST (10.03600.0) I*sec*/

/ﬁtttt Cg scale factor variaﬁon parameters i 2 a2 222t il a2 s 2 222 2]
SFC_ALPHA = (0.1%)"2/yr : 0.1% variation over one year

SFC_TCNST = 1 day : variation time constant
tﬂttttﬁ"it.tt".."'!t'ttti'tt.t'tﬁt"ttl‘lttt.'-'tiﬁt'tit't'i'ﬁ'ttt‘..tt'ttﬁt/
#define SFC_ALPHA (0.01/YEAR2SEC) I %*2/sec*/
#define SFC_TCNST (24.0*3600.0) I*sec*/
/'tﬁt't Anitude ConthI error pafameters R i e st et gl e Tzl
ATTCNT_TCNST = 2.0 sec : attitude control time constant
ATTCNT_RMS = 20 marcsec : attitude control error rms
ﬁtt"..t!Q't'Qttt"ﬂn't*"ﬁttﬁi.tt't"ttttt.tt.'t!tttiitt--t.'tﬁtittt.i.--iﬁttliti/
#define ATTCNT_TCNST 2.0 /" sec*/
#define ATTCNT_RMS 20e-3 I* arcsec */
/'t". ROI' phase control error parame'ers RRAAN R AR AN RN A RN AR AR AR IR TR AT AR
RLLCNT_TCNST = 10.0 sec : roll phase control time constant
RLLCNT_RMS = 10.0 arcsec : roll phase control error rms
i't'.tttﬁtt.'ttt!t.‘!tttﬁ"."t.'itii!"Q"'..'i'.'..ll"tt!.'tt"t'.""'tt"""'t'/
#define RLLCNT_TCNST 10.0 /*sec*/
#define RLLCNT_RMS 10.0 /* arcsec */

/Oi'ih ROII phase meaSUl’Gment errOr parameter RN RNN AR RNR RN RN ARkt
RLLMEAS_RMS = 10.0 arcsec : roll phase measurement error rms

'QQ'ﬁ*""ﬁ"'ﬁ"ﬁ""t'."QtQii!i't'tttttﬁ"t'tth"ﬁ".ﬁt'tﬁi"tﬁt'Qtt'ttﬁtﬁ""'ﬁ"tt'/

#define RLLMEAS_RMS 10.0 I* arcsec */
/i
TYPE Definitions
*/
typedef unsigned char BYTE;
typedef struct {
double tsac; I*sec*/ I* elapsed time since mission initialization */
double sg; I* arcsec */ /* science signal */
doubile croll; /" rad*/ /* command roll angle */
double ab1; /* arcsec */ /* North-South aberration */
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double ab2; /* arcsec */ I* East-West aberration */

} meas_type;

typedef struct {
double tsec; I*sec*/ " elapsed time since mission initialization */
double Res_c[3]; /* au*/ " position of earth in C-0 frame */

} celestial_typs;

typedef struct {
char squid_noise; " flag for squid noise */
char a2d_error; " flag for A/D converter error */
char prop_rigel; /* flag for proper motion of Rigel */
char roll_control_error; * flag for roll control error */
char control_error; I* flag for pointing contro! error */
char fixed_random; /* flag for fixed random sequence */
char trapped_flux; I* flag for trapped flux model */
char scale_factor_var; /* flag for scale factor variation */
char roll_meas_noise; /* flag for roll measurement noise */
char init_misalignment; * flag for initial misalignment of gyro spin axis */
} cond_type;

Appendix B. Formulation of SQUID Noise Shaping Filter

I designed the SQUID shaping filter described in Section 4.2.5.1 by MATLAB. 1
listed the m-files that I used for the design in the following sections. A continuous
shaping filter was formulated first in a classical form, which was then converted into a
state-space form. Iused the Van Loan's algorithm to discretize the filter (Ref. 41). A. E.
Bryson (Ref. 42) provided the m-file cvrtg.m that converts a continuous filter into a
discrete filter using the algorithm. Section B.1 lists the m-file gsquid.m, which I used to

check the design, and Section B.2 lists cvrtg.m, which was provided by A. E. Bryson.
B.1 rogram List of U

The continuous filter expressed in a classical form was determined by
trial-and-error to simulate the 1/f power spectral density. It was then converted into a
discrete filter with 10-second sampling period. I also checked the validity of the discrete

filter by calculating the power spectral density of the simulated noise in MATLAB. Note
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that the MATLAB function, spectrum.m, was corrected by a factor of a sampling period

because this function assumes 1-second sampling period.

