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Abstract

The expense and challenge of accessing the deep ocean continue to limit long-duration observa-

tions of gelatinous marine animals.  Studies commonplace in the research of terrestrial and flying

animal behaviors are largely impractical in the deep ocean with current technology.  Behaviors of

gelatinous species, collectively referred to here as jellies, are remarkably complex given the rela-

tively simple physiology of these animals.  Most jellies do not have a centralized nervous system,

yet these animals demonstrate intricate foraging, migration, evasion and aggregation behaviors.

New technologies are required to discover previously unobserved behaviors, to study behavioral

distributions over time, and to investigate the links between behaviors and environmental stimuli.

Automating the jellyfish-tracking task will give biologists the capability to acquire more data

over significantly longer observation periods than is possible with current-generation technology.

In particular, automation addresses the two key limitations associated with current techniques for

data collection: pilot fatigue and infrastructure cost.  This dissertation develops a core automated

jellyfish-tracking technology and discusses its successful demonstration as a pilot-assist for a

remotely-operated vehicle (ROV).  This system, which successfully tracked gelatinous animals for

periods as long as 89 minutes during field trials, can also serve as a control component for future

deployments of untethered robots, called autonomous underwater vehicles (AUVs).

A key challenge in enabling jellyfish-tracking involves the development of a vision-process-

ing algorithm to measure the position of the tracking vehicle relative to the animal subject.  In

automated jelly-tracking, the burden for reliable vision-processing lies primarily in image segmen-

tation, the process of clustering video-frame pixels into target and background regions.  A large

number of segmentation algorithms have been developed for other applications; however, no

design tool exists to relate the performance of these algorithms to a new application.  This disserta-
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tion introduces a new design tool, called segmentation efficiency, that narrows the set of prospec-

tive segmentation algorithms by analyzing a database of reference images.  In the context of a

jellyfish database, the segmentation efficiency tool leads to the development of a gradient-based

algorithm that reliably tracks a wide range of gelatinous animal species under varied lighting con-

ditions.

Successful field demonstrations of reliable tracking also rely on a control law design tailored

to the jelly-tracking application.  The control component interprets vision position measurements

to create ROV thruster commands.  As a primary goal, these thruster commands regulate the posi-

tion of the target in a small volume at a fixed distance from the cameras.  The control law also bal-

ances two secondary considerations:  the risk of artificially disturbing animal behavior through

excessive control action and the contrary risk of losing the target outside the viewing cone due to

overly-delicate thruster actuation.

Field demonstrations validate the utility of vision and control software to enable reliable

tracking as a core technology for an ROV-based pilot assist or as a control component for an AUV-

based jelly tracker.  The major additional challenge associated with transitioning the demonstrated

ROV-based system to an AUV application involves power consumption, since AUVs, unlike

ROVs, rely entirely on portable, internal energy storage.  This dissertation analyzes the energy

budget for the illumination component of the visual sensing system in order to establish the feasi-

bility of applying core jelly-tracking technologies to an AUV implementation.  In the future, AUV-

based jelly trackers are expected to observe gelatinous animals in their native habitats for periods

as long as 24 hours or more.
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Nomenclature

 

In this dissertation, state and position vectors are expressed in a particular form that explicitly indi-

cates both the reference frame’s origin and coordinate system.  As an example, the vector 

indicates the state of the vehicle (v) relative to a target jelly (j) expressed in a cylindrical coordi-

nate system ( ).  The two-term leading superscript thus permits the specification of alternative

coordinate systems for a given reference frame.  This dissertation uses four distinct frame origins

and three distinct coordinate systems.  The four frames are:

  j Jelly-centered frame:  axes aligned with water frame, w

 s Camera sensor frame:  z-axis aligned with camera optical axis

 v Vehicle frame:  Society of Naval Architects and Marine Engineers (SNAME) convention for axes

 w Water-fixed, inertial frame:  z-axis aligned with gravity

 

The three coordinate systems are Cartesian, cylindrical, and tracking (or null-space decoupled)

coordinates.  Where no coordinate system is indicated, as in the state vector , the default coor-

dinate system is assumed Cartesian.

 Default (Cartesian) coordinate system:  ; vector consists of three trans-

lational coordinates and one rotation (yaw heading) coordinate.

 Cylindrical coordinate system:  ; vector consists of a cylindrical posi-

tion coordinate (radius, circumferential angle, and depth) and yaw heading. 

 Cylindrical control-objective coordinate system:  ; vector decouples

those coordinates used in tracking control (range, depth, and yaw bearing relative

to the radial unit vector) from the tracking law null space coordinate, n.

pj v

o

pj v

… p x y z ψ
T=

p r γ z ψ
T=

p r ψ z n
T

=
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In addition to their use in defining 3-component position vectors, q, and 4-component state

vectors, p, these reference frames conventions also describe other vectors used in analysis of the

control system.  In each of the following cases, the k and l superscripts and subscripts refer to com-

binations of reference frames (j,s,v,w) and coordinate systems.

Vector describing the position of an object l with respect to the reference frame

and coordinate system k 

Vector expressed in the reference frame and coordinate system k that describes

both the location and yaw orientation of the frame  l

Rotation matrix transforming a position vector from one cartesian coordinate sys-

tem, k, to a new cartesian coordinate system, m

Linear transformation between two arbitrary coordinate systems or reference

frames, i.e. from  to 

Nonlinear transformation between two coordinate systems or reference frames,

i.e. from   to 

Inertial pseudoforce on object in frame l accelerating relative to a second frame k

Vehicle drag in k

Tether tension in k

Vehicle thrust in k

Reduced dimensional vehicle thrust vector, expressed in k

Force bias on ROV in k

Diagonal mass and inertia matrix, including added mass, in k

Diagonal drag coefficient matrix, in k

qk
l ℜ3∈

pk
l ℜ4∈

Rk
m ℜ3x3∈

Sk
m ℜ4x4∈

pk
l pm

l

Sk
m qk

l( )

qk
l qm

l

Ak
l ℜ4∈

Dk ℜ4∈

Tk ℜ4∈

τk ℜ4∈

uk ℜ3∈

Fk ℜ4∈

Mk ℜ4x4∈

bk ℜ4x4∈



CHAPTER 1

1

Introduction

The fundamental value of undersea vehicles as platforms for deep-sea research is that they 
provide an in situ point of view in a discipline that has been dominated historically by indirect 
methods.

- B.H. Robison, 1999 [8]

This dissertation describes a new robotic capability for long-term observation of a gelatinous ani-

mal in the deep ocean. The project originates from a continuing collaboration between the Stan-

ford University Aerospace Robotics Lab (ARL) and the Monterey Bay Aquarium Research

Institute (MBARI). The research introduces and performs field tests of novel technologies that will

enable new experiments in marine biology.

1.1 Motivation
The purpose of this work is to create tools for improved understanding both of gelatinous marine

animals and of their role within the larger marine ecosystem.  At the dawn of the 21st century, the

Earth's oceans remain largely unexplored and poorly understood.  Nonetheless, human populations

have come to rely on this vast but fragile resource.  Oceans play a critical part in feeding human

populations, in promoting shipping, in supplying oil demands, and in regulating global climate.

These waters also play a vital role in the lives of nonhuman species.  In fact, the oceans contain

ninety-five percent of the biosphere, the volume of space available to life on Earth [2].  The signif-

icance of the oceans to human populations and to other living creatures motivates continuing

research into the complex, interconnected systems that make up this vital resource.

Driven in part by the by-products of an increasingly dense and industrial global population,

dramatic changes have occurred in the ocean environment over the century just past.  The human

roots of these sea changes augment the urgency and importance of ocean research.  Large-scale

events that continue to transform the ocean include oil slicks, melting ice caps, collapsed fisheries,

and algal blooms induced by agricultural runoff.  Each incident impacts the ocean directly and
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indirectly, through the interconnected web of ocean systems that link weather, currents, pollutant

concentrations, chemical cycles and animal populations.  Tracking changes in the ocean environ-

ment requires detailed study of ocean properties over a range of spatiotemporal scales, from the

global and millenial down to the micron and millisecond scales.

Marine animals serve as one important mesoscale marker of changes in the ocean environ-

ment.  Agents of change influence animal population density, migration patterns and behaviors.

By studying animals through direct and indirect observations, scientists can answer fundamental

questions about both the animals under study and the changing ocean environment. 

1.1.1 Robotic Exploration of the Deep Ocean

Over the past century, scientists have harnessed a wide range of new tools to study the deep ocean.

These tools offer scientists the growing capability for both direct and indirect observations of the

ocean’s physical properties and  its ecology.  Indirect observation methods have evolved from

basic net-trawling techniques to more modern technologies relying on sonar and satellite imagery.

Indirect observation methods give scientists convenient access to data over large patches of the

ocean but do not, generally, provide detail about phenomena occurring at scales below a meter.

Direct observation techniques prove indispensable in studying mesoscale ocean properties and,

furthermore, in studying individual animals that inhabit the ocean depths.

The past century has also witnessed continual innovation of direct observation techniques.

Many such technologies trace historically from Beebe and Barton’s bathysphere, a five foot diam-

eter pressure vessel that, during the 1930s, carried its operators as deep as 923 m [3].  The bathy-

sphere relied on a tethered connection to the surface for both life support and movement.  To

overcome the limitations associated with this tether, submersible designers sought to add on-board

life support and thrusters to a subsequent generation of vehicles, called bathyscaphes.  Of these

vehicles, the most celebrated was the bathyscaphe Trieste, which in 1960 traveled to the deepest

known point of the ocean floor at 11,700 m below the surface.  As submersible vehicles continued

to improve access to the deep ocean,  the popularization of scuba gear, based on the 1943 invention

of the aqualung by Jacques-Yves Cousteau and Emile Gagnan, afforded scientists the capability

for convenient personal access to the ocean’s upper reaches.  Scuba gear and improved submarine

designs, including Woods Hole Oceanographic Institute’s famed Alvin (1964), Harbor Branch

Oceanographic Institute’s Johnson-Sea-Link vehicles (1971 and 1975), and the Canadian Fisheries
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Institute’s Pisces IV (1985), emerged as the primary technologies for direct ocean observation and

remained dominant in this role into the early 1990s.

Robotic agents arrived to the field of ocean science in the late 1980s with the first dives of

MBARI’s Ventana, pictured in Figure 1.1, and WHOI’s Jason [8].  These box-shaped robots, orig-

inally designed for the off-shore industry, function via teleoperation, with scientists and pilots

seated remotely aboard a support ship.  Their teleoperation capability earned these robots the mon-

icker “remotely operated vehicle,” or ROV.  The scientific community quickly adopted ROVs as a

primary tool for deep-ocean exploration.  Although teleoperated vehicles cannot yet recreate the

full sensory presence available from within a manned research submarine, safety and financial

considerations, coupled with the desire to observe greater depths for longer durations, have moti-

vated a shift from manned submersibles to unmanned, robotic platforms.  In the year 2003, ROVs

serve as the primary platform for direct observation of the deep ocean.     

Figure 1.1  ROV Ventana aboard the Deck of R/V Point Lobos.
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The autonomous underwater vehicle, or AUV, emerged in the 1990s as a new class of

unmanned submersible vehicle with potential applications for marine science.  The AUV para-

digm, which continues in 2003 to transition between academic research and commercial manufac-

ture, forgoes a tether, the defining characteristic of an ROV.   In the absence of a tether, the AUV

gains tremendous mobility advantages.  At the same time, the AUV sacrifices the steady power

flow and high-bandwidth communications connection available through an umbilical to a surface

ship.  The absence of off-board energy severely limits the power available to AUVs.  Also, the

absence of a human in the control loop makes AUVs sensitive to varying ocean conditions and to

unforeseen events.  In the context of these challenges, the creation of reliable and versatile AUV

software remains a topic of active research.     

1.1.2 Gelatinous Animal Tracking:  Scientific Motivation

The field of deep-ocean ecology requires, as an essential capability, new technology for long-dura-

tion observation of individual animals.  Studies of gelatinous animal biology, in particular, would

benefit from these new technologies.

Figure 1.2  Artist Concept for a Jelly-Tracking AUV
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Marine biologists, unlike the terrestrial variety, cannot easily observe the behavioral routines

of animal subjects living in their native habitats.  This problem of limited access has led scientists

to apply manned submersible and unmanned ROV technologies to observe deep-ocean species.

These human-controlled submersible vehicles have revolutionized marine biology by providing a

new window into the lives of deep-ocean animals.  Current technologies are best suited, however,

to observation periods lasting only a few minutes.  Although biologists have made substantial con-

tributions given these short-duration observations, further scientific advances will require new

capabilities to enable study of animal behaviors over many hours or days.  These new technologies

will provide the large quantities of extended-duration data required to detect and analyze subtle

patterns of growth, feeding, migration and aggregation.

The need for such technology is particularly important in the study of gelatinous marine ani-

mals.  Their slow pace of motion drives the need for long-duration observation.  Only through

extended length in situ experiments can biologists compile meaningful statistics describing gelati-

nous animal behavior.  This data cannot otherwise be acquired through aquarium studies or remote

observation.  The fragile nature of gelatinous specimens makes them challenging to collect and

difficult to nurture in aquaria.  As for remote observation, the water-filled bodies of gelatinous ani-

mals do not provide structural support for the attachment of transmitter beacons, nor do they

strongly reflect sonar pulses propagated from a remote source.  For these reasons, direct in situ

observations are a biologists primary tool for studying behavioral patterns and linking them to

environmental stimuli and to evolutionary trends.

1.2 Project Goals
This section discusses the limitations of current technologies for observing jellyfish and the

research requirements to enable automated solutions that address those limitations.

1.2.1 Problem Statement

Human-piloted ROVs remain the state-of-the-art technology for observing gelatinous animals in

the deep ocean.  The ROV platform is well suited to the study of jellyfish and other gelatinous ani-

mals, generically labeled as jellies within this dissertation.  ROV actuators produce more than ade-

quate thrust to follow most gelatinous animal movements, even though they do not provide
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sufficient acceleration to follow many faster swimmers like fish and squid.  The ROV tether pro-

vides immediate transmission of video data to scientists on a surface support ship; as a conse-

quence, scientists can interactively direct an experiment in progress.  By equipping an ROV with

sampling chambers, a scientist can even request that a pilot collect a particular specimen after a

period of observation.

In the study of gelatinous animals over long durations, these positive aspects of ROV-based

observation are balanced by two significant limitations:  (1) pilot fatigue and (2) infrastructure

cost.     

The first limitation to long-duration ROV operation under human-pilot control is fatigue.

Regulation of ROV position relative to a gelatinous animal subject requires precise, servo-level

control.  Skilled human pilots can perform these control actions continuously, but the process is a

demanding one that tires the pilot and restricts his ability to perform simultaneous higher-level

control functions.  These fatigue restrictions discourage the acquisition of large quantities of long-

duration data.

A second limitation, that of infrastructure cost, further restricts collection of the long-duration

datasets needed to characterize gelatinous animal behaviors.  In ROV operations, a support ship

must hold station above the submersible to supply continuous power and control commands.  The

expense of holding the support ship and its crew on station during long experiments makes ROV-

Figure 1.3  Limitations of Human-Piloted, ROV-Based Jellyfish Tracking
The two major limitations of the state-of the art technology for observing jellyfish are (1) pilot
fatigue and (2) infrastructure cost.
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based tracking impractical for periods longer than 2-3 hours.  To achieve even longer observation

lengths, untethered technologies will be required.     

This thesis proposes robotic autonomy as a mechanism to address both limitations associated

with human-piloted ROV observation of gelatinous animals.  The use of computerized sensing and

control systems will enable, in fact, two new classes of improved technology for deep-ocean

observation of gelatinous animals:  (1) an automated pilot assist for ROVs and (2) a control com-

ponent for untethered AUVs.  Both of these automated solutions address the problem of pilot

fatigue.  The pilot-assist system shifts the servo-level tracking task to a computer controller and

thereby frees the pilot to focus on higher-level control activities.  The AUV control component

enables jelly-tracking on an untethered vehicle, with no human in-the-loop.  In the sense of auto-

mating certain control behaviors previously performed by a human pilot, a new technology for

jelly tracking provides a common-core for both the ROV-based and AUV-based systems.  

Of the two solutions, only the AUV approach addresses the second limitation of high infra-

structure cost.  Although the AUV tracking approach may give up some of the capabilities of

human-piloted jellyfish tracking, such as the capablity for manual specimen collection, the AUV-

based system gains, in exchange, a capability to perform very long observations, of hours or days,

without requiring the continuous presence of a nearby support ship.  Thus, a single support ship

could, in the future, deploy a large number of low-cost jelly-tracking AUVs to collect large quanti-

ties of long-duration data.  Because they perform different types of task, both automated ROVs

and AUVs are expected to play significant, complementary roles in future scientific investigations

of gelatinous animals.

1.2.2 Challenges

Two major challenges arise in the development of new automated technologies to enable long-

duration experiments (many hours or days) observing gelatinous animals:  (1) a requirement for

reliable tracking (for ROVs and AUVs) and (2) a requirement for low-power tracking (for AUVs).

To achieve reliable tracking, sensing and control technologies must perform robustly for an

extended duration while tracking a variety of animals under unstructured lighting conditions.  For

AUV-based tracking, limited energy storage imposes the second, low-power constraint.  To

achieve the low-power requirement, an automated tracking system for an AUV must consume
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energy at a sufficiently low rate to enable actuation, sensing, and signal processing given a fixed

amount of energy storage.

This dissertation focuses primarily on the reliable-tracking challenge.  This reliability chal-

lenge motivates both a custom control strategy tailored to jelly tracking and a new strategy for

vision-system design.  Experimental tests using an ROV validate that these new developments

enable extended-duration tracking.  Also, the dissertation briefly addresses the requirement for

low-energy tracking to establish the feasibility of porting the ROV-based pilot-assist capability to

an AUV platform.

1.2.3 Areas of Related Research

The jelly-tracking project sits at the intersection of several distinct fields of research.  These topics

include marine biology, vision processing, and underwater vehicle control.  As its goal, this disser-

tation seeks to supplement these existing areas of research by developing new technological capa-

bilities which overcome the research challenges of reliability and power consumption so as to

enable effective operational jellyfish tracking.

Jellyfish 
Tracking

Underwater 
Robot 

Control

Vision 
Processing

Marine 
Biology

Figure 1.4  Related Topics



1.2   PROJECT GOALS 9

Marine Biology
No prior biology experiments have employed an automated submersible to collect data regarding

an individual animal.  Previous biological research using human-piloted ROVs to observe gelati-

nous animals does, however, provide a baseline for automated jellyfish tracking.  Quantitative sci-

ence acquired through these observation serves in generating specifications for the design of an

automated jelly-tracking robot.  Relevant specifications include information regarding the depth

inhabited by various gelatinous animals of interest, their speed relative to the surrounding medium,

and their sensitivity to stimuli such as the hydrodynamic disturbances and visible light emissions

produced by the tracking robot.  Marine biology also provides the motivation for future experi-

ments enabled by the automated jelly-tracking capability.  Chapter 2 will detail prior research con-

cerning the biology of gelatinous animals and will apply this knowledge to the design of an

automated jelly-tracking robot.

Visual Sensing
A large body of literature studies the topic of visual sensing methods to detect target position.  A

smaller subset of previous research investigates vision-processing methods for tracking and classi-

fying marine animals.  None of this work considers the localization of a transparent animal target

in a deep-ocean environment subject to unstructured lighting, as provided by the standard light

sources mounted on an operational ROV.

Sensing problems are among the most challenging issues in enabling field robot technologies.

Without a representation of its relationship to the physical world, a robot possesses no guidance for

motion or interaction.  In a laboratory setting, robots often rely on artificial cues for localization,

such as infrared LEDs detected by an overhead vision system or fiduciary marks placed on walls

or ceilings.  In an outdoors environment, terrestrial, floating and aerial vehicles may use the Global

Position System (GPS) for navigation.  Because GPS signals do not penetrate deep below the

ocean surface, submersible vehicles must rely on other types of sensor for navigation and relative

position.

In the jelly-tracking application few sensors are capable of producing a position measurement

relative to a target animal.  Because visual sensing has a proven track record for human-piloted

ROV-based jellyfish observation and because scientists desire vision data as the primary scientific

output of a jelly-tracking mission, this project relies on a visual signal to localize the jelly target.

Although acoustics might provide an alternative non-intrusive method of localizing the jelly for
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long-duration observations, prior experiments have demonstrated that the sonar target strength of

typical gelatinous animals is very weak [4,5].

The primary challenge in the design of a vision sensor for jelly-tracking involves the segmen-

tation process, which identifies pixel clusters possibly corresponding to the projection of the target

animal into the image plane.  Although a large number of segmentation algorithms have been

described in the vision processing literature, no practical design tools exist to aid in matching one

of these algorithms to a new tracking application.  Chapter 4 introduces a new tool to aid in the

synthesis of tracking algorithms and applies the tool to develop a vision processing strategy to

track gelatinous animals.

Underwater Vehicle Control
A large amount of prior research has investigated the control of underwater robots.  However,

much of this work has been performed in theory, with simulation or with laboratory experiments.

Relatively little previous work has applied control theory to field operation of deep-ocean sub-

mersible robots.  Moreover, no work has investigated target tracking using a visual sensor to con-

trol a hovering underwater robot operating in a deep-ocean environment. 

Field experiments serve as the critical element in realizing this class of system.  To demon-

strate utility under realistic ocean conditions, the jelly-tracking research project uses the ROV Ven-

tana, a vehicle operated by MBARI on a daily basis to perform marine science.  For the jelly-

tracking application actuator thrust should remain low to avoid disturbing the environment around

the observed animal.  Control law design balances this desire for low thrust with the need to

enforce the camera sensor’s viewing cone, outside which the visual sensor cannot localize the tar-

get’s position.  Additionally, the control law design must consider the extra degree-of-freedom

(DoF) present in the task of regulating camera position relative to an animal (3 DoF) using a vehi-

cle actuated in yaw and three orthogonal translational axes (4 DoF).  Chapter 5 introduces a con-

trol law tailored to these characteristics of jelly-tracking using a hovering submersible in the deep-

ocean environment.  

1.3 Contributions
Fundamentally, the jelly-tracking problem is one of system-engineering research in a novel appli-

cation area.  This research project develops core technologies that enable automated jelly tracking
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for an ROV-based pilot-assist system or for an untethered AUV-based system.  Research contribu-

tions build on prior work in the fields of marine biology, vision processing and underwater robot-

ics in order to address the two major challenges associated with autonomous jelly tracking:  the

requirements to achieve high system reliability and low power consumption.

1.3.1 Enabled Reliable Tracking for an ROV Pilot Assist

As its major goal, this dissertation develops techniques that make possible long-duration jelly

tracking in the context of an automated ROV pilot-assist system.  For this ROV-based implementa-

tion, the primary research challenge involves tracking reliability.  Specific contributions in the

fields of vision processing and control were instrumental in achieving reliable, long-duration jelly-

fish tracking.  These developments enabled field demonstrations of automated jellyfish tracking

using the ROV Ventana.  The following bullets summarize these contributions toward reliable jel-

lyfish tracking.

Performed first-ever field demonstrations of long-duration automated jelly tracking:

No prior research project has used an automated robot to follow a marine animal in its

native environment.  The primary contribution of this research is the first-ever demonstra-

tion of automated robotic animal tracking in the deep ocean.  In these field experiments, the

automated system successfully tracked a range of animal species dwelling at depths

between 100 and 750 meters.  Automated tracking commenced with a single button click

once a human pilot located a tracking target.  After initialization, the automated pilot assist

ran continuously, with no human-pilot intervention, for periods as long as 89 minutes.

In addition to their role in validating the reliability of the tracking system, preliminary

experimental dives collected data to characterize in situ jellyfish tracking.  Useful data for

refining the jelly-tracking system included information about target behavior in the pres-

ence of a tracking robot, characterization of disturbances on the tracking ROV, and charac-

terization of the imaging environment for visual tracking. 

Introduced a new approach for design of visual tracking algorithms for unstructured

environments:  This project develops a new design tool, called segmentation efficiency,

that streamlines the synthesis of visual tracking algorithms for field robotics applications.
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In designing a vision sensor for a new application, an engineer must match an appropriate

algorithm to the information content available in the video stream.  For any tracking appli-

cation, many existing algorithms may track only certain targets for only some of the time.

Very few algorithms operate successfully and consistently for a broad range of natural tar-

gets.  To help identify robust algorithms, the segmentation efficiency method assesses

application-specific images in terms of a model of segmentation processing.  This quantita-

tive approach offers two benefits over conventional empirical evaluation methods.  First,

the segmentation efficiency method reduces the application-specific search space by focus-

ing on the pixel-grouping, or segmentation, subcomponent of the vision tracking algorithm.

This approach suppresses the analysis of the temporal-matching, or recognition, subcom-

ponent of the tracking algorithm under the assumption that a general-purpose recognition

algorithm can provide adequate performance for slowly evolving scenes (such as those in

the jelly tracking application).  Second, the segmentation efficiency technique frees the

human designer from the burden of implementing a large number of candidate segmenta-

tion algorithms for testing purposes.  Instead, the segmentation efficiency approach uses a

general model of segmentation processing to evaluate the ability of various filtering and

topological grouping strategies to provide a high ratio (or efficiency) of correctly classified

pixels.  This segmentation efficiency tool was applied to the jelly-tracking task and resulted

in the design of a gradient-based tracking algorithm that runs reliably without requiring in-

the-field parameter selection by a human operator.  This visual jelly-tracking sensor

enabled successful long-duration tracking of a variety of animal species under unstructured

lighting conditions during a series of experimental trials in the deep ocean.

Designed a jelly-tracking control law tailored to visual animal observation using a

hovering submersible robot:  The success of field demonstrations relied both on robust

visual tracking and on reliable ROV control.  The control law operates on the visual posi-

tion signal to maintain the target inside the camera sensor’s viewing cone.  For an animal-

observation application, the control law ought to disturb the environment of the tracked

specimen as little as possible.  In the design of the tracking law, the use of a redundant vehi-

cle degree of freedom permitted a minimization of the thrust vector magnitude to reduce, in

effect, hydrodynamic disturbances on the surrounding environment that might interfere

with natural animal behavior.  Control gains were chosen to match the bandwidth of jelly-
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fish swimming, a specification derived from a survey of relevant biological literature.  An

aggressive boundary-control term sums with the basic regulation law to prevent target loss

when the subject animal approaches the edge of the camera’s field of view during a large

transient disturbance.

1.3.2 Analyzed Low-Power Tracking for AUV Applications

As a secondary goal, this dissertation considers the optimization of the lighting system used for

visual jelly tracking in order to demonstrate the feasibility of transitioning the core ROV pilot

assist technologies to an untethered AUV application.  For an AUV system, research challenges

include requirements for both reliable tracking and low-energy consumption.

To achieve low-energy tracking, this dissertation investigates the optimization of light source

geometry and strobing parameters.  The lighting system used in ROV experiments was designed

for broad-area coverage and consumed approximately 50% of the hotel energy budget during jelly-

fish tracking (ROV Hotel Load: 8 kW, ROV Maximum Hydraulic Output: 30 kW).  Significant

reductions in lighting system power are necessary to deploy the core jelly-tracking concept with an

AUV platform.  Using radiometric analysis, this dissertation develops an energy scaling method

that permits optimization of lighting design for the energy-constrained application.  Light source

strobing plays an important role in reducing the system energy budget to a level consistent with

long-duration AUV tracking.  Further analysis, based on a survey of the biology literature, sug-

gests that strobed lighting may, in fact, reduce the impact of optical stimuli on photosensitive

gelatinous animal specimens over long (24-hour) tracking durations.

1.4 Reader’s Guide
The remainder of this thesis is organized as follows.  Chapter 2 examines the behavior and physi-

ology of gelatinous animals to provide a context for the jelly-tracking capability and to establish

constraints on its design.  Chapter 3 details the experimental system employed for ocean trials.  

The subsequent three chapters detail contributions that enable and demonstrate reliable jelly-

fish tracking.  Chapter 4 derives the segmentation efficiency design tool and employs it to con-

struct a vision processing technique tailored to the jelly-tracking task.  Chapter 5 examines the

development of a control law for the experimental system, a law which enforces the viewing field
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constraint while minimizing the overall thrust vector required for tracking.  Chapter 6 presents

experimental results that validate the utility of vision and control software in reliably tracking

gelatinous animal targets for extended time periods.  These experiments, using a prototype ROV-

based pilot assist to control the ROV Ventana, demonstrated the first-ever instance of animal track-

ing using an automated submersible robot in the deep ocean.

The ensuing chapter, Chapter 7, considers the challenge of transitioning the core jelly-track-

ing technologies to an energy-constrained AUV platform.  This chapter considers the effects of

light-source design parameters on system energy consumption and their potential impact in artifi-

cially biasing observed animal behaviors.  Finally, Chapter 8 summarizes the dissertation and sug-

gests several avenues for related future research.
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Biological Context

In the field of plankton biology, ignorance of the living organism has resulted in a host of strange 
publications, of which my favorite is van Der Spel’s book, “The Euthecosomata:  a group with 
remarkable developmental stages.”  These remarkable developmental stages … are in fact 
fixation artifacts caused by tissue contraction when the animals were put in formaldehyde. 

- W.M. Hamner, 1985 [41] 

Biological science both motivates automated jelly-tracking research and shapes the design of the

prototype experimental system.  Establishing an interdisciplinary common ground between engi-

neering and zooplankton research thus provides a foundation for the design of a jelly-tracking

robot.  Toward this goal, the current chapter reviews gelatinous zooplankton research to construct

a biological context for automated jelly tracking.  In examining the state of zooplankton science,

the chapter extracts specifications for the automated tracking vehicle.  In particular, the chapter

identifies the types of animals to be studied and the habitats of those animals.  Motion physiology

and behaviors bound the dynamic and endurance specifications for the jelly-tracking platform.

The sensitivity of animals to stimuli produced by the tracking robot further shapes engineering

specifications, as the platform should not significantly impact natural behavioral patterns under

observation.  Sensors on board the jelly-tracking robot will collect data to address questions at the

frontier of gelatinous zooplankton research.  The requirements for new biology applications thus

determine the sensor payload requirements and mission profiles required to perform future jelly-

tracking experiments.

2.1 Ethology of Gelatinous Zooplankton
Animal behavior and anatomy have evolved in a complementary fashion.  Behavioral biology (or

Ethology) seeks to understand an animal’s actions and their connection to the animal’s physical

makeup across a range of scales, from the molecular to the cellular level and from the organism to

the population level.  Laboratory experiments have answered many difficult questions about ani-

mal physiology and behavior.  Nevertheless, animal specimens under lab conditions often exhibit
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behavioral patterns distinct from those exhibited under natural conditions.  For this reason, an

important step in understanding expressed animal behaviors involves the study of the natural

actions of animals dwelling in their native habitats.

Field behavioral studies require a sustained presence in an animal’s habitat. While this

requirement for long term observation does not significantly impede terrestrial studies, it poses a

major constraint for deep ocean ethology.  To date, scuba gear, manned submersibles and ROVs

have permitted scientists to study deep water animals for short periods, generally no longer than a

few minutes.  Longer studies have not been practical given current technology, costs, and the limi-

tations of human fatigue.  To facilitate long-term jelly tracking and to enable tracking for as long

as a day or more, automation will be required.

In the future, automated robotic tracking of individual animals may enhance biological under-

standing of a wide range of species.  Gelatinous zooplankton have been chosen as the first animal

subjects for automated robot tracking.  Gelatinous animals are relatively large, abundant, and slow

moving, factors which restrict the complexity required of the tracking system.  The behavior of

gelatinous animals, moreover, remains a subject of great interest to ethologists.  Lab study of gelat-

inous animal specimens proves challenging, as these fragile animals may degrade quickly or act

unnaturally under laboratory conditions.  Traditional remote-sensing methods, furthermore, pro-

vide relatively little information about jelly movements.  Net tows, for example, mangle gelatinous

zooplankton beyond recognition.  Sonar signals reflect poorly from water-based gelatinous animal

tissues [4,5].  Transmitter-beacon tagging methods may weaken or damage a specimen when the

transmitter mass is attached to its surface [62].  By contrast, local observation methods, as demon-

strated by prior ROV and manned submersible experiments, can provide high-resolution, non-con-

tact examination of gelatinous animal behavior.  Automating the jelly-tracking capability could

address the cost and practicality issues associated with long-duration animal tracking using cur-

rent-generation vehicle platforms.  In consequence, an automated jelly-tracking vehicle could

greatly increase the frequency and duration of experiments to investigate gelatinous animal behav-

ior.

In addition to enhancing the understanding of individual animal species, the data collected by

a jelly-tracking robot could also enable studies linking gelatinous animals to the environment.

These connections may, in fact, act at global scales that impact human activities.  For instance, jel-

lies, by their shear abundance, play an important role in maintaining fisheries.  Because many jel-
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lies prey on fish eggs or on food sources shared with fish, fast-growth of jelly populations may

slow or prevent the recovery of depleted fisheries [73,78].  Also, because of their environmental

sensitivity and rapid reproductive rate, jellies serve as important markers of changing ecosystems.

Dramatic increases in jelly biomass, as large as twenty-fold over two decades in the Bering Sea

[21], may result from global warming.  The collection of jelly data in situ may thus have wide-

ranging application, both for fundamental and applied scientific investigations.

2.2 Jelly Classification
The term jellies refers, in this dissertation, to gelatinous animals classified as medusae, siphono-

phores, comb jellies or larvaceans.  Morphology and motion, two factors which directly impact

jelly tracking, vary substantially among these gelatinous species.  This section offers an overview

of the subset of gelatinous animals designated as research targets for future tracking activities.

Except where otherwise noted, the sources for Section 2.2 and Section 2.4 are [51,66,82,94].      

Kingdom Animalia
Phylum Cnidaria

Class Anthozoa Coral, sea anemone
Class Cubozoa Medusae (cubomedusae)
Class Hydrozoa

Subclass Hydromedusae Medusae (hydromedusae)
Subclass Siphonophora Siphonophores

Class Scyphozoa Medusae (scyphomedusae)
Phylum Ctenophora Comb jellies
Phylum Mollusca

Class Gastropoda Heteropods, pteropods, etc.
Phylum Chordata Animals with “spinal column”

Subphylum Urochordata
Class Appendicularia Larvaceans
Class Thaliacea Salps, doliolids

TABLE 2.1. Classification of Gelatinous Zooplankton
Bold type indicates those species considered as promising targets for autonomous 
tracking activities.
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Jellies are generally described as zooplankton, a term whose Greek origin connotes a wander-

ing animal that drifts under environmental forces.  In marine biology zooplankton are contrasted

with nekton, at term describing aggressive swimmers like squid, fish, and marine mammals.  The

reputation of gelatinous animals as wanderers is not entirely accurate.  Although ocean winds, cur-

rents, and tides, greatly affect the motion of gelatinous zooplankton, many species swim actively

and migrate significant distances through the water column.

The bodies of gelatinous zooplankton consist of as much as 95% water.  This adaptation pro-

vides gelatinous animals with a number of important evolutionary advantages [94].  Seawater

serves as a biologically inexpensive construction material which permits jellies, when nutrients

become available, to grow quickly and to produce offspring through budding or sexual reproduc-

tion.  Gelatinous tissue also aids in thwarting predation, both through transparency, which makes

jellies hard to detect, and through low nutritional content, which makes jellies a poor food source

for larger ocean animals.  In addition to these direct advantages for natural selection, water-filled

tissue also makes jellies approximately neutral buoyant, which reduces propulsion requirements,

and provides a hydrostatic skeleton, which supports complex physical shapes with large surface

area for gas exchange and prey capture.

The commonality of gelatinous tissue among marine zooplankton does not imply that these

species all share a common ancestor; rather, gelatinous tissue represents the result of convergent

evolution on a successful survival strategy [46].  The majority of gelatinous species observed in

Pacific coastal waters belong to two phyla of radially symmetric animals, the cnidaria (or true jel-

lies) and the ctenophores (or comb jellies).  Other gelatinous animal groups prominent in the mid-

water include the heteropods and pteropods (members of Phylum Mollusca) and the salps and

larvaceans (members of Subphylum Urochordata).  Salps and larvaceans share nearly as much in

common with humans as with jellyfish; salps, larvaceans, and human embryos all possess a rigid

structure, called a notochord, along the length of their back at some stage during development.  

Among the wide array of gelatinous zooplankters, the present study focuses only on cnidari-

ans, ctenophores and larvaceans.

2.2.1 Cnidaria     

The true jellyfish, bell-shaped and frequently large in size, belong to Phylum Cnidaria.  Biologists

identify animals as cnidaria if they possess stinging cells, called nematocysts or cnidocysts.  Flow-
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ing clusters of tentacles are a salient feature of most medusae, as their name, which evokes the

snake-haired gorgon of Greek mythology, implies.  The life cycle for most cnidarians alternates

between a motile medusa stage and a sessile polyp stage, although a number of cnidarian species

lack either the free-swimming or the attached stage.  Coral and anemones are notable examples of

cnidarians that spend the majority of their life cycles attached to a solid substrate.  Free-swimming

medusae are divided into three classes.  First, the scyphomedusae are the jellies most commonly

visible at the ocean surface and in aquaria.  Large at maturity and colorful, these jellies may be rec-

ognized by a scalloped pattern around their bell margins.  Cubozoans represent a second class of

medusa, similar enough to the scyphozoans that some biologists lump the two groups as a single

class.  Cubozoans, uncommon along the central California coast, have cube shaped bell interiors

that earn them the name box-jellies.  Box jelly stings are particularly painful and sometimes deadly

to humans.  A third class of jellyfish are the hydrozoa.  Class Hydrozoa, with nearly 10,000 living

members, is much larger and more diverse than Class Scyphozoa (with approximately 200 mem-

bers) or Class Cubozoa (with only 17 members).  Generally small in size, hydromedusae possess a

thin flap, called the vellum, around the bell margin.  Although some hydromedusae have a deep

Figure 2.1  Cnidarian Medusa.
This Solmissus specimen was photographed from Ventana during the Stanford-MBARI dive on 
October 11, 2002.
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red color to help them hide in the ocean depths, the vast majority of hydrozomedusae rely on trans-

parent gelatinous tissue as an adaptation to promote foraging and discourage predation.

Also grouped within Class Hydrozoa are the chain shaped organisms known as siphono-

phores.  Members of Subclass Siphonophora range from short, at only a few centimeters in length,

to longer than a blue whale, at 40 meters in length.  These chains function, ecologically, as a sin-

gle, large organism.  From an evolutionary point of view, however, siphonophore chains have

developed as colonies of individual animals.  These individual elements of the siphonophore chain

are called zooids.  Siphonophores chains grow by budding new attached zooids, which all share a

common stem housing a digestive cavity and nervous system.  In many siphonophore species, zoo-

ids develops into a specialized form, morphologically similar to either the medusal or polypoidal

forms observed among other hydrozoa.  These differentiated segments serve specific functions

within the colonial superorganism, acting as mouths, reproductive organs, tentacle bearers, swim-

ming bells and floats.  To the casual observer, umbrella-like swimming bells, when present, clearly

indicate the common heritage between siphonophores and other medusae.  Like all cnidarians,

siphonophores possess stinging nematocysts.  These stings are frequently painful to humans and

have earned the portuguese-man-of-war (Physalia physalis), a siphonophore with a large gas float

but without swimming bells, a particularly infamous reputation as a hazard to swimmers. 

2.2.2 Ctenophora               
Comb jellies, which do not possess stinging nematocysts, are classified in Phylum Ctenophora.

Like true jellyfish, the comb jellies display radial symmetry and possess gelatinous, transparent

tissue.  In aquaria and in video images, the casual observer can recognize ctenopohores by the par-

allel, multi-hued flashing stripes along their body.  The flashes result from the refraction of light

impinging on eight rows of waving cilia, also called ctenes, which ctenophores employ for propul-

sion.  This ciliated propulsion mode, different from the pulsed jet motion of medusae, is one of the

many distinctions between typical ctenophores and the cnidarians.  In addition to their lack of a

hollow swimming bell, ctenophores differ from cnidarian medusae in their tentacle count.  Adult

ctenophores possess no more than two tentacles.  Many adult ctenophores, like the beroid cteno-

phores, lack tentacles altogether.  Also unlike cnidarians, many of which alternate between motile

and sessile forms throughout their life cycle, ctenophores produce fully motile offspring that do

not pass through an intermediate sessile stage.
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© MBARI

Figure 2.2  Beroid Ctenophore.  
From MBARI archives.

Figure 2.3  Recently Abandoned Larvacean House.  
Photographed during a Stanford-MBARI dive, on 10/11/2002.
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2.2.3 Appendicularia

Along with the radially symmetric members of Phylum Cnidaria and Phylum Ctenophora, the

automated jelly tracking project focuses on one other group of gelatinous animals, the subset of

urochordates belonging to Class Appendicularia.  Appendicularians, also referred to as larvaceans,

are tadpole-shaped animals, typically a millimeter to a few centimeters in length.  In spite of their

small body size, larvaceans build mucous feeding structures, called houses, many times their body

length.  The  houses of the giant larvacean, Bathochordaeus charon, may grow as large as 2 m in

diameter.  Houses act as filters to separate food from a large volume of water and to direct it to the

larvacean’s mouth.  Continual undulating motions of the larvacean’s tail circulate fluid through the

house.  When entrapped particles clog the mucous filter, the larvacean leaves its house and con-

structs a new one.  Larvaceans may also leave their house through a special trap-door when they

detect vibrations from a nearby predator.  Discarded larvacean houses collapse on themselves and

sink toward the ocean floor.  Ecologists believe that descending larvacean houses, also called sink-

ers, play an important roles in nutrient cycling and in the community structure of some zooplank-

ton species that congregate on abandoned houses [10].

2.3  Experiments Using a Jelly Tracking Robot
The motivation for automated jelly tracking lies in the unanswered questions at the fringe of gelat-

inous zooplankton biology.  As such, this section examines the frontiers of biological research and

the future utility of automated jelly-tracking experiments.

The experimental goals for long-duration tracking fall into thee broad categories based on

sensor requirements.  The first category consists of ethological studies which use video data to

analyze the actions of gelatinous animals over time.  The second category quantifies animal

motion behaviors using special instrumentation to measure jelly movement relative to the water

column.  A third category studies sensory responses of jelly specimens to naturally occurring envi-

ronmental stimuli.  These experiments require specific sensors to measure environmental parame-

ters as well as general video data to record animal behavior.
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2.3.1 Basic Visual Studies

The following research topics use vision both as a sensor for scientific data collection and for robot

motion control.

Long Duration Behaviors and Time Budgeting:  Ethology provides the primary inspira-

tion for a jelly tracking robot.  A jelly tracker would enable ethologists to observe, for the

first time, animal behavior over long durations [77].  This data could aid in discovery of

new behaviors and provide a field context for behaviors previously observed only in labo-

ratory studies [69,81].  To date, few studies have attempted to observe a single specimen in

its native environment for longer than a half hour [42,7,88].  Consequently, almost no data

exist to describe the behavior of individual gelatinous animals over longer periods.  Video

data would provide a good record of behavioral time budgets (divided among such activi-

ties as foraging, resting, evasion and reproductive pursuits) through day and night.  Such

data could be examined in the context of optimal foraging theories [42] or in the construc-

tion of accurate bioenergetic models [61].

Variation Among Individuals:  Evolution shapes animal populations by acting on indi-

vidual organisms.  For this reason, study of variations in behaviors within an animal popu-

lation provides an important cornerstone in developing an understanding of the evolution

of a species [43].  For example, individual medusa of the same species may perform migra-

tions out of phase [77].  These variations may have important consequences for the popula-

tion and for the individual medusae; however, no quantitative data exists to permit study of

this phenomenon.  

Variations Among Species:  A jelly tracking robot could also enable comparative studies

of different species.  For example, jelly species exhibit different, highly specialized feeding

behaviors which may not occur under laboratory conditions [39,68].  Automated collection

of field data, especially for animals living deep in the ocean, could provide insight to

explain these differences.  Multiple instantiations of the jelly-tracking robot, moreover,

could provide researchers the capability to acquire simultaneous data at various locations

throughout a biological hotspot.

Predation Experiments:  Visual data can provide direct evidence of predator-prey interac-

tions.  These observations are currently difficult to perform in situ [27].  Such observations
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would show medusa both as predators and prey [88].  Video footage would provide data

about the probabilities of prey encounter and prey capture [26,27,36,57,88].  Since little

information is currently available concerning the feeding rations of most gelatinous ani-

mals, video data could aid in refining notions of diet and prey selectivity [68].  Transparent

gelatinous bodies and stomachs might even permit study of animal digestion in situ.

2.3.2 Quantitative Motion Studies

A capability to measure the motion of an animal target relative to the water would enable addi-

tional experiments to quantitatively measure jelly motion behaviors.

Horizontal and 3D Migrations:  With the exception of a few experiments conducted at

the ocean surface, no attempts have been made to measure the horizontal motion of gelati-

nous zooplankton species [40,38].  In comparison with vertical motions, which may be

quantified using a pressure-depth gage, horizontal motions are more difficult to quantify in

situ.  Limited observations suggest, however, that some animals travel substantial horizon-

tal distances.  (The ctenophore Leucothea, for example, may spend as much of 60% of its

daylight hours swimming horizontally [42]; Chrysaora quinquecirrha may also spend a

large fraction of its time swimming laterally against currents [28].)  Specialized instrumen-

tation, like a doppler velocity log (DVL) might permit a jelly-tracking robot to measure

three-dimensional jelly motion accurately.  Acquisition of this data would be a significant

contribution to gelatinous zooplankton biology [113,77].  Water-relative motion data could

also be combined with depth gage or altimeter data to understand jelly motion with respect

to its environmental boundaries.

Particle Flux:  Biogeochemical cycling through the ocean has been identified as an impor-

tant investigation topic by numerous researchers [18].  A jelly tracking robot could provide

data concerning the flux of organic particulates through the water column.  In particular, a

robot would be useful in collection of data concerning large particulates like larvacean

houses [44].  These gelatinous structures are believed to be an important component of

organic particulate cycling.  Studies of larvacean houses might also provide data for under-

standing planktonic communities, which may form on the nutrient rich surface as houses

sink [10].  Comparative studies of numerous sinking houses could provide data regarding

the distribution of sinking speeds for larvacean houses of various species and information
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about the evolution during sinking of house shape, which affects drag coefficient and ter-

minal velocity [82].  Although jelly houses are quite fragile, a carefully controlled jelly-

tracking robot might also provide the in situ capability to watch larvaceans build and aban-

don houses.

2.3.3 Response to Stimuli

By equipping a tracking robot with specialized sensors to detect environmental stimuli, experi-

ments could be performed to understand the links between sensors, stimuli, and jelly reactions.

Light Stimuli:  Given an appropriately designed illumination system, a long duration jelly-

tracking experiment could study the in situ motion of an individual zooplankter with

respect to ambient sun light.  No experiment has ever studied the lighting environment and

motion patterns of an individual animal in situ.  A photosensor would be required in these

experiments to measure ambient lighting.

Chemical Cues:  As chemical stimuli have been observed to affect jelly motion patterns

[13,17,89], a chemical detector could provide important information relating jelly behavior

to chemoreception.  Alternatively, a robot could collect water samples for subsequent anal-

ysis in a laboratory setting.

Mechanical Stimuli:  Shear flows exist in areas of strong current, at the ocean surface and

the ocean floor.  The impact of such gradients on gelatinous zooplankton behavior are

unclear [38].  It is possible however, that some animals orient themselves based on shear

measurements; this behavior might, for example, explain the preference for horizontal

swimming into an oncoming current observed among Chrysaora by Ford et al. [36].

Studying the behavioral impact of shear flows would require an appropriate sensor to mea-

sure fluid gradients as well as careful positioning of the tracking robot, to avoid wake

affects on the subject animal.

Effect of 3D Structure of Ocean Properties:  Measurements of local ocean properties

could help explain patterns of animal behavior and reveal animal preferences for particular

ambient conditions.  Such measures could include pressure, temperature, salinity and oxy-

gen concentration, as measured by a standard CTDO instrument.  Measures could also

include gradients of these properties.  For instance, the aggregation of medusae around a
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salinity discontinuity has been studied in a laboratory setting, but never in the open ocean

[12].

2.4 Jelly Habitats     
The zones inhabited by gelatinous animals affect mission design and platform specification for the

automated jelly tracking task.  

2.4.1 Ocean Properties

The habitats of a marine zooplankton species, in terms of latitude and depth range, reflect the tol-

erance of that species for variations in the properties of the water column.  Environmental salinity,

for instance, has an important effect on gelatinous animals, since jellies take on water volume in

low salinity environments and lose water volume in higher salinity environments.  Although most

jellies osmoregulate well enough to tolerate typical variations in ocean salinity, many species

apparently prefer salinity concentration in the typical ocean range of 30-35 parts per thousand.

Jellies also display sensitivity to their thermal environment.  Metabolic processes, including

growth rates, swimming speeds, and muscle actions, depend on temperature for these ectothermic

animals.  Typical ocean temperatures decrease asymptotically with depth from the surface, but

deeper waters show little temperature variation over time.  Deep ocean animals thus dwell in envi-

ronments with relative thermal stability, with typical temperatures between 1 and 8°C.  Some

medusae have wider salinity and temperature tolerances than others; Aurelia tolerates salinity as

low as 6 parts per thousand and temperatures as low as -0.6°C and as high as 30°C.  Dissolved

oxygen concentration appears to have a weaker affect on the choice of habitats for gelatinous ani-

mals.  Oxygen respiration rates depend on specimen mass and on swimming activity (0.02-0.025

ml/hour/g for Aurelia [51,66], 0.05 ml/hour/g for Stomolophus meleagris [55], 0.005-0.08 ml/

hour/g for Gonionemus vertens and Stomotoca atra [30]).  Many gelatinous species thrive even in

the ocean’s oxygen minimum zone, between 500 and 1000 m in depth, where oxygen concentra-

tion dips as low as 0.1 ml/l.  

Whereas the ocean’s local properties place physiological bounds on jelly habitats, larger-scale

properties, like food availability and predation, place ecological bounds on habitats.  The ocean’s

ecological properties, unlike its local physical properties, change dramatically over time, often dis-
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playing repeated patterns on a diurnal or annual basis.  Over the course of the day, the most com-

mon motion pattern displayed by zooplankton is a migration toward surface waters at night.  This

pattern, called diel vertical migration (DVM) is described in more detail in the following section

on motion behaviors (Section 2.5).  Over the scale of months, jelly habitat and population cycles

follow seasonal changes in the ocean environment.  Ocean hydrodynamics define the two most

pronounced ecological seasons in Monterey Bay, the upwelling season, which lasts between

March and September, and the non-upwelling season, which persists through the remainder of the

year.  Upwelling brings cold, nutrient-rich water from the deep ocean toward the surface and ini-

tiates a surge in animal populations.  The latency of the population surge for a given species

depends on its place in the food chain.  Sharp increases in primary production excite the popula-

tion dynamics for predator animals.  Gelatinous zooplankton populations may peak in size a month

or more after the primary production peak [80,83].  The spatiotemporal evolution of primary pro-

duction thus acts as a leading indicator for the geographic range, depth range, and dynamic growth

of gelatinous animal populations during the upwelling season.      
At present, only limited data exist to characterize the depth changes and seasonal habitat and

population changes for pelagic gelatinous animal species.  Table 2.2 captures some depth range

data collected from in situ observation.  Only a few of the studies summarized in the table capture

diurnal migration [72,83] or seasonal variations [80,83] in the depth ranges inhabited by particular

animal species.

2.4.2 Engineering Implications of Animal Habitat

Ocean conditions and depth ranges favored by particular gelatinous animal species guide the

deployment of the jelly-tracking robot.  Seasonal abundance variations affect the probability of

observing a particular animal species.  Under certain environmental conditions, jellies of the same

species may cluster in groups.  In general, however, deep-ocean jellies can be considered as soli-

tary creatures.  This assumption plays a significant role in the design of the vision system for mea-

suring target location (Chapter 4).

  The most significant aspect of animal habitat that affects the mechanical design of the jelly-

tracking robot is the hydrostatic pressure at the animal’s preferred depth range.  This pressure

determines the requirements for seals and pressure vessels interior to the robotic vehicle.  The

depth ranges listed in Table 2.2 indicate that a jelly-tracking robot could perform a wide range of
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Species
Principal 
Range (1σ)

Full Depth 
Range (3σ)

Measurement 
Location

Measurement 
Season Source

Medusae (Hydrozoa and 
Scyphozoa):

All medusae 600-900 m 400-900+ m Bahamas Oct-Nov (Day) [57]

“ 700-900 m 400-900 m South Florida Aug-Sep (Day) [57]

“ 600-800 m 400-800+ m New England Aug-Sep (Day) [57]

Aegina citrea 150-300 m 100-600+ m British Columbia Aug-Apr (Day) [59]

Aglantha digitale 75-150 m British Columbia Aug-Apr (Day) [59]

Colobonema sericeum 400-600 m Monterey Bay Random Samples [82]

Foersteria pupurpea 200+ m Monterey Bay Random Samples [94]

Phialidiaum gregarium < 25 m Friday Harbor, WA Yearlong [68]

Proboscidactyla flavicirrata < 25m Friday Harbor, WA Yearlong [68]

Solmissus albescens 400-700 m 150-1400 m Western Medit. Yearlong (Day) [72]

“ 0-100 m Western Medit. April (Night) [72]

Deepstaria enigmatica 600-1750 m U.S. West Coast Random Samples [94]

Tiburonia Granrojo 750-1500 m Pacific Ocean Random Samples [65]

Siphonophores:

Calcyophoran  
siphonophores

300-400 m 0-1000 m Monterey Bay Non-upwelling 
(Day)

[83]

“ 400-800 m 0-1000+ m Monterey Bay Upwelling (Day) [83]

“ 200-300  & 
600-700 m

0-800 m Monterey Bay Upwelling 
(Night)

[83]

Nanomia bijuga 200-400 m 0-700 m Monterey Bay Yearlong [80]

Ctenophores:

Beroë cucumis < 500 m U.S. West Coast Random Samples [94]

Bolinopsis sp. 150-400 m 100-600 m British Columbia Aug-Apr (Day) [59]

Leucothea pulchra < 200 m California Random Samples [94]

Leucothea sp. 10-25 m 0-35 m Catalina, CA Jun-Jul (Day) [42]

Larvaceans:

Bathochordaeus charon 100-500 m U.S. West Coast Random Samples [94]

Mesochordaeus 
erythrocephalus

300-500 m 200-750 m Monterey Bay Random Samples [49]

Oikopleura spp. < 200 m U.S. West Coast Random Samples [94]

TABLE 2.2. Measured Depth Range for Various Gelatinous Zooplankton
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tasks (particularly night-time studies) with only 200 m of depth capability.  A 1000 m capability

would permit study of the vast majority of known gelatinous species through their entire range of

vertical migration.  Only a few jelly species have been identified at depths greater than 1000 m.  A

jelly-tracking robot with the capability to plunge to these great depths could, however, help study

recently identified deep-ocean species like Tiburonia granrojo, a gumdrop shaped jellyfish first

described by MBARI and JAMSTEC scientists in the current year, 2003 [65].

2.5 Jelly Motion Behaviors
For animals that do not possess brains, ctenophores and cnidarians demonstrate richly varied

behavioral patterns.  Larvaceans, which do have a centralized nervous system, also display com-

plex behaviors.  Although some behavior patterns, like the house-building and filtering behaviors

among larvaceans or the tentacle and mouth bending behaviors of medusae, involve no transla-

tional animal motion, other behaviors, like patterns of foraging, migration, evasion and aggrega-

tion, do involve significant bodily motion.  This section reviews the latter category of behaviors

involving translational animal motion, as target translational motion determines the energy and

actuator requirements for automatic robotic tracking.

Although some field-based experiments have quantitatively described animal motion, most

animal motion data comes from laboratory experiments.  Behavioral lab studies have, for instance,

measured medusa cruise swimming speeds and pulsation frequencies [25,26,27,36,37], as well as

their escape response speeds [35].  By comparison, the same quantities are more difficult to mea-

sure in situ; field experiments have recorded only limited quantitative swimming data, using a

droplet of dye to mark water-relative translation over short distances [42] and using pressure-depth

gages to collect vertical motion data over longer distances [44].  In the long term, however, diffi-

culty recreating environmental conditions in the lab makes the open ocean a more suitable setting

for accurate observation of complex motion behaviors.  An automated jelly-tracking platform will

provide a new means of acquiring such data in the field.

  Table 2.3 collects experimental data on cruise swimming and escape swimming speeds for

several jelly species, as measured both in the lab and in the ocean.    
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Avg. Period Speed (cm/s)
Size 
(cm)

Measurement 
LocationSpecies @ Cruise @ Max  Gait (Hz) Source

 Scyphozomedusae:

P. camtschatica 1-2 2 5-40 0.11-0.33 British Columbia [88]

Stomolophus meleagris 4-12 16 1.4-13 1.7-3.6 Laboratory [55]

 Cubomedusae:

Chironex fleckeri 1-2.5 8.0 3-10 -- Laboratory [45]

Hydromedusae:

Aeginura grimaldii 1.5-2.8 -- 2-3 0.5-1.0 NW Atlantic + [56]

Aglantha digitale 2-5 30-40 0.7-1.3 -- Laboratory [25,35]

Gonionemus vertens -- 5-6 0.5-1.5 0.3 Laboratory [30]

Phialidium gregarium 2 sink
3  swim

-- < 2 -- Friday Harbor, WA [68]

Polyorchis penicillatus 0.2-0.3  sink
1.7-3.0 swim

-- 2.5-5 -- Friday Harbor, WA [68]

Solmaris corona -- 1-2 0.75-1.67 NW Atlantic + [56]

Solmissus albescens 2-4 -- 2-5 1.3-2.0 Western Medit. [72]

Solmissus incisa and
Solmissus marshalli

1.0-2.7 -- 3-6 0.31-0.79 NW Atlantic,
Western Medit.

[56,72]

Stomtoca atra 1.1 sink
0.7-1.5 swim

4-5 0.5-2.5 0.33 Friday Harbor, WA 
& Laboratory

[68,30]

Siphonophores:

Nanomia bijuga -- 30 3-25 -- Monterey Bay [80]

Sulculeolaria sp. -- 30 80 -- Open Ocean [61]

Ctenophores:

Leucothea sp. 1.3 horiz.
5.2 vertical

12 mean
26 max

0.07  
lobes

California [42,64]

Larvaceans:

Oikopleura longicauda -- 30-50 0.1-0.2 Open Ocean [39]

TABLE 2.3. Animal Speed Variations
This chart compiles data for mean animal speed during sustained cruise (typical of foraging 
behaviors) and during bursts of rapid swimming (typical of escape behaviors).  Animal size, 
pulse frequency at cruise, and the location of the measurement are included in subsequent 
columns.
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2.5.1 Foraging Behaviors

Jellies spend a large percentage of their lives hunting.  As such, energy requirements for robot pro-

pulsion depend heavily on the experimental target species.  Generally, gelatinous zooplankton

engage in passive foraging (slowly trawling through the water column) rather than in active hunt-

ing (pursuing individual prey) [57].  This simple generalization, however, fails to capture the broad

diversity of specialized foraging styles observed in situ for different gelatinous species.  

In most cases, jelly behavior and physiology act in concert to enlarge the encounter volume

for prey capture [61].  Motion increases the foraging encounter volume, but at the expense of a

metabolic energy cost for propulsion.  This trade-off means that some animals, depending on their

physiology, either hover in place, hoping to ambush passersby, or swim continuously, accepting

increased propulsion costs to augment the probability of encountering slow-moving prey.  Among

those animals that hover in place, tentacle arrangement is extremely important.  Pre-ambush

maneuvers help to spread tentacles over the maximum possible area.  The scyphozoan Phacello-

phora camtschatica, for example, may swim horizontally back and forth to spread its tentacles

both in front of and behind its bell [88].  Siphonophores, many of which hover in motionless

ambush, enter into a turn before coming to a rest, thereby imparting a curved shape to their chain-

like bodies and splaying their tentacles outward over a large-area two-dimensional sheet [61].

Among those animals that swim to forage, some species move predominantly in a single

dimension, carving out a cylindrical foraging volume with diameter equal to the span of the ani-

mal’s tentacles.  In many cases, these animals minimize their drag by directing their tentacles

straight back along the axis of motion [86].  Some narcomedusae, however, absorb the drag pen-

alty and hunt with their tentacles splayed radially outward or directed forward from the bell, so as

to augment their encounter diameter.  Nematocysts are distributed according to hunting style to

increase the likelihood of prey capture.  Among medusae like Solmissus, that hunt with tentacles

splayed radially outward, stinging cells develop preferentially on the forward (aboral) tentacle face

[56].  

Several species augment their capture volume with two-dimensional periodic motion.  The

coastal medusa Polyorchis, for instance, alternates between bouts of upward swimming and peri-

ods of negatively buoyant sinking [68].  The medusa Stomotoca atra modifies this basic pattern

into a sawtooth trajectory with peak-to-peak amplitude of one to two meters and a period of 2-3

minutes [68].  These periodic motions carry Stomotoca’s two long tentacles sideways, substan-
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tially increasing encounter area.  Other examples of periodic two and three-dimensional foraging

behaviors have been observed in the scyphomedusa Phacellophora camtschatica [88] and in the

ctenophore Beroë sp [89].

Empirical evidence suggests that jellies may also exhibit non-periodic motion patterns

focused around volumes of dense prey concentration [42].  This kind of reactive planning may

increase the likelihood of encountering prey and decrease the likelihood of falling victim to a pred-

ator.  In balancing energy requirements and predation risk for optimal foraging, animals must

select which patches to visit, how long to remain in each patch, which food to consume in each

path, and what trajectory to follow through that patch [79].  A jelly-tracking robot might aid in col-

lecting data to compare animal motion to optimal foraging predictions.  At present, few data exist

to characterize how often jellies maneuver to stay within prey patches or what sensory mecha-

nisms they use to detect prey concentration.

2.5.2 Diel Vertical Migration (DVM)

Along with foraging, a second behavioral pattern that impacts the propulsion energy budget for a

jelly-tracking robot is vertical migration.  A large number of zooplankton species perform diel ver-

tical migrations (DVM), a periodic motion pattern synchronized with the 24 hour clock cycle.  The

standard DVM approaches the ocean surface at night and retreats to deeper waters in the daytime.

A few zooplankton species exhibit phase-shifted or fully reversed DVM cycles, with minimum

depth occurring during the day [48].  Of the phyla considered for jelly tracking, both pelagic cni-

daria and ctenophora perform DVM [72,83,88].  Larvaceans do not migrate in this fashion.  

Biologists hypothesize that the evolutionary origins of DVM lie in the advantages of foraging

under the cover of darkness.  The sun supplies ample energy to phytoplankton near the surface.  A

large number of species rise at night to feed on primary production or on the other animals that

have migrated to surface waters for nighttime feeding.  The cover of night removes the advantage

of visual predation (by fish, squid, birds and turtles) and levels the playing field for foragers.  In

this sense, nighttime gives trawlers and ambush hunters the time to feed without substantial risk of

capture by active visual hunters [48,72].  Nighttime surface hunting also helps gelatinous zoop-

lankton avoid radiation damage caused by UV light [72].  Because protective pigments that block

UV light would make jellies more visible to UV-sensitive, upwards-looking predators, many jel-
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lies have evolved without these pigments and instead flee to the depths during daytime to avoid

sun damage [53].

Biologists continue to pose many questions about the phenomenon of DVM.  In particular,

biologists desire more data regarding the variation in migration timing and depth range for individ-

ual animals, as natural selection acts on individuals and not on populations.  Some laboratory

experiments in large confined tanks have observed migration phase shifts of individuals in com-

parison with the population mean migration [76].  Biologists have not yet studied such shifts with

in situ experiments, however.

The specific nature of the sensory cues which signal jellies to terminate ascent and descent

also remain unknown.  Ambient lighting is widely believed to play a major role in triggering

DVM.  Behavioral observations suggest that absolute light levels play some role in depth selec-

tion.  Mills and Goy noted, for instance, that animals in the deep ocean rose closer than normal to

the surface under reduced moonlight conditions caused either by heavy cloud cover or by a phy-

toplankton bloom [72].  Other observations in the open ocean suggest that zooplankton follow an

isolume, thereby regulating depth to maintain constant ambient illumination through ascent and

descent [19,90].  In some animals, relative light changes, rather than absolute changes, may be

responsible for vertical migration [48].  

At the deep end of migration, illumination may not provide an effective stimulus to trigger

upwards DVM, as the natural light level may fall below a jelly’s sensitivity threshold.  For these

deep diving animals, chemoreception of food sources, sensitivity to ambient pressure levels, or the

rhythm of an internal clock may provide the signal for ascent [57].  A few experiments have spe-

cifically probed for evidence of jelly circadian rhythms; Mills did not find evidence in hydromedu-

sae [69], but Schuyler et al. did notice continuing DVM patterns among specimens of the

scyphomedusa Chrysaora quinquecirrha when they were shifted from natural lighting into full

darkness [81].

2.5.3 Horizontal Migrations

Horizontal migration patterns among jellyfish were first recognized in the 1980s [38].  Prior to the

occurrence of these ethological observations, many biologists believed that jellies migrated only in

the vertical direction.  Horizontal motion probably plays a smaller role in the energy budget for a
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jelly tracking robot than vertical migration; nonetheless, little information is available concerning

possible horizontal migration patterns for deep ocean zooplankters.

The most extensive description of horizontal jelly migration involves the translation of medu-

sae through the surface waters of the marine lakes of Palau [40].  These marine lakes formed when

geological activity severed them, and their animal populations, from the larger ocean.  In Jellyfish

Lake, Eil Malk, the population of the medusa Mastigias travels 400 m from west to east in the

morning and 400 m back in the afternoon.  Medusae in Jellyfish Lake, Koror, and in Goby Lake,

Koror, travel 500 m and 200 m, respectively, over the course of the day.

Empirical observations suggest that many pelagic jellies perform moderate-scale horizontal

motions.  Observation by Matsumoto and Hamner, for instance, noted that the ctenophore Leuco-

thea spent 60% of its time foraging horizontally [64].  Similar observations have been made by

Robison et al. concerning the deep-ocean medusa, Colobonema sericeum [82].  Colobonema is a

highly active swimmer, yet appears to maintain its depth in a narrow band, between 400 and 600 m

below the ocean surface.  Still other experiments provide further evidence of large horizontal

migrations.  Observing Aurelia aurita in Saanich Inlet, Strand and Hamner noted that local cur-

rents separate Aurelia at night but that the animals actively aggregate during the following day

[88].  In the same study, injured specimens swam continuously in the horizontal plane, with no

directional preference toward nearby aggregations.  

From an evolutionary viewpoint, horizontal migrations patterns may have developed to pro-

mote foraging, to assist reproduction, or to avoid collision with the coastline [42,48].  The sensory

mechanisms that have evolved to trigger horizontal migration are not known.  Some instances of

horizontal migration, such as those of Mastigias in Jellyfish Lake, however, appear to correlate

strongly with changes in daylight and shadow.

2.5.4 Evasive Actions

Many jellies respond evasively to contact and hydrodynamic disturbances.  Responses generally

fall into two categories:  hiding responses, in which jellies remain motionless, and swimming

responses, in which jellies accelerate rapidly away from a stimulus.  Gelatinous animals achieve

their highest speeds during darting escape responses.  These rapid motion behaviors thus introduce

an important specification for the design of a jelly-tracking robot.  To track a broad range of gelat-
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inous species successfully, the tracking robot must have the capability to match target motion

through rapid transients during evasive actions.

Escape swimming responses accelerate jellies to their maximum speed in four-five pulses

(one or more seconds) [86].  Animals rarely maintain these high velocities for more than a few sec-

onds, however.  Table 2.3 summarizes the escape speeds for several gelatinous animals.  Many jel-

lies achieve escape speeds of 30 cm/s or more, including the hydromedusa Aglantha, the

siphonophore Nanomia, and the larvacean Oikopleura.  Rapid escape responses are common

among larvaceans and siphonophores; some siphonophore species even shed tentacles or release a

cloudy fluid to obscure pursuit [61].  Rapid escape responses are less common among medusae.  A

few hydromedusae, primarily the relatives of Aglantha, exhibit darting escape responses with

velocity substantially greater than cruise (foraging) velocity [35].  Most other medusae that swim

away from disturbances simply increase the speed of their normal swimming, by tucking back

their tentacles to reduce drag (Aeginura grimaldii [56]) or by increasing contraction frequency

(Aurelia aurita [88]).  Rapid swimming escapes have also been observed among ctenophores.

During in situ observation, Madin noted the ctenophore Callianira bialata swam rapidly down-

ward when disturbed and that the ctenophore Mertensia ovum escaped with a quick burst of aboral

swimming followed by a 180° turn and rapid swimming in the oral direction.

Most medusae attempt to hide from predators rather than trying to escape.  Among hydrome-

dusae, hiding behaviors typically take the form of a crumpling response.  During  crumpling, a

medusa stops swimming, retracts its tentacles under its bell, and slightly contracts to reduce its

volume [86].  This behavior cannot protect against a determined visual predator, but it does

improve a jelly’s odds of evading a passive forager [60].  Scyphomedusae, in contrast, may simply

stop swimming rather than crumple.  Strand and Hamner observed several specimens of the scy-

phomedusa Aurelia aurita that stopped pulsing while in contact with the tentacles of a predatory

medusa, Phacellophora camtschatica [88].

2.5.5 Aggregation Behaviors

Relatively little information is available concerning jelly aggregations, as gelatinous animals typi-

cally swim apart from other members of the same species [51].  Certain environmental conditions

or active jelly behaviors may result in dense aggregations, however.  For instance, medusa blooms

observed at the ocean surface result from concentrated reproductive activity, from the convergence
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of ocean currents, or from jelly migration behaviors [38].  In the deep ocean, jellies may also

aggregate along discontinuities of salinity or temperature [12,43].  In many cases, increased preda-

tor and prey concentrations occur together, sympatrically.  Quantitative studies have observed

denser-than-average populations of the medusa Phacellophora preying on aggregated Aurelia [88]

and of the siphonophore Nanomia in waters concentrated with prey species like krill, Solmissus,

and Bathochordaeus [80].  

Locations of above average zooplankton activity and density, sometimes referred to as zoop-

lankton hot spots, have been recognized as an important topic for future zooplankton research [18].

Observations of individual animals within hot spots will serve an important role in building a the-

ory for patch dynamics [43].  Additional data will also help confirm hypotheses about the evolu-

tionary advantages of aggregation, which may include defense against predation, improved

spawning efficiency, and the exclusion of competitors from limited resources [38,88].

2.5.6 Engineering Implications of Motion Behaviors

The range of motion behaviors exhibited by gelatinous animals affects the design of the propulsion

and energy storage systems for the jelly-tracking vehicle.  Animal speed, for instance, plays an

important role in predicting propulsion energy requirements for the tracking vehicle.  Data from

Table 2.3, along with knowledge of foraging behaviors and DVM, enable a rough estimate of ani-

mal speed.  Motion data suggests that few of the animals described in this chapter, with the possi-

ble exception of siphonophores, continuously swim for extended durations at speeds faster than 2

cm/s.  Chapter 7 applies this nominal cruising velocity of 2 cm/s in constructing an energy budget

for a hypothetical jelly-tracking AUV.

The direction of animal motion influences the choice of propulsion strategy for the jelly-

tracking vehicle.  Buoyancy engine propulsion systems offer an energy efficient mechanism for

generating vertical forces.  For an energy-constrained AUV, the buoyancy engine offers potential

advantages for tracking vertical DVM motions, which represent a prevalent behavior among gelat-

inous animals.  Unfortunately, little information is available concerning the horizontal migration

patterns of deep-ocean jellies.  In order to enable horizontal migration experiments, a jelly-track-

ing vehicle requires some form of lateral thrust.  The pursuit of animals during an escape response

also demands high performance omni-directional thrust.
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Escape responses set the bandwidth requirements for the vehicle control system.  For medu-

sae, acceleration generally occurs over 4-5 pulses.  Assuming that pulsing frequency, during

escape, does not change significantly from cruising pulsation frequency (0.1-3.0 Hz according to

Table 2.3), the acceleration duration lasts approximately 1.3 seconds for the fastest medusa spe-

cies.  From this estimate of acceleration duration, Chapter 5 derives a robot bandwidth requirement

of 1.7 rad/s to track these rapidly accelerating jellies.  The bandwidth of the experimental jelly-

tracking system was set to approximately 0.7 rad/s, somewhat lower than this limit, but sufficient

to track most animal specimens encountered.

2.6 Morphology and Mechanisms of Jelly Motion
Although scientists have collected relatively little data to quantify patterns of motion behavior

among jellies, they have closely examined many of the physical mechanisms that enable gelati-

nous animal propulsion.  This section reviews these mechanisms and discusses the relationships

between propulsion strategies and animal morphology.  These details enable further refinement of

engineering specifications for the automated jelly-tracking robot.  In particular, medusa morphol-

ogy and dynamics place additional constraints on the tracking law and on the propulsion energy

budget.

2.6.1 Medusa System Dynamics

Despite their relative simplicity within the animal kingdom, gelatinous animals are elegant, highly

integrated systems.  The motion of a medusa, like the motion of any other mechanical system, can

be modeled using an appropriate set of differential equations.  This section overviews the model-

ing efforts of Daniel [29-31] and Demont and Gosline [32-34], who have applied basic concepts

from mechanics to describe the motion of gelatinous medusae.

Fundamentally, a medusa may be modelled as lumped inertial mass subject to propulsive

forces ( ) and hydrodynamic resistance ( ).

(2.1)

Muscles are the primary force generators in medusa propulsion.  Where higher species often

employ opposed muscle pairs to control the direction of force production, medusa muscles act

u Fh

mx·· Fh+ u=
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only in one direction, to contract the bell.  The internal tissue of the medusa, called the mesoglea,

acts as a flexible, hydrostatic skeleton that restores medusa shape after contraction [37].  In

essence, mesoglea and muscle perform together as an approximately linear, second-order system

with harmonic forcing [34].

  (2.2)

Here mesoglea deflection, , is excited by muscle forcing, .  The spring constant, k, depends

on animal geometry and mesoglea elastic modulus, the latter which has been measured at 400-

1000 N/m2 for the species Polyorchis penicillatus [32].  Damping, accounted for by the coefficient

, is a requirement for the system energy balance.  To provide net forward propulsion and net out-

put work during the bell’s pressure-volume cycle, damping must extract energy during the recov-

ery phase [33].  In P. penicillatus, energy recovery by the mesoglea is approximately 58%.

Experimental evidence suggests that some species pulse near the resonant frequency of their

swimming bells.  By exploiting the resonance frequency of (2.2), like P. penicillatus reduces its

overall energy requirements as much as 24-37% [34].

Although bell elasticity acts in an approximately linear fashion in a global sense, local varia-

tions in elastic modulus permit differential bending.  These local changes in bell shape determine

the kinematics of bell contraction [37].  In hydromedusae, bell kinematics are supplemented by the

kinematics of velum contractions [86].  Together these changes in bell and velum geometry inter-

act with the surrounding water to create jet propulsion.  Medusa thrust is positive during contrac-

tion and negative during the recovery phase.  Even though net mass flux is zero over the complete

pulsation period, net thrust is positive.  In effect, the jelly acts as a synthetic (periodically pulsed)

jet.  In engineering applications, synthetic jets typically use constant area orifices and sinusoidal

excitation; these devices rely on the differences between potential-sink-like inflow and jet-like

outflow to produce a net momentum flux.  Jellies, in contrast, exploit variations in cycle timing

and in orifice area to augment thrust production.  

A medusa propulsive thrust equation was developed by Daniel [29], with thrust, , as a func-

tion of water density, , velar cross-sectional area, , and rate of change of internal bell volume,

V.  Given an appropriate state function relating volume to bell deflection, the following equation

for thrust is driven by the bell forcing equation (2.2).

mx··m ηx·m kxm+ + Fm=

xm Fm

η

u
ρ Av



2.6   MORPHOLOGY AND MECHANISMS OF JELLY MOTION 39

(2.3)

The thrust equation explains variations in medusa kinematics between the contraction and recov-

ery phase that result in net thrust production.  Averaged jet cross-sectional area, , is larger dur-

ing recovery than contraction.  Also, the volume derivative is much higher during contraction than

during the recovery phase, as recovery takes 1.3-2.5 times longer than contraction [29, 37].  The

larger jet area and slower volume change during recovery reduce negative thrust, according to

(2.3).

Frequency tuning may further improve the efficiency of jet propulsion.  Although Daniel

neglects this effect for small, rapidly pulsing animals [29], it is possible that intermediate sized

medusae may take advantage of frequency tuning.  In engineering applications, tuned synthetic

jets produce 50% more thrust than continuous jets of the same dimensions

Hydrodynamic forces oppose periodic thrusting.  This resistance, Fh, is the sum of unsteady

drag and added mass forces.  The drag force is proportional to density, frontal area (S), drag coeffi-

cient (Cd), and the square of velocity (u); the added mass force is proportional to density, accelera-

tion, volume and added mass coefficient (α).

(2.4)

The added mass force, which results from the acceleration of the flow field surrounding the

medusa, accounts for the majority of animal momentum loss.  The coefficients Cd and α, as well as

the frontal area S, depend strongly on medusa shape.  Narrow, or prolate, medusae have more

favorable hydrodynamics and accelerate to higher speeds than wide, or oblate, medusae.

Despite early questions about the efficiency of jelly propulsion [30], medusa propulsion

appears highly effective when considered at a system level.  Indeed, jellies are less efficient that

fish from a purely hydrodynamic viewpoint.  Efficiency in their propulsion strategy, however,

results in a low overall energy requirement for medusa transport.  In fact, [55] suggests that prolate

jellies in the 10-1000 g mass range have lower overall transport costs than fish.  Fish are fast

swimmers, but their streamlining offers less of an advantage at the slower speeds traveled by

medusae.  Moreover, the jelly propulsion system requires less “overhead” than the fish propulsion

u ρAv
1–

td
dV

td
dV–=

Av

Fh Cd
ρSu2

2
------------ 

  α ρV td
du

 
 +=
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system.  The muscle-to-body mass ratio for a typical jelly is only 1%, as contrasted with 50% for

fish.  Oxygen consumption, which reflects metabolic energy consumption, is correspondingly

lower for medusa as compared to fish [55].

2.6.2 Medusae Morphology and Swimming Patterns      

Medusa shape strongly affects swimming behavior.  Swimming efficiency, for instance, is a strong

function of medusa shape; however, swimming efficiency is only one aspect of the medusa sur-

vival strategy.  To maintain propulsion, a medusa needs to renew its energy supply by continuously

acquiring oxygen and nutrients from the water column.  Though a large frontal area increases drag,

the same large area also promotes oxygen transport and food capture.  Thus, medusa geometry rep-

resents a trade-off between mobility (for escape, reproduction, etc.) and effective feeding.  Differ-

ent medusa behavioral patterns have evolved in different species to best exploit morphology for

survival.

The simplest descriptor for medusa shape is the fineness ratio, which expresses the ratio of

bell height to bell width.  Although fineness ratio varies throughout contraction and recovery, a
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Figure 2.4  One-Dimensional Motion Trajectories of Several Medusae
Data collected from [25,27,36].  Aglantha, Sarsia are prolates (P).  Mitrocoma and Chrysaora are 
oblates (O).  Cyanea fineness puts it at an intermediate level (I), between the two extremes.
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jelly is typically classified by its fineness ratio in the relaxed state, prior to contraction.  Those jel-

lies with long bodies (fineness > 0.8) are called prolate medusae.  Those with short height along

the radially symmetric axis (fineness < 0.5) are called oblate medusae.

Oblate jellies generally move slower than prolate jellies during bouts of swimming, as shown

by Figure 2.4.  Among oblates, speed is not a strong function of bell size [25].  By contrast, speed

is directly proportional to bell height for smaller prolate jellies [25,55].  At larger sizes, this pro-

portionality flattens out and prolate swimming speeds become invariant with size.  Presumably, the

extreme drag penalties associated with higher speeds and larger sizes, as captured by (2.4), over-

whelm propulsive advantages for these larger prolate medusae.          

Pulsation frequency (swim cycles per second) also depends strongly on bell size.  For a given

species of medusa, pulsation frequency appears to vary exponentially with bell diameter.  The

dependence is stronger for oblate medusae than for prolate medusae.  These differences are dis-

played by Figure 2.5, which compares pulsation frequencies for the oblate medusa, Phacellophora
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Figure 2.5  Swim Frequency Depends on Medusa Size.
Data for swim pulses per second have been compiled for three medusa species:  Polyorchis [14], 
Phacellophora [88], and Stomolophus [55].
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camtschatica, with the prolate medusae Stomolophus meleagris and Polyorchis penicillatus.

These data were acquired under fixed environmental conditions.  In general, ambient pressure

[38], temperature [76] and lighting [11] can all affect medusa swimming frequency.

Contrast in swimming speed and bell pulsation rate evidence the strong hydrodynamic differ-

ences between oblate and prolate medusae.  Table 2.4 collects data for jelly speed and pulsation

frequency for animals of differing fineness ratio.  A useful generalization for jelly tracking, based

on these data, maintains that oblate medusae do not travel farther than one bell diameter during a

second, whereas medusae of intermediate to high fineness ratio (fineness greater than 0.5) may

travel as far as twice their bell diameter in a second during bouts of steady swimming.  Not only

does better streamlining mean that prolate jellies swim faster, in general, than oblate jellies, but

streamlining also permits prolate jellies to maintain a relatively constant speed throughout

repeated pulsation cycles.  By contrast, speed oscillations through the pulsation cycle are large for

typical oblate medusae.  Both Figure 2.5 and in Table 2.4 indicate significantly larger peak-to-

trough velocity differences for animals of low fineness ratio.    

In fact, the hydrodynamic differences between prolate and oblate medusae are so pronounced

that thrust model (2.3), which applies well to measurements of prolate medusae kinematics, breaks

down when applied to measurements of oblate medusae kinematics.  Colin and Costello suggest

that, for oblate jellies, the bell contraction as much pushes water in a rowing motion as it ejects

water in a jet motion [25].  Thus, in an accurate motion model for oblate jellies, a rowing term [30]

would supplement the jet-propulsion term of (2.3).  

The poor hydrodynamic efficiency of oblate jellies does not imply overall system ineffi-

ciency.  Large frontal area increases the probability of encountering prey [61].  Moreover, “sloppy”

hydrodynamics in the separated region behind the bell produce higher intensity turbulence and

stronger vortex rings.  These fluid motions increase transport of prey toward medusa tentacles and

counteract prey escape responses.  Examples of complicated flow fields that enhance feeding are

described for Chrysaora in [36] and for Aurelia in [26].  As a generalization, feeding efficiency for

medusae decreases as swimming efficiency increases.  

The time budgets of the prolate jellies, the more efficient swimmers, thus contrast with the

budgets of oblate jellies, the more efficient feeders [25].  Because swimming enhances feeding for

oblates, these medusae move continuously.  Field experiments by Costello et al. suggest oblate

scyphomedusa species, like Aurelia aurita and Chrysaora quinquecirrha, may spend as much as
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Species

Mean 
Speed 
(cm/s)

Min 
Speed 
(cm/s)

Max 
Speed 
(cm/s)

Body 
Size 
(cm)

Pulse 
Freq. 
(Hz)

Run
Time  
(s)

Fineness 
Ratio       

Source

 Scyphomedusae:

Aurelia aurita 0.3 -.0.2 1.1 1.6 1.5 3.4 0.4 [26]

C. quinquecirrha  0.2 -1.0 1.7 5.5 0.5 9 0.3 [36]

Cyanea capillata 1.2 -1.0 4.6 3.9 0.8 6.5 0.6 [27]

Linuche unguiculata 1.4 0.3 2.9 1.6 2.9 1.7 1.1 [27]

S. meleagris 2.3 0.7 3.8 3.3 3.0 1.7 0.7 [27]

 Cubomedusae

Charybdea sp. 6.2 3.8 9.3 3.5 -- Many 0.6 [37]

Hydromedusae:

Aequorea victoria 1.1 0.3 2.0 5.0 0.8 6 0.5 [25]

Aglantha digitale 2.2 -0.1 5.2 2.0 1.4 2 2.2 [25]

Bougainvillia sp. 1.3 0.2 3.3 0.8 -- Many 0.9 [37]

Euphysa flammea 1.3 0.0 3.8 1.1 -- Many 1.7 [37]

Gonionemus vertens 4.5 0.0 11.8 2.4 -- Many 0.6 [37]

Liriope tetraphylla 3.6 1.3 6.6 1.5 -- Many 0.7 [37]

Mitrocoma cellularia 0.4 -0.5 1.6 6.5 0.5 10 0.5 [25]

Phialidium gregarium 1.5 0.6 2.3 2.1 1.5 3 0.6 [25]

P. flavicirrata 1.1 0.5 2.2 0.6 1.6 3 0.9 [25]

Sarsia sp. 1.8 1.1 3.5 0.9 1.1 4 1.1 [25]

Stomotoca atra 1.5 0.5 4.0 1.2 -- Many 0.8 [37]

 Siphonophorae:

Diphyes dispar 10.7 9.6 11.7 3 2.8 2.3 3.0 [37]

TABLE 2.4. Changes in Medusa Speed During a Pulse Cycle  
Minimum and maximum instantaneous speed are listed.  Data are either for single animals 
(several consecutive pulses) or for many animals of similar size (phase averaged pulses).
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93-100% of their time swimming [28].  Oblate medusae of Family Solmissus [72] and many oblate

members of Order Leptomedusa [86] also spend the vast majority of their time swimming.  

Prolate jellies, whose morphology inhibits feeding while swimming,  remain motionless dur-

ing foraging periods, relying on ambush tactics to capture moving prey.  From time to time, these

animals pulse briefly to keep their tentacles spread effectively through a capture volume.  The neu-

trally buoyant, prolate hydromedusa Proboscidactyla flavicirrata, for example, exhibits this hov-

ering ambush behavior [68].  Some negatively-buoyant prolate jellies alternate between sinking

and upwards pulsing to promote efficient foraging.  Examples include the prolate Anthomedusans

Stomotoca atra [14], which pulses upward for 1-3 s and then rests, sinking, for 10 s and Polyorchis

penicillatus [30], which pulses upward quickly for 15-300 s and then rests for long periods, sink-

ing while pulsing slowly at only 5-15 contractions per minute.  This alternation between sinking

and swimming is often called maintenance swimming, as it carries a medusae a significant abso-

lute distance through the water column without appreciably changing absolute depth [14].

Thus prolate jellies are more likely to alternate between bouts of swimming and periods of

rest, while oblate jellies are more likely to swim continuously.  While swimming, both categories

of medusa may demonstrate forms of spatially periodic motion.  The prolate jelly Stomotoca atra,

for instance, moves in a sawtooth wave pattern, travelling horizontally upward during its swim-

ming bouts and vertically downward during its sinking bouts [68].  The oblate medusa Phacello-

phora camtschatica sometimes swims vertically in a helical pattern [88].  These behaviors, which

increase the encounter frequency between medusa tentacles and prey species, involve turning

motions.  In order to effect a turn, medusae vary contraction strength around the bell margin.  

In hydromedusae and cubomedusae, the velum deforms to act as a thrust vectoring nozzle.

Scyphomedusae, in contrast, contract strongly on the inner turning edge of the bell to scoop water

in the lateral direction.  Gladfelter quantified the turning ability of several medusae species in the

laboratory [37]; observations included a 70° turn by Polyorchis in a single pulse, a 114° turn by

Euphysa over a 5 contraction maneuver, a 125° turn by Gonionemus in a 3 contraction maneuver

over 1.6 seconds, and a 44° turn by Cyanea in a single contraction over 2 seconds.

A final difference between oblate and prolate medusae involves escape behavior.  Because of

their poor hydrodynamics, oblate animals cannot perform rapid escapes.  Although some oblate

scyphomedusae continue to pulse after contact with a predator, others cease pulsation immediately.

Among the oblate hydromedusae, many species perform a crumpling action when touched by a
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predator.  During crumpling, animals cease swimming and draw their tentacles inside their bells to

decrease their size and likelihood of capture by a foraging predator (see Section 2.5.4).  

Prolates contrast with oblates in that their design, from a hydrodynamics viewpoint, favors

rapid escape.  Although some prolate hydromedusae crumple, many display dramatic escape

responses with speeds far exceeding their foraging speeds.  The most dramatic hydromedusan

escape responses are seen in Aglantha and its close relatives, including Colobonema and Benthoc-

odon [35].

2.6.3 Medusa Buoyancy Regulation

In addition to bell propulsion, the buoyancy of jellyfish plays an important role in their motion.

Many nearshore species maintain negative buoyancy for feeding purposes, including Phiialidium

gregarium, Polyorchis penicillatus, and Stomtoca atra [68].  Gravity propels these animals nearly

as fast downwards as bell contractions propel them upwards (see Table 2.3).  Pelagic, or open

water, medusae generally maintain neutral buoyancy.  Passive osmotic accommodation allows

these medusae to match the ion concentration of the surrounding medium [70].  Some medusae

may also use active means to effect changes in internal ion concentration.  

The work of Mills suggests that medusae do not, in all likelihood, use active buoyancy con-

trol to change their position upward and downward in the water column.  In particular, Mills inves-

tigated DVM and concluded that active buoyancy adjustment does not play a role in supporting

vertical migration [71].  

Even if jellies do use active buoyancy for propulsion, ion regulation occurs sufficiently

slowly that it may be neglected for the purposes of automated jelly tracking.  Laboratory experi-

ments that swapped medusae between mediums of differing salinity, and hence differing density,

showed that specimens regained neutral buoyancy over periods as long as 6-24 hours for large

salinity changes (8 ppt or more) and no shorter than 10-30 minutes, even for small salinity changes

(1-2 ppt) [67,70,93].  The only possibility for a rapid change in jelly motion resulting from a buoy-

ancy related phenomenon involves a sharp salinity discontinuity.  Were a target medusa to contact

a salinity discontinuity, its progress might accelerate, decelerate or halt entirely.
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2.6.4 The Motion of Other Gelatinous Animals

Typical siphonophore motion resembles that of medusae.  With the exception of members of Order

Cystonecta, which have no capability for self-propulsion, siphonophores possess swimming bells

(nectophores) that pulse periodically, pulling their long bodies through the water column.  When

multiple nectophores are present in siphonophore colonies, they pulse out of phase, effectively

smoothing siphonophore velocity.  The dual bells of the siphonophore Diphyes dispar, pulse indi-

vidually at 2.8 Hz, out-of-phase, to keep instantaneous speed variations within 10% of the mean

colony speed, 10.7 cm/s.  As a result of reduced acceleration losses, siphonophore propulsion is

somewhat more efficient than medusa propulsion.

Unlike medusae, siphonophores colonies, with the exception of the calcyphorans, use gas

filled floats to supplement their buoyancy.  Gas filled pneumatophores allow easy siphonophore

detection using sonar [80].  Siphonophores also differ from medusae in their ability to orient their

bells relative to their bodies.  Nanomia, and related siphonophores, are the only animals besides

squid which can manipulate jet-propulsion to swim in two opposing directions [58].

Ctenophore propulsion contrasts strongly with that of medusae and siphonophores.  Cteno-

phore propulsion relies on swimming cilia that occur in eight rows, distributed in pairs around the

animal circumference.  Cilia create propulsion with a paddling motion.  Along the row, cilia trig-

ger slightly out of phase to generate synchronized wave pulses.  These paddling motions move the

animal in the mouth-forward (oral) direction.  Ctenophores, in rare cases, may also swim back-

wards, in the aboral direction [61,89].  In order to maneuver, ctenophores differentially actuate

comb rows on opposites sides of their bodies and, for more rapid maneuvers, curve their ellipsoi-

dal bodies [89].  Because comb rows pulse co continuously, ctenophores move more smoothly and

efficiently than medusae.

The group of lobate ctenophores use large, wing-like lobes to assist with propulsion.  Cteno-

phores like Leucothea may forage with their lobes flapping periodically.  Lobes can also be used to

change swimming mode.  With Leucothea, for example, lobe configuration changes dramatically

from the horizontal foraging mode which glides forward at 1.3 cm/s, lobes flapping, to the vertical

jet-propulsion mode, in which Leucothea curls its lobes into ducts around its rapidly beating cilia

rows and accelerates to 5.2 cm/s [64].  Rapid buoyancy-driven propulsion has not been observed

among ctenophores.  Rather, ctenophores osmoconform to the ionic concentration of surrounding

water in order to maintain neutral buoyancy, much like cnidarian species [71].
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Larvaceans share little in common, in terms of their motion, with cnidarians and ctenophores.

For the most part, larvaceans flap their tails continually to circulate water through their mucous fil-

ters.  This flapping motion appears to cause little variation in the position of the house within the

water column [44].  As such, larvaceans orient themselves arbitrarily relative to the gravity vector

[20].  Larvaceans periodically abandon their houses and construct new ones.  While free from their

houses, larvaceans are capable of extremely rapid movement.  Graham et al. measured the escape

response for a free-swimming Oikopleura longicauda at approximately 30-50 cm/s [38].  Whether

because larvaceans leave their houses when they become heavy or because the houses change den-

sity after abandonment, empty larvacean houses sink downward toward the ocean floor.  Aban-

doned houses, which typically sink at 1 cm/s but often sink at 2-3 times this rate, play an important

role in nutrient cycling through the water column.  

2.6.5 Engineering Implications of Jelly Morphology

Variations in jelly morphology and propulsion strategies influence the specifications for an auto-

mated jelly-tracking robot.  Earlier specifications for control bandwidth and energy consumption

neglected oscillations in the jelly cruise speed; these oscillations may be significant, especially for

oblate jellies.  To account for these effects, the control bandwidth can be designed to partially

attenuate velocity variations associated with jelly pulsing without significantly affecting tracking

response for sudden acceleration.  Chapter 5.3.1 discusses the design of a jelly tracking control law

tuned to track escape responses while damping oscillations at the pulsation frequency.  Distur-

bances at the pulsation frequency may still result in additional thruster action.  Chapter 7.1.2 dis-

cusses the impact of speed oscillations (associated with tracking an oblate medusa) on the energy

budget for a jelly-tracking AUV.

The relationship between motion and morphology presents many further opportunities for

additional engineering research.  For post-processing applications, like classification, motion data

may help identify the morphology, and perhaps the species, of a tracked animal [122].  For real-

time applications, morphology data may help predict patterns of motion for a particular animal

specimen.  In an energy-constrained AUV application, for instance, morphology information could

be used to tune control gains and sensor sampling rates to balance energy minimization and the

risk of target loss.
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2.7 Sensory Physiology
This section discusses the capabilities of jellies to detect external stimuli.  In mechanical robots,

external stimuli both enable continuous feedback control and trigger discrete state transitions

among various programmed behaviors.  The same is true for jellies.  Most jellies have sensors to

detect touch and the gravitational direction.  Many jellies also sense light and chemical concentra-

tions.  Jellies act on these stimuli both to trigger feedback behaviors, such as attraction toward the

chemical signal produced by food source, and to trigger behavioral state changes, such as the tran-

sition between swimming and defensive crumpling.

The design of long duration observation experiments involving gelatinous specimens must

consider the sensory capabilities of the observed specimen.  As a scientific measurement device,

the automated jelly tracking platform should not significantly affect jelly behavior.  Anecodotal

evidence suggests that robotic system for short-duration jelly tracking can be deployed without

major impact on the behavior of the observed animal [42,57,72,77,7,80].  A more thorough analy-

sis of animal sensory capabilities, however, helps identify potential problem areas that might arise

for longer duration automated tracking.