% SQUID noise shaping filter
% 8/7/8% Hiro Uematsu

% Continuous shaping filter
z1=6"pi*10(-4); 22=6"pi* 107(-3); z3=6"pi*107(-2);
p1=2'pi*107(-4); p2=2"pi*107(-3); p3=2*pi*10(-2); p4=2*pi*107(-1);
ks=1/0.19263154277073;
nums=ks*conv(conv({1/21 11,{1/22 1)),[1/z3 1]);
den=conv(conv([1/p1 1],[1/p2 1]),conv([1/p3 1},[1/p4 1]));

omega=logspace(-5,2,100); freq=omega/2/pi;
[mc,pcl=boded(num,den,omega);

loglog(ireq,mc."conj(mc),freq, 1/600.0./req),grid

xlabel('frequency (Hz)'), ylabel('power spectral density (arcsec*2*sec)')
pause

semilogx(freq,pc),grid

xlabel('frequency (Hz)'), ylabel('phase response (deg)')

% Conversion to a discrete equivalent filter
a=den(2:length(den))*p1*p2*p3*p4;
b=num’p1*p2*p3*p4;

% QObserver canonical form
F=[-a'[1000],J0100],[0010]};
G=b"; H=[1 0 0 0};

% Conversion using Van Loan's algorithm
Q=0.018; TS=10.0;
[PHI,W]=cvrtq(F,G,Q,TS);
GAMMA=sqrt(diag(W));

% Gain on the additional background white noise
feut=0.1;
if TS==10,
D=dboded(PHI,GAMMA,H,[0],1,2pi*0.053*TS);
else
D=dboded(PHI,GAMMA H,[0],1,2*pi*fcut*TS);
end

% Simulate the SQUID noise

nsim=input('lf you want to run the simulation, let Y=1. Y=?");

if nsim==1,
rand('normal’)
u=rand(2*14,1);
N=2048;M=N/2;
y=disimd(PHI,GAMMA,H,D,u);
P=spectrum(y,N)*'TS; % spectrum.m must be corrected for the case with TS!=1.0
1=0:1/TS/2/M:1/TS/2*(1-1/M);
axis({-5 0 -5 0])
loglog(freq,Q*me.*conj(mc),f,P(;,1),".',1/600.0,Q,"")
xlabel('frequency (Hz)'),ylabel('PSD (arcsect2/Hz)')
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grid,title('Predicted vs. Simulated PSD of SQUID Noise')
axis
end

B.2 __Program List of CVRTQ.M

A. E. Bryson provided the following m-file, cvrtq.m, during the lecture of
AA278B (Winter 1987/88) at Stanford University. This program converts a continuous

filter in a state-space form into a discrete equivalent filter using the Van Loan's algorithm.

function [PHI,W]=cvrtq(F,GA,Q,TS)
% [PHI,W]=cvrtq(F,G,Q,TS)
% Determines covariance W of fuil-rank random sequence wd(k)
% that is equivalent to white noise w(t) having spectral
% density Q and distribution matrix GA, with sampling
% time TS, i.e. xdot = Fx + GA"w is equivalent to x(k+1) =
% PHI"x(k) + wd{k) att = k'TS.,
% W=Integral[PHI(t)"GA"Q"GA""PHI'(t)dt] over 0 to TS; 5/30/89.
[NS,ND]=size(GA);
S=[-F,GA"Q*GA";zeros(NS),F;
C=expm(S*TS);
G2=C([1:NS],INS+1:2*NS));
F3=C([NS+1:2*NS],[NS+1:2*"NS));
PHI=F3";
W1=F3"G2;W=(W1+W1")/2;
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