2.7.1 Mechanoreceptors

Sensory cells in gelatinous animals are less specialized than those in higher animals.  Ciliated epi-

thelial cells in cnidaria are receptive to many stimuli, including touch, light and chemicals [66].

These cells are the primary means for detecting physical contact and hydrodynamic disturbances.

When these receptors sense a mechanical disturbance, they may evoke a behavioral response for

feeding, if in contact with prey, or for escape, if in contact with a predator.  Ctenophores [89] and

larvaceans [20] react similarly to cnidarians in response to mechanical stimuli.

Another class of mechanoreceptor allows jellies to detect gravitational direction.  Called sta-

tocysts, these balance organs are found in a large percentage of cnidarian species, either in isola-

tion or, in scyphomedusae, as part of bulbous sensory structures called rhophalia [47].  Statocysts

also appear in larvaceans [20] and in ctenophores [66].  These tiny gravity sensors typically consist

of a club-like appendage in a cilia-lined pit, that behaves in a manner similar to a cantilever-beam

inclinometer [50,85].  Many cnidarians and ctenophores have been observed to perform closed

loop feedback regulation to preserve the alignment between their axes of symmetry and the gravity
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vector [37,89].  When statocysts are removed from a group of these animals, the distribution of

orientation among the population becomes random.  Statocysts may support other functions

besides gravity alignment.  Some medusae with statocysts do not consistently align with gravity,

and others are passively stabilized by a buoyancy moment.  Also, larvaceans have not been

observed to actively regulate their orientation.  In the field, larvaceans and their houses appear to

be randomly oriented with respect to gravity.

Few studies have been conducted involving mechanical sensitivity of jellies to acoustic vibra-

tions.  Some anatomical evidence suggests that medusae possess crystalline structures possibly

sensitive to sound [22].  In [58], Mackie indicates that the hydromedusa Eutonia turned and swam

rapidly downward in response to a high frequency vibration; the vibration frequency was not,

however, specified.  Numerous experiments with manned submersibles and ROVs suggest that jel-

lies do not generally react to intense nearby sound sources.

The mechanoreceptivity of gelatinous animals to water disturbances limits the proximity with

which a tracking robot may approach its subject [42,77].  In previous experiments, observational

platforms have been held at a minimum distance of one meter from the subject.

2.7.2 Chemical, Pressure, Temperature Receptors

A tracking robot is unlikely to trigger a jelly reaction based on chemical, pressure, or temperature

sensitivity.  The ability to measure these scalar properties during an observation experiment, how-

ever, might help explain low-frequency animal behavior.  Specific physiological mechanisms for

chemoreception remain unidentified; however, behavioral evidence suggests that some cnidaria

and ctenophores sense prey through chemical detection [47,89].  Chemoreception may mediate

tactile responses, as jellies perform different actions when they contact predators and prey.

Chemoreception may also influence foraging patterns, as gelatinous hunters exhibit a preference

for waters with trace concentrations of prey-related chemicals.  One study by Arai showed that

tank-confined Aequorea clustered near a screen which separated them from brine shrimp, a pre-

ferred prey species for these hydromedusae [13].  Other studies have shown attraction of the scy-

phomedusa Aurelia to herring eggs [17] and increased swimming activity of the ctenophore Beroë

in seawater conditioned by exposure to Bolinopsis [89].  It is possible that the chemicals detected

by these predators are nitrogen wastes or other excretory products of the prey species.
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Jellies also respond to changes in temperature and pressure.  Again, no physiological mecha-

nism has been identified to explain these phenomena.  Pressure sensitivity may nonetheless play a

role in regulating DVM for deep-swimming animals [38].  Experimental evidence shows that

some hydromedusae increase pulse frequency when ambient pressure increases by as little as 0.3-

0.5 bars, a pressure change approximately equal to that experienced during a depth change of 3-5

m.  Similarly, thermal sensitivity may cause jellies to move toward habitats of a preferred temper-

ature.  Temperature changes as small as 1 degree Celsius can influence swim frequency [76].

Environmental stimuli act together may augment jelly response.  Hamner suggests that combina-

tions of gradients in chemical concentration, pressure, temperature, and possibly also in turbu-

lence, gravity or light may serve to guide jelly navigation through long migration patterns [38, 47].

2.7.3 Optical Receptors

Light sensitivity is common among gelatinous zooplankton.  Among the cnidaria, many species

possess light sensing organs, called ocelli.  Ocelli vary in form from simple eyespots, to pigmented

cups, to complex cups [63] and in number from four (Sarsia tubulosa) to hundreds (Spirocodon

Saltatrix) [92]. Researchers have also discovered extraocular mechanisms for light detection.

These receptors include photosensitive neurons [11,15] and also, possibly, photosensitive muscle

and epithelial cells [63].  

Ocelli govern a set of behavioral responses distinct from those governed by extraocular

mechanisms.  Whereas extraocular receptors and flat ocelli detect only ambient light intensity,

cup-shaped ocelli can detect both the intensity and direction of spot lighting [66].  Correspond-

ingly, cup ocelli initiate rapid directional lighting responses like the shadow response, a brief burst

of swimming observed in some species when a bright light is switched off.  Extraocular receptors,

by contrast, invoke longer-term behaviors, such as DVM.

 Among the most advanced cnidarian vision systems are those belonging to cubomedusae like

Tripedalia Cystophora, whose complex ocelli, consisting of a cornea, retina and lens, are able to

form images [23].  Even without brains, cubomedusae equipped with complex ocelli display

behavioral responses to patterns of illumination; in a white-colored laboratory tank, Chironex

fleckeri swam around vertically oriented black pipes but knocked over otherwise identical white

pipes [45].  Other sophisticated vision-based behaviors have been observed among cnidarians,

including sun-compass navigation [38,40].  Researchers have not yet identified the physiological
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mechanism for sun-compass navigation, but hypothesize sensitivity to solar motion, to the angle of

the sun above the horizon, or to the directional polarization of sunlight refracted through the ocean

surface.

Although ocelli occur commonly among cnidarians, ctenophores do not possess ocelli [66].

Ctenophore DVM activity suggests possible extraocular photosensitivity; however, researchers

have yet to identify a physiological mechanism for extraocular light reception in ctenophores [89].

Likewise, larvaceans do not possess specialized light sensing organs [20].  Although other uro-

chordates develop eyes, researchers have not identified eyes or extraocular photoreceptors among

larvaceans, nor observed behavioral patterns, such as DVM, which might suggest photosensitivity.

2.7.4 Light Induced Behavioral Responses among Cnidarians

Because many cnidarians have sophisticated optical sensing capabilities, these animals place the

most stringent constraints on the design of a jelly-tracking platform.  For long duration visual

observation, artificial illumination should be designed to minimize impact on animal behavioral

patterns.

Some evidence exists, based on short duration in situ studies, that deep-ocean cnidarians do

not respond dramatically to artificial illumination used by scientific submersibles.  Mills and Goy,

for instance, observed that the orientation of Solmissus under artificial lighting appeared random,

and that Solmissus specimens did not begin downward migration, as might be expected, in the

presence of bright ambient lighting [72].  The experiments of Robison, likewise, have detected no

direct correlations between submersible lighting and gelatinous animal behavior.  In one series of

trials, Robison observed animal specimens both under full ROV lighting and with ROV lighting

reduced by 90% [7].  These experiments found no appreciable differences in animal behavior dur-

ing these short-term observations.  In another series of experiments, Robison et al., watched for

motion of the siphonophore, Nanomia bijuga, in response to the lights of an approaching ROV

[80].  These experiments exploited sonar, which reflects strongly from the gas-filled pneumato-

phores of Nanomia, to verify that the siphonophores remained stationary as the ROV approached

within visual range.

Although field experiments have not noted gross behavior changes corresponding to artificial

illumination, laboratory experiments under controlled conditions do indicate subtle changes of

medusa behavior in response to light.  Through such lab experiments, researchers have investi-
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gated the physiological pathways, consisting of photoreceptive sensors, neural connections, and

muscles, that mediate light responses.  Photoresponses vary substantially with lighting duration,

from rapid voltage spikes recorded in ocelli (light duration in tenths of seconds), to changes in

jelly swimming frequency (duration of minutes), to light-induced vertical migration patterns

(duration of hours).  From these experiments, it is clear that any sensor based on active illumina-

tion may produce a response in a gelatinous animal under observation.  Whether the response

involves only a brief voltage spike in the photosensor or a full-blown swimming response depends

on the nature of the lighting event and the species under observation.  For this reason, it is impor-

tant to match the jelly-tracking lighting system to the behavioral phenomena under study.

Even very brief lighting changes, as short as 10 ms, may evoke a response in the ocellus.

Weber measured ocellus voltage spikes following step changes between artificial lighting and

darkness.  A 10 ms light or dark pulse excited an ocellus voltage spike with a duration of 200-300

ms.  The spike latency, relative to initiation of the light stimulus, was 35-45 ms in Sarsia tubulosa

[92] and 50-60 ms in Polyorchis penicillatus [91].  For longer light pulses, additional activity fol-

lowed the initial ocellus voltage response.  For illumination durations between 0.1 and 1 s, the

light response was biphasic (rising above then falling below the cell’s resting potential); for illumi-

nation lengths longer than 1s, persistent high frequency oscillations followed after the biphasic

pulse.  Although these voltage patterns demonstrate a definite ocellus response, even to very brief

light stimuli, ocellus responses do not alone imply changes in the overall behavior of the medusa

system.  For an observable behavioral change to occur, the photoresponse pathway must transmit

the ocellus activity and trigger a nervous response which, in turn, triggers muscle contraction.

Such a photosensitive pathway has been studied in detail for the shadow reflex, a motion

response exhibited by some jellies following rapid decreases in light level.  Arkett and Spencer

discovered a subset of neurons in the outer nerve ring of P. penicillatus that respond directly to

light-off events and that trigger, in turn, action potentials in the swimming motor neuron (SMN)

system [14,15,16]. Action potentials are binary (all-or-nothing) changes in the potential of excita-

tory cells, that, in the case of the P. penicillatus SMN, correspond one-to-one with the contraction

of bell muscles.  Figure 2.6 shows SMN voltage changes in response to light-off events of varying

length.  Voltage begins to rise in small increments, after an initial latency of 150-200 ms.  Eventu-

ally the SMN reaches a voltage threshold and an action potential spike occurs.  These action poten-
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tials, which correspond to muscle contractions, do not occur unless the shadow duration exceeds a

minimum length of about 0.6 s.     

The shadow response, which serves for escape and possibly for DVM initiation, has been

observed in a number of hydromedusan species, including Polyorchis penicillatus [14,91], Spiroc-

odon saltatrix [75], Bougainvillia principis [84], and Gonionemus sp. [74].  In none of these spe-

cies has a swimming reflex been observed during a light-on event.  In fact, a light-on event

following a light-off event will inhibit a shadow reflex in progress, ceasing the burst of action

potentials and returning the medusa to a spontaneous swimming mode.   The shadow reflex and its

inhibition are significant for jelly-tracking design, in that they are instances of observable medusa

behavior that occur following changes in lighting level.  It is further significant that reflexes only

occur after a minimum exposure length, on the order of 100s of ms, even if the ocellus responds to

much shorter exposure times, on the order of 10s of ms.

Over long durations of light or darkness, medusae exhibit habituation behaviors.  A period of

dark adaptation follows the P. penicillatus shadow reflex, for instance.  At the beginning of this

dark adaptation period, following the reflex burst of 1-4 action potentials, SMN voltage remains
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Figure 2.6  Motorneuron Voltage during Shadow Reflex
Voltage levels were measured in the swimming motorneuron of Polyorchis penicillatus when the animal 
is exposed to shadows of varying duration (Data source: [86]).   The animal is exposed to a sequence of 
four light-off events of 0.44, 0.55, 0.64, and 0.92 seconds in period.  The motorneuron depolarizes 
during each light off event and hyperpolarizes when the light turns on again.  Action potentials occur 
for light-off events longer than 0.6 s.
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elevated near the threshold potential.  After approximately 8 seconds, SMN voltage declines

toward the rest potential as the photoreceptor and nervous system habituate to the darkness [11].

Although regular swimming contractions may not resume for as long as 2 minutes after light-off

[87], the medusa adapts more quickly and can, in some cases, resume spontaneous swimming

within as little as 15-20 seconds after light-off [14].

Some hydromedusae also exhibit habituation responses to extended periods of increased

lighting.  In P. penicillatus, for instance, a step increase in illumination leads to an increase in

swim frequency [11].  After the initial increase, the swim frequency decays asymptotically toward

its original level over a 2-3 minute period of light adaptation [14].  This increased swim frequency

phenomenon has also been observed among some scyphomedusae, like Aurelia, but not among

others, like Cyanea [51]. Extraocular photoreception appears to govern this phenomenon, which

occurs even in specimens with their ocelli surgically removed.

In addition to their reflex responses to brief lighting stimuli and their adaptive responses to

stimuli of several minutes, medusae also exhibit light-mediated behavioral patterns over much

longer time periods.  Examples of these patterns include DVM and sun-mediated horizontal migra-

tions, which both occur on a 24-hour cycle.  These migration behaviors depend strongly on

changes in natural lighting over time.  Studies by Mills et al., for instance, showed clear links

between light changes and vertical migrations for hydromedusae in confined tanks [69].  These

hydromedusae ceased DVM cycles after Mills introduced a tank cover that blocked out external

light.  Similar studies by Schuyler and Sullivan observed DVM patterns among confined

Chrysaora quinquecirrha under natural lighting [81].  The introduction of a tank cover interrupted

regular DVM motion for these scyphomedusae, which collectively swam to the top of the aquar-

ium within the first fifteen minutes of darkness.

In general, medusae do not exhibit directed motion toward a light source (positive phototaxis)

or away from it (negative phototaxis).  While darkness did initiate motion in the case of Schuyler’s

Chrysaora experiments, passive stability and statocyst balance organs controlled swimming orien-

tation.  Experiments by Murbach demonstrated, similarly, that Gonionemus swims in apparently

random directions, uncorrelated with an applied lighting gradient, until it arrives and stops in a

zone of a preferred lighting level [74].  An exception to the trend are the cubomedusae, many of

which display evident phototaxis toward strong point light sources [63].
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2.7.5 Engineering Implications of Light Sensitivity      

In designing a jelly-tracking robot for long-duration visual observations, the impact of artificial

lighting on observed animal behavior is a critical issue.  Three principle techniques may be consid-

ered to reduce the impact of artificial illumination on an ethological investigation.  These tech-

niques involve (1) strobing the light source, (2) altering the illumination wavelength, and (3)

reducing the illumination intensity.

This dissertation recommends the use of strobed red lighting for jelly tracking.  The use of a

strobed light system to minimize the optical disturbance environment for the long-duration obser-

vation of gelatinous animals has not previously been proposed.  Continuous artificial illumination

over long durations threatens to interfere with slow behaviors, like DVM, that are mediated by nat-

ural lighting.  Strobed illumination, in contrast, may allow the animal to adapt to natural ambient

lighting to enable observation of DVM and other light-mediated behaviors.  On the downside,

pulsed lighting may trigger neural responses and, under some conditions, muscle responses.  A

pulsed lighting system must be designed, therefore, to avoid triggering light or dark reflexes in an

observed specimen.  Chapter 7 introduces a new light-response model to assess the effect of a

pulsed lighting pattern on a reference medusa (P. penicillatus).  Figure 2.7 illustrates the basic

premise of the light-response model, a hybrid model that captures the various light-mediated

medusa responses described in the previous section including ocellus (nervous) responses, reflex

(muscle) response, adaptation, and DVM responses.  Application of the model suggests that a par-

ticular strobed lighting pattern (designed for energy optimality in an AUV application) may reduce

the optical disturbances generated by the tracking vehicle.          

Strobing illumination is just one of the three ways of reducing the impact of artificial lighting

on observed animal behaviors; a second technique involves modulating lighting frequency to

wavelengths away from the peak sensitivity band for the specimens under observation.  For most

medusae, spectral sensitivity favors the blue wavelengths.  Ocelli of the cubomedusa Tripedalia

cystophora, for instance, respond most strongly to wavelengths between 440 and 470 nm [24].

The hydromedusae Bougainvillia principis [84] responds most strongly to wavelengths of 446-544

nm, while Spirocodon saltatrix respond strongly from 480-500 nm [63].  Although maximum sen-

sitivity falls near the blue, many medusae have a relatively broad sensitivity throughout the visual

range.  For the species described by Figure 2.8, ocellus sensitivity drops by 75% of its peak value

in the red, near 650 nm.  Red sensitivity appears weaker among deeper swimming individuals.
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Figure 2.7  Medusa photoresponse model.  
The model contains seven discrete states.  Transitions occur based on the nature of the artificial 
lighting input.  Open circles correspond to light-on events and closed circles to light-off (darkness) 
events.  A change in lighting immediately triggers a mode switch.  For continued lighting, mode 
switches occur only at thresholds of the light progress variable, xl, or the dark progress variable, xd.  
Further details of the model are described in Chapter 7.
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Figure 2.8  Spectral Photoresponse of Two Medusa Species
Spectral responses for two hydromedusa species are compared, based on the data presented in 
[14,91,92].  (a) Voltage change in the ocellus upon application of a 30 ms monochromatic light pulse. 
Voltages are normalized by the maximum response across the spectrum.  Both the Polyorchis and 
Sarsia ocelli respond to a broad range of wavelengths, with peak response around 550 nm.  (b) 
Percentage of Polyorchis specimens that exhibited a shadow response to an 0.5 second blockage (100% 
shadow) of ambient monochromatic light.  The plot compares young medusae (bell height < 2.0 cm) 
with older medusae (bell height > 2.0 cm).  Shadow response sensitivities for Polyorchis correlate 
strongly with the ocellus response from part (a), replotted as a dashed line. 
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According to the data depicted in Figure 2.8(b), shadow reflexes in response to red light occur

more frequently for young P. penicillatus medusae, which prefer surface waters, than for older

medusae, which swim at greater depth with less available red light.  It is possible that deep swim-

ming jellies, which consistently remain below 1000 m, may have very narrow bandwidth photore-

ception capabilities, if any.  Based on these data, a strobed visual tracking system could employ

red illumination to further reduce the chance of disturbing its jelly subject.

A third technique, that of reducing artificial illumination levels and employing a low-light

camera, might also reduce the risk of artificially generating medusa behaviors.  However, the

effect of illumination reductions on medusa response is relatively weak.  Weber found, for exam-

ple, that the ocellus of P. penicillatus responds proportionally to the  log of intensity, at about 25%

per decade [91].  Thus, a reduction of light intensity by a factor of one thousand resulted in a

reduction in ocellus response by only 75%.  Arkett and Spencer demonstrated, furthermore, that

photoresponses of P. penicillatus depend primarily on relative lighting changes, rather than abso-

lute lighting level changes [16].  In tests alternating between full and partial lighting, the shadow

reflex weakened with smaller relative lighting changes.  In tests alternating between partial light-

ing and darkness, the shadow response always remained strong, even for very low partial lighting

levels.  From an engineering viewpoint, these studies indicates that reducing lighting intensity may

be less effective than strobing or red-shifting the light source as a means of preserving natural ani-

mal behavior during visual observation.

2.8 Summary
This chapter has examined the biological basis that motivates the jelly-tracking activity and that

constrains the design of a tracking robot.  The study of the behavior of animals in their native hab-

itats, proves difficult to conduct in the underwater environment.  The desire for such studies pro-

vides the principle motivation for a jelly-tracking robot.  In order to follow a broad range of

important gelatinous species, including cnidarian medusae and siphonophores, ctenophores and

larvaceans, a jelly-tracking robot must meet a range of specific design constraints:

The robot must achieve depths of at least 200 m, for nighttime studies in the upper oceans,

or 1000 m, for studies of gelatinous animals through their full diurnal migration patterns.
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Tracking duration is a key performance metric.  Any improvements in the duration of auto-

mated tracking are useful.  Ultimately, an AUV is desired that can track an individual ani-

mal for more than 24 hours.

The robot energy budget must account for DVM.  Many jellies transit as far as 200-500 m

in both directions during their vertical migration cycles.

The robot energy budget must account for target foraging behaviors.  Oblate jellies often

forage continuously, at nominal speeds in the 1-3 cm/s range.  Prolate jellies move sporadi-

cally, but at higher speeds.

During an escape response, a prolate jelly may accelerate to its maximum speed in as little

as 1.3 s.  To track the most rapid of these escape responses, a closed-loop vehicle band-

width of approximately 1.7 rad/s is required.  Choosing bandwidth to attenuate lower fre-

quency disturbances can reduce oscillations and energy costs associated with tracking

target speed changes during the period thrust-recovery cycle of medusa swimming.

Robot actuation should not produce hydrodynamic disturbances that disturb the subject.

As a rule of thumb for reducing hydrodynamic disturbances, the tracking robot should

maintain a range of at least one meter from the target animal.

The visual sensor should account for multiple jellies in proximity; however, deep-ocean

jellies are generally found solitary and not in large aggregations.

Artificial illumination required for visual observation should minimally impact jelly behav-

ior.  To enable long-duration observation without influencing jelly migration patterns

requires a careful lighting design that considers strobing, light wavelength, and light inten-

sity.

From a philosophical point of view, many of the design issues for automated jelly tracking are

not unlike the “design issues” solved by evolution for gelatinous animals.  Jellies represent sys-

tems of sensors, actuators, and control behaviors that function under limited processing and power

constraints.  In this sense, gelatinous animals serve as an inspiration and example for the design of

highly integrated, efficient robot systems.
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Experimental System

The evolution of undersea vehicles and the research they enable have been mutually interactive 
ever since the first research submersible appeared in the 1930s. 

- B.H. Robison, 1999 [8] 

This dissertation describes the first-ever field demonstration of jellyfish tracking using an opera-

tional robotic system.  These experiments deployed a computer-controlled remotely operated vehi-

cle (ROV) to track gelatinous animals at depths of hundreds of meters below the surface of

Monterey Bay, California.  This chapter overviews the hardware and software for the experimental

jelly-tracking system.  The primary hardware component for field testing is the ROV Ventana, a

vehicle owned and operated by the Monterey Bay Aquarium Research Institute (MBARI).  Addi-

tional equipment includes the sensor suite, mounted on the ROV, and the jelly-tracking computer,

which sits remotely in the surface support vessel, R/V Point Lobos.  The jelly-tracking computer

runs two software components, a vision-processing algorithm, that determines target location from

camera sensors,  and a control-component, that maps the target location into actuator commands

for the ROV thrusters.  The hardware overview presented here provides context for system soft-

ware development, which the subsequent two chapters describe in detail.

3.1 Introduction          
Experiments demonstrate an ROV-based jelly-tracking pilot assist.  As tethered platforms, gener-

ally controlled by human pilots, ROVs are versatile unmanned submersibles, useful for complex

tasks in unknown environments.  Certain ROV missions, like jellyfish tracking, require extended

periods of pilot concentration to perform fine servo-level tasks.  Pilot-assist systems combine the

capabilities of a computer, which automates servo-level tasks, with a human pilot, who handles

complex tasks and unexpected events.  In the case of jellyfish tracking, the introduction of automa-

tion relieves pilot fatigue to promote more frequent, longer duration animal observation.
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Figure 3.1  System Hardware Block Diagram

Figure 3.2  ROV Ventana with R/V Point Lobos
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Figure 3.1 summarizes the hardware structure of the ROV-based jelly-tracking system using a

block diagram.  The two largest blocks represent vehicle platforms:  the ROV Ventana and its sup-

port ship, the R/V Point Lobos.  While the ROV operates in the deep ocean, its cameras and other

sensors collect data and send it to the surface support ship via a fiber-optic connection embedded

in the ROV tether.  In the standard control mode, the human pilot views video data and issues con-

trol commands via a joystick interface.  In the automated jelly-tracking mode, the Pilot-Assist

Computer (PAC) also acquires camera data and issues control commands, via a serial cable, to the

main Ventana Control Computer (VCC).  The VCC conditions control commands, summing

human and autopilot commands when necessary and saturating them as required.  The control

computer sends these conditioned thrust requests down the tether to the submerged ROV.  On

board the submersible, these control signals actuate hydraulic valves which regulate the output for

each of the ROVs ducted thrusters.

3.2 ROV Ventana    
The ROV Ventana is a custom unmanned submersible, originally built by International Submarine

Engineering in 1988 and since modified by MBARI for scientific use [9].  The submersible mea-

sures 2.2 m in height and 3.0 m in length.  The vehicle mass, dry, is approximately 2600 kg.  The

submersible’s nominal depth rating of 2000 m is limited to 1600 m by the length of the current

tether.  The kevlar-jacketed tether carries five power conductors that support an 8 kW hotel load

(3.4 kW lighting, 1.1 kW system, 3.5 kW science) and as much as a 30 kW actuator load.  The

tether also incorporates ten fiber optic connections that transport video data and telemetry signals

to the surface support vessel and control signals back to the ROV.

Vehicle actuation consists of three pairs of hydraulic thrusters.  One pair points vertically, a

second pair (aligned coaxially in a single tunnel) points laterally, and a third pair points in the fore-

aft direction.  The two fore-aft thrusters operate differentially to spin the vehicle in yaw.  Thrusters

do not actuate the ROV’s pitch and roll degrees of freedom.  Rather a strong, passive buoyancy

moment counters pitch and roll motions.  Deviations from equilibrium pitch and roll angles are

small; effectively the ROV acts as a system constrained to four degree of freedom motion.

Control commands issued by the surface vehicle actuate hydraulic valves on board the ROV.

These valves control the flow rate of hydraulic fluid to each thruster, thereby controlling rotor

velocity and thrust output.  Thrust commands, issued from the surface vessel, vary between +5 and
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-5 V.  Thrust saturates at either end of this scale.  Thrusters operate at a hydraulic pressure of 3000

psi in standard mode.  A bypass mode reduces pressure to 1000 psi to permit fine-tuned control.

Pilots generally activate bypass mode for human-controlled jelly-tracking experiments.  In cases

when multiple actuators operate simultaneously, the flow rate of hydraulic fluid may drop, effec-

tively reducing the force produced by each thruster below the requested level.

The open-frame construction of ROV Ventana enables it to be customized for different sci-

ence experiments.  For jelly-tracking experiments, the benthic toolsled was used.  Vehicle buoy-

ancy was trimmed to neutral by attaching or removing 25 lb (11.4 kg) lead bricks to the sled.  The

vehicle was also configured with one pair of detritus samplers, cylindrical containers used by biol-

ogists to collect gelatinous animal specimens.  The high degree of system reconfigurability implies

that ROV dynamic parameters change somewhat from dive to dive.  Reconfiguration may also

introduce communication errors among system components.  A thorough vehicle checkout was

performed prior to each experimental dive to verify communication between sensors and actuators

and the jelly-tracking computer.

3.3 R/V Point Lobos
The R/V Point Lobos serves as the surface support vessel for the ROV Ventana.  The ship mea-

sures 33.5 m (110 ft) in length and 7.9 m (26 ft) in beam.  Originally commissioned as an oil-field

supply vessel, the Point Lobos underwent renovation when acquired by MBARI in 1981.  Renova-

tions included the addition of an ROV control center and a deck crane, mounted at the ship’s stern,

that launch and recovers the ROV.  The ship requires a crew of seven (master, first mate, engineer,

two deck hands and two pilots) for ROV operations.

Pilots command the ROV from the control center located below deck in the ship’s bow.  Tele-

vision monitors in the control room display video signals from the submerged ROV.  A video mul-

tiplexer maps any of a variety of video inputs to each monitor.  For jelly tracking under human

pilot control, three monitors display video streams from the main camera and from the stereo cam-

era pair mounted on the ROV’s upper pan-tilt unit.  Alongside these monitors, a touch-screen

graphical user interface displays telemetry signals.  These signals from the ROV include compass

heading, depth, inclinometer angles, and thrust commands.

Based on video and telemetry data, the pilot issues thrust commands to the ROV.  A joystick

device takes inputs for fore-aft, lateral, and yaw thrust commands.  A slider bar accepts vertical
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thrust commands.  Springs in the joystick mount return it to a neutral setting in the absence of con-

tact with the pilot’s hand.  The slider bar, however, retains its setting in the absence of contact in

order to allow the pilot to trim the ROV to compensate for non-neutral buoyancy.

3.4 Computer Hardware
The two computer systems depicted in Figure 3.1 both reside in the Point Lobos control room. 

3.4.1 The Ventana Control Computer (VCC)

The Ventana control computer (VCC) serves as a permanent component required for ROV opera-

tion.  This computer runs a Linux application that manages telemetry to the submerged ROV.  Joy-

stick and other pilot commands pass through this machine, which packages these signals and

routes them to the ROV.  The VCC also receives all ROV sensor data, except video and doppler

velocity logger (DVL) signals.  A touchscreen graphical user interface associated with the VCC

displays this information to the pilot in an interactive fashion.

3.4.2 The Pilot-Assist Computer (PAC)

The pilot-assist computer (PAC) is a second machine, dedicated to software for automated station-

keeping tasks.  The PAC communicates with the VCC via a serial communication link at 20 Hz.

The VCC reads the serial port string, consisting of control commands issued by the PAC, and

writes a second string, consisting of telemetry data.  These strings are summarized by Table 3.1.    

The physical separation of the PAC from the VCC addresses three significant concerns:  pro-

cessing power, development flexibility, and safety during emergencies.  First, the separation paral-

lelizes computationally expensive processing tasks so that they do not interfere with the real-time

requirements of the VCC.  Second, the separation decouples the pilot assist-software from the

main control software used for all Ventana operations.  This characteristic is critical during devel-

opment, so that arbitrary changes to the pilot-assist software are guaranteed not to affect the core

operational software used for general ROV operation.  Finally, the separation provides a conve-

nient method of implementing an emergency stop button.  The VCC sums and then saturates the

control commands issued by the human pilot and the automated controller.  If the pilot detects any

problem with the automated system, the press of a single button interrupts all serial communica-
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PAC Input Variables Type
Nominal 
Zero Units Sign

Ambient Pressure Integer 0 @ surface Millibar Positive at depth

Port Thruster Command Integer 2047 0-4095 Full Scale Increases forward

Starboard Thruster Command Integer 2047 0-4095 Full Scale Increases forward

Lateral Thruster Command Integer 2047 0-4095 Full Scale Increases starboard

Vertical Thruster Command Integer 2047 0-4095 Full Scale Increases down

Teleos Enabled Integer 0 0/1 Positive enabled

Dive Number Integer 0 Integer Positive

Spare Integer Integer -- -- --

Heading Float 0 Degree off North Increasing east

Pitch Float 0 Degree off Vertical Positive nose up

Roll Float 0 Degree off Vertical Pos. starboard high

Altitude Float 0 Meters Positive

Summed Yaw (Pilot + PAC) Float 0 -5 to 5 Full Scale Increases starboard 

Summed Axial Command Float 0 -5 to 5 Full Scale Increases forward

Summed Lateral Command Float 0 -5 to 5 Full Scale Increases starboard

Summed Vertical Command Float 0 -5 to 5 Full Scale Increases down

Depth Float 0 Meters Positive

Sony Camera Tilt Angle Float 0 Degree off xv-axis Increases down

Sony Camera Shoulder Angle Float 0 Degree off zv-axis Increases down

Sony Camera Pan Angle Float 0 Degree off xv-axis Increases port

Auxiliary Camera Tilt Angle Float 0 Degree off xv-axis Increases up

Auxiliary Camera Pan Angle Float 0 Degree off xv-axis Increases starboard

System Time Float Midnight Seconds Positive

Spare Float Float -- -- --

PAC Output Variables Type
Nominal 
Zero Units Sign

PAC Yaw Command Float 0 -5 to 5 Full Scale Increases starboard 

PAC Axial Command Float 0 -5 to 5 Full Scale Increases forward

PAC Lateral Command Float 0 -5 to 5 Full Scale Increases starboard

PAC Vertical Command Float 0 -5 to 5 Full Scale Increases down

Spare Float (x 8) Float -- -- --

TABLE 3.1. Serial String Variables
This table details the input PAC variables (read by the pilot-assist computer) and the output 
PAC variables (issued by the pilot-assist computer).  Sign conventions for these variables 
are listed, as they do not always match the standard sign conventions used internally by the 
pilot-assist software, as depicted by Figure 5.3.
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tion between the PAC and the VCC, effectively returning complete control authority into the

pilot’s hands.

The PAC for jelly-tracking experiments uses a 700 MHz Intel Pentium III processor.  Twin

Matrox Meteor cards acquire video signals in NTSC format.  The jelly-tracking software consists

of two components, a video processing component that measures target position and a control

component that converts the visual-position signal into a thruster command.  These two software

components will be described in more detail in Chapter 4 and Chapter 5, respectively.

3.5 Human in the loop
The human pilot plays a very important role in the jelly-tracking pilot-assist system.  Most signifi-

cantly, the human pilot aids in initialization of the jelly-tracking system by (1) performing scan-

ning transects in search of a target, (2) slowing the ROV to assess potential targets, and (3) holding

station on the target during a brief, 1-2 second training period for the jelly-tracking recognition

algorithm.  A simple button push triggers the jelly-tracking algorithm to begin training and subse-

quently to assume fully automated tracking.  The human pilot retains the ability to sum control

with the automated tracker at any time.  This capability permits the human pilot to adjust the target

position, relative to the vehicle, at the request of a scientist or to immediately assume control in the

event of an emergency.

3.6 Vision Sensor
Human pilots use video signals as their primary sensor for manual jelly tracking.  The pilot-assist

computer (PAC) mimics this technique, also employing vision to detect and localize jellyfish.  The

design of the vision software algorithm represents a significant contribution of this research

project.

3.6.1 Vision Software     

Vision-processing software, customized for the jelly-tracking task, runs on the PAC.  Vision soft-

ware operates on two input video streams to construct a relative-position measurement between a

camera pair and an animal specimen.  The vision software consists of three processing compo-
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Pilot-Assist Computer (PAC)

Segmentation Recognition Stereo Ranging

Control 
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Thrust 
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Figure 3.3  Vision-Processing System
(a) Block diagram for the PAC, with details of the vision-processing component.  (b) Graphical depiction
of vision-processing.  The segmentation algorithm clusters pixels into associated regions, while the
recognition algorithm identifies the region (indicated by a crosshair) that best matches a target profile.
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nents, which operate sequentially on incoming images (see Figure 3.3).  The first component,

called the segmentation component, identifies clusters of image pixels sharing similar characteris-

tics.  The second component, the recognition component, scans these clusters to identify the best

match to a target profile.  The centroid of this best-match region defines the bearing vector from

the camera origin to the tracked target.  The third processing step, the stereo geometry step, applies

camera calibration data to transform the two measured bearing vectors into a relative position vec-

tor that relates the animal’s position to the camera rig.  

Chapter 4 describes a new design tool used to synthesize segmentation and recognition algo-

rithms for jelly tracking.  The stereo geometry step is not task specific and is briefly summarized in

the following section.

3.6.2 Stereo Camera Configuration     
Video cameras provide the input for the vision-processing software; this software returns a three-

dimensional target position which serves as an input to the motion control software.  As discussed

in the previous section, a stereo-triangulation method was used to compute target range by com-

bining bearing vectors observed simultaneously by a pair of cameras.

Figure 3.4  Stereo Triangulation Geometry
C1 and C2 are camera reference frames, separated  by the translation vector t and the rotation matrix R.
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Two different stereo configurations were used for jelly-tracking experiments.  The first con-

figuration consisted of a converging camera pair separated by a large-baseline (1 m); the second

configuration, of a parallel camera pair separated by a short-baseline (10 cm).  The large-baseline

system used the main ROV science camera, a Sony model HDC-750a, along with an auxiliary

camera, an Insite Orion mounted on the ROV’s upper pan/tilt unit.  The short-baseline configura-

tion used two auxiliary cameras, the Insite Orion and a MSC 2000, both mounted on the upper pan/

tilt unit.  In the event of the temporary loss of the target from one of the two camera images, the

system defaulted to single camera ranging, based on the assumption of constant target pixel area

over brief periods of time [6].

The equation used for stereo ranging calculates the least-squares minimum distance between

rays defined by the target location in each stereo image [54].     

(3.1)

Here the variables  are the bearing vectors for the target, as viewed from each of the cameras,

labeled camera 1 and camera 2.  The translation vector  and the rotation matrix  are the extrin-

sic parameters that relate camera 2 to camera 1.  Extrinsic camera parameters were calibrated in

advance using a calibration target.  Radial lens distortion, an intrinsic camera parameter, was mod-

eled using a third order radial distortion curve, assuming square pixels and a centered pixel array.

The intrinsic camera calibration was performed in dry air; the calibration did not account for the

refraction effects of water.  This difference was assumed, to first order, to introduce a simple scal-

ing factor on the estimated target range.

3.6.3 Lighting     

Although photons penetrate as deep as 1000 m into the ocean, very little light passes beyond the

first 100 m.  The ROV carries its own light sources for all video applications.  The primary light

sources are six SeaArc 2 Daylight High Intensity Discharge (Metal Halide) arclamps.  These lights

were arranged either for midwater viewing, with all lights pointed forward (Figure 3.5), or for

mixed benthic-midwater operations, with two lights pointed forward and four pointed downward.

Orientation of each light source was adjusted by hand prior to an ROV dive.  Because light source
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orientation was not carefully calibrated (and, in general, is not carefully calibrated before most

midwater dives), the lights form an unstructured illumination pattern.  In addition to the six

arclamps attached to the vehicle frame, a seventh incandescent light source was attached to the

upper pan/tilt unit, beside the Orion Insite and MSC 2000 cameras.

3.7 Secondary Sensors
In addition to the primary visual sensors, the jelly-tracking system makes use of several secondary

sensor signals.

3.7.1 Camera Angle Sensors

The pilot can manually adjust the angles of the main camera and the auxiliary cameras.  A set of

Hall effect sensors measure the offset of the main Sony HDTV camera from a straight-forward

position.  Potentiometers in the upper pan/tilt unit likewise measure the angle of the auxiliary cam-

Figure 3.5  ROV Ventana’s Lighting System
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eras’ optical axes relative to the vehicle’s fore-aft axis.  Angles sensors are required for control.

They permit a transformation of target position measurements from the camera frame into the

vehicle frame.  Camera angle sensors also enable large-baseline stereo calculations.  Because this

configuration uses cameras mounted on two separate pan/tilt units, both sets of angle sensors are

used to compute the rotation matrix, , in (3.1). 

3.7.2 Navigation Pack

A compass and a pair of inclinometers measure angles relative to magnetic north and to gravity,

respectively.  These angle define the rotation between the inertial frame and the vehicle frame.

3.7.3 Pilot Joystick Feedback

The VCC serial string also feeds back the total control signal issued to the thrusters.  This signal is

the sum of human and autopilot control commands along four axes:  yaw, axial, lateral, and verti-

cal.  The low-frequency disturbance estimator (Figure 3.6) uses these signals to measure and com-

pensate for the quasi-steady bias, introduced primarily by the ROV tether force.

3.7.4 Doppler Velocity Log (DVL)

The Ventana ROV sensor package includes an RDI Workhorse Doppler Velocity Log (DVL).  The

DVL signal was not used as a sensor for control during jelly-tracking experiments.  The DVL sig-

nal does have use, however, for future science missions.  The DVL senses the doppler shift of an

acoustic ping bounced off particles suspended in the water column or, if it is within range, off the

ocean floor.  The doppler shift, in turn, indicates the vehicle’s velocity relative to the scatterer,

either the ocean bottom or the water column.

3.8 Feedback Control     

An important contribution of this research project involves the introduction of custom controller

for the jelly-tracking application.  Whereas Chapter 5 develops the control design in detail, this

section offers a brief overview of the control software component.

R
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Control software operates on the vision signal to keep the animal target centered on the cam-

era axis at a reference range.  Figure 3.6 presents a block diagram for the control software and

shows the relationship of the control component to sensor input signals, including both the primary

vision sensor and the secondary sensors.  As a reasonable approximation, the ROV behaves as a

damped second order inertia.  Classical control techniques, therefore, address the primary require-

ments for the design of an ROV-based tracking law.  Practical details of the control-law implemen-

tation, however, augment software complexity.  Specifically, three important issues motivate

enhancements to a generic baseline control law:  (1) the definition of a control objective for a sen-

sor that measures only 3 DoF motion relative the target animal, (2) optimization of the 4 DoF

thruster map to exploit the null space orthogonal to the control-objective, and (3) the rejection of

large disturbance forces that threaten to carry the target outside the boundaries of the camera view-

ing cone.

Pilot-Assist Computer (PAC)

FT Thruster Map

Vision-Processing 
Component

Thrust 
Command

Boundary Control

Control Component

Video 
Signals

FT

+

+
+

FT

Estimation

Boundary 
Control

Bias 
Accommodation

Velocity

Jelly 
Position

Camera Angles,
Compass, Inclinometers

Summed 
Control 

Linear Control

Figure 3.6  Control Component
The block diagram illustrates the pilot-assist computer and the details of the control component.  The
abbreviation FT denotes a frame transformation block.  See also the corresponding diagram, Figure 3.3,
which shows the detailed blocks within the vision-processing component.
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The first issue affects the linear control block illustrated in Figure 3.6.  With its pitch and roll

motion regulated by a passive stability moment, the ROV plant exhibits motion in its four remain-

ing DoFs.  The visual sensor, however, detects only its three DoF translation relative to the target.

The three DoF relative position signal contains, in fact, sufficient information to close the jelly-

tracking loop.  In designing the control system, a challenge resides in decomposing the dynamic

system to a form compatible with this lower dimensional control objective.  As described in Chap-

ter 5.2, a modified cylindrical transformation is employed to decompose the ROV dynamics into a

range space associated with the control objective and into an orthogonal null space.      

The second issue, that of null space design, involves the thruster map block of Figure 3.6.

The thruster map transforms the control input from control-objective form into a form consistent

with the requirements of the Ventana Control Computer.  The thruster map also augments the

dimension of the control-objective command from three DoF to four DoF.  Thus, the design of the

thruster map introduces the challenge of choosing a thrust command in the control-objective null

space.  Chapter 5.3 considers two means of exploiting the null space to accomplish secondary sys-

tem objectives:  (1) to minimize total thruster forces and thereby reduce the chances of disturbing

Figure 3.7  Viewing Cone Boundaries and Nonlinear Boundary Control
Cameras used for visual servoing  have a limited viewing cone, defined by the field-of-view angle (FOV).
If a strong disturbance on the ROV pushes the target animal into the shaded boundary region, the
nonlinear boundary control term provides aggressive control to return the target to the quiescent central
region.  Boundary control action reduces the risk that an out-of-frame event interrupts the vision
positioning signal.
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the behaviors of the target animal or (2) to permit non-interfering shared control between the

human pilot and the automated controller.

The third issue, that of rejecting large disturbances before the target animal leaves the camera

image, involves the boundary control and estimation blocks of Figure 3.6.  The basic linear con-

troller is designed to track changes in the motion behavior of the target animal.  Linear control

gains are designed low to reject repeated periodic animal motions and sensor noise with the goal of

minimizing hydrodynamic motions which might disturb animal behavior.  Consequently, the linear

control block does not act aggressively enough to counter large disturbance forces on the ROV

which might displace the target outside the sensing volume, called the camera viewing cone (illus-

trated in Figure 3.7).  Chapter 5.4 augments the baseline linear controller with two additional con-

trol terms, a boundary-control term, that activates at the edges of the viewing cone, and a

disturbance-accommodation term, that uses an estimator to measure quasi-steady bias forces on

the ROV.  These terms help manage low and high-frequency disturbance forces, respectively.

3.9 Summary
This chapter described the system used for automated jelly-tracking experiments.  The unmanned

submersible, ROV Ventana, serves as the primary system component.  MBARI owns and operates

both this robotic vehicle and its support ship, the R/V Point Lobos.  A pilot-assist computer,

located in the control room of the support ship, accomplishes all processing required for jelly

tracking.  Control commands issued via a serial link by the pilot-assist computer interface with the

main Ventana control computer.  This computer sums automated controller commands with joy-

stick commands from the human pilot before sending them through the umbilical to the submerged

ROV.  A stereo camera pair, mounted on the ROV, provides target position data to enable station

keeping relative to the animal.  Additional sensors, including camera angle sensors, a compass,

and inclinometers, are used to define a jelly-fixed frame.  Jelly tracking software for vision-pro-

cessing and control acts to interpret these sensor data to produce thruster commands.
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Vision System Design

We should be spending more time looking at patch dynamics and less time, on average, worrying 
about averages. 

- W.M. Hamner, 1988 [43] 

This chapter presents a vision algorithm that enables reliable automated jellyfish tracking using the

experimental system introduced in the previous chapter.  Discussion focuses on algorithm design.

Introduction of a novel performance assessment tool, called segmentation efficiency, aids in

matching potential vision algorithms to the jelly-tracking task.  This tool uses a model of segmen-

tation to assess quantitatively the image statistics employed by various processing methods.  In

comparison with other evaluation techniques, this technique offers two advantages.  First, the

method simplifies analysis by assuming a decoupling of tracking into an application-specific seg-

mentation subcomponent and into a more general-purpose recognition subcomponent.  Second, the

method evaluates a single, general model, rather than a multitude of specific segmentation algo-

rithms, in order to reduce the implementation effort required of the design engineer.

In the context of jelly-tracking, this tool is applied to the segmentation of transparent animals

under uneven illumination in particle-filled scenes.  The result is the selection of a fixed-gradient,

threshold-based vision algorithm that requires no in-the-field parameter tuning.  Additional analy-

sis assesses the sensitivity of the reliable-recognition assumption and defines an effective opera-

tional envelope for field jelly tracking.  Field experiments further validate the capability of this

algorithm to track successfully a wide variety of animal subjects viewed under unstructured light-

ing conditions.  

4.1 Introduction
Human ROV pilots easily identify and track gelatinous animals displayed on a video monitor.  In

principle, a simple software algorithm should enable automation of this visual jelly-tracking activ-
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ity.  In practice, the robustness requirements for field operations make construction of an appropri-

ate software algorithm a challenge.  The vision software must track a deformable, transparent

target against an uneven, cluttered background.  The software must reliably detect a wide range of

different animal species under different lighting conditions.  Furthermore, to enable reliable long-

duration tracking, the software must consistently identify the target in each successive frame.  Syn-

thesizing an algorithm with all these characteristics and validating the algorithm’s reliability are

goals of this research.

4.1.1 Background     

A very large number of existing algorithms, drawn from the vision literature, provides a basis for

the construction of a jelly-tracking vision system  Unfortunately, no mechanisms exist to predict

the performance of a particular vision method in processing a video clip for a particular applica-

tion.  This chapter attempts to fill this gap by introducing the segmentation efficiency method, a

new approach for the design of vision-tracking algorithms for natural-environment applications.     

The primary concept of the new design approach involves the decomposition of the tracking

process into two subcomponents:  segmentation and recognition (see Figure 4.1).  The segmenta-

tion component analyzes each new video image to detect regions, or segments, of related pixels.

The recognition component performs an operation to identify the segment that best matches the

tracked target.  This output establishes a two-dimensional target position (which can be upgraded

to a three-dimensional vector through a ranging technique like stereo, as described in Chapter

3.6.2).  The segmentation-efficiency design procedure assumes that the information required to

cluster groups of pixels into segments is application-specific, but that the information required to

perform recognition consists of general-purpose statistics, evaluated over each segment. In effect,

this assumption assumes recognition reliability and places the burden of robust tracking on the

segmentation component.

This emphasis on the application-specific nature of segmentation processing earns the new

design procedure its name:  segmentation efficiency.  A segmentation efficiency metric assesses

the ratio (efficiency) of correct pixel classification, in a segment-area weighted sense, across a

ground-truthed image.  The metric is evaluated for various image processing filters (color, gradi-

ent, optical flow, etc.) over various topologies (large areas and narrow edges) that model broad
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classes of segmentation processing.  Segmentation strategies belonging to classes with high effi-

ciency offer the strongest potential for robust segmentation.

The assumption of general-purpose recognition processing and its decomposition from appli-

cation-specific segmentation well suits the jelly-tracking design problem.  Under typical condi-

tions, the application-specific demands of jelly-tracking arise primarily from segmentation

processing.  The segmentation algorithm must reliably identify pixels associated with the target

animal in successive image frames regardless of uneven lighting, background clutter, target trans-

parency, deformations or rotations.  The stress on the recognition component is low by compari-

Segmentation 
Algorithm

Recognition 
Algorithm

Raw Image

Target Identified

Figure 4.1  The Two Subcomponents of Visual Tracking:  Recognition and Segmentation
In general, visual tracking algorithms perform both segmentation and recognition operations, either
sequentially or iteratively.  Segmentation is the process of clustering pixels to identify possible target
regions (or segments).  Recognition evaluates those candidates to identify the most likely target segment
(marked with a crosshair).
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son, as midwater jellies are generally encountered as individuals, distant from other members of

the same species (Chapter 2).  Given the sparseness of similar animals encountered under normal

operating conditions and the relatively short sample period (0.1 s), in comparison to the time scale

of jelly motion, simple statistics, like last-reported position, provide strong information on which

to base the recognition subcomponent of the jelly-tracking algorithm.

Since few segmentation methods perform consistently for different jelly specimens and dif-

ferent lighting conditions, the segmentation efficiency technique offers a means of assessing a

large number of processing strategies for a minimal designer workload.

4.1.2 Related Work

This section provides an overview of the two major topics relevant as background to the chapter:

(1) related work in experimental visual servoing and (2) related work in performance evaluation of

vision algorithms.  

Related Work in Visual Servoing 
The visual jelly-tracking application falls within the broad research area known as position-based

visual servoing.  The term visual servoing implies the use of video as a sensor for automatic con-

trol.  In many cases, including the jelly-tracking application, visual servoing requires the use of a

visual tracking algorithm.  Visual tracking algorithms are designed to follow projected objects

through a 2D video sequence, without any implication of closed-loop motion control of the imag-

ing platform.  Visual tracking algorithms implicitly or explicitly address two related imaging prob-

lems:  segmentation and recognition.  The segmentation process clusters pixels into regions that

may correspond to the tracked object, while the recognition process distinguishes among these

regions to identify the best match to a target profile.

The field of visual servoing has spawned numerous applications.  Recent publications that

capture the breadth and history of the visual servoing field are [101,133].  Although these reviews

of visual servoing make little mention of underwater applications, the ocean community has made

substantial progress in the visual navigation of submersible vehicles relative to the ocean floor

[106,108,110,111,115,116,117,120,121,124,127,131].

Almost every visual servoing solution uses a different visual tracking strategy tailored to the

nature of the application.  The tracking design problem is most straightforward when the target can
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be modified by the addition of visual markers.  For example, Leahy et al. enabled visual servoing

for aircraft refueling by placing easily identified white markers near the fuel port [114].  Amidi et

al. report helicopter experiments that identified a ground target using color segmentation or tem-

plate-based detection [95].  In many applications, the design problem cannot be streamlined by

adding markers to the tracking target.  For these cases, the designer must identify characteristics of

the target that enable reliable segmentation and recognition.  Batavia et al. detected overtaking

vehicles in a car’s blind spot by propagating an edge map of the background scene and comparing

this prediction to the current measurement [96].  Minami et al. used a triangular template strategy

to track a fish in a tank using a robotic manipulator [119].  

The rich variety of visual tracking methods employed by each of these cases implies that the

selection of a reliable visual tracking algorithm for a new application is nontrivial.  In fact, for

most visual servoing applications, several tracking algorithms produce viable solutions (of varying

quality).  This freedom in algorithm choice introduces an important design question, central to this

chapter.  The designer of a visual servoing system must somehow assess the match between track-

ing algorithms and the visual environment characteristic to an application.

This chapter discusses a method for synthesizing a robust and efficient vision strategy for

endurance tracking of a single gelatinous animal.  Prior to this work, no attempt has been made to

implement such an experimental visual servoing system, despite the opportunity such a platform

offers to extend the science of marine ecology.  The lack of published data regarding visual track-

ing of gelatinous animals, along with the differences between the imaging environments for this

application and for other terrestrial, aerial, and marine visual servoing applications, motivates a

thorough characterization of the deep-ocean imaging environment.  Midwater images depict natu-

ral, unprepared scenes.  Such scenes do not contain man-made features, like corners or straight

lines, nor can an observer artificially augment the scene without disturbing the animal behaviors

under study.

These issues somewhat resemble problems encountered by Tang, Fan, Kocak and others in

their pursuit of automated systems for the visual detection and classification of marine plankton

[105,112,125,128,129,130,134].  Nonetheless, the jelly-tracking problem possesses additional

characteristics that distinguish it.  In particular, light source geometry for remotely operated vehi-

cles (ROVs) changes dramatically from dive to dive.  On any given dive, spatial lighting gradients

are visible, in addition to temporal derivatives resulting from pan/tilt motion, light source oscilla-
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tions, and variations in concentration of suspended organic matter, known as marine snow.  The

automated jelly-tracking system must function despite these noise sources.

The vision algorithm must also rise to meet the two key challenges for field operation:  track-

ing reliability (for ROVs and AUVs) and energy efficiency (for AUVs).  To meet the reliability

requirement, mean-time-to-failure for the vision system must match the application duration, mea-

sured in hours for ROV deployments and in days for AUV deployments.  Also, the system must

display low sensitivity to prior selection of algorithm parameters.  The segmentation efficiency

tool addresses these issues by assessing the reliability and parameter sensitivity of various vision-

processing strategies.

Although this chapter focuses primarily on the reliability challenge for ROV deployment, the

segmentation efficiency approach does permit a degree of flexibility to address the energy effi-

ciency challenge (for AUV deployment).  Specifically, choosing a processing algorithm with a low

operations count can enable the use of a low-power DSP chip rather than a higher power, higher

speed processor.  In this sense, computational efficiency equates with energy efficiency.

In the context of the robustness challenge and, to a lesser degree, the AUV energy efficiency

challenge, this chapter develops an algorithm for jelly tracking using the new segmentation effi-

ciency tool.  The tool identifies a category of existing vision algorithms (region-based algorithms

with morphological-gradient filtering) that achieves reliability without requiring parameter tuning

in the field.  Within this category, a threshold-type vision algorithm was selected for its adequate

noise properties and its excellent computational efficiency.

Related Work in Performance Assessment of Vision Algorithms     
Several recent investigations have addressed the topic of performance evaluation of vision algo-

rithms with respect to particular data sets [97,98,102,104,132,135].  From a system-design view-

point, these methods can aid in evaluating candidate tracking algorithms to enable long-duration,

reliable tracking for a new application.  These methods, however, require implementation of all

algorithms to be evaluated, a characteristic that limits the size of the practical search space and

greatly increases the design workload.  To provide true utility as a design tool, an evaluation

method must characterize reliability without demanding high implementation overhead on the part

of the user.  This chapter introduces a new characterization approach that reduces implementation

overhead by focusing on the input, rather than the output, of visual tracking algorithms.
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From a designer’s point of view, implementing existing assessment techniques requires sub-

stantial effort.  First, to evaluate a number of tracking algorithms, the designer must implement all

of the possibilities, often a time-consuming procedure.  Second, the designer must modify the

algorithm to accept a wide range of possible image filters that may enhance signal-to-noise ratio

for the application specific visual environment.  Third, the designer must ground truth image

sequences in order to apply the metric.  The resulting design procedure is combinatorially large.

For the case of P alternate prefilters, Q vision algorithms, and M image sequences, each sequence

containing N frames, the procedure requires that the designer implement a total of P•Q algorithms

and ground truth a total of M•N frames.  The assessment procedure must then analyze M•N•P•Q

image frames.  The resulting combinatorial explosion is depicted by Figure 4.2a.

The new segmentation efficiency design approach focuses not on the specific output of indi-

vidual tracking algorithms but on the image-statistics describing the input to related sets of track-

ing algorithms.  The input-focused approach greatly reduces implementation overhead, because

the designer need not implement code for the P•Q algorithms under consideration.  The segmenta-

tion efficiency approach enables further reduction in the overhead for tracking-system perfor-

mance evaluation by focusing specifically on the segmentation component of the tracking

algorithm and by suppressing analysis of the recognition component.  This reduces the number of

ground truth images required from M•N to M (one for each video clip) and the number of frames

analyzed to M•P.  These improvements are summarized by Figure 4.2b.     

Certain characteristics of the jelly-tracking application permit the analysis of the recognition

subcomponent to be decoupled and suppressed in the overall system reliability assessment.  These

characteristics are embodied by a pair of assumptions which generally describe the ROV-based

jelly-tracking activity.

Assumption 4.1.  Short Sample-Period Assumption:  The sample period is shorter than

the time scale of animal motion (typically on the order of seconds for gelatinous ani-

mals).  Thus image statistics for the target segment change little between successive

frames.  Specifically, target position, size, shape and brightness over the target segment

remain quasi-invariant from one frame to the next.

The short sample-period assumption states that target segment properties do change over time, but

that the individual changes are small from one time step to the next.  Because accumulated
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changes over time may be substantial, an accurate segmentation is required at each successive time

step, so that the target statistical profile can be accurately updated through time.

The amount by which generic target segment statistics may change between frames depends

on the density of similar targets observed in the tracking environment.  For the jelly-tracking activ-

ity, animal targets are infrequently seen together in the same video image.

Assumption 4.2.  Target Species Sparsity Assumption:  Animals of similar visual charac-

teristics are infrequently observed together in an image.  Thus the slowly varying,

generic statistics available through the short sample period assumption permit reliable

correspondence of the target across subsequent image frames.

M·N Image 
Frames

M·N  Ground 
Truths

P Filters 

Q  
Topologies

Quality 
Comparison

Best Algorithm

M·N Image 
Frames

M Ground 
Truths

P Filters 

Quality 
Comparison

Most Promising Subset of 
Algorithms

(a) (b)

Figure 4.2  Comparison of Performance Assessment Methods for Visual Tracking
Comparison of processing and preparation requirements for (a) existing assessment techniques and (b) a
new input-focused technique.  Analysis considers application of P prefilters and Q tracking algorithms to
a database consisting of M image sequences, each with N frames.  
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These two assumptions regarding short sample period and the sparsity of the animal population

together imply that generic segment statistics provide sufficient information to reliably perform

interframe recognition.  Thus these assumptions imply that recognition reliability is high, as long

as a consistent, reliable segmentation processing technique is employed to keeps the recognition

profile up-to-date and to prevent error accumulation in the recognition profile over time.

Given the two above assumptions, the major challenge in visual tracking, then, involves the

design of a robust segmentation process that reliably distinguishes target pixels from background

pixels.  The segmentation technique must operate for any of a variety of animal species subject to

nonuniform lighting conditions and to marine-snow noise.

The following section, Section 4.2, develops segmentation efficiency as a technique for

design of a reliable segmentation subcomponent.  Segmentation reliability results in reliable

vision-tracking in the context of the above assumptions, which imply high reliability for the recog-

nition component.  Section 4.3 describes the application of the segmentation efficiency analysis to

design a specific vision-processing method tailored to the jelly-tracking application.  This algo-

rithm was deployed as a critical component of the experimental ROV-based tracking system.  Sub-

sequently, Section 4.4 discusses the limitations of the experimentally tested tracking algorithm for

very long duration AUV applications.  Recognition system analysis becomes significant for this

task, as the sample rate assumption (Assumption 4.1) may not hold for long-duration AUV

deployment.  Finally, Section 4.5 summarizes the salient results discussed in this chapter.

4.2 Segmentation Efficiency
The new input-focused design strategy, called segmentation efficiency analysis, focuses on perfor-

mance assessment of the segmentation subcomponent of vision-tracking algorithms.  Implement-

ing this design approach requires a metric to assess segmentation input data.  To assess input data,

this section first proposes a model of the segmentation process, consisting of a topological pro-

cessing strategy and a filtering strategy.  From this model follows a metric that tallies the total

number of correctly identified pixels, weighted by region area, over the target and background seg-

ments defined by a choice of topological processing and filtering strategies.  Results for individual

images may be grouped for a large image database to compute an ensemble-averaged segmenta-

tion efficiency metric.  The ensemble-averaged metric thus indicates the best combinations of fil-

tering and topology processing strategies to provide reliable segmentation for a reference database.
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4.2.1 Modeling Segmentation Algorithms

Evaluating the image data on which segmentation algorithms operate requires a generalized model

that describes the processing structure of diverse segmentation algorithms.  For the purpose of ana-

lyzing segmentation input, all segmentation algorithms may be described as methods that combine

two types of processing:  filtering and topological clustering.  Segmentation algorithms use filters

to extract information about individual pixels or local pixel groups.  (Sample filters include lumi-

nance, color, texture, gradients, and optical flow.)  Segmentation algorithms use topological clus-

tering to group pixels together in specific patterns.  (Two primary topologies are considered here:

regional topologies, consisting of all the pixels in a closed set, and edge topologies, consisting of

the boundary pixels of the target region.)

The following two subsections describe methods that quantitatively describe the filtering and

topological clustering operations.  The segmentation efficiency metric, defined subsequently, eval-

uates the ability of various filters and topologies to distinguish between target and background pix-

els.

Filtering for Segmentation     
Segmentation algorithms use pixel level filtering to extract or emphasize particular components of

the video stream.  This section describes fifteen filters chosen to form a partial basis for the space

of pixel-level information.  Table 4.1 lists the fifteen filters and their formulae.  Since these filters

are commonly described in introductory imaging texts such as [109], this section offers only a cur-

sory outline of the notation used in Table 4.1. 

 The expression f k(x,y) denotes the value of a filtered image at pixel location (x,y) for the kth

frame of a video sequence.  Base images are defined as 24-bit color frames consisting of three

color components, cr, cg, and cb (each defined, for the jelly-tracking application, on the domain Df

of 320 x 240 images).  As most filters are defined at a single time step, the k-superscript is gener-

ally suppressed, except for the few filters (like optical flow) which operate on changes between

successive images.

The notion of Table 4.1 includes the  and  operators, which denote the spatial

central difference for approximation of the first derivative.  The ** operator indicates a two-

dimensional image convolution.  For smoothing operations, the convolution kernel, h, was chosen

to be the 3x3 uniform kernel.  The size of this and other kernels were chosen to produce good

∆f ∆x⁄ ∆f ∆y⁄
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results.  In general, kernel size could be consider an additional parameter in defining the filter

space.  

The morphological operators for erosion ( ) and dilation ( ) are defined as follows:

(4.1)

Symbol Filter Equation

Red

Green

Blue

Luminance

Euclidian Gradient

Smoothed Euclidian Gradient

Morphological Gradient

Smoothed Morphological Grad.

Snowless Morphological Grad.

Laplacian

Smoothed Laplacian

Time Difference

Background Difference

Optical Speed

Optical Flow Direction

cr

cg

cb

l l 0.30 0.59 0.11 cr cg cb
T

=

l∇ 2
l∇ 2

l∆
x∆

------ 
  2 l∆

y∆
------ 

  2
+=

l∇ 2 s, l∇ 2 s, l∇ 2**h=

l∇ M l∇ M l q⊕( ) l q( )–=

l∇ M s, l∇ M s, l∇ M **h=

loc∇ M loc∇ M lOC q⊕( ) lOC q( )–=

l2∇
l2∇ l**

0 1 0
1 4– 1
0 1 0

=

l2
s∇ l2

s∇ l2∇ **h=

dt dt lk lk 1––=

db db l l̂b–=

p p u2 v2+=

p∠ p∠ 2 u v,( )atan=

TABLE 4.1. Types of Filtering

⊕

f q⊕( ) x y,( ) f x m y n+,+( ) x m y n+,+( ) Df  and  m n,( ) Dq∈∈{ }max=

f q( ) x y,( ) f x m y n+,+( ) x m y n+,+( ) Df  and  m n,( ) Dq∈∈{ }min=
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Effectively the dilation operator enlarges bright regions of a grayscale image, while the erosion

operator shrinks them.  These morphological filters require a structuring element, q, with domain

Dq.  For this work, structuring elements were chosen with a domain of 3 x 3 pixels.  Erosion and

dilation operations are used to compute the morphological gradient and to create the snowless

luminance image.  The snowless image results from the application of a successive morphological

operations called opening and closing, operations which together remove small speckles, like

marine snow, from an image.  The opening operation ( ), which removes small islands and penin-

sulas of image brightness, and the closing operation ( ), which fills in small dark holes surrounded

by bright pixels, are defined as:

(4.2)

Given these definitions, the snowless image, loc, is described by the following equation:

(4.3)

The local pixel velocities, u and v, were computed using the optical-flow conservation equa-

tion for local luminance, along with a least squares constraint.  The technique solved the following

equation in a least squares sense over a 5x5 support region.

(4.4)

The arctan2 operation, which extracts the direction of the optical flow vector, is the arctangent

operator defined with the full four quadrant range, -π to π.

  The background difference filter, db, is the difference between an image and a model of the

background-lighting field.  Generating the background-lighting image requires that an external

agent first describe a bounding box around the target, so that the target may be excluded from the

background image.  Pixels in the box-shaped hole are then interpolated to form the estimate of the

background image, .  Although cubic spline interpolation is often implemented for hole filling,

this work instead interpolated using the solution of the heat equation over the hole, , given the

Dirichelet boundary condition of the original image pixel values (“temperatures”) around the hole.

º
•

f qº f q( ) q⊕=

f q• f q⊕( ) q=

loc l qº( ) q•=

f∆
x∆

------**h 
  f∆

y∆
------**h 
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v

dt–=

l̂b
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(4.5)

The solution of the heat equation resulted in smooth, diffusion of the boundary pixel values into

the hole interior.  The heat equation was solved using a standard separation of variables technique

which resulted in an orthogonal basis for the heat equation [99].  Interpolation results comparable

with those of a cubic-spline fit were obtained using an approximate solution based on the first two

harmonics of the  heat-equation superposed with a bilinear function.  The resulting technique

requires solving for only 12 coefficients (compared with 16 for the cubic spline method) and,

because of the orthogonality of its terms, avoided the need to compute a matrix pseudoinverse.

Topological Clustering
Segmentation algorithms use topological clustering to group filtered pixels into sets.  Most often,

segmentation methods are named for their topological processing subcomponent; however, the

complete segmentation algorithm consists of both local filtering and topology processing.     

Typically, topological clustering methods identify either edges or regions.  Edge-based meth-

ods distinguish between nonboundary pixels and pixels along the target boundary.  Region-based

methods classify pixels as members of either the closed set of target pixels or as members of the

complementary background pixel set.  A few hybrid methods combine both region and edge topol-

ogies.  Table 4.2 lists selected topological clustering algorithms in three categories, as edge-based,

region-based, and hybrid methods.

Region-based topological clustering methods include well known techniques like (1) the

expectation maximization technique, which clusters pixels under an arbitrary number of parame-

terized ellipses; (2) the template masking technique, which scales and aligns a template to maxi-

mize pixel contrast interior and exterior to the template; (3) threshold techniques, which cluster

neighboring pixels above or below a selected threshold; and (4) the correlation technique, which

assesses correspondence between a reference image and the current video frame.

Edge-based topological clustering methods listed in Table 4.2 include (1) active contour tech-

niques, which solve a dynamic equation for the target boundary based on a forcing function

derived from an edge image; (2) convex edge-merging methods, which group edges based on the

l̂
2

b x y,( )∇ 0 in Ω=

l̂b l on Ω∂=
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assumption of a convex target; and (3) Hough transform methods, which extract boundaries from

an image given a parameterized contour shape.  

Finally, Table 4.2 lists two hybrid segmentation methods, which combine both edge-based

and region-based decision criteria.  These hybrid techniques include (1) region-merging methods,

which join neighboring pixels of similar value, and (2) watershed methods, which filter out inter-

nal edges by joining neighboring pixels sharing a common level-set boundary.

In order to model the effects of topology on segmentation performance, these three classes of

topology processing must be quantitatively linked to pixel geometry.  Each topology processing

strategy is defined by a combination of two pixel sets, which can be described generically as  gA

and gB.  To describe a region-based topology, for instance, requires the definition of the two pixel

sets gt, the set of pixels over the entire target segment, and gb, the complementary set of image pix-

els which describe the background around the target.  To describe edge-based topologies requires

the definition of , the set of exterior-boundary target pixels, and , the set of interior-

boundary background pixels.  Small operator error in the ground truthing process may introduce

Topology Processing Method Pixel-Level Distinction Shape Assumptions

Region Expectation 
Maximization (EM) 

over elliptical regions

Ellipse interior vs. exterior Union of ellipses describes 
target

Template Masking Mask interior vs. exterior Target shape known

Threshold Blob interior vs. exterior No shape assumptions

Adaptive Threshold Blob interior vs. exterior No shape assumptions

Correlation Under reference image vs. 
outside it

Target shape described by 
reference image

Edge Active Contours 
(Snakes)

Edge vs. non-edge pixels Target contour connects edges 
with minimum length and 

curvature

Convex Edge Merging Edge vs. non-edge pixels Target contour connects convex 
region

Hough Transform Edge vs. non-edge pixels Target shape known

Hybrid Region Merging (1) Initial seed:  pixels interior 
vs. exterior to an amorphous 

region; (2) Termination 
Criterion:  edge vs. non-edge 

pixels

Target shape arbitrary, but 
characterized by well defined 
edges at regional boundaries

Level-Set / Watershed As above As above

TABLE 4.2. Topology Processing Algorithms

∂gt ∂gb
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noise in this definition of the target boundary.  Also, some filters cause migration of edge informa-

tion.  To make edge-topology assessment more robust to these effects, comparisons of the interior

target or background regions to their boundaries,  to  or  to , are also used to assess

edge-based topological clustering methods.

For the purposes of analysis, an external agent must supply a segmentation ground truth from

which to construct these topological pixels sets.  The external agent, which may be a reference seg-

mentation algorithm or a human operator, need only distinguish between the set of pixels that

belong to a target, gt, to the background, gb, or to a region excluded from analysis, gx.  From this

ground truth, the target boundary, , can be automatically determined as the set of pixels inte-

rior to gt that intersect with the dilation of gb:  .  Applying a set difference between

the target region and the target boundary defines the target interior, .  The back-

ground boundary, , and the background interior, , can be automatically determined through

an analogous procedure.

4.2.2 Segmentation Efficiency Defined     

If segmentation algorithms are modeled as the synthesis of a filtering strategy and a topology-pro-

cessing strategy, then a performance assessment technique can be defined to evaluate the ability of

any given filter to distinguish between pixels grouped according to any topology.  This section

defines such an evaluation method, called segmentation efficiency, that calculates the pixel frac-

tions correctly identified by any combination of filtering strategy, f, with a topology processing

strategy based on a region pairing, gA and gB.  The resulting metric has a value, between zero and

one in magnitude, that assesses the quality of a combination of a processing strategies for a given

reference image.

Histograms as a Tool for Analysis of Midwater Scenes
In effect, segmentation efficiency plays a similar role to the image histogram, one of the primary

tools used for segmentation analysis.  Classically, researchers have used bimodal histograms to

establish thresholds between cleanly separated peaks associated with a pair of image regions.  As

early as 1972, Chow and Kaneko derived the optimal segmentation threshold given a bimodal his-

togram and the assumption of equal weight for misclassification of pixels from either region [100].

The importance of pixels in the two segments is not always equal.  A two-objective optimization

gt° ∂gt gb° ∂gb

∂gt

gt gb q⊕( )∩

gt° gt\∂gt=
∂gb gb°
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surface called the receiver operating characteristic (ROC) curve is often employed to express the

trade-offs involved with differentially weighted misclassifications [98,102,103].

Despite its long history as a performance assessment tool, a histogram analysis based on a

search for bimodal peaks is not an effective method for analysis of midwater scenes.  Figure 4.3

depicts a jellyfish image, selected because the brightness of the animal target clearly exceeds that

of the background scene.  The classifier that best distinguishes between the ground-truthed target

and background regions does not align with a valley between the two dominant histogram peaks.  

Two principal effects mask the target peak in this histogram.  The first effect involves the

multitude of histogram extrema that result from correlations among neighboring pixel values.

Integration can smooth these local extrema, which appear as noise in the global histogram.  The
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Figure 4.3  A Luminance Histogram for a Jellyfish Image
Global histograms of midwater scenes provide little information to aid in evaluating the effectiveness of a
filtering strategy.   (a)  An image of a Solmissus jellyfish was analyzed by a human operator to produce
(b) a ground truth segmentation.  (c) The luminance histogram of the Solmissus image counts the pixels
at each gray level across the entire image.  On the histogram, the vertical dashed line represents the
luminance classifier that best distinguishes between pixels in the target and background regions of the
ground truth image.  This line does not align with any clear histogram feature.
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second effect that masks the target histogram peak involves the small pixel area of the target region

relative to the background region.  Global histograms do not account for the relative size of a tar-

get region.  A target region containing few pixels appears as a small bump on a global histogram,

indistinguishable from local extrema.  

Segmentation Efficiency:  The ∞-Norm of a Difference of Cumulative Distribution Functions
Given the model developed in the previous section to describe segmentation processing, a metric

can be defined to account for both these issues.  This metric, called the segmentation efficiency

metric, employs a pair of cumulative distribution functions (CDFs) defined separately, using

ground truth, over both the pixel sets, gA and gB, that define a particular topological processing

strategy.  These CDFs describe the distribution of pixel values produced by a particular filter, f,

over the region pair.  The segmentation efficiency metric is the maximum value (∞-Norm) of the

difference of these two CDFs.

The use of CDFs, rather than histograms, addresses both the area-weighting and local noise

problems.  CDFs are constructed from probability distribution functions (PDFs), which are image

histograms normalized by the total number of samples.  Thus each PDF has an integrated value of

unity.  Since, in the segmentation efficiency approach, PDFs are calculated separately for the two

regions to be evaluated, gA and gB, the process of histogram-normalization in constructing each

PDF automatically solves the area-weighting problem associated with global histogram analysis.

CDFs are constructed by integrating each PDF.  This process smooths local extrema, solving the

second issue associated with global histogram analysis.

The following equation summarizes this process of constructing each CDFs from the original

image:

(4.6)

Here the original histograms, H, are calculated for a filtered image, f, over each pixel set,  or

.   refers to the number of pixels in the pixel set.   refers to the set of histogram bins.  

For each value of classifier, , in the domain of the filter, , the CDF, , indicates the

weighted fraction of pixels below that classifier.  The difference of the CDFs for the two pixels

sets that define the topology (  and ) indicates, therefore, the total area-weighted fraction of
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pixels correctly identified by that classifier.  Because CDFs always have a value between 0 and 1,

the magnitude of the difference of the two CDFs also has a value between 0 and 1.  In this sense,

the difference of the two CDFs may be considered an efficiency describing the ratio of correctly

identified pixels (in an area-weighted sense) to the total number of image pixels.  Hence the differ-

ence of the two CDFs is labeled the segmentation efficiency distribution, .  

(4.7)

The segmentation efficiency metric is defined as the infinity norm of this distribution, .

This metric describes the best segmentation result achievable given a particular filter, f, and a par-

ticular topology, defined by the pair  and .  The property of the segmentation efficiency dis-

tribution to evaluate filter and topology information derives from the properties of the individual

CDFs.  Each value of the CDFs represents the fraction of pixels in a segment correctly identified

by a point classifier, δ = m.  Applying this classifier globally to the filtered image, f, divides its pix-

els into two estimated segments,  and .

(4.8)

In terms of these estimated segments, generically referred to as , the fraction of pixels correctly

identified in each region is

(4.9)

The correctly identified pixel fractions, Θ, over each region may thus be written in terms of the

CDF over that region.

(4.10)

The total fraction of correctly classified pixels, in the area-weighted sense, is .
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(4.11)

Thus the  distribution describes the total fraction of pixels, weighted by region size, that are

correctly identified by a given classifier δ.  A classifier that achieves unity segmentation efficiency

perfectly distinguishes between two pixel sets.  Zero efficiency means that a classifier makes no

distinction between the two sets.  The sign of  distinguishes the region for which the classi-

fier is an upper bound and is otherwise arbitrary; that is:

(4.12)

The calculation of segmentation efficiency distributions for a sample pair of images demon-

strates the difficulty in empirically selecting a segmentation strategy for jelly tracking.  Figure 4.4

and Figure 4.5 depict a Solmissus medusa and a ctenophore specimen, respectively.  Both figures

include plots of segmentation efficiency distribution and the associated CDFs using the luminance

filter and region-based topology clustering.  Whereas the filter+topology processing combination

clearly distinguishes the Solmissus, the same combination performs poorly for the ctenophore

image.            

4.2.3 Ensemble Averaged Segmentation Efficiency 

Given a large number of video clips imaged under application-specific environmental conditions,

segmentation efficiency can identify the most useful filters and topologies for target extraction.

Whereas, the previous section defined the segmentation efficiency distribution for an individual

image, this section considers the application of the concept to a multiple-image database.  In its

most general form, the process of clustering entries from a large database of segmentation effi-

ciency distributions (catalogued for each database image, each possible filter, and each topology)

is a complex pattern recognition problem.  If all the records in the image database are considered

as a single cluster, however, the pattern recognition problem can be simplified substantially.  This

section considers such a single-cluster problem, the problem of identifying the best individual fil-

ter and topology for extracting all targets in the target-image database.

A metric that describes the ability of a single filter+topology combination to extract targets

across an image database is the ensemble-averaged segmentation efficiency metric.  This metric is

η δ f gA gB, ,;( ) Θ δ f gB,;( ) Θ δ f gA,;( ) 1–+=

χ δ f gB,;( ) χ δ f gA,;( )–=

η δ( )

η δ( )

η δ f gA gB, ,;( ) η δ f gB gA, ,;( )–=
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computed as the infinity-norm (maximum magnitude) of the distribution formed by ensemble

averaging segmentation efficiency distributions for all images in the database.

(4.13)

Here the average applies to a database of M images.  Each choice of filter, f, and topology, defined

by the pair gA and gB, results in a distinct value of the metric .  High values of  indi-
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Figure 4.4  Segmentation Efficiency for a Jellyfish Image
(a) This image was chosen for its strong brightness distinction between background and target pixels.
Integrating the (b) pixel distribution functions (PDFs) for each ground truthed target region gives (c) two
cumulative distribution functions (CDFs).  (d) The segmentation efficiency distribution is the difference
of these two CDFs.  The strong peak of the segmentation efficiency, near its maximum value of unity,
confirms that a luminance filter applied to regional topological processing effectively distinguishes
background and target pixels.
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cate filter-topology combinations with high likelihood of extracting any target from the image

database.  The classifier argument that maximizes  is labeled .  The confidence limits

of  for the sample population of M images also serves as a useful supplementary statistic

for assessing filter+topology combinations.  Whereas the  metric is a measure of quality, the

confidence limits of  are a measure of consistency.  Both quality and consistency of a

classifier affect the reliability of a visual servoing system.
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Figure 4.5  Segmentation Efficiency for a Ctenophore Image
With respect to the luminance filter evaluated over a regional topology, the statistics for (a) this
ctenophore image differ strongly from those of the preceding Solmissus image, depicted in Figure 4.4.
Given (b) a ground truth segmentation, (c) cumulative distribution functions (CDFs) and (d)
segmentation efficiency are illustrated for the ctenophore image.  The strong negative values of the
segmentation efficiency distribution indicate the background is generally brighter than the target, in
contrast with the results of Figure 4.4.  The infinity-norm of the distribution indicates a 55%
misclassification error when using a global luminance classifier to distinguish between pixels in the
target and background regions.
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4.3 A Segmentation Method for Jelly Tracking
This section describes the development of the vision-processing component that enabled jellyfish

tracking during field demonstrations  The segmentation subcomponent, designed using the seg-

mentation efficiency approach, relies on the application of global thresholding (a regional topolog-

ical processing method) to gradient-filtered images.  The recognition subcomponent uses a simple

feature vector based on slowly-varying segment statistics.

4.3.1 Application of Segmentation Efficiency to Jelly Tracking

A number of processing challenges make determination of a segmentation method by empirical

means difficult in the case of midwater gelatinous animal images.  The shape and appearance of

gelatinous animals, for instance, varies substantially from species to species.  The unstructured

lighting environment, furthermore, results in an unpredictable background scene; in many cases, a

mild lighting gradient of less than one gray level per pixel creates significant differences in lumi-

nance across the background image, as great as 40 gray levels or more.  Specks of floating organic

matter called marine snow act as small point scatterers that add additional noise to midwater

images.  These characteristics cause common segmentation algorithms, including luminance

thresholding, gradient-based active contour methods, and level-set methods, to fail when applied

naively to gelatinous animal images.  

The application of the segmentation efficiency metric to a marine life database aids in design-

ing a robust jelly-tracking system.  Segmentation efficiency analysis identifies the most useful fil-

tering and topological processing strategies for extracting gelatinous targets from noisy video

sequences filmed in the midwater.  

To characterize the jelly-tracking application, a marine life database was constructed of 182

short (half-second) clips of animals filmed in situ by ROV Ventana.  Video clips depicted a wide

range of gelatinous animal species filmed under a variety of unstructured lighting conditions.

Lighting variations result from a variety of lamp configuration, camera zoom settings, camera gain

settings, and marine snow backscatter conditions.  Animals were imaged at ranges from 0.2 to 3

meters at 320 x 240 pixel resolution for field of view angles between 10° and 60°.  For each clip in

the database, a human operator provided ground truth by defining the target region, gt, with a

spline fit to the target interior edge.  The background region, gb, was defined as the image comple-
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ment to the target animal region(s) and to the excluded region, gx, consisting of small snow parti-

cles:

(4.14)

Here snow pixels were identified automatically, without human input, according to the relation:

(4.15)

(4.16)

In effect, this operator recognizes marine snow by identifying small pixel regions with high con-

trast to their neighbors. For this work the structuring element, q, was chosen on a 5x5 square grid,

with the domain, Dq, comprised of the grid’s 16 border elements.  δsnow was set equal 0.75.    

Table 4.3 shows the peak magnitude of ensemble averaged segmentation efficiency, ,

computed across all images in the marine life database.  Peak height is listed for the fifteen filters

and four topologies described in Section 4.2.1.  The first column of Table 4.3 describes region-

based topologies with  (where f indicates a generic filter and gb and gt indicate the

specific pixel sets associated with region-based topologies).  The background difference filter, the

gradient filters, and the monochrome luminance filter have the highest peak values for distinguish-

ing regions of target and background pixels.  That gradient values are high over the entire target

region is surprising; in most vision applications, high gradients are expected at edges between

regions but not in region interiors.  In contrast, most jellies display sufficient internal structure that

gradient filters reliably distinguish between interior pixels in both the target and background

regions.      

The second, third, and fourth columns of Table 3 assess edge-based topologies.  In these col-

umns, the strongest responses were observed for , the strict-edge comparison

using the background difference filter, and for , the background edge-

to-interior comparison using the snowless gradient filter.
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Of all the entries in Table 4.3, the highest peak value of segmentation efficiency corresponds

to the background-difference filter applied regionally, .  This peak value indi-

cates the high quality of the background-difference signal for region-based segmentation.  The

restriction that an external agent initialize the filter (see Section 4.2.1) limits its use in real-time

tracking applications, however.

In contrast, the gradient filters achieve high regional segmentation efficiency without any

need for special initialization.  Segmentation efficiency analysis indicates, in fact, that a fixed-

level gradient classifier consistently describes the target region associated with gelatinous animals,

even under the wide range of lighting conditions encountered in the marine life database.

Region-Based Edge-Based

Symbol

0.2353 0.2139 0.0909 0.0312

0.0709 0.0763 0.0300 0.0284

0.1888 0.1720 0.0697 0.0330

0.4755 0.3253 0.1390 0.1626

0.5398 0.3344 0.1304 0.3052

0.6688 0.2989 0.1427 0.5102

0.6668 0.3571 0.1555 0.4512

0.7212 0.2819 0.1453 0.5886

0.5904 0.1291 0.2343 0.6296

0.2280 0.2553 0.1150 0.1848

0.3647 0.4392 0.1316 0.3871

0.1876 0.1590 0.0572 0.1043

0.8678 0.6068 0.2199 0.2680

0.1011 0.0206 0.0328 0.0746

0.0228 0.0060 0.0164 0.0228
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TABLE 4.3. Segmentation Efficiency for Jellyfish Database
The table presents the ensemble-averaged segmentation efficiency metric computed for a 
database of gelatinous animal images.
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Although the gradient filter performs almost as well for boundary comparisons as for regional

ones, segmentation efficiency is slightly higher for regional comparisons.  Consequently, the sub-

set of segmentation algorithms identified as most promising according to the  metric are

those methods employing gradient filtering over a region-based topology.     

The tight confidence limits of  for regional gradient processing further support the util-

ity of this class of segmentation algorithm.  Confidence limits for the gradient filter are signifi-

cantly tighter than those for competing filters such as the luminance filter.  Figure 4.6 depicts the

mean distribution and 90% confidence interval for segmentation efficiency as a function of classi-

fier, δ, for both the luminance and morphological gradient filters.  Confidence limits are signifi-

cantly tighter for morphological gradient than those for the luminance distribution.  Significantly,

the peak value of segmentation efficiency always occurs in approximately the same location, δmax,
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Figure 4.6  Ensemble-Averaged Segmentation Efficiency Confidence Limits
Ensemble-averaged segmentation efficiency distribution and confidence limits are plotted for all
transparent animal samples in the marine life video database.  Distributions were calculated using a
region-based topology with (a) luminance filtering and (b) smoothed morphological-gradient filtering.
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for morphological gradient distributions across the database.  At 320x240 resolution, the gradient

classifier, δmax, (equal 10 gray levels per pixel) yields an efficiency of at least 0.30 for 95% of

transparent animal samples drawn from the marine life database.  By comparison, the lower confi-

dence bound for the luminance distribution is nearly flat at zero efficiency.  As a consequence, a

regional gradient segmentation method has a very high probability of providing the consistency

required to implement recognition.

Inconsistent peak height for luminance information results from scene-to-scene luminance

variations and from mild image gradients (smaller than one gray level per pixel) across typical

ROV-imaged scenes.  A global luminance classifier that distinguishes target pixels from back-

ground pixels does not always exist given uneven lighting.  Figure 4.7 illustrates this phenomenon

by displaying a luminance contour that envelops both a target ctenophore and a section of the

background image.  By contrast, gradient and background difference filters cleanly distinguish the

target in this case.     

A method exploiting luminance information would thus need to adapt spatially and tempo-

rally to compensate for poor consistency of luminance classifiers; adaptation introduces concerns

of convergence and processing requirements for real-time, power-constrained applications.  By

comparison, a gradient algorithm can use a fixed-level classifier to identify gelatinous targets con-

sistently.  This characteristic of gradient information enables the implementation of a non-iterative,

bounded-time segmentation component in a visual tracking algorithm.

The high  score for gradient and background-difference filters applied to regional topol-

ogies stands in contrast with previous biology-inspired vision-processing studies.  Other studies

have successfully employed, for example, region-based optical flow methods for fish tracking

[105], edge-based gradient methods for the study of bioluminescence [112], and region-based

luminance methods for classification of plankton [119,129,130].  Differences among applications

motivate the choice of these particular filtering and tracking strategies.  These differences empha-

size the importance of a design tool, such as segmentation efficiency, which aids in the synthesis of

a vision tracking algorithm by assessing filtering and topological processing strategies that best

identify the target for a new application.

η〈 〉∞
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4.3.2 Constraining Algorithm Choice Based on System Requirements

Segmentation efficiency, alone, determines only the general class of segmentation algorithm suited

to a particular application.  An understanding of application constraints completes the design pro-

cess, enabling the selection of a specific vision algorithm from the subset flagged by segmentation

efficiency analysis.

For jelly tracking, the first priority of the vision system is robustness to variable lighting con-

ditions and target species.  Considering the discussion of the prior section, gradient-based regional

segmentation methods have a strong advantage in terms of signal quality, as predicted by peak seg-

mentation efficiency height, and in terms of consistency, as predicted by tight confidence limits.

Likewise, the high efficiency peak for the background difference filter suggests that this informa-

tion could enable accurate jelly segmentation, given automation of the filter’s external agent

(b)

(a)

Figure 4.7  Luminance Contours under Nonuniform Illumination
No unique luminance threshold separates this ctenophore target from the background.  Given the
nonuniform illumination across this (a) ctenophore image, the luminance values of the target and
background overlap.  This fact is evident in (b) the luminance contour plot of the image, with contours
spaced at intervals of 8 gray levels.
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requirement.  These results narrow the search for a jelly-tracking algorithm to the class of region-

based topological processing methods applied to images filtered with a gradient operator, or possi-

bly with the background difference operator.  

Within this region-based class, topological clustering methods may be distinguished primarily

by two characteristics: (1) incorporation of shape knowledge and (2) parameter adaptation.  As

summarized in Table 4.2, certain methods incorporate a definite notion of target shape (the tem-

plate masking technique) or target pixel pattern (the correlation technique).  Other region-based

methods possess some ability to handle varying image conditions through adaptation (the adaptive

threshold and expectation maximization techniques).  For the jelly-tracking application, the tar-

get’s flexible, three-dimensional structure makes explicit incorporation of shape knowledge diffi-

cult.  Parameter adaptation, on the other hand, is unnecessary, as a fixed-parameter, non-adaptive

technique can robustly segment targets over a wide range of lighting conditions.  Both adaptation

and shape-constraints add complexity to a segmentation algorithm.  As neither characteristic

clearly benefits the jelly-tracking application, an appropriate selection criterion among region-

based topological processing methods is simplicity.  Of the region-based methods, fixed-parameter

global thresholding, which incorporates neither adaptation nor shape specification, is the least

complex.

A fixed-gradient global thresholding method thus fits the requirements for both ROV and

AUV operations.  The application of a global threshold to an image, along with assignment of

neighboring pixels to amorphous segments, results in an easily implemented, robust segmentation

strategy with excellent computational efficiency.  Because the method does not require parameter

tuning, it behaves reliably and repeatably upon activation.  This insensitivity to initialization

means the method is well suited to tracking across a range of sample rates, as high as 30 Hz for an

ROV pilot assist and as low as a fraction of a Hertz for a strobed AUV application. 

4.3.3 Segmentation Method for Field Experiments

Based on a segmentation efficiency analysis in the context of application constraints, a gradient-

based global threshold method was implemented, along with a pattern-vector recognition routine,

as the visual tracking algorithm for field operations.  The global-threshold segmentation method

relies on smoothed morphological gradient information, extracted by the  filter.  This fil-

ter was selected among the gradient filters of Table 4.1 because it produced the highest peak value

∇l M S,
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of .  For this filter, the fixed gradient threshold is chosen to be δmax:  10 gray levels per pixel

(for 320x240 resolution).  The complete segmentation algorithm is summarized as follows:

1.  Apply a 3x3 uniform filter to the monochrome luminance image

2.  Calculate morphological gradient for the smoothed luminance image

3.  Apply a global threshold to identify potential target regions 

4.  Calculate size of connected regions and filter out small segments (snow)

The algorithm has low computational complexity.  For an image containing P pixels, the uniform

smoothing filter, which is separable, requires 4P addition operations.  Morphological erosion and

dilation operators, used to calculate morphological gradient, are also separable when a square, in

this case 3 x 3, structuring element is applied.  It follows that the operations count to compute mor-

phological gradient involves 8P comparisons and P subtractions.  Application of a global thresh-

old requires P pixel comparisons.  The total algebraic operations count for the method is thus 5P

additions and no multiplications.  No iteration is required.  Because the computational burden of

the method is low, the algorithm is well suited for a real-time, processor-constrained application.

Although gradient filters consistently recognize jelly targets, they also amplify snow parti-

cles.  Step 4 of the segmentation algorithm, above, addresses this issue and removes snow particles

by filtering potential target segments based on pixel count.  A size filter of 25-30 total pixels

η〈 〉∞

Target Size Classification Count

100-101 Pixels 0

101-102 Pixels 18

102-103 Pixels 149

103-104 Pixels 77

104-105 Pixels 19

Snow Size Classification

100-101 Pixels 156487

101-102 Pixels 23950

> 102 Pixels 0

TABLE 4.4. Target Size Distribution
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(given 320x240 resolution and typical zoom and marine lighting configurations) removes the

majority of marine snow pixels from consideration.  Table 4.4 emphasizes the small size of the

majority of snow particles and validates the use of a snow filter based on size information.

Removing snow particles prior to recognition reduces computational requirements for the recogni-

tion step.

An additional theoretical concern associated with gradient-based segmentation addresses

extreme camera resolution and lighting settings.  At some limit of high zoom or low lighting, gra-

dients over the target inevitably fall below camera sensitivity.  In practice however, gradient

threshold segmentation works very well at a range of zoom settings, target ranges, and target sizes.

Table 4.4 describes these variations across the reference database in terms of target size in pixels.

4.3.4 Recognition Method for Field Experiments

For ROV applications, a simple recognition scheme complements gradient based segmentation to

form a complete tracking solution.  The experimental vision-tracking algorithm acts on two video

sequences filmed simultaneously by a camera pair in a precalibrated stereo-triangulation configu-

ration.  The segmentation algorithm operates on images from each video stream separately.  The

recognition algorithm identifies the target in each image as the best match to a reference profile (as

illustrated in Figure 4.1).  The centroids of the best-match segments for each of the two stereo

cameras are used in triangulating target position.

The recognition subcomponent used in experiments employed a feature vector of simple sta-

tistics to construct a target profile (Assumption 4.1).  The components of the feature vector

included the average segment luminance, its pixel area, its aspect ratio and its centroid position.

Features that simultaneously incorporate information from both cameras, such as measurements of

physical target size (in centimeters) or a penalty function based on epipolar geometry, were not

used in the experimental system.

Figure 4.8 summarizes the recognition subcomponent of the visual tracking system.  The rec-

ognition algorithm computes a feature vector for each candidate segment.  The segment with the

feature vector closest to the target profile (compared using a weighted 2-norm) is identified as the

target.  At each time step, the target profile is updated using a low-pass filter to incorporate the sta-

tistics for the best-match segment.  Before updating the profile, however, the recognition algorithm

applies a false-positive test.  In cases for which the best-match feature vector differs from the pro-
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file by more than a preset threshold the test declares an invalid match.  If the best match is declared

an invalid false-positive, the recognition algorithm neither updates the target profile nor the

reported target position.       

The recognition subcomponent employed in field trials relies on the human pilot for initial-

ization.  The recognition algorithm constructs a target profile during a brief, 1-2 second training

period.  The pilot activates the training sequence with a button click.  During this time, the recog-

nition algorithm uses a profile that assumes a nominal target pixel area and a target location at the

image center.  If the pilot maintains the target near the image center throughout the training period,

the automated tracking system acquires the correct target.  At this moment, the automated pilot

assist begins to issue control commands and the human pilot may ease off the control stick.

The complete vision system, consisting of this recognition algorithm and the segmentation

algorithm from the previous section was implemented to enable successful long-duration tracking

experiments.  During field trials, the vision processing system ran at an update rate of 10 Hz.

4.4 Reliability of the Recognition Subcomponent for 
Very Long-Duration Jellyfish Tracking

The previous section described a vision processing algorithm that enabled jellyfish-tracking exper-

iments (see Chapter 6) which held station on gelatinous animals in situ for durations as long as 89
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False-Positive 
Detection

Profile Update

+
–
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Figure 4.8  Block Diagram for Recognition Component
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minutes.  For these experiments, the primary reliability challenge for the vision-processing system

involved segmentation.  The recognition subcomponent of the tracking system was assumed to

perform reliably given consistent segmentation (Assumption 4.1 & Assumption 4.2).  Although

these assumptions generally apply for ROV-based jellyfish tracking, they do not necessarily hold

for extended-duration AUV-based jellyfish tracking.  Over long durations (many hours) and for

sample periods greater than 0.1 s, the reliability of the recognition subcomponent does, in fact,

become an important issue in defining overall system reliability.  Improved vision-processing

methods are required to enable reliable AUV-based jellyfish tracking, which may endure for peri-

ods as long as 24 hours and which may employ low sample rate tracking to reduce power con-

sumption (see Chapter 7).  

Section 4.4.1 examines the issue of recognition algorithm reliability in more detail, both to

justify Assumptions 4.1 and 4.2 and to illustrate the limitations of these assumptions in describing

operational tracking.  Improved recognition techniques are not considered in this dissertation;

nonetheless, a more accurate segmentation can enable the extraction of recognition features with

less variance over time.  To this end, Section 4.4.2 introduces an alternate segmentation algorithm

for jellyfish tracking that provides more accuracy, at a higher processing cost, in comparison with

the experimentally validated jellyfish tracking algorithm.  The refined segmentation component

will serve, in the future, as an important element of an improved system for very long-duration

AUV-based jellyfish tracking.

4.4.1 Recognition Number

This section considers the conditions under which the reliability of the recognition algorithm plays

an important role in determining the reliability of the overall system.  These conditions include jel-

lyfish tracking for durations of many hours, tracking at low sample rate, and tracking in a high

density of nearby animal specimens.

The standard features used for recognition in the experimental ROV-based system, such as

target position, aspect ration, and mean luminance, are all weakly time-variant.  Thus, although

these features are readily available, their uncertainty may grow quickly if Assumptions 4.1 and 4.2

are not valid.  The limited precision of these features may also cause problems after a very large

number of recognition steps (i.e. after many hours of tracking).
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The sample period assumption, Assumption 4.1, plays a particularly important role in the per-

formance of weakly time-variant features.  The degradation of performance with decreasing sam-

ple rate depends on the drift rate of features from the estimated target profile.  Because the drift

rate is application dependent, a useful generalization of the sample period may be obtained by nor-

malizing sample period by the time scale for profile drift.  This section introduces the term recog-

nition number ( ) to refer to this nondimensional sample period.

(4.17)

The recognition number concept enables analysis of recognition system reliability for various sam-

ple intervals independent of the time scale of target motion.

For position-based features, the time scale for profile drift is approximately equal to the width

of the animal divided by the square root of its velocity variance,  (the deviation of the tar-

get’s velocity from its predicted value).  This time scale is based on the notion that an accelerating

or decelerating jelly will not, generally, move more than one body length in a second.  Based on

this time scale, the recognition number for drift of position-based features is

. (4.18)

The velocity variance is assumed isotropic in space, such that the animal may change velocity in

any direction with equal probability.

This section uses the recognition number concept to derive an expression for the reliability of

a recognition processing method that relies on position-based statistics (like the recognition system

used for the experimental system).  In this reliability analysis for the recognition component, two

mechanisms may lead to possible system failures:  drift events and occlusion events.  In a drift fail-

ure, the target moves away from the reference profile, and the recognition algorithm incorrectly

identifies a second object as the target.  In an occlusion failure, the target moves briefly behind a

secondary object, and the recognition algorithm fails to identify the target when it reemerges into

view.  The probability of failures caused by either mechanism define an overall failure probability,

.  After some number of events, N, the overall probability that the tracking system continues

to operate successfully, assuming independence of each event, is:

R

R Sample Period
Time Scale of Profile Drift
----------------------------------------------------------------=

E v2( )

R ∆t
d
----- E v2( ) Sample Period

Time Scale of Target Motion
----------------------------------------------------------------------= =

Pfail



110 CHAPTER 4.  VISION SYSTEM DESIGN

(4.19)

The probability of failure due to an event is related to the likelihood of the event, , and the

probability that the algorithm gracefully recovers following the event, .

(4.20)

The probability of recovery is algorithm dependent; better recognition algorithms recover from

recognition events more reliably.  

The probability that an event occurs, , depends on the density of targets, , in a space

defined as the event volume, V.  For occlusion events, the event volume is the section of the view-

ing cone that lies in front of the target.  For drift events, the event volume is a ball in feature-space

centered on the target profile, with radius defined by the drift of the target’s feature vector away

from the profile.  For this analysis, only image-plane position features are considered.  Thus the

drift event volume, like the occlusion event volume, is defined as a portion of the camera viewing

cone.  Figure 4.9 illustrates the viewing geometry.     

Within the event volume, the expected number of events over an interval of time is

. (4.21)

When the likelihood of an event occurrence is much less than one,  serves as an approxi-

mation of the probability that an event occurs.

(4.22)

For both drift and occlusion events, the event volume is a length of cone with a volume propor-

tional to the solid angle subtended by the cone.  Occlusion events are defined to occur when a sec-

ondary object center enters the cone subtended by the target, assumed to have a characteristic

width, d.

(4.23)

Psuccess 1 P– fail( )N=

Pq

Precovery q

Pfail q, Pq 1 Precovery q–( )=

Pq ρ

E Nq( ) E Vρ( )=

E Nq( )

Pq E Vq ρ( )≈

Vocclusion π d
2
--- 

  2
∝



4.4   RELIABILITY OF THE RECOGNITION SUBCOMPONENT FOR VERY LONG-DURATION JELLY-

Drift events are defined to occur when secondary objects enter into the cone defined by the drift of

the target away from a predicted location.  The drift distance is the product of a drift velocity, v,

and the sample interval for recognition, .

(4.24)

If an encounter density per a solid angle of  is defined as , and if this density is

assumed uniform in space, then the probability of an event occurrence is expressed by (4.25).

l

d

r

Figure 4.9  Model of Image Plane Projection
When two animals swim near each other, an occlusion or a recognition failure may occur.  The lighted
volume occupies a length, l, along rays extending from the camera’s focal center.  The target, of a
characteristic width, d, stands at a range, r, away from the camera.

t∆

Vdrift π v t∆( )2∝

π d 2⁄( )2 ρ̃
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(4.25)

In the equation for , an extra factor of one-half has been introduced under the assump-

tion that the target sits roughly halfway through the lighted volume and that occlusions only occur

when the secondary object passes in front of the target.  A representative value for secondary

object density, under experimental conditions, is  animals per a solid angle of

.  This density corresponds to the appearance, somewhere in the ROV camera viewing

cone, of one animal every five minutes for a five second duration.

According to (4.20), the probability of failure following an event is a function of the event

probabilities, given by (4.25), and of the recovery probabilities.  Nominal values for the recovery

probabilities, based on the performance of the algorithms used in the experimental system are:

(4.26)

Based on these representative values, the overall probability of successful recognition over an

extended tracking period can be calculated using (4.19).  The number of possible drift events,

, is one per sampling interval, .  Over a run of total duration, T, the number of drift events

is:

(4.27)

Occlusion events only occur when the recognition system tries to distinguish the target from the

occluding object after some interval of occlusion.  A characteristic occlusion interval, , is

approximately 1 second.  Given this interval, the number of occlusion events is:

(4.28)

At any occlusion interval, either an occlusion event or a recognition event could cause system fail-

ure.  Given the form of (4.22), the total probability of failure is proportional to the total event vol-

Pocclusion 0.5 E ρ( )⋅≈ 0.5 ρ⋅=

Pdrift E 4 v t∆
d

-------- 
  2

ρ̃ 
 ≈ 4R2ρ̃=

Pocclusion

ρ̃ 3.5 4–×10=
π d 2⁄( )2

Precovery occlusion 0.85=

Precovery drift 0.2=

Ndrift t∆

Ndrift
T
t∆

-----=

τocclusion

Nocclusion
T

τocclusion
--------------------=
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ume for both the drift and occlusion failure modes.  The two event volumes always overlap, so the

combined failure probability is less than the sum of the failure probabilities.  The sum of the prob-

abilities may be used, however, as a conservative upper bound on the total failure probability at the

end of an occlusion interval.   

The probability for successful tracking over a duration T is thus given as follows.     

(4.29)

Figure 4.10 plots  subject to variations in recognition number, tracking duration and ani-

mal density.  Increases in all three of these parameters can significantly degrade the probability of
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Figure 4.10  Probability of Recognition Success
These plots illustrate the probability of mission success, as a function of recognition number, for (a)
extended mission length and (b) higher animal density.  All other parameters equal, increases in mission
duration, in animal density, or in recognition number severely degrade the probability of completing a
successful mission.
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successfully completing a tracking run.  Plotted against recognition number,  transitions

between a short sample rate behavior, dominated by occlusion errors, and a long sample rate

behavior, dominated by recognition errors.  On these plots, the recognition number for experi-

ments is plotted as a dashed line at  (assuming  m/s,  m, and

 s).

Figure 4.10(a) indicates that AUV-based tracking places much greater demands on the recog-

nition system than ROV-based tracking.  AUV-based tracking will enable very long-duration

tracking (e.g. as long as 24 hours).  Meeting power restrictions for extended operations may

require substantial reductions in the sample rate for the visual tracking system (see Chapter 7).  If

the experimental system’s sample interval were lengthened by a factor of 10, to a one-second sam-

ple period, Figure 4.10(a) indicates that the probability of successfully tracking a target for 24

hours is less than 1%.  The success probability depicted in Figure 4.10 is somewhat conservative,

as the drift reliability analysis considered only position-based statistics, and not other image-

derived statistics, and because the expression for  is conservative.  Nonetheless, the

low success probabilities illustrated in Figure 4.10(a) indicate that improved recognition capabili-
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Figure 4.11  Success Probability with Improved Occlusion Handling
These plots replicate Figure 4.10, but with the probability of recovery after an occlusion improved from
(a) 85%, or about 1 failure in 7, to (b) 98%, or 1 failure in 50.
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ties are required to achieve long duration, long sample-period tracking.  Improved recognition reli-

ability is also important for tracking in areas of high animal density, as illustrated by

Figure 4.10(b).

Improving the quality of the segmentation subcomponent of the tracking algorithm can have a

positive effect to increase the probability of mission success.  A higher quality segmentation algo-

rithm can enable the extraction of segment statistics with lower variance, .  Lowering

variance for a fixed sample rate effectively decreases recognition number and increases reliability.

The extraction of features with less temporal drift can also enable better occlusion handling algo-

rithms with better recovery probability, .  Figure 4.11 shows the dramatic

impacts of increasing the frequency of occlusion recovery.

4.4.2 Improving Target Segmentation with the Background Difference Filter

This section leverages the segmentation efficiency analysis, discussed in Section 4.3, to develop a

higher accuracy segmentation subcomponent.  This component could be incorporated with

improved recognition techniques to improve recognition reliability (by decreasing  and

increasing ).

Segmentation efficiency analysis indicated that background difference filter, db, offers poten-

tial for very high quality segmentation.  The background difference filter cannot, however, be

applied to an image without external input.  A successive filter approach can automate generation

of this external input.  First, a gradient based method akin to the technique described in Section

4.3.3 produces a rough segmentation.  The snowless gradient filter, which reliably captures target

edge information while automatically eliminating small snow particles, works well for this first

step.  Bounding boxes are calculated around high gradient regions and passed to the background

difference filter as external inputs.  Within each bounding box, a second step calculates back-

ground difference and applies a db threshold.  The result is a more accurate segmentation for which

recognition statistics may be calculated with greater accuracy.  Figure 4.12 shows typical segmen-

tation results using gradient information only and using the augmented background difference

method.     

The refined algorithm involves the following steps:

1.  Apply the snowless filter  (open and then close the monochrome luminance image)

E v2( )

Precovery occlusion

E v2( )

Precovery occlusion
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2.  Calculate morphological gradient for the snowless image, 

3.  Apply a global threshold to identify potential target regions

4.  Calculate bounding boxes for each segmented region

5.  Synthesize a background image for each bounding box

6.  Calculate the background difference image, db, in each bounding box

7.  Apply a background difference threshold within the bounding box

(a)

(c)

(e)

(b)

(d)

(f)

Figure 4.12  A Two-Step Segmentation Strategy for Long-Sample Interval Jelly Tracking
The refined segmentation method performs segmentation by interpolating the background of (a) the
luminance image within (b) an externally defined bounding box.  The refined segmentation method
involves two steps.  First, a threshold algorithm is applied to the (c) smoothed gradient image to obtain
(d) an initial segmentation.  This initial segmentation step defines the dimensions of the bounding box,
within which an interpolation estimates the background image with the animal absent.  Subtracting the
estimated background image from the original luminance image gives (e) the background difference
image.  Thresholding the background difference image produces (f) a refined segmentation.

∇loc M
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This augmented algorithm requires more computational effort than the simple gradient-threshold

algorithm from Section 4.3.3.  In exchange for this higher level of complexity, the algorithm pro-

duces a higher quality segmentation.  For an image containing P pixels, the opening and closing

operations, based on 3x3 square structuring elements, require 16P comparisons. The operations

count to compute morphological gradient requires 8P comparisons and P subtractions.  Applica-

tion of a global threshold requires P pixel comparisons.  Each bounding box encloses Q pixels, Q

< P.  Synthesizing the background image requires 11Q multiplications and additions and 8Q table

lookups.  Calculating the background difference image requires Q subtractions.  The final thresh-

old step requires an additional Q comparisons.  The final algebraic operations count is 12Q+P

additions and 11Q multiplications.  No iteration is required.  Thus, if Q approaches P, the algo-

rithm’s computational cost greatly exceeds the 5P additions required for the basic gradient thresh-

old method.

Neither the background difference segmentation algorithm, nor a refined recognition method,

has yet been implemented for ocean testing.

4.5 Summary
This chapter introduced a design tool, called segmentation efficiency, that streamlines synthesis of

visual-tracking algorithms for new applications.  The tool restricts the subset of vision algorithms

that a designer need consider and, thus, decreases development time required for coding, for estab-

lishing ground truth, and for performing empirical experiments.  The method reduces overhead by

(1) assuming reliable performance of a general-purpose recognition strategy and (2) by quantify-

ing application-specific segmentation reliability using a general model.  In this context, the stream-

lined design approach relies on a metric, called the segmentation efficiency metric, which

evaluates the area-weighted fraction of correctly identified pixels in an image given a particular

choice of the model parameters for filtering and topological processing strategies.  Combinations

of strategies that result in high segmentation efficiency identify those classes of algorithm with

highest potential for robust segmentation performance.

Applied to the jelly-tracking task, the segmentation efficiency approach identified morpho-

logical gradient and background difference filtering, over regional topologies, as the best strategies

for reliable segmentation.  This analysis resulted in the implementation of a computational simple

but highly robust segmentation strategy based on a global threshold of morphological gradient.  A
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visual tracking system was implemented based on this segmentation subcomponent and a recogni-

tion subcomponent relying on a simple feature vector.  In field experiments, this algorithm played

a significant role in enabling long duration jelly tracking with an ROV-based pilot assist.  

To predict the reliability of the vision system for very long AUV-based deployments, this

chapter introduced the concept of the recognition number (a nondimensional sample period) to

enable a new analysis of recognition system reliability.  This analysis indicated a need for

improved recognition reliability to permit AUV-based jelly tracking with a long sample period

.  Although this chapter does not search for improved recognition features directly, it

does present an alternate segmentation strategy, based on the segmentation efficiency analysis, that

improves the reliability of the existing feature set.  The refined algorithm, which provides greater

segmentation consistency at a slightly higher computation cost, will play a role in future testing of

a low sample rate jelly-tracking system for energy-constrained AUV applications.

t∆ 1s≈( )
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Control System Design

Given conservatively estimated swimming speeds of most zooplankton during a vertical diurnal 
migration, it is clear that considerable horizontal distances can be traversed with ease in several 
hours.  Furthermore, many species at specific developmental stages or even throughout their 
entire life cycle do not migrate vertically, and one sometimes wonders how these animals really 
do spend their time.

- W.M. Hamner, S.W. Strand, G.I. Matsumoto and P.P. Hamner, 1987 [42] 

As a component of the jelly-tracking system, the control law maps the visually derived position

signal into a thrust command.  Thrust commands actuate the tracking vehicle to center the animal

in the camera viewing cone.  The constraints of the vision sensor, used simultaneously to collect

science data and, as described in the previous chapter, to detect target position, strongly influence

the control design process.  At its heart, the jelly-tracking law is a classical linear controller.  The

nature of the system hardware, however, motivates several enhancements to the control design.

Specifically, this chapter discusses a strategy to harness redundant degrees of freedom in the jelly-

tracking system to minimize thruster forces that might disturb the tracked target.  Also the chapter

describes the use of a nonlinear boundary control term and an estimator-based bias accommoda-

tion term to counter large external disturbances (transient or steady) in order to permit the use of a

low-gain control law tuned to the bandwidth of jelly motion.  This complete control system takes

into account sensor and thruster geometry, the limited viewing field of the camera sensor, and the

incorporation of a human pilot in a shared-control pilot-assist configuration.

Symbols in this and subsequent chapters are defined in the Nomenclature, pp. xix-xx.

5.1 Introduction
For low speed operations, ROV dynamics reduce, essentially, to those of a damped second order

inertia.  This form lends itself to a classical control design approach.  Indeed, the core of the con-

trol law for the experimental system uses proportional-derivative (PD) control.  This law alone,

however, does not address all of the requirements for reliable jelly-tracking in the field.  Addi-

tional considerations are required to account for system-level complexity, embodied by three
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major issues:  (1) identifying the subset of vehicle dynamics required to complete the control

objective, (2) defining control commands in the redundant vehicle degree of freedom (DoF) to

optimize secondary system goals, and (3) accounting for large disturbances given vision-system

constraints.  This chapter addresses these major issues in order to develop the control law used for

field experiments.  The chapter is organized as follows.     

The remainder of Section 5.1 discusses related work and introduces a generic baseline linear

control law, illustrated by Figure 5.1.  The baseline law issues control in four DoFs, three transla-

tional and one yaw rotational.  This classical control law provides a starting point for jelly-tracking

and assists in pinpointing application-specific issues.     

Section 5.2 considers the implications of jelly-tracking using a camera rather than a generic

sensor.  The camera sensor measures three DoF motion relative to the jelly.  Accordingly, only

three of the vehicle’s four DoFs need be actuated to accomplish the control objective.  Section 5.2

defines a subset of the plant dynamic equations required for tracking (  in Figure 5.2a).  The

control input to the plant, , is a three dimensional, based on a three-dimensional tracking error

vector,  .  (In this chapter the letters  and  refer to the dimension of a position vector and

the letters  and  refer to the dimension of a control input vector:   and ).

A cylindrical transformation is employed to decouple the DoFs required to complete the control

objective (the range space) from those redundant for jelly tracking (the null space).  The control

reference must also be redefined to maintain consistency with the control objective.

Figure 5.1  Baseline Control Law
The baseline control law actuates the tracking vehicle ( ) in four degrees of freedom.  The control
input, , is synthesized from a linear gain matrix (K) and the error in the vehicle’s position relative to a
control reference expressed in the frame of the target jelly.
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Figure 5.2  Extensions to the Baseline Control Law
Block diagrams explain modifications to a baseline control law developed in the following three sections.
Frame transformations are implicit in each block.  (a)  Section 5.2 modifies the baseline control law to
account for the use of a camera sensor.  Because the camera sensor (S) produces a three-coordinate
position measurement relative to the target, only a tracking-objective subset of vehicle dynamics, ,
need be controlled.  (b)  Section 5.3 further modifies the baseline control law to account for the actual
vehicle thruster arrangement.  A thruster map (TM) rotates and augments the dimension of the error
signal into the four degree-of-freedom (DoF) form used for vehicle input.  Flexibility in the redundant
vehicle DoF permits system optimization and enhancement of control sharing with the human pilot (HP).
(c)  Given the limited viewing cone of a real camera, Section 5.4 considers issues associated with large
environmental disturbance forces (W).  Two additional control terms, a disturbance accommodation term
(DA) and a nonlinear boundary control term (BC), help to prevent target loss.
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Section 5.3 addresses a second issue for jelly tracking:  mapping the control command into

the form used by the vehicle thrusters.  As illustrated by Figure 5.2b, the thruster map (TM) to

rotate and augment the dimension of the control input.  Flexibility in design of the thrust command

for the null space direction (orthogonal to the control objective space) permits an opportunity to

optimize system design.  The thruster map may be defined, for instance, to minimize hydrody-

namic forces produced by the vehicle thrusters which might disturb the tracked animal.  Alterna-

tively, the redundant degree of freedom may be exploited to enhance shared control between the

human pilot and the automated controller.

Section 5.4 addresses a third issue for jelly tracking:  enforcing the boundaries of the camera

image in the face of large disturbance forces on the tracking vehicle.  As illustrated by Figure 5.2c,

the section examines plant disturbance forces (W) and divides them into two categories, quasi-

steady disturbances and rapid transient disturbances.  An estimator-based disturbance accommoda-

tion term (DA) is employed to remedy offsets caused by quasi-steady bias forces.  A nonlinear

boundary control term (NL) is employed to counter rapid transient disturbances which threaten to

carry the target outside the boundaries of the camera image.

Finally, Section 5.5 summarizes the complete control law used for field jelly-tracking experi-

ments.

5.1.1 Related Work

A significant body of prior work describes the control of underwater robotic vehicles.  Fossen pro-

vides a good overview of the control challenges and the dynamics associated with hovering under-

water robots [147].  Traditional techniques, including linear classical control [153] and feedback

linearization [136], perform well in many situations.  Given uncertainty in plant parameters, an

issue of particular interest for ROV operations, many authors have also studied robust and adap-

tive control techniques.  Some of these methods include linear  control [139,140], sliding

mode control [143,144,151,163], and adaptive feedback linearization [137,150,159,165].  A large

number of these studies share a common set of assumptions, namely the pitch-roll stabilization

assumption, the axis-independence assumption, and the uniform current assumption.  These three

assumptions, described in more detail in the next section, are applied to the development of the

control law for the jelly-tracking application.

H∞
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Related Work in Experimental Tracking and Control
The requirements of jelly tracking differ somewhat from those of previous submersible control

applications and also from tracking applications in non-submerged environments.  Most other

underwater applications (employing torpedo-style vehicles), terrestrial tracking applications

(employing wheeled vehicles), and aerial tracking applications (employing fixed-wing and rotor

aircraft) have dynamic constraints and actuator constraints different from those for a fully-actu-

ated, hovering submersible.  In many ways, the closest prior analog to tracking a gelatinous animal

is ocean-floor (benthic) station keeping, also using a hovering submersible.  Vision-based benthic

station keeping experiments face many of the same environmental challenges faced by the jelly-

tracking application [106,108,110-111,115-118,120-121,124,127,131].  The primary differences

between these station-keeping applications and jelly tracking involve the requirement to minimize

disturbances to the tracked target and to respect the limits of the viewing cone.  (The plane of the

ocean floor, in benthic station keeping, rarely leaves the camera image except when holding posi-

tion near a cliff.  By comparison, a jellyfish is difficult to relocate if it leaves the camera image.)

Two prior experiments have reported the use of a submersible to track artificial targets in con-

fined test tanks [118,126].  These experiments neither faced harsh ocean conditions, nor explicitly

addressed constraints associated with tracking living targets or with tracking under constraints

associated with a camera sensor.

Related Work in Null Space Decomposition for Underwater Robots
A conventional ROV is overactuated with respect to the jelly-tracking task.  The redundant DoFs,

also called a null space, provide an opportunity to optimize the control law for the particulars of an

application.  In one underwater robot application, for instance, Sarkar investigated the use of the

null space of a thruster map to compensate for thruster failure and saturation [158].  In a separate

study, Rives decomposed the workspace for a pipe-following submersible robot into two modes,

with separate controllers for translational motion, along the pipe, and tracking motions, perpendic-

ular to the pipe [157].  This chapter combines the thruster map selection and workspace decompo-

sition concepts in the context of jelly tracking.

Related Studies of the Disturbance Environment for Underwater Robots
Large disturbances on the jelly-tracking vehicle may cause loss of the target animal outside the

camera field of view.  This chapter divides these disturbances into two groups:  (1) rapid transient
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disturbances and (2) low-frequency disturbances that remain approximately constant through time.

Previous studies have analyzed disturbances which fall into both these categories.

An important source of rapid-transient disturbances involves the vehicle thrusters.  Thrusters

are assumed to perform with a high bandwidth, significantly higher than that for the closed-loop

vehicle dynamics.  This assumption is, in general, justified by existing models of thruster dynam-

ics [138,152,161,162,164].  These models indicate, however, that nonlinearity in the thruster equa-

tions produces variable thruster bandwidth, which drops toward zero with the rotor angular

velocity.  Infrequent aggressive control is required to compensate for slow thruster dynamics in

these instances.

The dominant source of large quasi-steady disturbances, for ROV applications, is the vehicle

tether.  A study by McLain measured internal tension in the tether for the ROV Ventana [154].

These data demonstrate the need for the control law to offset significant low-frequency, high-mag-

nitude tether traction, even in the case of a neutrally-buoyant tether. 

This chapter recommends the use of a low-gain cylindrical PD control law, supplemented by

two additional control terms:  an estimator-based disturbance accommodation term and a nonlinear

boundary control term.  The low gain control law tracks motion of the animal target without

requiring significant thruster action which might influence animal behavior.  The disturbance

accommodation term counters quasi-steady biases associated, for instance, with strong tether trac-

tion.  The boundary control term provides aggressive control when the animal approaches the

edges of the camera image in order to counter transient disturbances, such as unmodelled dynam-

ics of the nonlinear vehicle thrusters.  Neither the low-frequency disturbance accommodation con-

cept [148,166] nor the boundary control concept, based loosely on sliding mode control [146], is

fundamentally new.  The synthesis of the complete jelly-tracking control system and its experi-

mental validation, however, represent a significant contribution to the underwater robotics field.

5.1.2 A Baseline Control Law

This section develops the plant model and a baseline control for jelly-tracking, as shown by

Figure 5.1.  Standard assumptions for a hovering submersible robot are applied to simplify the

plant model to a four DoF, independent-axis representation.  This form lends itself to classical con-

trol design techniques.  The baseline control does not, however, address the specific hardware and

constraints for the jelly-tracking application.  A description of these deficiencies motivates further
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extensions to the control law, which are developed in detail in the subsequent sections of this chap-

ter.

Plant Model in Cartesian Coordinates
The six-DoF equation of motion for the hovering submersible is:

(5.1)

Tether forces and the buoyancy-gravity difference are lumped into the term wT.  Hydrodynamic

forces are split into the drag force, wD, and the unsteady added-mass reaction, which is lumped

into , the vehicle’s inertia matrix.  The wτ term captures thruster forces.  All variables are vec-

tors in , except for the mass term, , which is a square matrix.  The leading w-superscript

indicates the water fixed frame.  If ocean currents are uniform and irrotational, then the water

frame is an inertial frame.

Assumption 5.1.  Uniform Current Assumption:  The length and time scales for gradi-

ents in the hydrodynamic flow field are assumed significantly longer than the vehicle

size or time constant.  Consequently local flow is considered to be a parallel current with

constant, uniform velocity (relative to the ocean floor).  

A further assumption reduces the number of controlled DoFs from six to four.  This assump-

tion involves pitch and roll motions, which are negligible for the jelly-tracking vehicle.

Assumption 5.2.  Pitch-Roll Deviations Assumed Small:  Pitch and roll axes are

assumed regulated by a passive-buoyancy moment or by active control.  Pitch and roll

angle deviations from the equilibrium trim angle are thus small.  

Indeed, pitch and roll motions are small for ROV-type vehicles, which generally have a strong

buoyancy moment produced by a vertical separation of dense components below flotation.  For the

experimental vehicle, ROV Ventana, this form of passive stabilization generally holds pitch and

roll deviations within fewer than 5° from neutral.  Assumption 5.2 is also generally valid for low-

speed, hovering vehicles that actively stabilize pitch and roll motion.  (e.g. This is the case for

Stanford’s OTTER [137] and the University of Hawaii’s ODIN [160].)

A final assumption maintains that the four remaining vehicle axes have independent dynam-

ics.  

M p··w
v Tw Dw– τw+=
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Assumption 5.3.  4-Axis Independence Assumption:  At low speeds, hydrodynamic

coupling and inertia coupling affects are neglected for the hovering submersible.

Moment terms resulting from axial tether, drag and thruster forces are also neglected.

The vehicle is assumed to be independently actuated in the three translational and in the

yaw rotational DoF.

For axis-independence, both off-diagonal inertia matrix terms and cross-coupling hydrodynamic

drag terms must be small, and the dimension of the actuator input must match the dimension of the

vehicle state space.  Also, the centers for axial thrust, hydrodynamic drag and the tether force must

approximately align with the vertical line through the center of mass, such that these forces exert

no significant moments in the yaw direction.  With pitch and roll angles assumed small, axis cou-

pling effects can be neglected, even for ROV platforms subject to large lateral tether forces applied

vertically above the vehicle’s mass center.

These assumptions are reasonable for a large ROV like the experimental vehicle, Ventana.

For other platforms, if the assumptions are not valid, a feedback linearization law is necessary to

recover axis independence [137,144].  Thus the jelly-tracking vehicle is presumed to deliver inde-

pendent four-axis dynamics.  The dynamics for the four DoF system still follow the form of (5.1),

which represents a damped second-order inertia subject to tether, buoyancy and thruster forces.

Coordinate Frames     
To describe the jelly-tracking control system requires the definition of four reference frames.

These frames are fixed to the vehicle (v), to the primary camera sensor (s), to the jellyfish (j), and

to the water (w).  The axes of the vehicle frame are assigned according to the standards of the Soci-

ety of Naval Architects and Marine Engineers (SNAME).  The vehicle xv-axis corresponds to the

surge (fore-aft) direction; the yv-axis, to the sway (lateral) direction; and the zv-axis to the heave

(vertical) direction.  The camera axes are assigned to align with the vehicle axes when the camera

points straight downward.  For this reason, the camera optical axis aligns with the zs-axis.  The

water-frame axes align with world coordinates; the zw-axis always points along the gravitational

direction, downward.  In the case of a constant, uniform current, the water frame may be treated as

an inertial frame.  Finally, the jelly-frame is defined with its origin on the centroid of the gelatinous

animal target.  Because the vision sensor does not detect the orientation of the animal relative to

the camera, the axes of the jelly frame are assigned to align with the water frame axes at all times.

Hence the jelly frame translates, but does not rotate, with the animal subject.
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ROV sensors provide full observability of motion of the vehicle frame (v) relative to the jelly

frame (j).  The stereo-camera pair measures the position vector, .  Given knowledge of the cam-

era-vehicle offset vector, , which is calibrated in advance, and knowledge of the camera angles,

the vector between the jelly and the vehicle, , may be inferred in real time.  The compass mea-

sures the relative angles between the j and v frames.  Thus the four DoF state vector  is fully

specified for the purposes of control.

Although water-relative measurements are not required for control, they are relevant for sci-

entific study.  The optional addition of a DVL instrument, which measures the water-relative

velocity, , can provide observability of vehicle motion relative to the water column.

A Baseline Control Law
This section outlines a classical control law for a second-order plant with four independent axes.

This law provides a baseline for the development of an extended control law specifically tailored

Figure 5.3  Coordinate Frames
The jelly tracking system uses four coordinate frames:  an inertial frame attached to the water, w, a non-
rotating frame attached to the jelly centroid, j, a frame attached to the camera sensor, s, and a frame
attached to the vehicle’s mass center, v.
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to details associated with the sensors, the thruster configuration and the animal target associated

with the jelly-tracking application.

The baseline control operates on the state vector , which relates the vehicle (v) to the

water frame (w) and consists of three translational coordinates, x, y, and z, and by one yaw coordi-

nate, ψ.  

(5.2)

For the case of no jellyfish motion relative to the water column, the water-fixed frame (w) and the

jelly-fixed frame (j) are identical.  Given the plant can be represented approximately as an inde-

pendent-axis inertial mass, a classical proportional-derivative law can be specified as:

(5.3)

Here the gain matrices Kp and Kd are diagonal matrices in .  Nominal gains are based on a sim-

ple estimate of the vehicle inertia.  In the field, the nominal gains may be adjusted to compensate

for variation of model parameters and for the effects of sensor noise

Control law (5.3) is, in fact, the law employed by prior researchers to demonstrate artificial-

target tracking in confined tanks [118,126].  A similar control law has also been used for benthic

station-keeping with an ROV in the deep ocean [153].

Motivation for an Extended Control Law
Issues specific to the biology application or to the system hardware are not explicitly addressed by

the baseline control law.  The subsequent three sections of this chapter address these limitations. 

A first concern involves the discrepancy in the dimension of the camera measurement (3

component position) and of the vehicle dynamic equation (4 DoF).  The control goal requires only

that the target remain centered in the camera; hence, a set of control objective equations can be

developed for the vehicle that decouple the redundant DoF.

Second, the baseline control makes no attempt to minimize water motions which might

impact animal behavior.  The redundant DoF can be exploited to optimize thruster output to reduce
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the momentum ejected by vehicle thrusters.  The redundant DoF also provides an opportunity to

construct a shared control in which the human and computer pilots cooperate to issue simulta-

neous, noninterfering commands.      

Finally, the baseline control law does not specifically account for large disturbances on the

tracking vehicle, nor does it recognize the limits of the viewing cone for the camera sensor (illus-

trated by Figure 5.4).  Given the desire to keep control gains low to minimize momentum output

by the thrusters, low and high frequency disturbance forces may introduce large deviations in the

error state.  These deviations may in turn result in loss of the target outside the camera viewing

cone.  This circumstance is to be avoided as it interrupts the sensor signal used for control and the

data stream for science.  The addition of disturbance-accommodation and boundary-enforcing

control terms helps prevent target loss while permitting thrust to remain low during normal opera-

tion.

5.2 Defining the Control Objective
The baseline system of Figure 5.1 assumes generic sensor capabilities.  The choice of specific sen-

sor hardware, including the primary (camera) sensor and the secondary (compass, camera angle)

sensors, motivates a careful definition of the control objective.  The use of physical sensor hard-

ware also involves additional frame transformations and consistent specification of the reference

Figure 5.4  Camera Viewing Cone
The figure illustrates the limited volume within which the camera can detect the jelly target.
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state.  This section details these modifications to the baseline control law, as illustrated by

Figure 5.2a.  First, Section 5.2.1 describes a cylindrical transformation of the vehicle dynamics to

decompose the plant into a set of control-objective equations required for the jelly-tracking task,

and into an orthogonal equation, that defines the tracking-law null space.  Subsequently, Section

5.2.2 describes the frame transformations and the control reference specifications required to map

the camera position signal into the control-objective space.

5.2.1 Decomposition of Vehicle Equations     

This section discusses transformation first of the vehicle kinematic states and second of the vehicle

dynamic equations into control-objective coordinates.  The control-objective coordinates, consist-

ing of the target-relative range, depth and yaw bearing, embody the requirements of effective

tracking.  The decomposition of vehicle DoFs into control objective form specifically distin-

guishes between the control range space and the orthogonal null space, which consists of DoFs not

required to accomplish the jelly tracking objective.  The key to this decomposition is a transforma-

tion of the vehicle kinematics from cartesian coordinates into cylindrical coordinates.

ψw
v

control 
reference 

xj v

yj v

xref

ψv
j

j

v

Figure 5.5  The Viewing Cone and ROV Overactuation
The figure depicts the coupling between  the ROV’s three planar degrees of freedom.  The ROV (square)
needs to control only two planar states to keep the jelly (circle) in the highlighted viewing cone.
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Decomposition of Kinematic States
Because sensors do not observe water-relative motion, vehicle position is specified in jelly-relative

coordinates:

(5.4)

The jelly-fixed frame is defined treating the jelly as an irrotational point; thus the jelly frame trans-

lates but does not rotate relative to the inertial frame (w).  In this section, the camera sensor is

assumed to be attached rigidly to the vehicle, so that the sensor frame (s) and the vehicle frame are

equivalent.  This assumption will be relaxed in Section 5.2.

The jelly-tracking objective requires that the target remain at a fixed position relative to the

camera sensor.  The horizontal pixel location of the target in the video image depends on the rela-

tive bearing between the target and vehicle, .  The relative bearing in turn depends on the vehi-

cle yaw heading, , and vehicle translation in the horizontal plane.  Setting aside the vertical

degree of freedom (under the axis-independence assumption), the vehicle retains three in-plane

actuated DoFs, but requires only 2 in-plane actuated DoFs to perform the tracking task. This fact is

illustrated by Figure 5.5.  In the figure, the x-axis of the jelly frame can be defined, without loss of

generality, to pass through the control reference position, offset from the jelly by a distance .

The relative bearing angle is a nonlinear combination of yaw heading and the vehicle’s position in

the horizontal plane.

(5.5)

Chapter 2 recommends a minimum standoff distance for biological observation of approximately

.  Equation (5.5) simplifies for the case of small errors relative to the standoff distance,

.  Here, the error vector is the location of the tracking vehicle relative to the control ref-

erence.

(5.6)
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For the case of small errors,  can be suppressed in  (5.5), with .  Also, a small angle

approximation for the tangent function in (5.5) may be applied since .  The resulting

small error approximation is (5.7).

(5.7)

Thus for small errors, the relative bearing angle is a linear combination of yaw heading and lateral

position errors.  Thus, the control objective may be implemented using yaw actuation alone, lateral

actuation alone, or actuation in both directions simultaneously.

The linear baseline control, (5.3), encounters problems for large errors, at which the assump-

tions underlying the relationship (5.7) break down.  To maintain this two-coordinate, linear rela-

tion at large angles requires a transformation of the state vector, (5.4), from Cartesian coordinates

to cylindrical coordinates.  

The cylindrical coordinate system, like the Cartesian, is centered on the jellyfish and trans-

lates, but does not rotate, with respect to the inertial frame.  The cylindrical coordinate system,

illustrated in Figure 5.6, is described by the following state vector.     

(5.8)

In this expression, the coordinate  denotes a range from the animal to the tracking vehicle,

 denotes the vehicle’s circumferential location,  denotes the depth differential, and 

denotes the vehicle heading.

The cylindrical coordinate system inherently decouples two coordinate axes critical for the

jelly-tracking task:  the relative range and the relative depth.  The third coordinate axis required to

stabilize the position of the viewing cone around the target animal is the yaw bearing angle.  In

cylindrical coordinates, the yaw bearing is an affine combination of the components of (5.8).  

 (5.9)
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This equation has the same form as (5.7), but does not rely on a small-error approximation.  The

affine offset of  in (5.9) may be removed through a redefinition of the relative bearing angle,

, to incorporate the offset.

Thus the set of kinematic states required to accomplish the jelly-tracking control objective

may be captured by a linear projection matrix, .

(5.10)

The corresponding null space projection, , describes the DoF that does not impact the jelly-

tracking objective.

(5.11)
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Figure 5.6  Jelly-Tracking Coordinate Systems
Two coordinate systems are compared:  (a)  Cartesian and (b) Cylindrical.  In both diagrams, the circle
indicates the jelly target.  The square indicates the ROV  
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The full rank matrix, , combines the range and null space projections.  

(5.12)

In effect transformation by  decomposes the cylindrical kinematic states according to the

requirements of the jelly-tracking control objective.

(5.13)

(5.14)

The new control-objective vector incorporates the three tracking coordinates (relative range, bear-

ing to the target, and relative depth) as well as the null space coordinate, .

Decomposition of Dynamic Equations
The decomposition operator, , can further be applied to decompose the vehicle dynamic equa-

tions.  This section first develops the vehicle dynamic equations in cylindrical coordinates and

then decomposes them into the range and null spaces for the tracking objective.

As an intermediate step in deriving the cylindrical motion equations, it is useful to first trans-

form the inertial dynamics of (5.1) into the cartesian jelly-fixed frame.  This transformation

between the water-fixed frame, w, and the jelly-fixed frame, j, generates an acceleration pseudo-

force, .

(5.15)

Because the jelly-fixed frame is defined to translate with the target jelly, but not to rotate with

respect to the inertial frame, the yaw component of  is zero.  Incorporating this pseudoforce

term, the jelly-frame dynamics for the tracking vehicle are as follows.

(5.16)
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As expressed by (5.16), the drag force in the jelly-fixed frame is a function of both this unobserved

jellyfish velocity, , and the observed jelly-relative velocity, .

A second transformation takes the dynamics of the vehicle in the jelly-fixed frame from Car-

tesian coordinates, as expressed by (5.16), into cylindrical coordinates.  New inertial terms, associ-

ated with the Coriolis and centrifugal pseudoforces, appear in this transformation:

. (5.17)

Incorporating the pseudoforce vector, , the vehicle equations in cylindrical, jelly-fixed coor-

dinates are 

. (5.18)

The drag, tether, and thruster forces (jD, jT, and jτ), along with the inertial acceleration term associ-

ated with jelly swimming, , must all be rotated through the transformation matrix, ,

which relates Cartesian and cylindrical coordinates:

. (5.19)

The cylindrical dynamic equation (5.18) isolates acceleration for two of the three coordinates

required to accomplish the jelly-tracking control objective:  range and depth.  The acceleration for

the third objective coordinate, relative bearing, is a linear combination of yaw and circumferential

acceleration.

(5.20)
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Based on this linear relationship, the decomposition of the dynamic equations requires, simply, a

multiplication of (5.18) by the decomposition matrix, .  The resulting dynamic equation,

decomposed in terms of the jelly-tracking objective and its null space, is

. (5.21)

The acceleration vector, , is the second derivative of the position vector expressed in

control-objective coordinates, (5.14).  For control purposes, it is useful to rewrite the dynamic

equation (5.21) to separate the control term and convert it, also, to tracking-objective coordinates.

The following equation, (5.22), shifts the control term to the left side of the equality; the remaining

forces, treated as disturbances, remain on the right side of the equality.

(5.22)

The tilde in the term  represents normalization by the inertia matrix, .  In effect, (5.22)

describes the revised plant dynamics block, , illustrated in Figure 5.2a.

5.2.2 Specifying a Consistent Control Reference and Error State

The previous section did not distinguish between the vehicle frame (v) and the sensor frame (s).

This section discusses the frame transformations necessary to align the control error measurement

with the vehicle dynamic equations, (5.22).  These transformations are embedded in the S block in

Figure 5.2.  The frame transformation also affects the definition of the reference state.  

The experimental system defines the reference state using a position-based visual servoing

strategy to avoid discrepancies associated with uncertainties in frame transformations.  This sec-

tion describes both position-based visual servoing (PVS) and the alternative approach commonly

employed in the vision literature, image-based visual servoing (IVS).  A comparison of the tech-

niques establishes the advantages of the PVS approach for the jelly-tracking application.  Whereas

the PVS framework controls vehicle position, the IVS framework controls camera position.  As

such, PVS forms an error vector that incorporates the camera-vehicle offset.  Formed directly in

the camera frame, the IVS error state need not include the camera-vehicle offset.  With IVS, how-

ever, the dynamic equations must be transformed into the camera frame (through the offset rota-
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tion and translation) to design a control law that stabilizes camera position.  Figure 5.7 illustrates

the error states defined for each of these two approaches.      

Offset uncertainty, in the form of an unknown bias, occurs commonly in field operations.  It is

assumed that measurements of the angle and translation offsets between the camera focal point and

the vehicle mass center contain bias errors.  Measurements by the camera angle sensors, in partic-

ular, contain biases that result from frequent vehicle reconfiguration, from shifts caused by rough

seas, and from sensor drift.  These errors, in turn, bias transformation of vectors between the sen-

sor frame (s) and the vehicle frame (v).  Because PVS and IVS incorporate the camera-vehicle off-

set differently, unknown biases affect each of these methods in a different manner.

For the PVS approach, used in the experimental platform, the Cartesian position measure-

ment of the jelly in the sensor frame, , was transformed into a cylindrical position in the vehicle

frame, .  Here the vector is labeled  instead of  to reflect the reduced dimension

.  Biases in the camera-vehicle offset measurement would result in steady state

errors if the control reference were specified in the jelly frame.  To subtract out the effects of

uncertainty in the camera-vehicle offset, the control reference must be defined in the camera frame

Figure 5.7  Defining the Error State
Two error state formulations are compared:  (a) Position-Based Visual Servoing (PVS) and (b) Image-
Based Visual Servoing (IVS)
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and must undergo the same transformation as the target position measurement.  Thus the control

reference is defined in the sensor frame at a scalar distance along the optical axis, .

(5.23)

In PVS, a first step in transforming both the control reference and the sensor measurement

involves the operator , which converts vectors from the sensor frame, s, into the vehicle

frame, v.

(5.24)

Here the rotational offset between the sensor and the vehicle is captured by the rotation matrix,

.  The translational offset is captured by the vector .  Following this transformation, a sec-

ond transformation takes the control reference and sensor measurement vectors from Cartesian to

cylindrical coordinates.  This is a nonlinear operation, .

(5.25)

The PVS error vector is based on a difference of transformations reference vector, , and the

transformed target position vector, :

(5.26)

By subtracting two vectors transformed by the same process, the PVS error formulation yields a

zero value when the reference and target positions align, even when subject to an unknown bias in

the camera-vehicle offset.  The error vector in tracking-objective coordinates, , is simply the

negative of (5.26).
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(5.27)

A feedback control law based on this term defines a range-space thruster input, , that,

supplemented by a null space control component, , defines the full four-DoF input, .

(5.28)

The full four-DoF thrust serves as the input to the objective-space plant model, given by (5.22).

By contrast, the IVS error vector would be formed by converting the reference and target

position vectors into cylindrical coordinates in the camera frame and subtracting.

(5.29)

Here the transformation into cylindrical coordinates, , has a form analogous to (5.25).

The error vector can be expressed in a set of tracking-objective coordinates centered on the sensor-

frame, .

(5.30)

To stabilize the camera using this error vector requires that the vehicle dynamic equation, (5.22),

be transformed into the cylindrical coordinate system centered on the camera sensor.  Based on the

kinematic relationship between the camera and sensor frames, defined by (5.24), the 4-DoF sen-

sor-frame equations in control-objective form are as follows.

(5.31)

The dynamic equations are those for a two-link serial dynamic chain, with the first link from the

jelly target to the vehicle mass center and the second link from the vehicle’s mass center to the sen-

sor focal point.  The acceleration forces associated with the first link, , are identical to those

described by (5.17).  The acceleration forces associated with the second (vehicle-to-sensor) link

are .
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(5.32)

This pseudoforce vector consists of a tangential and a centripetal acceleration term, but no Coriolis

term.  Also, the  moments on the camera sensor are transformed by the  matrix which depends

on the forces on the vehicle and the moment arm to the sensor.

(5.33)

The nonlinear term (5.32) is not negligible and must be considered in formulating an IVS

control law that stabilizes camera location, rather than vehicle location.  Moreover, because the

bias uncertainty in the measurement of the vehicle-camera offset does not subtract out of the IVS

dynamic equation (5.31), an adaptive capability may be required to estimate this bias on-the-fly.

Because of these complexities, the position-based visual servoing approach was selected over the

image-based visual servoing approach in designing the control law for the experimentally fielded

system.

5.3 Null Space Applications
The baseline system of Figure 5.1 assumes generic actuation capabilities.  Accounting for the spe-

cific actuator configuration of the experimental platform motivates additional changes to the

generic baseline control law.  Figure 5.2b illustrates these refinements related to the thruster

arrangement of the experimental ROV.  A new thruster map block (TM) rotates and augments the

dimension of the three-DoF control-objective signal to generate a control input that takes advan-

tage of the vehicles full four-DoF actuation capabilities.  The specification of the null space thrust

command, , permits a degree of design freedom.  The null space thrust can be selected arbitrarily

to optimize jelly-tracking goals secondary to the primary tracking activity.  This section focuses on

two implications associated with the choice of a the null space thruster command:  (1) minimizing
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the effect of water motions on tracked animal behavior and (2) reducing the interaction between

the human pilot and the automated controller during shared control.  This section also considers a

minor modification to the plant dynamic equations, (5.22), to account for the thruster transducer

coefficients associated with the experimental vehicle.

5.3.1 Applying the Null Space to Minimize Thrust

This section considers means of exploiting the vehicle null space control command, , to accom-

plish other task goals in addition to the primary tracking task.  A first significant goal involves the

use of the null space dimension to minimize total vehicle thrust output.  (Simply setting  to zero

does not minimize the summed thruster force.)  Reducing vehicle thrust, in turn, reduces the

chances of triggering target behavior through a hydrodynamic stimulus.  

Thruster Map
In terms of the control software, control commands for the experimental system are always issued

in the vehicle frame.  With regard to the system block diagram, this fact requires the addition of a

new thruster map block (TM).  Figure 5.2b illustrates this change.  As indicated by the figure, the

three-DoF control command in objective coordinates,  must be translated into the vehicle

frame and augmented in dimension.  The output of the thruster map is the four-DoF thrust com-

mand in vehicle coordinates, .  

(5.34)

Here the decomposition matrix, , is the same matrix used to decompose both the vehicle kine-

matic states and dynamic equations into a three-coordinate range space and a one-coordinate null

space (see Section 5.2.1).

Designing the Null Space Control Input to Minimize Vehicle Thrust Force
The null space thrust  can be chosen arbitrarily without affecting the tracking control law.  The

null space command may be chosen, for instance, to minimize the overall thrust output of the vehi-

cle.  This reduces the impact of the thrusters in stirring the hydrodynamic environment around the

vehicle, an effect which reduces thruster impact on the animal’s habitat and behavior.  Thrust
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forces are minimized for a specific choice of  not equal zero.  This choice of  may be deter-

mined by examining the relationship between the control command and the thruster output:

. (5.35)

The thruster force output, , consists of a three component force vector and a yaw force couple,

all expressed in cartesian coordinates centered on the vehicle.  Thus  has pure force units, as

compared with , which mixes force and torque units (normalized by vehicle mass).  The

moment-arm conversion matrix, , enables this transformation.

(5.36)

By combining the three previous equations, a relationship is established between  and the result-

ing thruster force output.

(5.37)

The goal is to choose  to minimize the total thruster force (or one-norm), .  A brief analy-

sis shows the optimization of the thrust-force norm calls for zero lateral thrust or zero yaw thrust,

depending on the parameters of the experimental vehicle.

In assessing the norm of (5.37), it is convenient to remove two unitary rotation matrices,

which do not affect the norm magnitude.  The cylindrical transformation matrix, , is the prod-

uct of a scaling matrix, , and a rotation matrix, .

(5.38)
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The matrix  is also a rotation matrix (through the compass heading, ).  These rotation matri-

ces commute with the  matrix because of their particular structure.  The  matrix has

the following form:

(5.39)

The  matrix incorporates the moment arm, l, the vehicle scalar mass, m, and the vehicle iner-

tia expressed in terms of the radius of gyration, .  Matrix commutation is allowed because the

rotation matrices have only scalar diagonal entries in their fourth row/column and because the

 matrix is structured as an identity block with only a scalar diagonal entry in the fourth row/

column.  

Commuting the rotation matrices results in (5.40).

(5.40)

In this form, it is clear that the rotation matrices have no effect on the thrust vector magnitude.  A

rotated thruster force vector, , may be defined based on (5.40).

(5.41)

The rotated thruster vector has the same magnitude as the original thruster vector, because the rota-

tion matrices are unitary.

(5.42)

The expression for the magnitude of the thruster vector is thus

. (5.43)
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The leading matrix terms on the right hand side form the following product:

. (5.44)

Thus, the thrust vector magnitude is

(5.45)

where

 . (5.46)

The slope of the total thrust vector with respect to the null space thrust, , is never

zero if .  Rather, the minimum thrust occurs at the discontinuities, where .  The

geometric parameter  determines at which of the discontinuities this minimum lies.

(5.47)

According to the definition of the null space in (5.12), the former case , results in zero net

thrust in the circumferential direction about the jelly.  The latter case , results in zero net

thrust in the yaw direction.

Thus, in effect, the parameter  represents the effectiveness ratio of circumferential to yaw

thruster forces in commanding relative yaw bearing.  Given the geometry (κ=0.98, l=0.64) of the

experimental platform, ROV Ventana, yaw thrust will outperform circumferential thrust when the

range to target, , exceeds 1.3 meters.  For experimental operations,  generally exceeds 2.4 m

(since the camera stands approximately 1.4 m from the vehicle mass center and since the biologi-

cal standoff distance adds an additional 1 m).  Consequently,  is always less than unity, for the
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experimental platform, and yaw thrust always outperforms circumferential thrust.  This perfor-

mance advantage could be further amplified in a dedicated jelly tracking AUV by increasing the

thruster separation, l, while maintaining a small radius of gyration, κ (see Figure 5.8).     

In the context of (5.47), the thruster map (TM) block of Figure 5.2b may be expressed as the

following linear matrix:

(5.48)

where

. (5.49)

In effect, this thruster map sets the vehicle’s circumferential thrust component to zero.

l

κ

Figure 5.8  Geometry for a Dedicated Jelly Tracking AUV
This figure shows three orthographic views of a concept AUV dedicated to jelly tracking.  The AUV
design uses a large interthruster distance, l, and a small radius of gyration, k, to maximize yaw
performance.
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5.3.2 Applying the Null Space to Noninterfering Shared Control

In addition to offering an opportunity for optimization of the thruster output magnitude, the control

null space also provides a convenient method for control sharing between the automated controller

and a human pilot.  The total control command to the tracking vehicle is the sum of a pilot control

command, issued through a joystick, and the automatic control command.  The block diagram of

Figure 5.2b illustrates this superposition of control commands, where the human pilot input is

denoted as HP.  The pilot need only issue commands during the initialization phase of a jelly-

tracking experiment; however, the pilot maintains the option to issue supplementary control com-

mands at any time to modify the appearance of science video.  

In ROV-based jelly tracking, the pilot plays an important role in determining viewing orienta-

tion relative to the target.  Vision-processing algorithms used for experiments (described in Chap-

ter 4) do not sense the relative orientation of the target to the tracking vehicle.  Consequently, the

automated control laws presented in this chapter do not stabilize perceived target orientation.  In

contrast, a human pilot viewing video transmitted from the tracking vehicle can quickly infer the

orientation of gelatinous target.  Acting on this knowledge, the human pilot can control the view-

ing direction toward the target, within the actuation capabilities of the tracking ROV.  This capabil-

ity permits a scientist to request a human pilot to circle around the target animal to obtain a

preferred viewing orientation.  For instance, the scientist might request the pilot to slide around a

medusa to view its subumbrellar surface and the contents of the animal’s stomach.

The human pilot can issue such a command without affecting automated tracking by using the

control law null space.  To accomplish this action, the pilot must simultaneously issue circumfer-

ential and yaw commands that keep the target animal centered in the camera image while sliding

the tracking vehicle circumferentially around its target.  Using the independent-axis dynamic

assumptions of Section 5.1, these combined actions can be trivially reduced to a single pilot com-

mand.  In practice, limited coupling between circumferential motion and the tether yaw bias com-

plicate the relationship.  Experiments in null-space control sharing are described in Chapter 6.3.

5.3.3 Thrust Signal Pathway

This section considers details specific to the experimental platform (inside the  block of

Figure 5.2b) that affect the implementation of the control law.  A first detail involves the units of

the control signal sent to the ROV Ventana.  A second detail involves the commutivity of the linear

Vj
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control gain block (K) and the thruster map block (TM) for the experimental platform.  This com-

mutivity allows the thruster transducer coefficients to be wrapped into the control gain expression;

the result simplifies control system implementation without otherwise affecting the feedback loops

illustrated by Figure 5.2.

Thruster Transducer Coefficient
Control commands are issued to the Ventana Control Computer (see Chapter 3) as proportional-

thrust commands.  These commands are unitless, and are scaled by the system pathway (through

the Ventana Control Computer, through the ROV’s hydraulic power distribution system and

through the ROV’s thrusters) to have force or moment units.  A set of transducer coefficients, ,

defines the relationship between each unitless thrust command and the physical output produced

by each thruster channel.  These transducer coefficients thus represent a scaling factor between the

desired mass-normalized thrust command ( ) and the actual signal issued by the Pilot-Assist

Computer to the Ventana Control Computer.  Approximate values for Ventana’s thruster transducer

coefficients are listed in the Appendix to this dissertation.

Thrust commands are issued in an open-loop fashion.  The Ventana system does not employ

load cells, encoder wheels, or other sensors to detect actual thrust output or actual rotor velocity.

Thrust commands are simply accepted by the Ventana Control Computer, mapped to invert system

nonlinearities, and output to the thrusters.  Thruster dynamics are assumed to be of a higher band-

width than closed-loop vehicle dynamics and thus to quickly achieve their steady-state thrust val-

ues.

In terms of the block diagram of Figure 5.2b, the thruster transducer coefficients are internal

to the plant model block, .  Figure 5.9 shows the internal structure of the plant block, which

was suppressed in the earlier block diagram.  This internal structure represents the pathway of the

control signal from the pilot-assist computer through the vehicle thrusters.  First, the requested

thrust vector is modulated in the Pilot-Assist Computer by a factor of  to account for the

thruster transducer coefficient.  The resulting nondimensional signal is sent to the Ventana Control

Computer which maps the signal through a nonlinear block, , that inverts the steady-state

performance curve of the ROV’s hydraulic system.  These signals travel to the ROV via a tether.

The hydraulic system of the ROV, .  The hydraulic system commands the thrusters which, in
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v
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effect, scale the thrust command by the transducer coefficient, .  These forces and force-couples

drive the plant dynamics, .

Control Gain Commutivity
Because the inverse-transducer coefficients, , are implemented by the Pilot-Assist computer,

they may be folded into the control gains.  To lump the control gains and inverse-transducer coef-

ficients, however, requires that both the  and the  blocks be expressed in a common frame.

Frame alignment was accomplished for the experimental system by taking advantage of the spe-

cial-case commutivity of the thruster mapping  and the linear control  blocks.

The TM and K blocks are not, in general, commutative.  Given the special structure of the

control objective function and the null space design choice that sets the circumferential control

command to zero (Section 5.3.1), the blocks are commutative for the experimental system.  In

essence, the three control gains in the control-objective coordinate system map directly into the

control gains in the vehicle-fixed coordinate system.  The vertical axes are the same for both coor-

dinate systems.  Relative-bearing commands in control-objective coordinates map directly into the

vehicle-frame yaw command, since the circumferential control component is set to zero.  Finally,

range commands in control-objective coordinates map into both the vehicle fore-aft and lateral

f̃
V

1 f̃⁄TMK̃ Σ NL 1– NL f̃

Vj
HP

K̃ f̃⁄TM Σ NL 1– NL f̃

Vj
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1 f̃⁄

Theory

Implementation

V

V

Figure 5.9  Block Diagram Algebra:  Control Block for Experimental System
The implemented experimental system manipulates slightly the block diagram of Figure 5.2b-c, but is
functionally equivalent.  In effect, the implemented system takes advantages of the zero-value
circumferential control command to commute the K and TM blocks; under these conditions, the thruster
transducer coefficient may be folded into the control gain block.
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directions, depending on relative bearing to the target.  By setting the control gains equal for both

axes (again, because the circumferential control component is always zero), a uniform range gain

is effected, regardless of vehicle orientation.

Thus for the experimental system, the control gain block and the inverse-transducer coeffi-

cient block are merged into a common  block.  The result simplifies implementation without

affecting the function of the feedback loops illustrated in Figure 5.2.  In this context, control gains

were set as follows:

(5.50)

These control gain values were chosen based on ocean-floor station-keeping tests and on their

properties to reject animal acceleration, as discussed in the following section.

5.4 Countering Large Disturbance Forces
The previous sections discussed aspects of control law implementation associated with system

sensor hardware and with system actuators, respectively.  This section introduces an additional

aspect of implementing a control system for field experiments:  knowledge of the disturbance

environment.  In the context of a visual sensing system with a limited effective viewing cone, large

disturbances may carry the target outside the sensing volume.  Such events are highly undesirable,

as they interrupt both the control signal and the collection of scientific data.

This section overviews the major disturbances on the jelly-tracking system (illustrated as W

in the block diagram of Figure 5.2c).  The linear control block, , counteracts disturbances caused

by jellyfish swimming.  Control gains are set only high enough to track animal acceleration; low-

gains limit sensitivity to sensor noise and reduce jittering vehicle motions which might disturb the

target animal.  With low gains, however, the linear control law cannot prevent target loss from the

viewing cone under large plant disturbances.  This section augments the classical controller with

two additional control terms that offset large disturbances:  a disturbance-accommodation term

that counteracts low-frequency bias forces and a boundary control term that acts aggressively in

K̃ f̃⁄

K̃p

f̃
------ 20 20 10 20=

K̃d

f̃
------ 10 10 5 10=

K̃



150 CHAPTER 5.  CONTROL SYSTEM DESIGN

cases of high-frequency disturbances.  Figure 5.2c illustrates these additional control terms as the

DA and BC blocks, respectively.

5.4.1 Acceleration of the Animal Target

Motion of the jelly-target generates an inertial pseudoforce term, , in the dynamic equations

that describe relative motion between the tracking vehicle and the animal subject.  Rejecting these

disturbances is the major function of the linear tracking control law.  To enable successful closed-

loop tracking, the bandwidth of the tracking law must match the bandwidth associated with target

motion.  The dynamic equation for the target animal is a first-order differential equation for animal

acceleration, relative to the water.

(5.51)

Sample values for the drag function, , and the thrust production term, , are described for

medusae in Chapter 2, with equations (2.3) and (2.4).  For a given animal, the drag function, thrust

production, and the added mass coefficient, , vary throughout the swimming cycle.  Thus, it is

useful to introduce a period averaged dynamic equation.

(5.52)

As bandwidth is only defined, in a strict sense, for a linear transfer function, the drag term is here

approximated with a representative linear coefficient, .

For a linear first-order differential equation, the transfer function’s crossover frequency

approximates its bandwidth.  The crossover frequency, , is related to the 90% rise time, , by

the following relationship:

(5.53)

For bell-swimmers, the rise time for the period-averaged velocity occurs over approximately 4-5

pulsing periods [29].  Although the pulsation period may be slightly reduced during acceleration

from rest to escape or cruise velocities, a reasonable approximation for rise time is given by (5.54).
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(5.54)

Here the pulsation duration is described as the inverse of the pulsation frequency, , measured

in Hz.  Values of  for a wide variety of animals are described in Chapter 2 (Table 2.3,

Table 2.4, and Figure 2.5).  For large animals, pulsation frequencies may be as low as 0.1 Hz.  For

small animals, pulsation frequency may be as high as 3 Hz.  Thus the approximate bandwidth of

the target animal’s motion falls between 0.06 rad/s and 1.7 rad/s, depending on animal size and

species.

Whether or not a tracking vehicle can effectively pursue an animal depends primarily on its

bandwidth (and to a lesser extent, on its maximum velocity and the size of the viewing cone).  For

the ROV Ventana, used in experimental trials, the closed-loop bandwidth which resulted from the

gain choice of Section 5.3.3 was approximately 0.7 rad/s (see Appendix).  Thus the experimental

system was capable of tracking most jellyfish targets during an acceleration from rest to active

swimming.  Animals that accelerate unusually fast, like free-swimming larvaceans, some siphono-

phores, and medusae of the Family Rhopalonematidae, however, do exceed the bandwidth capabil-

ities of the experimental pilot-assist system.

The tracking controller also responds, in some degree, to instantaneous velocity oscillations

of pulsing jellies.  The relationship between the pulsation frequency and the period-averaged

crossover frequency is obtained by combining (5.53) and (5.54).  

(5.55)

Approximately one order of magnitude separates the period-averaged cross-over frequency from

the pulsation frequency.  Because the experimental jelly-tracking system was designed with fixed

gains, tailored for response to faster moving animal targets, the jelly-tracking system effectively

tracks the instantaneous velocity of large animals with low pulsation frequency.  The experimental

system will, however, filter out some of the oscillations in instantaneous swimming velocity for

animals whose period-averaged bandwidth falls near the ROV’s closed-loop bandwidth (~0.7 rad/

s).
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5.4.2 Other Disturbance Forces

Jellyfish acceleration represents a relatively small plant-model error.  Other larger forces on the

tracking submersible, however, may lead to substantial excursions in the relative error state.  This

section examines these unmeasured disturbance forces and their impact on jelly-tracking.  

The primary system disturbances are described by the right hand side of (5.22), which is

repeated here.

(5.22)

In addition to inertial pseudoforce associated with jellyfish acceleration, , these disturbance

forces include the tether and buoyancy forces, grouped in ; the vehicle drag, ; and

the nonlinear Coriolis and centrifugal acceleration terms, , which result from circumferential

motion about the target.  An additional modelling disturbance may result from a discrepancy

between the desired control force, , and the actual force delivered by the thrusters, .

This section considers each of these disturbance forces in greater detail.

Buoyancy-Gravity Differential
Most underwater vehicles are trimmed to achieve a slight positive buoyancy, with average vehicle

density just less than that of seawater.  Trimming the vehicle near neutral buoyancy reduces the

thrust requirement to maintain vehicle depth.  The slight offset towards positive buoyancy offers

two practical operational advantages.  First, in the event of a vehicle shutdown, positive buoyancy

ensures that the vehicle eventually returns, albeit slowly, to the ocean surface.  Second, positive

buoyancy slightly reduces the need for downward thrust and helps to control the sediment clouds

which may result from downward thrust during operations above the ocean floor.  Thus, for most

operational configurations, the buoyancy-gravity differential introduces a small force bias in the

vertical direction.

Tether Forces
For ROV-based jelly-tracking operations, the vehicle tether exerts significant forces on the track-

ing vehicle.  In experiments with the ROV Ventana, the vehicle tether was maintained at neutral

buoyancy by attaching football-shaped floats along the tether length.  This neutral-buoyancy com-

pensation technique mitigated the high-loads otherwise associated with taught, negatively buoyant
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tethers, including snap loads resulting from sudden surface waves [145].  Compensating for tether

weight also removes the restoring force associated with the tether’s natural preference to hang ver-

tically, as described in the tether model used by Corradini [143].  Even without the affects of grav-

ity loading along the tether, significant tether tension forces have been measured in Ventana’s

neutrally buoyant tether.  Figure 5.10 plots measurements of tether tension for the Ventana vehicle,

as reported by McLain [154].  As the figure illustrates, a low frequency component dominates the

energy spectrum of the tether tension signal.  Because tether tension measurements are not cur-

rently available in real time, this traction may be modeled approximately as a strong low-fre-

quency bias force, , plus a random higher-frequency component of smaller magnitude, .      

(5.56)

The direction of tether traction is expected to remain approximately constant in the jelly frame

over time.  Because the gravity-buoyancy differential also remains fixed in the jelly-frame, the

tether and buoyancy terms are lumped together in the expression .

Tj T 'j

Figure 5.10  Tether Tension Measurements
ROV Ventana tether tension measurements from September 10, 1991, as reported by McLain  [154].
Tether tension can be quite high.  During this station-keeping run, loads reached as high as 220 lbs;
during another run, tension loads briefly reached a peak of 600 lbs.   The majority of the signal power, as
seen in the frequency domain plot, resides at low frequencies.  The power at frequencies below 0.02 Hz is
more than four orders of magnitude greater than the power at 0.5 Hz.
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Hydrodynamic Forces
Hydrodynamic forces resist vehicle motion.  An added mass term, associated with the acceleration

of ocean water as the submersible robot accelerates, is incorporated in the inertia matrix, .  Fric-

tion forces, that depend on the vehicle velocity relative to the water, , are incorporated into the

drag term, .  The water-relative velocity is not observable using the jelly-tracking vision sensor,

which detects only the component of vehicle velocity relative to the target animal, .  The vehi-

cle velocity vector, relative to the water, consists of an additional, unobserved component:  the

velocity of the jelly, .

(5.57)

In this equation, the transformation between velocities in the jelly-frame and the water frame, ,

is an identity matrix.

The magnitude of the target velocity, , depends on animal behavior.  Typical behaviors,

as described in Chapter 2, consist of ambush predation, filter feeding and slow-trawl foraging.

Animals which hunt by ambush or filter-feeding remain motionless for long periods of time, with

.  Ambush hunters may, however, move quickly over short time periods to flee a predator

or to seek new hunting grounds.  This assumption for ambush hunters, a group consisting of many

species of siphonophore and prolate medusa, also applies to stationary filter feeders, like lar-

vaceans.  These behaviors contrast with the motion behavior of slow-trawl foragers, a class which

includes ctenophores, oblate medusae and large siphonophores.  Foragers move slowly, nearly

continuously through the water column.  The magnitude and direction of period-averaged velocity,

, are approximately constant in the water-fixed frame.

Because period-averaged animal velocity changes infrequently for both ambush hunters and

foragers, this unmeasured water-relative velocity also introduces a small, low-frequency bias force

offset through the drag term, .  In concept, this swimming-drag term could be estimated

through DVL measurements or even through visual-processing techniques [122].  For the purposes

of the experimental tracking system, however, the steady drag term acts similarly to the tether

force.  Thus a new low-frequency force term, , can be introduced to capture the quasi-steady

contributions of the buoyancy, tether and drag forces.

(5.58)
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The nonlinearity of the total drag force, , makes it difficult to fully decouple the

contributions of drag due to the motion of the jellyfish and due to the relative motion of the vehi-

cle.  

(5.59)

Because the total drag function, , is monotonic and dissipative, however, it can be stated that

the remaining drag component due to the relative vehicle motion, , is always disipa-

tive.   Thus, even though the remaining component of drag cannot be modeled explicitly, for lack

of knowledge of , it can be stated that this term has a stabilizing effect on the control law, as it

always acts to remove energy from the system.

Cylindrical Acceleration
The transformation of the vehicle dynamic equations into a cylindrical coordinate system intro-

duces the curvilinear pseudoforce vector, .  This pseudoforce vector contains a centripetal

term, , and a Coriolis term, .  Since both terms have

strong dependence on circumferential angular velocity, , it is possible to neglect these terms

when  is small.  Figure 5.11 plots the magnitude of the centripetal and Coriolis forces as a

function of circumferential velocity for jelly-tracking with the experimental platform, ROV Ven-

tana.  The figure assumes a typical reference radius, , of about 2.5 m (see Section 5.3) and the

nominal vehicle dynamic parameters described in the Appendix.  For clarity, the figure expresses

pseudoforce terms as normalized by Ventana’s maximum lateral thruster output; also, circumferen-

tial velocity is normalized by the vehicle’s terminal velocity (its velocity at maximum thrust, bal-

anced by the drag force):  .  For the Coriolis force term, the radial

velocity, , is assumed to have a worst case value of 20% of terminal velocity.     

Under this assumption, the figure shows that centripetal and Coriolis pseudoforces grow to a

significant fraction of vehicle thrust only when the circumferential velocity grows very large.

When the vehicle travels at circumferential velocities below one-third of its terminal velocity, the

magnitude of both pseudoforces remains smaller than 10% of maximum vehicle thrust.  In this

context, it is possible to neglect the coriolis and Centripetal forces for typical operations with ROV

Ventana.  Sudden brief burst of lateral speed may result in large transient pseudoforce, however.
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Thruster Forces
The vehicle plant equations, (5.22), were developed without considering thruster dynamics.  In

general, it is valid to neglect thruster dynamics for the experimental ROV, since thruster band-

width, in a linearized sense, is approximately 10-15 rad/s, an order of magnitude greater than vehi-

cle maximum closed-loop bandwidth, approximately 0.7 rad/s.  Nonetheless, this assumption does

not hold true under all conditions.  As discussed by Yoerger [164], nonlinearity in the thruster

dynamic equation makes open-loop thruster bandwidth a function of the angular velocity of the

thruster rotor.  Yoerger proposes the following one-state thruster model.

(5.60)

(5.61)

In the preceding equations, the rotational velocity of the thruster is .  The term  refers to

the desired thrust command while  refers to the generated thrust.  The  are constant thruster

parameters.  If the two preceding equations are combined to eliminate , the following equation

results.

Figure 5.11  The Magnitude of Curvilinear Disturbance Forces for the Experimental System
These plots describe the relative magnitude of the centripetal and Coriolis pseudoforces, normalized by
the full-scale vehicle thrust, given the vehicle parameters for the ROV Ventana (see Appendix).  Plot (a)
describes the centrifugal force as a function of vehicle velocity in the circumferential direction
(normalized by the terminal velocity for maximum thrust).  Plot (b) describes the coriolis force as a
function of normalized circumferential velocity, assuming a radial velocity of 0.1 m/s.
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(5.62)

From this equation, it can be seen that the thruster time-constant, , is dependent on the cur-

rent thrust level.  The thruster time constant becomes very long (and the bandwidth becomes very

low) when the generated thrust approaches zero.  

The thruster modeling error introduces occasional high-frequency disturbances to the plant

model.  To avoid problems associated nonlinear thruster bandwidth, Yoerger recommends the use

of a sliding mode controller [164].  The jelly-tracking controller uses an alternate control tech-

nique that maintains generally low control gains but that provides aggressive control near the

boundaries of the camera viewing cone.

5.4.3 Augmenting the Baseline Control to Counter Large Disturbances

In the context of the previous section, large disturbances on the tracking vehicle may be divided

between low-frequency bias forces (buoyancy, tether, swimming-drag) and occasional high-fre-

quency disturbances (curvilinear pseudoforces, thruster nonlinearity).  This section proposes two

additional control terms that address high and low-frequency disturbances to reduce the risk of tar-

get loss outside of the camera image.

Figure 5.2c shows these two additional control terms, the disturbance-accommodation (DA)

term and the boundary-control (BC) term, which complement the linear controller (K).  These

three control terms sum before entering the plant block, .

 (5.63)

Because the dynamic equations in control-objective form, (5.22), decouple each of the DoFs

required for tracking (range, depth differential, and relative bearing) the control terms may be

designed independently along each axis.

The boundary control term, , acts aggressively against high-frequency disturbances

when they push the target toward the edge of the camera viewing cone.  Whereas the linear term

was designed to minimized thrust exerted on the surrounding medium during standard operations

(Section 5.4.1), the nonlinear  term is designed to produce aggressive control in the critical

situation where the sensor may lose the target animal.  In particular, the boundary control term
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plays a significant role when the thruster state passes through its low-bandwidth zone, as described

by (5.62).

The disturbance-accommodation control term, , counteracts the low-frequency bias

force, , as described by (5.58).  In the absence of a low-frequency control term, these distur-

bances result in steady-state error, with the target shifted away from its reference location.  If dis-

turbances are sufficiently large, the steady-state error may push the target outside the sensor

viewing cone.  The disturbance-accommodation term is designed in such a way to counteract these

disturbances, but to ignore bias control commands issued by the human pilot.

 Boundary Control Term
The tracking system risks permanent target loss if the tracked animal drifts outside the sensor

viewing cone.  A boundary control term, , is introduced to reduce the risk of an out-of-frame

event for the case of large transient disturbances that the linear control term, , cannot reject.

In a broader context, the management of viewing cone restrictions is an obstacle avoidance

problem.  Potential fields have proved useful for a range of boundary avoidance tasks, from other

applications with viewing-cone constraint, like visual manipulation of a robot arm [142,155], to

other classes of boundary-avoidance problem, like automobile lane-keeping [149].  Thus, the jelly-

tracking boundary-control strategy incorporates the notion of a potential field; because the jelly-

tracking application requires a sudden switch between low-gain control and aggressive boundary

control, however, the jelly-tracking strategy also incorporates the notion of variable-structure con-

trol (aka sliding mode control).  

In effect, the potential field associated with the boundary makes a step change between a cen-

tral quiescent region, in which only the linear control operates, and the boundary region, in which

the boundary-control term becomes active.  Figure 5.12 depicts this potential function.  The result-

ing control law is a form of variable-structure control, similar in implementation to sliding-mode

control using a large boundary layer.     
The performance of the boundary-control term is most easily analyzed in one dimension.  In

1-D, the potential function for the boundary term, combined with that for the linear control law,

defines the following decrescent, positive definite Lyapunov function.

τ̃DA

Fj

τBC

τK
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(5.64)

Here the one-dimensional coordinate is  and the boundary of the quiescent central region is .

The control parameters,  and  are defined by the following dynamic system and control law.

(5.65)

(5.66)

(5.67)

Figure 5.12  Zone of Influence for Boundary Control
Two views depict the zone of influence for the boundary control term, which acts aggressively to keep the
jelly target away from the edges of the camera viewing cone.  (a) The domain of the quiescent  zone, light,
and the boundary zone, shaded, in the image plane.  (b) The Lyapunov function for the combined linear
and boundary controllers in the image plane, with velocity error assumed zero.
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The time-derivative of the Lyapunov function, (5.64), is continuous and negative semidefinite for

all .

(5.68)

Thus the function  is stable in the sense of Lyapunov.  LaSalle’s principle may further be

invoked to establish global asymptotic stability.  (For the set, S, of states with , the state 

is everywhere zero but the state  is not necessarily zero.  On S, the derivative of  is given by

(5.65).  This equation establishes that all trajectories on S will leave the set unless .  Thus

by LaSalle, the system has global asymptotic stability.) 

The stability proof differs somewhat from that of standard sliding-mode control in that the

boundary controller does not obey the projection constraint on the design of a sliding surface

[146].  (For the dynamic equation (5.65), an allowable sliding surface must be a linear combina-

tion of the position and velocity states, , and not just of the position state, as is

the case for the boundary-control term.)

Despite their minor differences, both the boundary-control term and standard sliding-mode

control possess the capability to reject large disturbances.  When a large disturbance force, up to

the magnitude , carries the target beyond , the nonlinear boundary control term immediately

counteracts the disturbance force.  For the experimental system:

. (5.69)

This value implies that the boundary-control term immediately counters large target excursions

with an additional 60% of maximum thrust ( ).  

Also like sliding-mode control, the boundary-control term may result in a form of chatter.

Boundary chatter results in the presence of a low-frequency bias force which repeatedly returns the

error state to the boundary at which the BC control term activates.  The low-frequency DA control

term helps prevent such instances of chatter.

In its three-dimensional implementation, the BC term issues commands in the image plane

and subsequently rotates them into the control-objective frame.  The fundamental principles

underlying 3-D boundary control term are otherwise identical to that of the 1-D case (5.67).  The

equation for the 3-D BC term is given as follows:
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(5.70)

. (5.71)

The boundary control term is the sum of four components, one associated with each boundary of

the camera field of view.  The unit-normals of the camera boundaries, , are defined as the

inward pointing normals, as illustrated by Figure 5.4.  In (5.71), the expression  refers to the

position of the target animal relative to the image center, in pixels.  The boundary of the quiescent

region, , is also expressed in image pixels; for the experimental system,  was set to

one-quarter of the full image width in pixels.  The rotation that takes the boundary control term

into objective coordinates is as follows.

(5.72)

The initial rotation, , takes the boundary control term into the vehicle coordinate frame.  The

subsequent rotation, , takes the control term into the frame whose axes align with the

radial vector (from the vehicle to the target), the vertical depth direction, and the normal to these

two directions (aligned with yaw bearing).  The thruster mapping block, TM, governs what combi-

nation of circumferential thrust and yaw thrust are employed to reject yaw-bearing errors.  In its

final form, the experimental system thruster map, TM, used only the yaw thrusters for boundary

control, leaving the circumferential thrust term equal zero.

Disturbance-Accommodation Control
Low-frequency disturbances introduce an offset in the error vector relative to the desired reference

location.  In extreme cases, this quasi-steady offset may push the target animal outside the viewing

cone.

A disturbance-accommodation control, , was employed to counter low-frequency dis-

turbances.  The DA control acts in a manner similar to integral control for the case of shared con-

trol.  The DA control uses an estimator to combine control commands from all sources (human
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pilot, linear controller, boundary controller, saturation block) to provide a continuous estimate of

the low-frequency disturbance force regardless of the source of the control input.  As such, the DA

controller does not inadvertently cancel desired control commands, only disturbance forces, W,

that act directly on the ROV platform.  Figure 5.13 compares block diagrams for the integral and

estimator-based approaches.     

Thus the DA control term simply acts to offset the estimated low-frequency bias force, . 

(5.73)

In the experimental implementation, the DA control term was not projected through the thruster

map, TM, because the estimated bias disturbance acts along all four system degrees of freedom.

The observed disturbance, , is measured by an estimator formulated in the jelly-fixed frame.

As such the estimator need not incorporate nonlinear curvilinear dynamics.  In fact, the estimator

uses a fully linear, axis-decoupled plant model.  To achieve linearity, vehicle drag is modeled as

approximately linear over the range of speeds encountered during jelly tracking; the drag coeffi-

cient matrix, , is taken to be diagonal and rotationally symmetric in the horizontal plane.   Under

this assumption, the vehicle position and velocity states may be estimated in the jelly-fixed coordi-

nate system using the estimator state vector, .

(5.74)

The estimator equation is given by (5.75), where the estimator gain, , is designed as a steady-

state Kalman Filter:

(5.75)

. (5.76)
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Circumferential Stabilization by a Large Quasi-Steady Disturbance
Most dive experiments were run in the absence of DA control.  In the absence of any other control

in the circumferential direction, the low-frequency bias disturbance actually acts as a circumferen-

tial restoring force.  In effect, the bias force sweeps the tracking vehicle in a circle about the

tracked target, much in the manner that gravity sweeps a pendulum about its attachment point.

Under a strong quasi-steady disturbance, the circumferential equation of motion has two equilib-

rium points.  These equilibrium points may be found by taking the dynamic equation (5.16) to

steady state.  The resulting equation is

(5.77)

Equation (5.77) can be rewritten in terms of the components of the disturbance force and the angle,

, which describes the yaw angle of the disturbance force projected into the yaw plane.

(5.78)

Two equilibrium circumferential positions exist, at .  These are the two

points along the line, through the origin of the polar coordinate system, parallel to the direction of

the disturbance force vector.  Only the first of the two equilibrium points is stable.

5.5 Summary
This section summarizes the control law used in the field for deep ocean experiments.

The control input was designed to stabilize the tracking vehicle’s yaw bearing, depth differen-

tial and range relative to the jelly target.  In order to accomplish this control objective, the feed-
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back control loop was transformed into the a control-objective form, as depicted by Figure 5.2a.

The control-objective transformation took the vehicle dynamic equations into a modified set of

cylindrical coordinates that decoupled the control range space, required to accomplish the tracking

objective, from the control null space, a coordinate with no impact on the tracking objective.  This

process, which accounted for the position signal produced by the actual camera sensor used in the

experimental system, also affected the definition of the reference target position, which was speci-

fied using a position-based visual servoing approach.

A second set of modifications to the baseline control law, summarized by Figure 5.2b,

accounted for the thruster configuration of the experimental vehicle.  In accounting for the four-

DoF output of the vehicle thrusters, a thruster map (TM) was defined to augment the three-DoF

control output based on the control-objective range space.  The thruster map augmentation

exploited the null space thrust command to produce a minimum total-thrust output to reduce the

risk of disturbing the tracked animal during jelly-tracking.  A means of using the null space to

implement noninterfering shared control between a human pilot and the automated tracking law

was also considered.  This control-sharing technique took advantage of the pilot’s ability to issue

circumferential commands which determined the orientation of the camera relative to the scientific

target; these circumferential commands may be issued independently from automated controller

commands, which have a zero value in the circumferential direction.

A third set of modifications to the baseline control law, summarized by Figure 5.2c, intro-

duced two additional control terms to account for high and low-frequency disturbances which

might otherwise carry the target animal outside the limits of the camera viewing cone.  The total

control command issued by the pilot assist computer is thus the sum of a linear PD control com-

mand (K) that tracks jellyfish acceleration, a boundary-control command (BC) that handles high-

frequency disturbances, and a disturbance-accommodation control command (DA) that handles

low-frequency bias forces.

(5.63)

The three control terms are defined as follows.
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(5.79)

The next chapter describes experiments that demonstrate automated robotic tracking of jelly-

fish in the deep ocean.  The control law developed in this chapter, along with the vision-processing

system described by Chapter 4, were together instrumental to the success of repeated field tracking

experiments.
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Integrated-System Experiments

Behavioral observations are always subject to biases caused by the presence of the observer, and 
while animal behavior patterns are one of the most exciting new areas of submersible-based 
research, we must be cautious to acknowledge the inherent biases.   

- B.H. Robison, 1992 [7] 

This chapter describes experiments that demonstrate, for the first time, automated robotic tracking

of a deep-ocean animal in its native habitat.  Experiments played an integral role in both the devel-

opment and the validation of the ROV-based jelly-tracking system.  Field testing took place

through a series of twelve experimental dives performed in the deep ocean with ROV Ventana, an

unmanned submersible operated by MBARI.  These dives comprised three experimental phases:  a

first phase investigating visual methods for sensing gelatinous animals, a second phase evaluating

control techniques for ROV-based jelly tracking, and a final phase validating the utility of the inte-

grated system as a tool for biological science.  The first set of visual sensing experiments collected

data for off-line analysis and tested the resulting vision processing techniques during human-

piloted tracking runs.  The second set of control experiments employed the visual sensor in a

closed-loop configuration to evaluate the control requirements for jelly tracking.  The third set of

experiments tested the capability of the vision and control software, integrated with the experi-

mental hardware, to accomplish long-duration reliable tracking, a system requirement to enable

new in situ biology experiments.  Compared with a baseline system, which tracked only a small

subset of animal targets encountered and those only for minutes at a time, the refined system,

described in this dissertation, enabled very long tracking periods, as long as 89 minutes following

a Ptychogena specimen.

6.1 Introduction
This section provides an overview of the techniques employed for jelly-tracking experiments with

the science robot ROV Ventana.  Deep-ocean experiments played an indispensable role in defining
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and addressing the key research problems associated with the jelly-tracking task.  Experimental

trials face major operational challenges that abstracted lab experiments and simulation ignore.

Critical issues became immediately apparent during field testing and motivated the research pre-

sented in this dissertation.  In particular, early experiments identified the need for vision-process-

ing methods to handle the complex midwater imaging environment and the need for a specialized

control law to reduce the likelihood of artificially disturbing target behavior.  Continuing experi-

ments validated refined vision and control techniques under real, often unfavorable field condi-

tions over extended tracking durations.     

© MBARI

Figure 6.1  Monterey Canyon
Monterey Bay bathymetry map, courtesy of MBARI, 2003.
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6.1.1 Dive Sites and Timeline     

This chapter considers twelve Ventana dives between Summer 2000 and Autumn 2002, and it

focuses in particular on the final five dives of the series.  Dives explored the waters of Monterey

Canyon, at sites within 10 nautical miles of the MBARI headquarters in Moss Landing, California.

Figure 6.1 illustrates the bathymetry of the Monterey Canyon.  In the figure, Moss Landing is indi-

cated by a cross.  The dramatic submarine canyon that extends from Moss Landing makes

Monterey Bay one of the world’s foremost locales for the study of deep-ocean phenomena in a

near-shore setting.  The United States government has further enhanced the significance of this

sight for biology research by declaring it a national marine sanctuary, with severe restrictions on

commercial fishing.     

Table 6.1 lists, in chronological order, the twelve dives that led up to and through the demon-

stration of successful, long-duration jellyfish tracking.  Dives occurred under an ongoing Stanford-

MBARI collaboration to explore precision control technologies for underwater robots.  Each dive

devoted approximately two hours to jelly-tracking research; continuing refinement of automated

ocean-floor (benthic) station-keeping capabilities consumed the remainder of each dive.  Dives

were spread uniformly through the two major ecological seasons in the Monterey Bay:  the

Date Vision Status Control Status Applications

August 02, 2000 Development Development

December 01, 2000 Development

March 07, 2001 Development

April 13, 2001 Development

July 23, 2001 Development Development

September 27, 2001 Development Development (Param ID)

October 23, 2001 Final Vision Processing Development

March 13, 2002 Development (Param ID)

May 09, 2002 Development

June 26, 2002 Parallel Stereo Added Final Control System Biology Applications

September 24, 2002 Biology Applications

October 11, 2002 Biology Applications

TABLE 6.1. Dive Timeline
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upwelling and non-upwelling seasons (Chapter 2.4).  Table 6.1 indicates that the dive schedule

spread experiments over nine of the twelve months of the year.

With two exceptions, all experiments placed the ROV in depths between 200 and 700 m.  The

first exception occurred during the earliest jelly-tracking dive, on August 2, 2000, during which

the ROV briefly tracked a Phacellophora camtschatica specimen at approximately 100 m in

depth.  This shallow dive contrasts with an especially deep dive on April 13, 2001, which explored

depths of nearly 1000 m.  This deep dive, performed as a “piggyback” experiment to test the vision

system during a mission devoted primarily to filming jellyfish for a Monterey Bay Aquarium

exhibit, encountered a high incidence of deep red medusae, including the recently discovered spe-

cies Tiburonia granrojo.

6.1.2 Experimental Equipment

The experimental system employed the unmanned submersible, ROV Ventana.  Chapter 3

described this robotic vehicle in detail, along with its sensors, its support ship, and the computing

system used to run automated jelly-tracking software.  In contrast with the system hardware, the

system software evolved substantially over the course of the experimental dive sequence.  Early

experiments tested a baseline configuration (Chapter 5.1.2).  Subsequent experiments led to the

development of refined vision and control components (Chapter 4.3 and Chapter 5.5, respec-

tively).  The vision processing algorithm stabilized to its final form by the 10/23/01 dive.  The con-

trol algorithm stabilized later, along with the stereo camera configuration, on the 6/26/02 dive.

6.1.3 Experimental Procedures

All jelly-tracking experiments followed a common procedure.  This procedure included both a pre-

dive component, designed to detect and prevent major system faults, and a dive-day component,

designed to simplify operations under the stresses associated with ocean experimentation.

The predive procedure tested the automated pilot-assist software with the physical hardware

setup aboard the support ship R/V Point Lobos.  These tests occurred in the week preceding the

experimental dive, during a maintenance or mobilization day with the support ship docked.

Because Point Lobos and Ventana comprise an operational scientific system, communication path-

ways and sensors are frequently reconfigured to meet the needs of various science experiments.
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The predive test procedure sought to identify configuration changes which interfered with autopi-

lot function.  This procedure consisted of the following steps: 

Install latest software version on the pilot-assist computer (PAC).

Test communications to ensure all serial connections and video pathways are intact.

Check sensor inputs to the PAC to verify units, sign, and nominal zero.

Recalibrate the stereo geometry, if cameras were adjusted during vehicle maintenance.

Whereas the predive procedure focused primarily on system implementation, the dive-day

procedure focused on system operation.  The dive-day procedure consisted of the following steps:

Transit to the dive site, selected for both benthic and midwater experimentation.

Adjust ROV light sources manually, while vehicle on deck.

Trim ROV buoyancy within 25 pounds of neutral, erring to positive buoyancy.

Descend to depth and perform Benthic experiments to validate control performance.

Ascend and locate animal target; engage tracking software.

Evaluate visual tracking and target ranging with human pilot in control.

Begin closed-loop automated tracking, with human control active during initialization.

Continue tracking with no pilot intervention until the occurrence of manual termination or

of a tracking failure.

6.2 Vision-Only Experiments
A first set of experiments (8/2/00 - 10/23/01) investigated the requirements for visual jellyfish

sensing.  These vision experiments began with the evaluation of a baseline vision-processing sys-

tem.  After demonstrating the fundamental problems with the baseline system, further vision

experiments collected data for off-line analysis and performed field evaluation of the new tracking

method based on that analysis.  These image-processing methods detect target bearing, only.
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Thus, in addition to supporting the study of image-processing methods, vision experiments also

evaluated methods for generating a target range signal.  The final visual sensor employed gradient-

based vision processing (Chapter 4.3) with parallel stereo ranging (Chapter 3.6.2).

The initial experimental dive (8/2/00) assessed baseline vision-processing and control laws to

establish if this “off-the-shelf” system could accomplish effective jellyfish tracking.  These tests

indicated clearly that the baseline system, which relied on luminance-threshold segmentation,

failed to segment hydrozoan medusae encountered throughout the day.  The baseline system effec-

tively detected and tracked only one medusa specimen, a large specimen of the scyphozoan species

Phacellophora camtschatica.  From a vision-processing point of view, the baseline system suf-

fered from high sensitivity to the luminance threshold level, which varied with different animal

specimens, with their position in the lighting field, and with the angle of the camera relative to the

lighting field.  Transparency and nonuniform lighting also contributed to vision-processing diffi-

culties; these factors resulted, in some instances, in cases for which no luminance threshold suc-

cessfully distinguished between target and background pixels.

The baseline experiment motivated the vision-system analysis described in Chapter 4.  To

support this analysis, the following series of dives (12/1/00 - 10/23/01) achieved two goals.  These

dives both collected sample video, including footage of more than 30 animal specimens (medusae,

comb jellies, larvaceans), and evaluated the performance of a refined vision-processing technique

under field conditions.  Although an early hypothesis suggested the use of multiple simultaneous

vision filters (color, gradient, luminance) to improve the identification of different animals under

different lighting conditions [123], subsequent off-line and in situ testing showed that a single fil-

ter (smoothed morphological gradient) with a fixed threshold performed reliably and efficiently

enough to enable tracking of a broad range of animals under a diversity of lighting conditions

(Section 4.3.3).

In parallel with the development of the image-processing system, vision experiments also

assessed methods for target ranging.  Single camera images, in the absence of additional informa-

tion, provide measurements of target bearing, only.  Fully automated jelly tracking, however,

requires both a bearing and a range signal.  To this end, early experiments attempted to use target

pixel-area as a relative ranging signal.  Though easily implemented, this method proved noisy and

only moderately reliable; problems occurred whenever the target’s shape deformed or it rotated out

of the image plane.  Subsequent experiments shifted to converging stereo ranging (Section 3.6.2)
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to avoid these problems with area-based ranging.  The converging stereo technique, first imple-

mented for the 7/23/01 dive, enabled the first-ever demonstration of fully automated jelly tracking,

a demonstration which lasted for approximately 2.5 minutes.  

The converging stereo setup used two cameras, the main vehicle science camera and an upper

pilot camera, to produce a stereo baseline of 1 meter.  This large baseline configuration required

little calibration; however, human pilots found initialization of the converging stereo system diffi-

cult, because initialization required alignment of the jelly target in two cameras separated by an

arbitrary rotation angle.  A number of tracking runs aborted immediately because the target did not

remain in both camera viewing cones throughout the initialization phase.

To overcome the initialization problems associated with converging stereo, a parallel stereo

configuration was introduced for the 6/26/02 dive.  Using two cameras mounted together on the

same pan/tilt unit, the parallel stereo baseline was reduced to 10 cm.  The reduced-baseline, paral-

lel-stereo configuration required a more precise calibration than the larger-baseline, converging-

stereo configuration.  Nonetheless, the parallel-stereo configuration greatly relieved the initializa-

tion requirement.  With parallel-stereo, the pilots needed to align the target in only one camera,

rather than two, because of the significant overlap between the viewing cones of the parallel stereo

cameras.  Before introduction of parallel stereo, on the 10/23/01 dive date, converging-stereo

issues caused 7.5% of test runs to abort immediately and an additional 10% of test runs to end

when the automated controller lost the target from the upper of the two converging-stereo cameras.

After introduction of the parallel stereo configuration, on 6/26/02, the rate of failures caused by

stereo-related problems dropped significantly, with 0% of runs ending through either of these fail-

ure mechanisms.     

The parallel stereo configuration also offered a second practical advantage for scientific

application of the ROV-based pilot aid.  Because the parallel-stereo configuration did not employ

the ROV’s main science camera, this camera remained free for use in science experiments.  As a

consequence the science camera could be zoomed, focused, panned and tilted without affecting

automated target tracking.  As a demonstration of this advantage, the science camera was

employed to snap several high resolution images during automated jelly-tracking.  A sample high

resolution image of a Ptychogena specimen is illustrated in Figure 6.2, below.
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6.3 Tracking Experiments
A second set of experiments (7/23/01 - 6/26/02) applied the visual sensor to enable closed-loop

ROV tracking.  These experiments both motivated and field tested the control design for the track-

ing system.  This section details experiments evaluating the control performance of the jelly-track-

ing system.  Time-series data illustrate the significance of the boundary control term, as well as the

implications of the low-frequency control term and of the control-law null space (Chapter 5).

In enabling extended tracking runs, the most important control modification was the bound-

ary control term.  The occurrence of extended duration tracking runs increased dramatically with

the introduction of this term.  The disturbance-accommodation control term complements the

boundary-control term by smoothing boundary chatter.  In theory, the disturbance-accommodation

control term should also aid in transition from human control to computer control in the presence

of large tether forces.  A fundamental human-computer interaction issue uncovered during ocean

trials, however, prevented the use of the low-frequency control term for this purpose.

Experiments also demonstrated the system’s null space design characteristics.  According to

the design of the thruster map (Chapter 5.3), the linear controller issued no commands in the cir-

cumferential direction.  As discussed in Chapter 5.4.3, the circumferential coordinate was instead

Figure 6.2  Ptychogena Specimen
Tracked autonomously on 9/24/02.
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stabilized by a strong tether bias.  During extended tracking runs, infrequent changes in the bias

force resulted in significant shifts in the equilibrium circumferential position.  Allowing circum-

ferential position to drift effectively reduced the need for circumferential control and reduced

excess thrust in the circumferential direction.  In an independent test, the null space was exploited

to demonstrate effective control sharing between the automated controller and a human pilot

(Chapter 5.3.2).  In these tests, the pilot issued only lateral (circumferential) thruster commands

and successfully modified the viewing angle to a sinking larvacean house without affecting the

performance of the automated tracking law.

An extended-duration tracking experiment, which pursued a Ptychogena for 89 minutes, pro-

vided strong evidence for the utility of the jelly-tracking control system.  Although the distur-

bance-accommodation term was disabled for this run, this experiment otherwise demonstrates the

complete control system described in Chapter 5, including the linear control term, the boundary

control term, and the action of the tether bias to stabilize the control-objective null space.  

6.3.1 Boundary Control                    

The boundary control term serves a critical role in enforcing the viewing cone limits during

extended tracking runs.  The boundary control term was active for all jelly-tracking runs subse-

quent to and including the 6/26/02 dive.  To illustrate the significance of the boundary control

term, this section examines time traces from a portion of a 19-minute run which tracked the

medusa Benthocodon (Data Log 37 on 6/26/02).  The following plots are representative of the

function and performance of the boundary control term on 6/26/02 and during subsequent dives.

Figure 6.3 shows the raw measurements of target location during minute 15 of the data log.

The measurements include a target range signal, derived from parallel stereo, and two image plane

measurements, for the main stereo camera (an Insite model Orion).  Spikes in the range measure-

ment result from brief dropouts in the tracking signal that result, in turn, from the lower-quality

video produced by the auxiliary camera (an MSC 2000).  The figure shows the limits of the view-

ing cone occur at +/- 128 pixels from the image center.  Interior to these limits are two dashed

lines, which indicate the limits of the quiescent zone (see Figure 5.12).  The boundary control term

becomes active if the target’s image plane coordinates pass outside the quiescent zone.  The effec-

tiveness of the boundary control signal is apparent from the small magnitude of  target excursions

outside the quiescent zone.  
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Figure 6.3  Benthocodon 1:  Raw Measurements, Boundary Control
One Minute of the Benthocodon Run (6/26/02 DL37).  This plot shows the raw measurements from the 
parallel stereo (short baseline) camera configuration.  In the range signal (top), occasional spikes are 
clearly visible.  These spikes results from noisy segmentation or from a brief loss of visual lock in the 

upper (auxiliary) stereo camera.  The bottom two plots show the target image plane location in pixels in 
the lower (main) stereo camera.  The image boundaries are at +/- 128 pixels.  The boundary for the 

boundary control term is shown as a dashed horizontal line.  The boundary control term keeps the target 
inside these boundaries while preserving less aggressive control in the quiescent inner region of the 

vision cone.  For these experiments the boundary control term was linked to the main camera, only, and 
not to the auxiliary camera.
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Figure 6.4  Benthocodon 2:  Vehicle Control Input
One Minute of the Benthocodon Run (6/26/02 DL37).  This run uses the parallel stereo configuration, 
with the cameras pointed downward 60° from vertical.  Because of the camera tilt, the vertical image-
plane direction maps into both the vehicle x and z -axes.  Consequently, boundary control spikes occur 

simultaneously in both the x and z-axis plots.  Boundary control spikes for the y-axis correspond, instead, 
with the target’s horizontal location in the image plane.
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Figure 6.5  Benthocodon 3:  Position Error State
One Minute of the Benthocodon Run (6/26/02 DL37).  This plot shows the position error state on which 
the control in Figure 6.4 is acting.  Notice the significant vertical spikes in the x and z-axis directions.  
These result from noise in the parallel stereo measurement.  Each spike lasts approximately 1/10th of a 

second (the sample frequency for the control application).
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Figure 6.6  Benthocodon 4:  Velocity Error State, Chatter and Limit Cycles
One Minute of the Benthocodon Run (6/26/02 DL37).  This plot shows the velocity error state on which 

the control in Figure 6.4 is acting.  The velocity is calculated through an estimator (Section 5.4.3).  
Velocity oscillations are apparent in the x and z-axis directions.  With the disturbance-accommodation 

term inactive, the boundary control term appears to result in chatter (Figure 6.3), which drives the fore-
aft oscillations and excites, in part, the vertical oscillations.  The z-axis oscillations, unlike the x-axis 
oscillations, do not correspond to the chatter frequency.  These z-axis oscillations may result from a  

thruster limit cycle.
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The boundary control term acts rapidly to keep the target’s image plane coordinates inside the

dashed boundaries of the quiescent zone.  Figure 6.4 shows the control input in the vehicle frame.

Brief, approximately one-second plateaux of elevated control indicate periods during which the

boundary control term was active.  Throughout this tracking run, the stereo camera pair points 60°

downward from the horizontal; as a consequence, the image frame coordinates (Figure 6.3) and

the vehicle frame coordinates (Figure 6.4) do not align.  Excursions in the vertical image plane

direction thus invoke a boundary control term that acts simultaneously in both the ROV’s fore-aft

(x-axis) and vertical (z-axis) directions.  By contrast, horizontal excursions of the target beyond

the image plane’s quiescent zone limits invoke boundary control action in the vehicle’s lateral (y-

axis) direction.  On subsequent dives, these boundary actions were mapped instead into the vehi-

cle’s yaw ( -axis) direction to maintain consistency of the thruster map’s null space augmentation

(see Figure 5.2c).

The spikiness of the range signal, as seen in Figure 6.3, has a small effect on the control sig-

nals along the vehicle’s x-axis and z-axis.  The projection of these range errors into vehicle coordi-

nates is evident in the position error plots of Figure 6.5.  Spikes are seen in the error signal for the

vehicle’s fore-aft and vertical axes, only, because the camera frame is tilted but not panned relative

to the vehicle axes.  These error spikes cause small spikes in the x-axis and z-axis control signals,

as seen in Figure 6.4.

Figure 6.6 shows oscillations along both the vehicle’s fore-aft and vertical axes.  Periodic

behavior in the fore-aft axis appears to correspond with the vertical image-plane boundary control

action (as seen by the comparison of Figure 6.6 and Figure 6.3).  Thus fore-aft oscillations may

reflect chattering action at the edge of the boundary controller’s quiescent region.  For the data log

plotted, the estimated force bias on the vehicle was 0.94 V (on a scale where 5 V represents maxi-

mum thrust) rearward along the vehicle’s x-axis.  Because the disturbance-accommodation control

term was inactive for this experimental run, the boundary control term was left to repeatedly

counter the steady bias force whenever it pushed the animal outside the image plane’s quiescent

region.  

In contrast with the fore-aft axis oscillations, the vertical (z-axis) oscillations do not directly

correlate with boundary control action.  Vertical oscillations do occur, however, at about twice the

boundary-control chatter frequency.  A possible mechanism to explain these vertical oscillations

involves nonlinear thruster dynamics.  In the absence of a bias force (the vertical direction bias

ψ
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estimate is 0.0 V for this run), the work of Yoerger et al. predicts that an ROV will limit cycle on

account of nonlinear thruster dynamics [164].

In summary, as of 6/26/02, the boundary control terms were consistently active during all

jelly-tracking runs.  Boundary chatter observed under a steady bias disturbance suggests the utility

of the disturbance-accommodation term to smooth control input.  A small limit cycle did occur

along the vehicle’s vertical axis, but it did not appear to affect tracking duration.

6.3.2 Low-Frequency Disturbance Accommodation

Quasi-steady forces dominate the disturbance profile for ROV-based jelly tracking.   Figure 6.7

describes disturbance forces over the five jelly-tracking dives between 10/11/01 and 10/23/02.

The figure compiles bias force statistics, measured by the disturbance-accommodation estimator

(Chapter 5.4.3).  Statistics are applied to the bias forces values time-averaged for each datalog.

Figure 6.7 plots the median datalog-averaged bias force on each day with an “x.”  The boxes sur-

rounding each “x” contain the interquartile range on each side of the median (that is, they contain

one quarter of the samples on either side of the median).  Error bars indicate the extreme values of

bias force computed on each day.  The horizontal dotted lines, at +/- 5 V, indicate the saturation

levels for vehicle thrusters.

Significant bias forces were observed on all dates except 10/23/01.  Tether traction is believed

to be the dominant component of these bias forces.  The largest biases generally occurred in the

vertical direction; however significant biases were also observed in the horizontal plane and in the

yaw direction.  These twisting yaw-biases were not predicted, but were significant (approximately

40% of thrust on average) on the two dates with the longest tracking runs, 6/26/02 and 9/24/02.  In

general, pilots initiated tracking runs with the bias force pulling the ROV away from the target.

This choice reduces the magnitude of the thruster jets directed toward the animal target.

By estimating the bias force during the initial period of human pilot control, a low-frequency

accommodation controller can, in principal, enable smooth transition from human pilot to auto-

mated control in the presence of a bias disturbance.  (i.e. In Figure 5.13, the estimator loop is

closed even if the feedback-control loop is open.)  The smooth transition problem, however,

proves more complicated for the jelly-tracking application than for many other instances of control

transfer.  In the jelly-tracking application, the human pilot remains in the control loop after the

transition to automatic control.  In fact, the pilot can remain in the control loop as long as desired
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Figure 6.7  Biases through Time 1
This set of box plots shows the estimated bias for each of five successive dive dates in each of the four 

actuated vehicle axes.  On the 5/9/02 dive, biases were significantly higher than usual, particularly in the 
fore-aft and vertical directions.  Bias values shown in the figure are mean values over each datalog.  For 
each day, the median datalog-averaged bias value is marked with an x.  The surrounding box bounds the 

middle two quartiles of bias measurements for that day.  The error bars indicate the extreme values of 
datalog-averaged bias for each day.
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and re-enter the control loop at any time after activation of the automatic controller.  Implementing

bumpless transfer for this class of supervisory control system demands that the human and com-

puter controllers interact to transfer the bias control component.

Preliminary transfer tests were attempted on 5/9/02, the dive date with the highest levels of

bias force in the vertical direction and in the horizontal plane, as described by Figure 6.7.  In these

tests, the low-frequency disturbance response term was ramped in gradually, over a fixed period of

time.  The approach assumed that the human pilot would notice a gradual shift in the target posi-

tion and, in response, ease off control.  This approach proved problematic in practice, as demon-

strated by Figure 6.8.     

Figure 6.8 depicts two successive attempts at initializing a jelly-tracking control run.  The top

plot shows motion of the target in the image-plane, in the vertical direction.  Motion of the target

away from the zero-pixel location, in this plot, indicates initialization of the pilot-assist system.

During the initialization period, the pilot assist runs in open-loop mode and estimates the bias

force on the vehicle.  The second plot of Figure 6.8 depicts the bias forces computed by the distur-

bance-accommodation estimator.  The gray, shaded regions on these plots indicate the time during

which the low-frequency control signal was phased in.  The boundary control term was not

enabled for these tests; however, the linear control term became active at the start of the gray,

shaded region.  The third and fourth plots depict control signals issued by the human and computer

controllers.  The third plot shows the sum of the two control commands, issued to the ROV thrust-

ers.  The fourth plot shows the human and computer control commands individually.

During the first transition attempt, the low-frequency bias component was ramped in over 10

seconds.  The pilot control commands indicate that the pilot did not become aware of the bias-

force until after the ramp was completed.  Effectively, the double-integrator relationship between

bias force and target position meant that the pilot, observing only the target’s position in the video

stream, reacted to the bias force change only when the bias force built up to a significant level.

During this transition, the pilot indicated a lack of perception of the ramp, as if the transition hap-

pened all at once.

For comparison, a very rapid (1-second) transition was attempted, to reduce confusion about

when the automated bias force would become active.  Even with this additional external queue,

telling the pilot when the transfer would occur, the bias transfer still caught the pilot off guard.  In

the second case, like the first, the low-frequency control ramped up blindly.  The summed control
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Figure 6.8  Double Bias Compensation
These data describe two aborted initializations (5/9/02 DL20).  These runs occurred on a day with an 

unusually strong tether pull.  This bias, experienced by computer and human pilot alike, may have been 
caused by strong surface winds and a large gradient in current velocity between the surface and the 

operational depth.  To compensate for the tether bias, the disturbance-accommodation control term was 
used.  The disturbance-accommodation estimator was first allowed to converge while the human pilot 

flew.  Then the linear controller was switched on.  From the time of the switch, the disturbance-
accommodation control term was ramped in slowly (first over 10 seconds, then over 1 second).  For each 

ramp period (gray shaded regions, above), both the pilot and the automatic control simultaneously 
attempted to compensate for the tether bias.  The double compensation caused the target to shoot outside 

the vision cone boundaries in the direction opposite the tether force.
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term effectively double-counted the bias force, with offsets provided by both the human and com-

puter pilots.  In response, the target quickly shot off the top of the viewing screen, in the direction

opposite the tether force.

These tests indicate a need for future investigations into human-computer interaction in the

case of transfer between overlapping, non-communicating controllers.  To avoid problems during

subsequent jelly-tracking runs, the low-frequency control term was generally deactivated for con-

trol experiments between 6/26/02 and 10/11/02.  In a few cases, the low-frequency control term

was activated, but only after the human pilot ceased issuing control signals.  An example is pre-

sented in the following section, which describes a shared control experiment.     

In the absence of a technique for rapidly offsetting bias forces, strong initial transients fre-

quently marked the initiation of automated jelly-tracking.  Figure 6.9 depicts an initial transient in

the range direction, given a horizontal component of the bias force of approximately 1 V (20% of

thruster).  In this case, the range reference was set to 90% of the range measurement on autopilot

initialization.  When automatic control switched on, as shown by the upper plot of Figure 6.9, the

range increased from its initial value of 0.71 m to a value of approximately 0.8 m, under the rear-

ward pull of the tether bias.  Subsequently, control action countered the bias and returned range

toward the reference, at 0.63 m, overshooting slightly.  Finally, the range value settled at 0.68 m,

with the steady-state error caused by the quasi-steady bias disturbance.

6.3.3 Shared Control Using the Control-Objective Null Space

The experimental run of 10/11/02, data log 34, evaluated the concept of human pilot control in the

tracking law’s null space.  Human-pilot commands were issued in the circumferential direction, for

which thrust was set to zero by the null space thruster map (Chapter 5.3.2).  In contrast with other

extended length tracking experiments, which operated under full automatic control with no pilot

input after initialization, the shared control experiment combined simultaneous human pilot and

computer control.  These simultaneous commands did not interfere with each other, as the human

pilot commands acted orthogonal to those issued by the linear tracking and nonlinear boundary

control laws.

During the shared control test, the human pilot was asked to circle the ROV around the gelat-

inous target, a sinking larvacean house.  The test simulated the control action necessary to respond

to a scientist’s request to circle around an animal subject to acquire a different point of view.  The
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Figure 6.9  Initial Range Response
Ptychogena run (10/11/02 DL24).  This plot shows range measurements and control at the initiation of a 

typical run.  The range reference is set to 90% of the initial range.  In these plots, the range is seen to 
increase immediately, because of a tether force.  (The disturbance-accommodation control term is not 

active in this run.)  The controller attempts to counteract this tether bias, and pulls the animal closer to 
the range reference, overshooting slightly.  Because no integral or disturbance accommodation terms 

are active, the steady state error is non-zero (approximately 5 cm).
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success of the test, which ended when the release of ink by a nearby squid completely obscured the

viewing area, validates null-space control sharing for the jelly-tracking application and establishes

the system capability as a useful feature for science applications.

In addition to demonstrating the feasibility of control sharing, the experiment also illustrates

the full control law described in Chapter 5.  For the shared control experiment, all three control

terms were active:  linear tracking, nonlinear boundary control, and disturbance-accommodation

(DA) control.  The computer issued no commands in the circumferential coordinate about the tar-

get animal, except for a low-frequency DA command.  This circumferential control was designed

to offset the circumferential restoring force that results from a bias in the horizontal plane (Chapter

5.4.3).  In theory, this design achieves neutral stability in the circumferential direction, allowing

the pilot to place the vehicle at any circumferential coordinate with minimal continuous control

action required.

Figure 6.10 illustrates the vehicle’s yaw heading and the lateral pilot and computer control

inputs during the shared control experiment.  Because the yaw bearing error remains small (less

than 5° through the experiment), the yaw heading angle is approximately equal to the circumferen-

tial ROV position, offset by 180° (according to Equation 5.9).  The heading plot shows that the

ROV makes one complete turn to port, between minutes 5 and 9, and then reverses the turn direc-

tion to starboard for a second complete turn, between minutes 10 and 13.  A third turn was com-

menced, to port, starting at minute 16, but this turn was not completed.          

Accompanying the yaw heading plot on Figure 6.10, the lateral control plots describe the cir-

cumferential control action during the shared control experiment.  As the vehicle continually

turned to point at the target, the vehicle’s lateral coordinate was always aligned, within 5°, to the

jelly-frame circumferential direction.  The computer command in the lateral direction is shown in

the bottom plot of Figure 6.10.  This command is approximately zero through the beginning of the

first turn, because the vehicle is aligned, initially, such that the tether bias force pulls radially away

from the target, orthogonal to the circumferential axis (see the bias estimate plots, Figure 6.11).

During the turns, the lateral DA control takes a sinusoidal form, as the tether bias force, approxi-

mately fixed in direction in the world frame, rotates in the vehicle frame.  This sinusoidal form is

particularly apparent during the first turn, minutes 5-9.  The sinusoidal variations in bias are offset

from zero, however, because the lateral controller also attempts to counter circumferential drag,

which was inaccurately modeled by the estimator predictor.  Drag accommodation acts in a single
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Figure 6.10   Shared Control 1:  Circumferential Control Signals
Data describes a shared-control experiment (10/11/02 DL34).  The pilot turns the vehicle first to port
(Minutes 5-9) and then to starboard (Minutes 10-13).  The vehicle heading plot (top) shows the yaw
angle change over time.  The summed control plot (middle) shows the total control issued in the lateral
direction by both the human pilot and the automated controller.  The computer and manual control
commands are also plotted individually (bottom).  Automated control in the lateral direction is the result
of the DA control term.  A portion of the bias is fixed in the world frame (the bias force caused by the
vehicle tether) and does not rotate with the vehicle.  A portion of the bias is fixed in the vehicle frame
(drag force bias due to limitations in the vehicle model) and rotates with the vehicle.  As a result, the
automated control during each rotation event appears sinusoidal (world-fixed tether component) and
offset from the zero axis (vehicle-fixed drag component).
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Figure 6.11  Shared Control 2:  Disturbance-Accommodation (DA) Control
Data describes a shared-control experiment (10/11/02 DL34).  The DA control term was activated at 

minute 2, rather than initially, to avoid double bias compensation.  DA control ramped in over 15 
seconds.  The top plot shows DA control in the vehicle x-axis (range).  During the first turn (Minutes 5-9) 
the bias changes from +1 to -1 and back, compensating for the tether direction (approximately fixed in 
the world frame).  During the second turn, the range-axis bias changes from +1 to -2 and back.  The 
asymmetry likely resulted from thruster saturation during the turn.  The z-axis DA control was set to 

zero, because the pilot’s vertical control slider does not automatically zero itself when the pilot ceases 
manual control (this feature lets the pilot trim the ROV for buoyancy).  The yaw bias was not predicted.  
Because the yaw bias appears only during the turns, and because its sign switches with the sense of the 
turn, it is possible that the bias results from the vehicle lateral drag center being located in front of its 

center of mass.
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direction, circumferentially and offsets the sinusoidal tether accommodation by approximately 1 V

away from zero (during minutes 5-9).  This cycling of the tether force is also apparent in the range

direction (the vehicle frame x-direction in Figure 6.11).  The range direction variations in tether

bias are cosinusoidal, out of phase with the circumferential DA term by 90°.  The drag offset does

not affect the bias estimate along the vehicle’s x-axis.

The sinusoidal variation in the vehicle-frame representation of the tether bias is less apparent

during the second turn (minutes 10-13).  Saturation of the vehicle’s lateral thruster action

(Figure 6.10, middle plot) affects estimator performance during the second turn.  During satura-

tion, the hydraulic system on the ROV cannot deliver the desired rate of flow of hydraulic fluid to

the individual actuators.  As such, delivered thrust drops below requested thrust.  The estimator

used for DA control does not take into account this effect.  Consequently, the apparent magnitude

of bias disturbances are magnified during saturation conditions (this occurs in both the vehicle x-

axis and y-axis, as shown by Figure 6.11).

During minutes 13 to 16, the DA control achieves it stated purpose and makes the vehicle

approximately neutrally stable in the circumferential coordinate.  While the pilot’s lateral com-

mand is zero, the automatic controller holds a non-zero quasi-steady bias (Figure 6.10, bottom

plot).  During this time, the circumferential angle drifts only slowly (Figure 6.10, top plot).               

During both turns, a small bias force was measured in the yaw (ψ-axis) direction.  The sign of

the yaw bias remained constant during each turn, but changed sign when the direction of the turn

shifted from port to starboard.  The yaw bias returned to zero between turns.  Based on this evi-

dence, the tether was not likely to be the cause of the yaw bias.  A bias caused by tether twisting

would not have returned to zero between turns, when the tether was twisted by 360°.  Likewise, a

moment caused by an offset of the tether attachment point from a vertical line through the ROV

mass center would have changed sign halfway through a complete revolution.  Because the sign of

the yaw bias remained constant throughout each turn, but changed sign for turns of opposite direc-

tion, a likely cause for the yaw bias involves drag-moment coupling.  If the lateral drag center were

positioned forward of the mass center, lateral drag would act to turn the ROV to port during a star-

board motion, and vice versa, as observed.  In any case, this phenomenon has the surprising effect

of stabilizing relative yaw bearing during the turn.  For the shared control experiment, the control-

ler was not reconfigured to issue a yaw command to counteract the pilot’s circumferential control

command (Chapter 5.3.2).  Nonetheless, the system appears to regulate yaw-bearing error within
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Figure 6.12  Shared Control 3:  Position Error
Data describes a shared-control experiment (10/11/02 DL34).  These plots of position error show that 
the dominant noise source resides in the range measurement.  Because the camera is tilted 41 degrees 

from vertical and 8 degrees to starboard, the range signal effects the vehicle x, y and z-axis errors, 
(although the effect on the y-axis is minimal).  Errors are largest during the second turn (to starboard, 

minutes 10-13).  During this time control saturates.  The estimator does not account for the drop in flow 
rate of hydraulic fluid to the thrusters under high thrust conditions.  This phenomenon appears to result 

in lower-than-commanded thrust during thruster saturation.
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Figure 6.13  Shared Control 4:  Velocity Error
Data describes a shared-control experiment (10/11/02 DL34).  These plots show the velocity error states 
used for control.  Noise in the range signal creates significant noise in the velocity signals in the x and z-

axes.  (The values shown are, in fact, filtered by the state estimator, Section ).  For this data log, the 
angular velocity error was based on yaw heading, rather than on relative yaw bearing.
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Figure 6.14  Shared Control 5:  4-Axis Automatic Control
Data describes a shared-control experiment (10/11/02 DL34).  During the shared-control run, the 

automated system tracks a sinking larvacean house in 3 DOF:  relative range, bearing, and depth.  The 
DA and boundary control terms were both active during this run.  For this run, the boundary control is 

coupled in the vehicle x and z directions, because the parallel stereo cameras are pointed downward 41° 
from vertical.  The horizontal image boundary control activates the yaw thrusters.  Thus, spikes in the x, 

y, and ψ axes result from boundary control action.
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5° of zero (Figure 6.12, bottom) during both 360° turns with essentially zero mean control action

(Figure 6.14).

Range measurements appear particularly noisy during the shared control run.  Because the

parallel stereo pair points downward at 41° from the horizontal, the range estimate affects the

noise levels for the position (Figure 6.12) and velocity errors (Figure 6.13) along both the vehicle’s

x-axis and z-axis.  Because the linear control gains were four times higher for the x-axis than the z-

axis, this noise appears as a more significant part of the x-axis control signal than the z-axis control

signal, as seen in Figure 6.14.  Range measurement noise resulted from inconsistent segmentation

of the thin target.  Because of the target’s thin shape, small variation in segmentation resulted in

large changes in the measured bearing to the target centroid.  These variations, in turn, resulted in

significant noise in the triangulated range.          

The nonlinear boundary control term played an important role in preserving the shared-con-

trol run from an out-of-frame target loss.  Figure 6.15 details the action of the boundary controller

during the shared control experiment.  The figure shows both the vertical and horizontal pixel

location of the target, as seen from the main camera (first and fourth plots).  Whenever the image

plane position strays outside the boundaries of the quiescent region, indicated by the dashed lines,

boundary control triggered (second and fifth plots).  The trigger activated an impulsive control

term in the appropriate direction.  An excursion of the target along the vertical image coordinate

activated boundary control in the x-direction and z-direction (third plot shows the z-axis).  An

excursion of the target along the horizontal image coordinate activated boundary control in the ψ-

axis direction (final plot).  For these tests, boundary control action was applied in the yaw coordi-

nate, rather than the lateral coordinate, to minimize interaction with the human pilot commands

issued in the circumferential direction.

A final plot illustrates the three-dimension position of the ROV, relative to the target jelly

(Figure 6.16).  This plot summarizes the principal goal of the shared control experiment:  the

human pilot successfully used the null space to issue commands that did not interfere with auto-

mated jellyfish tracking.  The human commands shifted the ROV in a circle and back around the

target animal, allowing it to be viewed from a variety of angles.
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Figure 6.15  Shared Control 6:  Boundary Control
Data describes a shared-control experiment (10/11/02 DL34).  These plots show the role of the boundary 

control term in keeping the animal away from the edges of the main camera image.
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Figure 6.16  Shared Control 7:  Three-Dimensional Position, Relative to the Target
Data describes a shared-control experiment (10/11/02 DL34).  This plot shows the ROV’s position over 

time relative to the target jelly (depicted as a small circle at the origin).  Positions at various points in the 
run are indicated with gray shaded boxes.  The run ended just short of 17 minutes when a cloud of squid 

ink obscured the target animal.
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6.3.4 The Long Duration Ptychogena Run

Extended duration tracking runs bring together the major features of jelly-tracking control already

discussed in this chapter:  the importance of the boundary control term, of bias disturbances, and of

the null-space thruster map.  An 89-minute run tracking the medusa Ptychogena serves as a useful

illustration of system performance over an  extended time period.  The Ptychogena run occurred as

data log 31 on the 9/24/02 dive.

In the Ptychogena experiment, as in previous runs, the linear tracking law provides continu-

ous regulation of vehicle position relative to the animal subject.  This tracking proved sufficient to

keep the camera centered on the jellyfish throughout much of the run, including the first 33 min-

utes of the run during which the animal swam continuously.  The boundary control term activated

only occasionally during the first forty minutes of the dive.  Despite a mild bias disturbance (< 1 V

in control units or < 15 lbs. in force units) pulling the ROV radially away from the target, the

boundary control remained relatively inactive.  In fact, the term triggered only seven times due to

horizontal image-plane excursions and only three times due to vertical excursions (Figure 6.20).

By only occasionally applying aggressive control when needed, the system maintained generally

low levels of control and thereby reduced hydrodynamic disturbances on the environment caused

by excessive actuation.                     

Environmental forcing on the ROV became more severe after minute 40 of the experiment.

Both transient and quasi-steady disturbance forces grew in magnitude at this point.  The increased

intensity of transient disturbances is evident from more frequent triggering of the boundary control

term.  The increase in environmental disturbances may have resulted from the entry of the ROV

into the turbulent ocean-floor boundary layer.  The vehicle approached within 15 meters of the

ocean floor at minute 40 of the run, and it remained there until minute 50 of the run.  Increased

transient disturbances may also have resulted from tether snap loads.  

Quasi-steady disturbances, most likely the influence of tether traction, also increased signifi-

cantly after minute 43 of the run and remained elevated until run termination.  Increased control

input (Figure 6.20) and steady-state error (Figure 6.17) both result from higher bias disturbances

levels.  Ultimately, near run termination, the bias disturbances grew so strong that they overpow-

ered the vehicle actuators (operating in the boundary control chatter mode) and pulled the ROV

away from the target.  Following this event, the human pilot resumed control in an attempt to reac-

quire the target.  The human pilots merely confirmed, however, that the tether disturbance had
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Figure 6.17  Ptychogena Run 1:  Automated Control over Entire 89 Minute Duration
Data describe an 89-minute experiment tracking the medusa Ptychogena (9/24/02 DL31).  This figure 

shows the control inputs to the ROV through the entire 89 minute tracking period.  Spikes indicate action 
by the boundary control law.  At the end of the run, a strong tether force biases the control input in the x 

and z directions.  After this time, the control signal is dominated by chatter - a rapid succession of 
boundary term spikes.  At the 89 minutes mark, the heavy tether pull overcame the thruster output of the 

ROV, and the target drifted out of the viewing cone.
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Figure 6.18  Ptychogena Run 2:  Position Error Signal over 89 Minute Run
Data describe an 89-minute experiment tracking the medusa Ptychogena (9/24/02 DL31).  This figure 
shows the position error from which the control signal was derived.  The position error in relative yaw 

bearing is very small compared with the other controlled axes (x and z axes), in part because of 
circumferential stabilization by the tether (Section 5.4.3).  Increases in tether tension  after the 80 minute 

mark caused the increase in the position error signal seen in the x and z directions.
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Figure 6.19  Ptychogena Run 3:    Jelly Swimming and Tether Traction
Data describe an 89-minute experiment tracking the medusa Ptychogena (9/24/02 DL31).  These plots
show motion of the ROV relative to the environment during the extended tracking run.  The plot of
pressure depth (top) indicates the distance covered by the swimming Ptychogena specimen.  The dashed
vertical line indicates the time at which the Ptychogena subject switched from a swimming behavior to a
resting behavior.  Depth changes after this point were the result of currents near the ocean floor.  The
plot of compass heading (bottom) indicates that the ROV shifted its circumferential position relative to
the jelly twice during the tracking run.  The ROV completed one full revolution in the process.  As no
circumferential control commands were issued, these shifts were most likely caused by changes in the
direction of the low-frequency tether bias.
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Figure 6.20  Ptychogena Run 4:
Data describe an 89-minute experiment tracking the medusa Ptychogena (9/24/02 DL31).  This plot 

shows the position of the ROV, in three dimensions, during the entire 89 minute run.  Coordinates are 
plotted relative to the jellyfish, which is depicted as a small circle at the origin.  From this plot it is clear 
that the ROV made one complete turn during the tracking run (a half turn during the time of bottom lock, 

and a second half turn at a later time).
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indeed grown too powerful for the ROV thrusters to overcome, and the Ptychogena specimen

drifted slowly away.

The tether forces that terminated the Ptychogena run represent a fundamental limitation of the

ROV platform.  Some ocean conditions, such as high current conditions, may restrict the motion of

the surface vessel and its ability to relieve tether tension for the submerged ROV.  Thus, even

given an “ideal” software package for tracking, tether restrictions may make ROV tracking

impractical for very long-duration tracking.

In the face of these significant bias disturbances, encountered after minute 43, the null space

control design also played a role in preserving the tracking run.  During the Ptychogena run, no

control commands were issued, by either the human pilot or the automatic controller, in the cir-

cumferential direction.  The bias disturbance was allowed to stabilize the circumferential coordi-

nate of the ROV about the jellyfish subject (Chapter 5.4.3).  Changes in the bias force twice altered

the vehicle’s circumferential coordinate, at minute 43 and at minute 28 (Figure 6.19).  Each of the

two major changes in the bias force direction rotated the vehicle approximately one half turn.

Figure 6.20, which plots the three dimensional position of the ROV about the target jelly, illus-

trates that the ROV turned a complete circle during the 89 minute run.  Freedom of motion in the

circumferential direction accomplished two purposes.  First, the elimination of circumferential

control commands reduced the magnitude of the total thruster force output (Chapter 5.2).  Second,

circumferential rotations altered the vehicle position so that the bias force always pulled away

from the target animal; actuator commands to counteract the bias force thus propelled water away

from the jellyfish rather than towards it (Figure 6.19).  Both of these effects reduced hydrodynamic

stimuli to which the jelly target might react.

6.4 Biology Applications
A final set of experiments (10/23/01 - 10/11/02) applied the combined control and vision software

to demonstrate the potential of automated jelly-tracking technologies to enable new science exper-

iments.  The utility of jelly tracking as a capability for acquiring marine biology data depends

strongly on the reliability of the overall tracking system.  Statistics gathered during the final dive

sequence demonstrate system reliability; in particular, these experiments establish both the auto-

mated system’s ability to track jellies repeatably for long durations and the mechanisms for system

failure, when failure occurs.  Furthermore, extended-length dives validate the ability of the auto-
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mated jelly-tracking system to collect data relevant for biology applications.  The two longest runs,

one tracking a sinking larvacean house for 34 minutes and a second tracking the hydromedusa Pty-

chogena for 89 minutes, illustrate the potential of the automated tracking system to collect large

quantities of motion and behavior data concerning individual gelatinous specimens.

6.4.1 System Reliability Statistics

This section discusses system-level statistics that demonstrate dramatic improvements in the reli-

ability of closed-loop tracking during the final five-dive sequence.  Discussion focuses on two reli-

ability measures:  (1) the maximum achieved tracking duration and (2) the frequency of run

terminations caused by specific failure mechanisms.  The tracking duration metric indicates how

well the system can perform and what classes of biology experiment the system can support.  Run

termination statistics, on the other hand, pinpoint the reasons for system failure and the bottlenecks

that restrict the achievable tracking duration.

Figure 6.21 plots the tracking duration achieved in each data log during the final five test

dives.  Prior to this dive sequence, the maximum achieved tracking duration was 2.5 minutes, as

recorded during the 7/23/01 dive.  The achieved tracking duration increased dramatically during

the 10/23/01 dive, to a duration of 24 minutes (data log 41).  This run distinguished itself from

other runs on the same dive date, which suffered from initialization problems that limited most

tracking times to only one or two minutes, as shown by Figure 6.21.  This one highly successful

run handled initial transients, which otherwise resulted in rapid control or vision failures, and

tracked a swimming Solmissus specimen until a second gelatinous animal partially occluded the

Solmissus and corrupted the recognition profile.  Initialization problems continued to plague jelly-

tracking tests until the 6/26/02 dive, during which the introduction of parallel-stereo ranging and

of the boundary-control term largely eliminated the problems associated with system initialization.

During this June 2002 dive, the ROV-based tracking system followed a sinking larvacean house

for 34 minutes, a new tracking duration record (data log 34).  This run was terminated manually

when the larvacean house reached the ocean floor.  On the same day, an extended run tracked the

hydromedusa Benthocodon for 19 minutes, until the run was terminated manually to meet dive

time restrictions.  The final increase in achieved tracking duration occurred during the 9/24/02

dive, when an experimental run demonstrated fully autonomous jelly-tracking for an 89 minute

duration (data log 31).  Unencumbered by concerns about the proximity of the ocean floor or by
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Figure 6.21  Duration of Tracking
This plot shows the duration of the longest tracking run in each data log through time, over the course of 

five dive dates.  The average run length jumped dramatically with the introduction of the final control 
system and parallel stereo, on the 6/26/02 dive.
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dive-time restrictions, this run continued until ROV tether traction grew stronger than the maxi-

mum thruster output of the tracking ROV.  That the ROV tether caused termination of this long run

suggests that consistently achieving longer tracking periods may require the use of an untethered

AUV platform.            
Thus, after all experiments, the maximum dive duration metric achieved a value of 89 min-

utes. This 89-minute run, and the three other longest tracking runs, are summarized in Table 6.2.

(a) (b)

(c) (d)

Figure 6.22  Four Specimens Tracked in the Deep Ocean by Ventana
Four specimens tracked for an extended duration:  (a)  Solmissus, (b) Larvacean house, (c) Benthocodon,
(d)  Ptychogena.

Animal Tracked Length Run Termination

Solmissus 24.5 Loss of vision lock:  recognition failure

Larvacean House 34.2 Larvacean house reaches ocean floor

Benthocodon 19.4 End of dive:  support ship recalls ROV

Ptychogena 89.1 Tether reaches maximum length and overpowers thrusters

TABLE 6.2. Summary for Four Extended Tracking Experiments
Experiments were conducted in the open-ocean deploying the ROV Ventana under full 
autonomous control, with no control commands issued by a human pilot after initialization.
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The table also lists the reasons for termination of these four longest runs.  The gelatinous speci-

mens tracked during each of the four runs are illustrated in Figure 6.22.

During the final dive sequence, many shorter tracking runs were also recorded, each run ter-

minating for one of a variety of reasons.  The causes for termination fall into four broad categories:

(1) vision failures, in which the vision system lost the target while it remained inside the viewing

cone; (2) control failures, in which the control system allowed the target to wander outside the lim-

its of the camera viewing cone; (3) immediate abort failures, in which the target was lost within

fewer than ten seconds after the start of autonomous control; and (4) other termination modes, not

related to the reliability of the control or vision software routines.  Table 6.3 specifically details the

cause of termination for each time the tracking system was activated during the final five-dive

sequence.  The table summarizes termination statistics in terms of the four broad categories,

already introduced, and also in terms of several subcategories, described in detail by the following

list.     

Vision System Failures:
Bad Segmentation:  In this failure mode, the segmentation system (described in Chapter

4.3.3) failed to extract a set of pixels associated with the target animal.  Although this fail-

ure mode dominated early vision system experiments (8/2/00 - 4/13/01), only one segmen-

tation failure occurred during the final five-dive sequence, when the segmentation

algorithm failed to detect a target faintly illuminated by a challenging lighting configura-

tion (with no forward pointing light sources).

Bad Recognition:  Recognition failures occur when the target profile best matches an

object other than the target animal, a phenomenon which can cause the tracking system to

acquire the new object as its tracking target, inadvertently.  These failures were not, in early

experiments, a significant factor limiting tracking duration.  As discussed in Chapter 4.4.1,

however, recognition system limitations become more significant when tracking for

increased durations or through high-density animal populations.  At the end of the experi-

mental dive sequence, the single most significant culprit contributing to premature run ter-

mination was the recognition subcomponent.  Recognition failures were particularly

problematic during the 10/11/02 dive, which operated in a dense population of squid which

were attracted to the ROV lights (i.e. Assumption 4.2 was invalid). 
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Reason for Failure Oct. 23, 2001 May 9, 2002 June 26, 2002 Sep. 24, 2002 Oct 11, 2002

Summary

Vision 9 1 0 2 6

Control 23 18 0 0 0

Immediate Abort 7 5 1 0 2

Other 1 0 2 1 4

Detail

Vision

Bad Segmentation 1 0 0 0 0

Bad Recognition 0 1 0 0 4

Bad False Positive 4 0 0 2 2

Degraded Profile 4 0 0 0 0

Control

Target Loss - Range 4 6 0 0 0

Target Loss - 
Bearing

19 12 0 0 0

Immediate Abort

Target Too Small 1 0 0 0 0

Bad Vision Profile 2 2 1 0 2

Bad Control 1 3 0 0 0

Converging Stereo 
Alignment

3 0 0 0 0

Other

Manual Termination 1 0 2 0 0

Tether Management 0 0 0 1 0

Occlusion by Squid 
Ink 

0 0 0 0 3

Target 
Disintegration

0 0 0 0 1

TABLE 6.3. Run Termination Statistics
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Bad False Positive:  This variant of the recognition failure occurs when no segmented

region closely matches the target profile.  In these cases, the vision system assumes the tar-

get has left the viewing cone, and attempts to command the vehicle to move in the direction

in which the target was last seen.  Normally, this behavior helps the system to recover a tar-

get following an out-of-frame event.  If a false positive is triggered while the target is still

in the viewing cone, however, a tracking run may end abruptly. These bad false-positive

failures cause spontaneous loss of the animal target even in the absence of any other animal

in the viewing field.  Bad false-positives, along with other recognition failures, only

emerged as an important contributor to premature run termination when other vision and

control problems had been eliminated.

Degraded Profile:  In this failure mode, the control system allows the target to wander par-

tially out of the viewing cone.  During the target’s time on the edge of the viewing bound-

ary, its profile statistics reflect only the visible portion of its body.  These statistics degrade

the recognition profile and increase the likelihood of a recognition failure when the target

returns into the center of the viewing cone.  This failure mode, involving the interaction of

the control and vision systems, has not occurred since the introduction of the boundary-

control term.

Control:
Target Loss - Range:  In this failure mode, the control system fails to regulate the target’s

range relative to the camera sensor.  Subsequently, the target becomes too small for the

vision system to identify or exits altogether from the viewing cone of one of the two stereo

cameras.  This problem did not occur after the parallel stereo configuration replaced the

large-baseline, converging stereo configuration. 

Target Loss - Bearing:  These control failures result in the loss of the target outside the

boundaries of the camera viewing cone.  Historically, bearing control failures were a major

problem and caused a majority of failures through the 5/9/02 dive.  The subsequent intro-

duction of the boundary control term appeared to remedy this failure mode.
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Immediate Abort:
Target Too Small:  This failure mode occurs when the target is too small for the vision sys-

tem to identify.  During initialization, the human pilot can perceive and track targets

smaller than the detection threshold for the vision system.  In fact, because of the increased

sensitivity of visual positioning at high zoom or at short range, human pilots prefer not to

enlarge the target’s size in the control camera.  Thus, the human pilot may choose operate

at ranges greater than the capability of the automated vision system, while the automated

vision system operates preferentially at ranges shorter than comfortable for a human pilot.

For small sized animals the band of overlap between the ranges preferred by the human

pilot and the computer controller may be small.  Consequently, a human operator may

attempt to initiate a tracking run without realizing that a target is too far away for visual

acquisition.  To reduce the likelihood of this occurrence, the reference range for tracking

runs was reduced to 90% of the range measured during human-piloted tracking (see

Figure 6.9).

Bad Vision Profile:  Bad profile failures occur when the vision system locks on to the

wrong tracking target from the start of the tracking run.  The initial recognition profile

assumes a target of a particular size located near the center of the camera image.  In some

cases, glare on the camera dome or image noise may better approximate the initial profile

than the intended tracking target.  Consequently, the vision system immediately acquires

the wrong target.

Bad Control:  This failure mode occurs when the control routine fails to stabilize target

position at run initialization.  As a result, the target moves rapidly out of the viewing cone.

This class of immediate-abort failure did not occur after the introduction of the boundary-

control strategy.

Converging Stereo Alignment:  These failures occurred when the target exited the viewing

cone of a converging stereo camera shortly after the initialization of a tracking run.  This

problem resulted from the poor human-factors design of the converging-stereo configura-

tion, which required that the human pilot initialize the tracking system by aligning the tar-

get simultaneously in video sequences produced by two cameras rotated by an arbitrary

angle.  In practice, the human pilot focused on only one video stream at a time.  As a result,

the target frequently exited the second camera’s viewing cone while the pilot concentrated
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on the first camera.  Shifting to a parallel stereo configuration, in which the two cameras

provide nearly the same view, appeared to solve this immediate abort problem.

Other Reasons for Run Termination:
Manual Termination:  In several cases the run was terminated by choice.  Reasons for man-

ual intervention included the decision to start a dissimilar experiment, the desire to avoid a

collision with the ocean floor, and the requirement to end an experiment to meet dive time

constraints.

Tether Management:  The longest run ended when tether tension exceeded the thrust output

of the ROV.  In this sense, the problem reflects a limitation of the system hardware config-

uration and not a problem with the system software described by this dissertation.

Occlusion by Squid Ink:  This problem reflects a fundamental limitation of the vision sens-

ing strategy.  The visual sensor cannot penetrate turbid water; such conditions result when

squid ink diffuses into the viewing cone and occludes line of sight to the target animal.

Target Disintegration:  Larvacean houses are so fragile that they disintegrate rapidly in the

presence of a large ROV.  This problem occurs even when human pilots attempt to track a

larvacean house.  (Sinking houses, such as those pursued for extended periods by the auto-

mated jelly-tracking system, are more robust to hydrodynamic disturbances than free float-

ing larvacean houses.)

As a general observation, run termination statistics demonstrate a marked improvement in

performance through time.  Early dives, not described by Table 6.3, terminated regularly because

of failures to segment the gelatinous animal target.  On subsequent dives, most test runs terminated

after control related failures.  As many as 58% of runs, on 10/23/01, and 67% of runs, on 5/9/02,

ended because of a control failure in the range or bearing directions.  By comparison, zero control

failures occurred after the introduction of the boundary control term on 6/26/02.  The boundary

control term, along with the shift to parallel stereo, also greatly reduced the number of immediate

abort failures not related to a bad vision profile, from 13% on 10/23/01 and 11% on 5/9/02 down to

0% on 6/26/02 and subsequent dates.  At the conclusion of the experimental dive series, recogni-

tion related failures (including bad recognition, bad false positives and immediate aborts due to a

bad vision profile) remained as the major culprits limiting the length of jelly-tracking runs, partic-

ularly during operations among the dense squid population observed on 10/11/02.  Although rec-
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ognition-related failures appear to be the major bottleneck in achieving longer tracking periods,

the present tracking system nonetheless succeeded in achieving several long duration tracking runs

without encountering a recognition issue.  In fact, as shown by Table 6.2, only one of the four

longest runs ended on account of a vision failure.

6.4.2 The Study of Gelatinous Animal Subjects

The two longest dives illustrate the utility of the jelly-tracking system for science applications.

First, the 34-minute run tracking a sinking larvacean house (6/26/02) demonstrated the capability

of the jelly-tracking system to collect new data to extend the results of a previous science experi-

ment.  Second, the 89-minute run tracking the hydromedusa Ptychogena demonstrated a new

quantitative capability to measure three-dimensional motion behaviors over long distances in the

ocean.  This capability relies on a combination of the jelly-tracking system and a doppler-velocity

log (DVL).     

Larvacean Study
First, the larvacean house run repeated a specific experiment previously performed by Hamner and

Robison [44].  The larvacean Bathochordaeus continuously sheds and rebuilds its feeding filter,

known commonly as its "house."  When the larvacean abandons its house, the old filter, laden with

oversize particulates, descends toward the ocean floor.  Hamner and Robison measured sinking

rates for larvacean houses and hypothesized that the flux of these houses serves as an important

mechanism providing nutrients to bottom dwelling species.  Figure 6.23 presents data from a

series of eight larvacean tracking runs performed under human-pilot control.

The same figure also plots data from an experiment using the automated jelly-tracking sys-

tem. The depth trace taken during the automated experiment (average velocity 2.4 km/day) aligns

qualitatively with the descent of the fastest of the eight larvacean houses measured by Hamner

(average velocity 2.1 km/day).  Hamner's paper attributes the speed of the fastest of the eight sam-

ples to its "arrow-shaped, streamlined" form, a description which applies equally well to the rap-

idly descending house observed during the automated tracking experiment.

In effect the automated larvacean experiment demonstrates the ability of the jelly-tracking

system to reproduce a science result.  The potential for further application of the automated system

is enormous; the system could be applied to generate a vast quantity of additional data to generate
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Figure 6.23  Larvacean Run:  Comparison of Automatically Acquired Data to Previous Data
Data describe an extended run tracking a sinking larvacean house (6/26/02 DL34).  This plot shows 

depth vs. time for a sinker at 5 minute intervals.  The new data, acquired under autonomous control, is 
compared to published scientific data from Hamner and Robison’s paper on Bathochordaeus [44].  This 

run, at 34 minutes, is the second longest run logged by the automated tracking system.  The run was 
terminated manually when the larvacean house approached the ocean floor.
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more precise statistics about larvacean house sinking rates.  The automated system could also be

used to study dependence of larvacean house sinking rates as a function of season, nutrient abun-

dance, or shape during descent.

Medusa Study
The run tracking the medusa Ptychogena demonstrates a capability to perform a new class of sci-

ence experiment studying animal motion behaviors.  This experiment exploits a combination of

the jelly-tracking sensor, which measures animal motion relative to an ROV, and a DVL sensor,

which measures ROV velocities relative to the water or to the ocean floor.  The combination

enables a quantitative measurement of the motion of a gelatinous specimen relative to its environ-

ment.                     

Figure 6.24 reconstructs the motion of the ptychogena specimen, relative to the ocean floor,

using combined DVL and vision sensor measurements.  (Figure 6.25 and Figure 6.26 give alter-

nate viewpoints on the same four-DoF data set.)  These motion reconstruction plots rely on a bot-

tom-lock DVL measurement which was available only when the altitude of the DVL above the

ocean floor was 25 m or less (Figure 6.27, middle plot).  The dominant motion displayed by the

jelly target during the time of bottom lock is a large translation toward the WNW direction (301°

degrees from North), at a rate of 4.7 m/min.  As the jelly was not swimming during this time, the

motion appears to be the result of a a current moving along the floor of the Monterey Canyon, out-

ward toward the ocean.  Underneath the jelly, the ocean floor dropped by more than 22 meters dur-

ing the time the animal transited 70 meters, making the average angle of the Canyon floor a 19°

degree dropoff (Figure 6.27).  These changes were significantly larger than the DVL drift rate.

The DVL specifications indicate that it accumulates position errors, in the worst case, at no more

than 0.12 m/min.

During the jelly’s advective transit to the WNW, a significant hydrodynamic structure, possi-

bly a streamwise vortical component of the benthic boundary layer, captured both the animal and

the ROV.  The first sign of the hydrodynamic event occurred at minute 27, when the tether force

rapidly changed direction, pulling to the West (Figure 6.19).  At the same time, the pressure-depth

signal indicated a slight upwards motion of the jelly, though the animal continued to swim down-

ward.  Within five minutes, the vehicle and jelly began moving distinctly to the East.  This change

appeared to lead into a helical motion with a 20 m diameter, significantly larger than the length
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Figure 6.24  Ptychogena Run 5:  Motion of Ptychogena over the Sea Floor
Data describe the middle 30 minutes of an extended experiment tracking the medusa Ptychogena (9/24/02 
DL31).  This plot depicts the motion of a Ptychogena over the ocean floor in three-dimensional, world-
fixed coordinates.  During the period shown (Minutes 35-56), the DVL was able to lock onto the ocean 
floor and provide world-frame motion measurements.  Vehicle and animal positions in the world frame 

are obtained by combining vision-based measurements with acoustic DVL measurements.  Vehicle 
position is shown as a dashed line; the jelly position, as a solid line.  The vehicle shifts in yaw by 180 
degrees in the middle of the run.  As a result, the ROV switches from a position in front of the animal 
(facing ENE) to behind the animal (WSW).  During this time the animal was not swimming, and was 

transported entirely by the local current.
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Figure 6.25  Ptychogena Run 6:  Motion of Ptychogena over the Sea Floor, End-on View
Data describe the middle 30 minutes of an extended experiment tracking the medusa Ptychogena 

(9/24/02 DL31).  The initial and final progress of the Ptychogena (see Figure 6.24) over the sea floor 
proceeds out of the page (toward the Northwest).  The interruption in the straight line motion occurs due 
to a significant hydrodynamic event which pulled both ROV and medusa into a helical motion of 20 m in 

diameter.  The ROV and animal completed three-quarters of the helical rotation before resuming 
straight-line motion toward the Northwest.
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Figure 6.26  Ptychogena Run 7:  Motion of the Ptychogena over the Sea Floor, Time Traces
Data describe the middle 30 minutes of an extended experiment tracking the medusa Ptychogena 

(9/24/02 DL31).  The progress of the Ptychogena over the sea floor is plotted in world fixed coordinates.    
The vehicle rotation is apparent in the heading plot (bottom).  Data are undersampled in these plots 

(plotted at 0.05 Hz rather than 10 Hz).  As a consequence, these data appear artificially smooth.
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Figure 6.27  Ptychogena Run 8:  Altitude and Depth
Data describe the middle 30 minutes of an extended experiment tracking the medusa Ptychogena 

(9/24/02 DL31).  DVL and Pressure gage measurements are compared during the time the DVL had 
bottom lock (Minutes 35-56).  The top plot shows depth as measured by the pressure gage (dashed line) 
and by the integration of the DVL signal (solid line). The ptychogena specimen ceased swimming just 

after the DVL acquired bottom lock (at a depth of 629.3 m).  As the integrated DVL position is relative, it 
has been shifted to match the pressure depth at the time of initial bottom lock.  The middle plot shows the 

DVL altitude (time of flight) in comparison with the pressure gage measurement.  The pressure depth 
measurement is shifted to match the altitude measurement at the time of initial bottom lock.  The 

difference between the two signals (bottom) indicates the change in the depth of the seafloor beneath the 
animal as it moved toward the Northwest.
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scale of either the vehicle or the tracked jelly.  Viewed from the direction of the current (WNW),

this motion progressed three-quarters of the way around the helix axis, as illustrated by

Figure 6.25.  The second dramatic shift in tether bias force occurred at the nadir of the corkscrew

motion, tugging on the vehicle to the East as the ROV began to move to the West of its initial tra-

jectory.  At their lowest point, the ROV and the animal subject came within 4 m of the ocean floor.

Thus DVL data describe a large, three-dimensional advective transport of the Ptychogena

specimen.  The capability to measure such motion could be applied to address open questions

about horizontal migrations of deep-ocean gelatinous animals (Chapter 2.5.3).  As the Ptychogena

experiment is the first quantitative measurement of long distance, three-dimensional motion for a

jellyfish in the deep ocean, more data will be required to assess the ecological significance of this

type of large, passive migration.  Nonetheless, the potential for future applications of this system

to measure both bottom-relative and water-relative animal motions (with the DVL set to water-

lock mode) is enormous.

The experiment also touches on open questions about the stimuli used by Ptychogena to trig-

ger initiation and termination of diel vertical migration (Chapter 2.5.2).  After swimming down-

ward nearly 70 meters, the Ptychogena abruptly stopped swimming.  The end of swimming

motions, at Minute 33, occurred just prior to the start of the large corkscrew motion illustrated in

Figure 6.25.  Without more data, no reliable connection can be established to link the hydrody-

namic event with the end of animal swimming; however, from an evolutionary point of view, the

ability to detect benthic boundary layer turbulence could permit a medusa to detect the ocean floor

before colliding with it and, in effect, avoid the risk of colliding with the ocean floor or encounter-

ing benthic predators.  If the animal did stop swimming as the result of an environmental trigger, it

seems likely that the trigger involved pressure sensitivity.  The pressure depth measured by the

ROV reversed just prior to the end of jelly swimming (Figure 6.19).  During the reversal, the jelly

apparently moved more than 1 m upward toward the ocean surface, even though the jelly contin-

ued to swim directly downward during this time.  Many hydromedusae appear to sense both grav-

ity direction and pressure changes (Chapter 2.7).  Thus, it seems possible that the jelly recognized

this incongruity between its swimming direction and the reversed pressure signal and, conse-

quently, stopped swimming.  Substantially more experimental evidence will be required, however,

to support or refute this hypothesis.
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The initiation of jelly swimming also raises questions about the stimuli that triggered this

change in motion behavior.  Because the ptychogena began its sustained downward swim within

minutes of the approach of the tracking ROV, it seems likely that disturbances produced by the

ROV triggered the initiation of swimming.  Certainly the ROV affected the environment by adding

sources of light, heat, acoustic vibrations, and larger hydrodynamic fluctuations.  No evidence

exists to tie any one of these disturbances to the initiation of Ptychogena motion.  Nonetheless,

based on the accumulated body of research linking increased ambient lighting to downward swim-

ming among other hydromedusae, it seems likely that the ROV lights triggered a DVM-type

motion behavior (Chapter 2.5.2).

This final observation raises very significant questions about the influence of the jelly-track-

ing instrument on the behavioral phenomena under observation.  An important aspect of fielding

an automated jelly-tracking platform will involve the assessment of the biological significance of

disturbances produced by the tracking vehicle.  Based on the Ptychogena experiment, and on the

apparent attraction of large numbers of squid to the ROV during the 10/11/02 dive, it appears that

the ROV’s light sources represent the most significant disturbance on the environment introduced

by the tracking vehicle.  Methods to reduce the lighting level will undoubtedly reduce the tracking

vehicle’s influence on the animal subject and its environment.

6.5 Summary
This chapter presented experimental data to demonstrate the function of the components of the

jelly-tracker and to validate the overall performance of the complete system.  Ocean dives deploy-

ing the ROV Ventana in Monterey Bay completed three overlapping experimental phases:  a vision

phase, a control phase, and a biological applications phase.  In the vision phase, experiments col-

lected video data used to develop the gradient-based segmentation methods described in Chapter

4.  The control phase demonstrated the field control system from Chapter 5 and pinpointed the par-

ticular importance of the boundary control term, used to enforce the limits of the camera viewing

cone.  The final, biology-application phase of experimental testing validated the ability of the auto-

mated system to achieve extended-duration tracking.  These experiments tracked several animals

for extended periods of time, as long as 89 minutes for one Ptychogena specimen.  The Ptycho-

gena run also illustrated the capability of the jelly-tracking system to reconstruct animal motion in

three-dimensions and to correspond these motions with behaviors observed in the video data.  Evi-
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dence suggests that the jelly-tracking platform may have had some impact on behavioral phenom-

ena under observation.  Nonetheless, field tests of the automated jelly-tracking system firmly

establish the system’s utility to enable new scientific experiments.
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AUV Power Budget:  Lighting

In all the hundreds of published papers on vertical migration, no one has ever tracked an 
individual zooplankter in situ over a 24-h period.  Such a study would not only provide data on 
how zooplankton budget their time between various behaviors, but would allow us to examine 
behavioral variability between individuals.

- H.J. Price et al., 1988 [77] 

This chapter examines jelly tracking for autonomous underwater vehicle (AUV) applications with

a constrained energy budget.  Scientists desire very long-duration tracking of individual animal

specimens, as long as 24 hours or more.  For operations with a remotely operated vehicle (ROV)

platform, however, the requirement for on-station support by a surface vessel restricts the practi-

cality of animal tracking to only a few hours.  The transfer of jelly-tracking technology from an

ROV to an AUV platform offers the potential to achieve 24-hour tracking in the future, as  AUVs

can operate independently with no physical connection to a surface ship.  In exchange for this

independence, an AUV sacrifices both the high-bandwidth communication link and the steady

power supply available through a tether.  Consequently, the design of a jelly-tracking AUV must

satisfy two major challenges:  a reliability requirement, akin to that for ROV operations, and an

energy requirement, an added constraint specific to operations with an untethered AUV.  

To reduce the power budget for the demonstrated ROV-based jelly-tracking system to a level

consistent with the requirements for AUV-based jelly-tracking, this chapter analyzes the major

power sink for the experimental system:  sensor illumination.  Section 7.1 establishes relative

energy budgets for the ROV and AUV platforms.  Whereas lighting consumes 3.4 kW for the

ROV-based jelly-tracking system, the AUV-based system will offer fewer than 20 W for active

illumination.  To examine means of reducing the sensor illumination power to this level, Section

7.2 employs a radiometric analysis of the lighting system.  The analysis indicates that focused

spot-lighting and strobed lighting, together, can reduce energy requirements sufficiently to enable

AUV-based tracking.  The use of strobed lighting, however, introduces a new possibility for dis-

turbing a tracked animal and interfering with observed behaviors.  As a consequence, Section 7.3

develops a new light-response model for gelatinous animals and employs it to evaluate the pro-
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posed strobe pattern.  The model indicates that, in fact, strobed lighting (with light-on periods of

less than 20 ms and light-off periods of approximately 1 s) may improve the quality of biological

data collection by reducing the effects of artificial lighting on animal behavior.  Thus, in the future,

strobed lighting may offer benefits for both AUV and ROV operations.

7.1 Power Budget for AUV-based Tracking
Comparison of power budgets for AUV and ROV-based jelly tracking establishes the relative

power reduction required to deploy the experimentally demonstrated jelly-tracking technology on

an energy-constrained AUV platform.  This section estimates the power budget for a conceptual

jelly-tracking AUV as shown in Table 7.1.  The estimated sensor power budget is approximately

20 W.  This figure is 200 times smaller than the sensor power budget of the current ROV-based

system, which consumes more than 4 kW of continuous power during jelly-tracking operations.

7.1.1 Overall AUV Power Budget     

The power budget for the jelly-tracking AUV consists of three primary terms:  sensor power, ,

actuator power, , and hotel load, .  Whereas the power required to sense the target animal

and to actuate position relative to that animal may be optimized through strategic system design,

the hotel load represents a fixed overhead.  This load comprises the power draw of continuously

active components necessary for AUV function (processing, data storage, auxiliary sensing) and is

estimated at 10 W.  Thus the total power consumed by the vehicle, , is

. (7.1)

Budget Item (for an AUV of mass 135 kg) Power

Sensor Power (Lighting, Cameras, Processing) 22 W

Actuator Power - Steady Drag Component < 0.01 W

Actuator Power 2 W

Hotel Load 10 W

Total Power Available (based on a payload of 15 kg NiCad batteries/day) 34 W

TABLE 7.1. Summary of the energy budget for a hypothetical jelly-tracking AUV

Ps

Pa Ph

P

P Ps Pa Ph+ +=
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This power requirement cannot exceed the total power available given AUV energy storage and

mission duration.

(7.2)

Here  represents energy density,  represents mass dedicated to energy storage, and  repre-

sents the total duration of the jelly-tracking mission.  Nickel-cadmium batteries are assumed to

provide energy storage (  according to [172]) for a jelly-tracking mission of one-

day duration ( ).  Given the hotel load and the total power available from energy stor-

age, the power available for animal sensing, , depends only on the power consumed by the

thrusters.  

7.1.2 Actuator Power

The actuator power requirement, , depends on the dynamics of the animal under observation,

on the vehicle control law, and on environmental disturbances.  These factors contribute both to

steady and unsteady forcing by the vehicle actuators.  

For the jelly-tracking application, steady thruster forcing does not produce a significant

demand for actuator power.  Steady thruster forcing need counter only steady animal swimming

and any external forces exerted on the AUV.  For ROV-based tracking, significant thrust was

required to offset steady external forces, caused primarily by tether forcing.  In the absence of a

tether, animal translational motions dominate the steady actuator power demand.  To estimate the

power required to pursue a swimming animal, the AUV is modeled as a sphere (isotropic drag

coefficient) with neutral buoyancy.  The volume of the sphere is 

. (7.3)

Here  is the density of seawater.  The total vehicle mass incorporates both the mass dedicated to

energy storage, , and the mass dedicated to other vehicle components, .  The frontal area of

the same sphere is

P
eMe

T
----------=

e Me T

e 55 W-h kg⁄=
T 24 h=
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V
Me Mo+

ρ
---------------------=
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(7.4)

Given this area, the steady actuator power required for pursuit depends on the cube of the tracked

animal’s velocity, .  The drag coefficient for the sphere is taken to be 0.5.

(7.5)

Even for a very rapidly swimming gelatinous animal the steady drag power requirement is small.

To provide an example, the drag for a vehicle the size of OTTER, Stanford’s experimental AUV

testbed [160], can be considered:  .  Using 30% efficient thrusters and pur-

suing one of the faster-swimming gelatinous animals, a siphonophore moving at 11 cm/s (Chapter

2.6.4), the steady actuation power requirement for this vehicle, assuming that the target animal

swims continually, is .  For a more typical animal, moving 90% of the time at

a speed of 2 cm/s, the steady power requirement for the same vehicle is a miniscule

.

Unsteady actuation, by comparison, may consume a significantly larger amount of power

than steady actuation, even for typical circumstances.  These power demands result from the

AUV’s inability to recover energy during vehicle accelerations or decelerations.  All variations in

the speed of the tracked animal over time thus require the expenditure of energy by the tracking

AUV.  Assuming negligible drag and perfect tracking (i.e. negligible dynamics associated with

vehicle control) the power required for AUV acceleration is 

(7.6)

The added mass coefficient, , accounts for the mass of water accelerated during vehicle accel-

eration.  For a sphere of neutral buoyancy, the added mass coefficient is 1.5.  Animal kinematics

are modeled approximately as one-dimensional oscillations around a steady velocity in the direc-

tion :

. (7.7)
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The oscillations parameters depend strongly on the species of animal tracked (see Chapter 2).  For

a typical Mitrocoma cellularia specimen, for instance, approximate parameters include a mean

velocity,  of 0.5 cm/s, a fluctuating velocity, , of approximately 0.5 cm/s and a pulse frequency

of 0.5 Hz ( ).  For a typical Aequorea victoria specimen, the approximate parame-

ters are a  of 1.24 cm/s,  of 0.5 cm/s and pulse frequency of  1.47 Hz ( ) [25].

The averaged unsteady power of (7.6) can be calculated by integrating the kinematics of (7.7) over

an integer number of cycles.   When  > , the direction of motion never reverses, and the for-

mula for time averaged unsteady power, with no energy recovery, is

(7.8)

For 30% thruster efficiency, a 150 kg vehicle and continuous swimming, the unsteady power

requirement for pursuing the typical Mitrocoma is only 0.1 W.  The unsteady power requirement

for tracking the Aequorea victoria, however, is as high as 2.5 W.  Moreover, the actual energy

expenditure may be even higher, since the 2.5 W estimate does not include extra dynamics intro-

duced by imperfect tracking.

7.1.3 Sensor Power

After subtracting off the requirements for the hotel and actuator loads from the total power budget,

the remaining available power can supply the jelly-positioning sensor.

(7.9)

To obtain an estimate of , the vehicle is again assumed to have a mass similar to that of Stan-

ford’s OTTER vehicle.  This experimental AUV has a base mass, without batteries, of approxi-

mately , dry.  (The jelly-tracking AUV, unlike OTTER, is assumed not to flood;

flooding of internal cavities increases OTTER’s mass by an additional 300 kg.)  Assuming the

jelly-tracking vehicle has a base mass of 135 kg and is following an Aequorea victoria specimen,

(7.9) becomes

v v'
ω 3.1 rad/s=

v v' ω 9.2 rad/s=
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π
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(7.10)

This equation assumes energy storage in the form of nickel-cadmium batteries and a hotel load of

10 W.  From the equation, a battery load of 10 kg/day supports a sensor power draw, , of

approximately 11 W.  A battery load of 15 kg/day supports a power draw of approximately 22 W.

As a reference point, the OTTER vehicle was designed with approximately 14 kg of onboard

energy storage.

7.1.4 Comparison of AUV and ROV

Energy budget estimates for the jelly-tracking AUV are listed in Table 7.1.  Based on these figures,

the jelly-tracking AUV is assumed to require a jelly-tracking sensor with a power demands in the

10-20 W range.  Of this requirement, 2-4 W are assumed to go to power the camera and vision-

processing DSP components.  The remaining power is available for lighting.

Overall, these power requirements are consistent with those of other sensors designed for

AUV applications.  For instance, Langebrake et al. report the test results for several general-pur-

pose AUV sensors including a chemical sensor (6 W), a shadowed particle profiler (70 W), and a

laser line-scan bottom profiler (60 W) [170].  Short et al. describe a mass spectrometer for AUV

applications that consumes less than 100 W power [176].  The RDI Workhorse doppler velocity

log (DVL) consumes approximately 30 W.

At 10-20 W total power, the AUV-based jelly-tracking sensor has significantly stricter energy

requirements than the ROV-based sensor.  The ROV hotel and sensor energy budget is 8 kW, with

3.4 kW dedicated to lighting, 1.1 kW dedicated to systems and 3.5 kW dedicated to science hard-

ware [9].   Although energy systems and science hardware do not generally consume their maxi-

mum budgeted power, illumination consumes its full power budget continuously during jelly-

tracking operations.  To enable AUV-based jelly-tracking requires that this 3.4 kW lighting budget

be reduced by a factor of at least 200.

7.2 Optimizing Lighting Configuration
Several design approaches can reduce the illumination power requirement for jelly tracking.  The

most benign design change, the optimization of system geometry, cannot alone achieve the 200-

Ps
55
T
------ 0.02– 

 Me 12.3 W–=

Ps
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fold reduction in lighting power demanded for AUV operations.  Other possible improvements

include using low-light cameras and strobing the illumination source.

7.2.1 Radiometry

The power savings that result from geometric changes are described with a radiometric analysis.

The following equation for irradiance, or power flux, describes propagation losses between the

light source and the camera.  Equation (7.11) assumes the light source, camera sensor and target

animal are arranged as depicted in Figure 7.1.

(7.11)

Irradiance at the light source

Irradiance at sensor (at the camera)

Energy conversion efficiency of the light
source

Scattering coefficient:  the fraction of irra-
diance scattered toward the camera

Angle between light source and the camera
sensor

Angles between jelly axis of symmetry and
camera axis

Diameter of source

Diameter of light cone at reference range

Diameter of jelly

Nominal distance from sensor to jelly

Nominal distance from light source to jelly

Coefficient of attenuation

Wavelength of light

I0

Is

η0

Γ

α

φs j θs j,
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qs ref
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c

λ

Figure 7.1  Radiometry Definitions
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In this equation, four intrinsic parameters describe the light source:  , the irradiance produced by

the lamp; , the energy conversion efficiency of the light source; , the diameter of the light

source; and , the diameter of the illuminated cone at the nominal target range.  The latter pair of

parameters establish the spreading angle and effective origin of the light source.  Only one intrin-

sic parameter describes the camera sensor:  , the minimum level of irradiance required for target

detection, as measured at the camera.  The camera field of view does not influence the energy

equation (and can be set to the angle of  for maximum pixel resolution).  All

other parameters are extrinsic and hence defined by the environment, the target, and the viewing

geometry.

Equation (7.11) describes three mechanisms that degrade signal strength: signal spreading,

target transmissivity, and absorption.  For geometric optimization, the most significant of these

loss mechanisms is spreading.  Spreading losses result because the energy in an impulsive wave

front leaving from a point source spreads evenly over a spherical surface area that grows with the

square of the distance the wave has traveled.  For an active illumination task, light waves spread

twice, first from the light source to the target and again from the target to the camera.  In (7.11), the

 term describes initial spreading from the source to the target, and the  term

describes subsequent scattering from the target to the camera.  Although the latter scattering term

depends on target range, the initial spreading term, by design, does not.  This independence results

if the source spreading angle is narrowed to compensate for increased source-to-target range, thus

holding  constant.

Transmission of light through the transparent target also reduces signal strength significantly.

For jelly-tracking, camera sensors collect light in backscatter.  The fraction of impinging light scat-

tered back from the target along the angle of the camera, , is described by the scattering coeffi-

cient, .  (Target orientation, in terms of the angles  and , also affects the

scattering coefficient.)  Because of their high transparency, jellies transmit most impinging light

and scatter only a small fraction in other directions.  No data has been published to describe the

scattering function of a typical gelatinous animal.  Empirical observations suggest, however, that

optimal viewing occurs for angles, , between 45-90°.  Because the lighting angle for the ROV-

based system already falls in this range and because target orientation may vary arbitrarily, few

opportunities are available to optimize the function  in order to reduce target-transmission power

loss.     
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Figure 7.2  The Spectral Effects of Absorption and Camera Sensitivity
Plots illustrate that absorption losses are lowest for blue light (~460 nm).  Camera sensitivity, however,
increases into the near infrared.  Given these competing effects, the green wavelengths (~570 nm)
minimize system energy costs.  (a):  The fraction of energy lost due to spectral absorption is plotted at
three values of target range.  Wavelengths in the red and infrared are significantly attenuated by
absorption, even at close range.  (b):  Energy costs are plotted as a function of wavelength, with minimum
energy normalized to unity.  Spectral variations in camera sensitivity balance out increased absorption in
the red.  Hence, energy requirements are effectively flat (within a factor of two) between 400 and 700 nm.
Higher wavelengths (>700 nm) result in exponential increases in energy requirements.  Energy costs also
rise for lower wavelengths (<400); additionally, lower frequencies are to be avoided as ultraviolet
radiation can damage gelatinous animal tissue [53].  Data sources:  Attenuation coefficient data from
[168], Photodetector data (blue-enhanced silicon photodetector) from [177].
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Compared to spreading and target-transmission losses, absorption losses are relatively small

when observing an animal at a one-meter range.  Physically, the absorption term describes conver-

sion by the water medium of light energy into heat.  These losses are difficult to distinguish from

scattering losses involving particulates suspended in the water medium.  As a consequence, both

phenomena are modelled by the exponential absorption term, .  Both target

range and illumination wavelength affect absorption losses, as illustrated by Figure 7.2(a).  The

absorption term acts, effectively, as a bandpass filter with a minimum absorption loss near 460 nm.

For a nominal target range of 1 m (total path length 2 m), red and infrared wavelengths are signifi-

cantly attenuated.  Spectral variations in camera sensitivity, , partially offset spectral variations

in absorption, however.  Figure 7.2(b) shows the spectral effects of absorption and camera sensi-

tivity on the illumination power budget.  Overall system power requirements do not vary by more

than a factor of 2 between the violet (400 nm) and the red (700 nm) when considering both phe-

nomena together.  As a consequence, the choice of illumination wavelength does not significantly

affect the AUV energy budget; illumination sources may employ monochromatic or white light, as

long as they concentrate  illumination power in  the 400-700 nm range.

7.2.2 Power Optimization

The radiometric propagation equation can be used to optimize the lighting energy budget for the

jelly-tracking activity.  Equation (7.11) expresses the brightness of the source as an irradiance

quantity, with units of power per length-squared.  Assuming a circular light source of diameter ,

the energy output of the light source is

. (7.12)

Here the term M is defined for convenience as the margin ratio, the relative size of the illumination

region to the target jellyfish:

. (7.13)

System changes that lower  in effect decrease the energy required to illuminate the target.  In

this section, three system modifications are considered:  changes to system hardware, geometry,

e
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and strobe parameters.  A combination of the later two improvements, based on geometry and

strobing, are recommended to achieve the desired 200-fold reduction in the lighting energy budget.

Hardware Improvements
It is difficult to achieve a significant reduction in  by substituting in more efficient light sources

or cameras.  The current ROV-based jelly-tracking system uses metal halide arclamps as an illumi-

nation source (Chapter 3.6.3).  These light sources are among the most efficient available for deep-

ocean lighting [173].  As such, the  parameter cannot effectively be improved for an AUV

application.

More flexibility is available to modify the required irradiance at the camera sensor,  .

Intensification technologies (such as Silicon Intensifier Target, or SIT, and Intensified-SIT, or

ISIT, cameras) offer the capability to significantly boost  above the levels achieved by conven-

tional CCD cameras.  By increasing gain at the receiver, rather than the source, significantly less

energy is lost due to spherical spreading; in effect, the gain applies only to the solid angle observed

by the camera sensor and not to the entire spherical scattering surface around the target jelly.

These significant reductions in illumination energy that result from intensification are accom-

panied by a highly undesirable side effect, however.  The intensification process introduces a high

speckle-noise component into the image.  High image noise represents a major problem for the

jelly-tracking activity.  In jelly-tracking, target detection depends on contrast, on the relative mea-

surements of irradiance returned by the jelly target and by the surrounding medium.  Because the

jelly is transparent and because the jelly scattering function, , is not significantly different from

the scattering function for the surrounding ocean, contrast is low regardless of the absolute irradi-

ance level.  High signal noise destroys the contrast between target and background for background

difference images (see Chapter 4.4.2) and especially for gradient images (Chapter 4.3.3).  Conse-

quently, the vision processing methods described in this dissertation do not support the use of

intensified cameras for jelly-tracking applications.

Geometry Improvements
The illumination energy requirement, , depends on several geometric parameters including the

margin ratio, ; the camera-to-target distance, ; the source-to-target distance, ; and

the scattering geometry determined by the camera angle, , and the target pointing angles,

.  Of these geometric parameters, the margin ratio, , offers the greatest potential for
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reduction of .  Modification of geometric parameters alone, however, cannot fully achieve the

200-fold reduction in  required for AUV-based jelly tracking.

The margin ratio, which describes the ratio of the minimum diameter of the lighted volume

around the animal to the dimension of the animal, is an important parameter both for vision pro-

cessing and control.  The vision processing system depends on contrast between the target and the

background to identify the location of the animal specimen (Chapter 4).  Effective segmentation

requires some margin on all sides of the target animal.  To reflect this requirement, a constraint is

assumed for the margin ratio parameter, such that  where .  Additional vision

considerations, such as the desire to recognize approaching animals, and the requirement for

aggressive control to avoid target loss outside the viewing boundary (Chapter 5) may require a

more conservative constraint on .  For this analysis, only the contrast-based constraint, ,

is considered.

The margin ratio constraint permits  values significantly smaller than those employed for

jelly-tracking trials.  At a 1 m range, the ROV lamps give  approximately equal 1 m.  Given an

approximate target diameter, , equal 10 cm, the margin ratio for the field-demonstrated jelly-

tracking system is .  Reducing this margin ratio to the minimum required for vision pro-

cessing results in a 25-fold improvement in the energy budget for illumination, according to

(7.12).

Geometry changes other than margin ratio reduction have only a minor effect on the illumina-

tion energy budget.  The camera-to-target range, , for instance, may not be reduced signifi-

cantly without risking increased hydrodynamic disturbances that might affect the behavior of the

tracked target; the impact of hydrodynamic disturbances becomes more severe at short range

because the disturbances have less room to dissipate before impinging on the target jelly and

because more aggressive actuation is required to keep the target in viewing cone at short ranges.

The source-to-target distance, , may be shortened somewhat, but these changes only have a

small affect on  through the absorption term (see Figure 7.2).

The only remaining geometric parameters are those that affect the scattering function,

.  Scattering function dependence on the target orientation angles, , may

be reduced significantly by employing multiple light sources at different orientations relative to

the camera [171].  The use of multiple light sources, as shown in Figure 7.3, does not otherwise

impact the illumination energy budget; however, the use of multiple light sources does provide a
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positive benefit for vision processing by improving the uniformity of illumination over the view-

ing area.  It is possible that adjustments to the camera-to-source angle, , may permit some illu-

mination reduction.  Qualitative empirical evidence suggests that gelatinous animals are more

clearly visible when illuminated from the side rather than directly in backscatter (or shadowed in

forward scatter).  This affect may not be the result of a higher scattering function  at angles of 

near 90° so much as an improvement in the contrast between the target and the medium.  The

intensity of light scattered by the water back toward the camera is given as follows:

. (7.14)

This expression has a form similar to that of (7.12), integrated along a line that extends outward

from the camera origin at an angle .  Position along the line is parameterized by a coordinate, .

The scattering function of the water, , varies along the length of the line, as do the
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Figure 7.3  Multiple Light Source Geometry
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effects of spreading loss and absorption.  (The tilde indicates steridian units; thus the scattering

function has units of sr-1 and the source term is expressed as a radiometric intensity with units of

W/sr.)  The integral (7.14) cannot, in general, be evaluated in closed form.  By inspection, how-

ever, the magnitude of the signal scattered from the water back toward the camera can be observed

to decrease to a minimum near .  This phenomenon occurs because the length of the ray

along which light is scattered decreases substantially as the angle between the camera and the light

source increases toward .  Also, the scattering function of water, depicted in Figure 7.4,

reaches a minimum value near .
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Figure 7.4  Scattering Function of Water
The scattering function of water as reported by [169].  An angle of 0° indicates backscatter, of 180°
indicates forward transmission.
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In summary, the major geometric change that improves energy efficiency involves reduction

of the margin ratio to its minimum value, as constrained by the requirements of the vision process-

ing system.  This change improves the energy budget by a factor of 25.  Other geometric changes,

such as an increase in the number of light sources spread circumferentially around the camera axis

and a shift in the relative camera-source angle toward , improve image quality, but are

not expected to have a significant effect on the energy budget.

Strobed Lighting
The energy equation (7.12) applies to steady lighting; significant improvements in energy effi-

ciency may be achieved by applying unsteady, or strobed, lighting.  For the case of a pulsed light

source, the modified energy equation is

. (7.15)

Here the time-averaged power requirement, , is a function of the pulse frequency, , and the

pulse duration, .

An optimized system could reduce the lighting energy requirement by reducing sample rate

below that used for field experiments.  The ROV-based jelly-tracking camera sampled at the stan-

dard NTSC rate of 60 Hz, with interleaved frames captured alternately at half resolution.  With

continuous lighting, the pulse duration was approximately .  The pulse duration can-

not be significantly reduced (since signal strength is, in fact, proportional to the irradiance at the

camera integrated over time).  However, the sample frequency could be reduced by a factor of six

without otherwise affecting the system, as control commands were issued at a rate of only 10 Hz.

Given a sufficiently robust control strategy, further sampling frequency reduction may be

possible.  The lowest possible sampling frequency, neglecting control effects, is bounded by the

possibility of the target exiting the illuminated viewing area between samples.  The acceleration,

averaged over one swimming cycle, that carries a jelly from the center to the edge of the illumi-

nated cone (a distance of ) in one sample period is :

. (7.16)
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This equation may, alternatively, be regarded as a definition for the required cone spreading dis-

tance, .  According to (7.16) and (7.13), a proportionality exists between the margin ratio and

the minimum sampling rate.

(7.17)

This relation states that, at very low sample rates, the margin ratio must be increased to compen-

sate for unexpected changes in the target’s behavior mode, such as a change from a resting behav-

ior to a swimming behavior.  Relationship (7.17) only applies for .  For faster frequencies,

the margin ratio does not shrink smaller than the minimum margin ratio defined by the vision-pro-

cessing constraint.  Thus the margin ratio constraint, , is associated with a critical frequency,

.  

(7.18)

As described in Chapter 2, few jellies accelerate faster than one body length in a second

.  Thus an estimate of for the critical frequency is .

The relationship for energy consumption as a function of sample frequency is parameterized

by the vision-processing constraint, , and by the critical frequency, .  The relationship is

derived by substituting (7.17) into the time-averaged energy equation, (7.15):

(7.19)

According to (7.19), decreased sampling frequency actually increases power requirements for fre-

quencies below .  This phenomenon occurs because the illuminated volume need be increased

in size to compensate for unknown target motions over longer sampling intervals.  The relation-

ship (7.19) indicates that the minimum energy requirement occurs at .  Figure 7.5 illustrates this

result by plotting the relative power requirements predicted by (7.19).     
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Figure 7.5  Power Reduction as a Function of Sample Rate

Power reduction is normalized to unity at the critical frequency, .  Margin ratio is assumed to be at its

minimum value,  for frequencies above  and  below.  In this figure, the critical
frequency is estimated to be  and the minimum margin ratio is estimated at .
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The figure shows that a reduction in sampling frequency to minimize illumination power can

reduce power requirements by a factor of 85.  After combining this improvement with the 25-fold

improvement possible through geometric optimization, the total illumination energy requirement

may be improved by more than a factor of 2000.  This factor is much greater than the 200-fold

power improvement recommended for AUV-based jelly tracking in Section 7.1.  Achieving suc-

cessful control at low sample rates, however, is a difficult problem, left for future work.

7.3 The Impact of Strobed Lighting on Biology Data
As described in Chapter 2, pulsed light stimuli may affect the actions of photosensitive gelatinous

animals, both through short-term behaviors, such as the shadow reflex, and through longer-term

behaviors, such as diel vertical migration (DVM).  In designing a strobed lighting pattern, there-

fore, it is important to consider the potential impact of the strobe not just on the energy budget of

an AUV, but also on the behavioral phenomena under observation.  This section constructs a new

model for the light response of the medusa Polyorchis penicillatus.  

Analysis using the model suggests that the proposed low-energy strobe pattern (

and ) will not trigger repeated artificial reflex actions for a photosensitive medusa.  In

fact, the strobe pattern, as compared to steady lighting, may actually reduce the impact of lighting

disturbances on the observed animal.  Whereas steady illumination causes an animal to adapt to an

elevated light level, strobed lighting allows the animal to adapt to the darkness and to maintain

greater sensitivity to subtle changes in the natural ambient light that are believed to trigger patterns

of DVM motion.  The use of monochromatic red light (~700 nm) along with the strobe pattern

changes the system energy requirements very little and can further decrease the risk of artificially

stimulating animal behaviors.  Thus these design strategies offers the potential to increase the qual-

ity and accuracy of biological data.  As a consequence, strobed lighting in the red wavelengths

may offer benefits not only for energy-constrained AUV applications, but even for ROV applica-

tions.

7.3.1 A Behavioral Response Model for a Photosensitive Medusa       
This section introduces a new model to describe light-mediated behavioral responses in a photo-

sensitive medusa.  The model provides a means to evaluate a strobed lighting design and to assess

τd 17 ms≈

fp 0.7 Hz≈
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Figure 7.6  Definition of Medusa Light Response Model
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its potential for stimulating artificial behaviors in an animal under observation.  Although the

model is hypothesized to apply generally to photosensitive medusa species, model parameters are

tuned to the only species for which extensive photoresponse data are available:  the shallow-water

medusae Polyorchis penicillatus.

Figure 7.6 offers a graphical definition of the medusa light-response model.  The model is

derived from data collected in several research papers including [11,14-16,91].  The hybrid model

takes the form of a finite automaton which describes transitions of a discrete behavioral state, ,

consisting of seven distinct behavioral modes:  the default mode of maintenance swimming, three

responses to bright light, and three responses to darkness.  In addition to the behavior state, the

model includes one other discrete variable, the adaptation state, , which indicates whether the

subject animal is habituated to light or darkness.  The model also includes five continuous states:  a

dark-cycle counter, ; a light-cycle counter, ; an adaptation counter, ; a “base voltage” state,

, describing low level changes in the cell potential of the swimming motor neuron (SMN); and,

finally, a total voltage state for the swimming motor neuron, .

Behavioral Modes
Changes in the continuous states lead to transition among the seven behavioral modes.  The set of

seven behavioral modes spans the observed photoresponse behaviors of P. penicillatus to impul-

sive changes in ambient lighting level (Chapter 2.7.4).  As illustrated in Figure 7.6, light-stimu-

lated behaviors fall into one of two cycles, a dark cycle or a light cycle.  Each cycle traces the

physiological pathway from animal photoreceptor (nervous response) to the animal’s muscles

(reflex response) and through system-wide habituation (adaptation response).  Once fully adapted

to a new lighting stimulus, the animal returns to its default swimming state, called maintenance

swimming.  In this state, spontaneous (i.e. not light-mediated) swimming resumes.

When the light level changes, the model first enters the light nervous (LN) response mode or

the dark nervous (DN) response mode, as appropriate.  In physiological terms, even very brief

light-level changes trigger a response from the medusa’s photosensitive structures, known as

ocelli.  According to Weber, even light pulses as short as 10 ms trigger an ocellus response which,

in turn, triggers a response in the attached optic ganglion [91,92].  This nervous response does not

appear, however, to directly affect animal motion behavior.

qb

qa

xd xl xa

xbv

xsmn
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Responses that do result in visible changes to animal behavior are categorized by the model

as light reflex (LR) and dark reflex (DR) responses.  The dark reflex, also known as the shadow

reflex, involves the complete pathway from the photodetector, through the nervous system, to the

swimming muscles.  A period of darkness interrupting otherwise bright ambient light triggers the

shadow reflex, during which the animal performs a quick burst of one to four swimming pulses,

presumably to confound a predator trawling above.  The light reflex does not trigger a burst of

swimming; rather, the light reflex inhibits a shadow reflex in progress.  Effectively, the light reflex

stops bursting and resets the shadow reflex so that it may occur again multiple times in rapid suc-

cession.

By comparison with reflex responses, which occur for stimuli lasting 100s of milliseconds,

adaptation responses occur for much longer periods of light and darkness, which last for 10s or

100s of seconds.  During light adaptation (LA) or dark adaptation (DA), the animal habituates to a

new light level.  In dark adaptation, which generally follows a shadow reflex response, spontane-

ous swimming is inhibited.  In light adaptation, by contrast, spontaneous swimming may occur.

This swimming resembles spontaneous swimming in the maintenance swimming (MS) mode, but

at an increased pulsing frequency [11].  In the LA mode, as the animal habituates to bright light, its

pulse frequency, when swimming, decays gradually back to the base level observed in the MS

mode [14].  After habituating to a light or darkness condition, the animal exits the adaptation state

and returns to the default mode of maintenance swimming.  

Under steady light or darkness, progress generally proceeds circularly around the light or dark

cycle (see Figure 7.6) from nervous response to reflex response to adaptation and back to mainte-

nance swimming.  On returning to a light or dark cycle after only a brief period of the opposite

lighting condition, however, the animal may directly enter the adaptation mode from the nervous

response mode, without first triggering an intermediate reflex response.

Progress around each of the two cycles is tracked by a continuous counter variable.  The light

counter, , and the dark counter, , increment or decrement according to the external light stim-

ulus:

(7.20)

(7.21)

xl xd

xl xLA 0 f tb( ) xl+
tb 0=

,( )max,( )min=

xd xDA 0 f tb( )– xl+
tb 0=

,( )max,( )min=
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Here the time since entering a particular behavioral state is  and the increment/decrement func-

tion, , is controlled by the ambient light input, .

(7.22)

The ambient light input, , takes on the value of the natural lighting during a light-off (or dark-

ness) event: .  The artificial lighting level is assigned an intensity of unity and is assumed

much stronger than natural lighting level, , such that .  Thus, during a light-on event, the

ambient lighting input is effectively that of the artificial light source, .

A third counter, the adaptation counter, tracks the animal’s habituation to brightness or dark-

ness:

(7.23)

When the adaptation counter reaches its maximum value, the model of the animal transitions from

light habituation to dark habituation or vice versa.

Transitions between behavioral modes occur based on changes in the progress variables

( , , ) and in the lighting input, .  If the lighting input does not change, the following tran-

sition parameters govern mode transitions as described by Figure 7.6.  Transition parameters are

selected based on published data for P. Penicillatus [11,14-16,91].

(7.24)

If the input signal undergoes a step change, the model immediately transitions out of the current

behavioral mode, passes through the MS mode, and enters the opposite light or darkness cycle,

starting with a nervous response (LN or DN).  The animal is assumed to detect step changes in

lighting with a latency of 100 ms.

tb

f tb( ) u

f tb( )
tb, u 1≥

t– b, u 1<


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u ε=

ε ε 1«
u 1 ε+ 1≈=
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,( )max,( ),min qa Light=

xLA 0 f tb( ) xl+
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
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
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=

xl xd xa u

xDR 8.0 s= vhys 6 mv=

xDA 25 s= xLA 180 s=
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Spontaneous and Reflex Swimming
The hybrid model allows for two types of swimming behaviors:  reflex swimming, in response to a

light stimulus, and natural, or spontaneous, swimming.  The model does not account for other

spontaneous animal behaviors, such as body and tentacle deformations.  A description of the chal-

lenges in modeling these diverse spontaneous swimming behaviors for gelatinous animals may be

found in [122].

The first type of swimming, spontaneous swimming, occurs only in the LA and MS modes.

In these modes, the animal would be expected to alternate between periods of rest and periods of

activity.  In the MS mode, active periods consist of swimming at a base frequency, .  The spon-

taneous swimming frequency rises to  when the animal first enters the LA mode and gradually

decays back to the base frequency according to the following equation:

. (7.25)

where  is the maintenance-swimming pulse frequency and where  is the increased pulse fre-

quency observed upon first entering the light-adaptation mode.  The ratio of rest and swim activity

may change over course of a 24-hour day, to allow the animal to perform large scale vertical

migrations based on the natural lighting stimulus, .

Although the model describes variations in the frequency for spontaneous swimming, , it

does not explicitly account for individual spontaneous swimming pulses, as they are not correlated

with lighting input and are stochastic in nature.  The model does, however, explicitly account for

individual swim pulses triggered by the shadow reflex.  

The model uses two voltage variables to track reflex swimming in the DR mode.  The vari-

ables describe the cell potential in the swimming motor neuron (SMN), a segment of the P. penicil-

latus nervous system directly responsible for triggering contraction of the muscles used for bell

contraction.  The first of these states, the base voltage variable, , tracks low level changes in

SMN potential.  The base voltage state increases to a threshold, , according to the following

rule.

(7.26)

f0

fLA
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3 xa xLA⁄( )–
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When the base voltage reaches a sufficiently excited state ( ), spikes in cell potential,

called action potentials occur.  Physiologically, action potentials occur when a neuron reaches a

high enough cell potential that a flood of charge suddenly rushes through the cell membrane.  In

effect, this all or nothing signal is a binary voltage spike, generated by the neuron.  In the case of

the P. penicillatus swimming motor neuron, each voltage spike (action potential) triggers a single

contraction of the swimming bell.

The second voltage state, , captures the total voltage for the swimming motor neuron,

effectively the sum of the base voltage with an action potential function, .

(7.27)

A typical action potential burst consists of one to four bell contractions in rapid succession.  The

model action potential function, , treats the voltage spike cluster as a train of rectangle func-

tions of duration .

(7.28)

For simplicity,  is modeled deterministically as a series of only two action potentials occur-

ring at dark cycle times of  and .

7.3.2 Tuning and Validating the Light-Response Model         
The light-response model, introduced in the previous section, was tuned and then subsequently

validated using two distinct datasets.  Each dataset describes the swimming motorneuron voltage,

, over time in response to a binary (light-dark) input signal, .  Spikes in SMN voltage corre-

spond with swimming pulses:  a clear indication of artificial animal behaviors induced by an out-

side light source.

Tuning
The model was tuned based on an initial training dataset, drawn from [86].  Figure 7.7(a) illus-

trates this training dataset.  The training set describes the onset of the shadow reflex in response to

xbv vmax=
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Figure 7.7  Training a Model for Polyorchis Data
The light-response model was tuned to match data for a Polyorchis specimen.  (a) This experimental
dataset, reported by [86], depicts the swimming motor neuron (SMN) potential for four light-off events
of durations 0.44 s, 0.55 s, 0.64 s, and 0.92 s.  Gray regions represent times during which the light
stimulus was turned off.  Light off events may trigger large spikes in the SMN potential.  These spikes
are action potentials, all-or-nothing events which trigger a single swimming pulse.  Action potentials
do not trigger in response to short light-off events (less than 0.55s), but do trigger after longer light-off
events (above 0.6 s).  (b)  The lower plot shows the voltage output of the light-response model to the
sequence of four light-off events.  Model parameters were tuned to match the experimental data, so that
modeled action potentials, like those of the experiments, trigger for pulse durations of 0.6 s and longer.
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Figure 7.8  Validating the Polyorchis Model in Response to a Train of Light-off Events
The light response model was validated using a second Polyorchis dataset.  (a) The second
experimental data set is reported by [16] and evaluates jelly response to a train of subsequent light off
events.  The signal generator controlling the light source performs a square wave sweep from 0.5 Hz to
4 Hz and back.  (b) The light-response model captures most of the action potentials observed in the
experimental dataset.  Significantly, the model misses a rapid sequence of four pulses that occur
between seconds 40 and 43, when the pulse frequency reaches 1.25 Hz.  These pulses may represent an
unmodeled resonance mode.  Also, the model missed three pulses which occurred during light-on
periods.  These pulses may have been spontaneous swimming events unrelated to the optical stimulus.
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varying length periods of darkness.  The set includes four light-off events, each longer than the

last, applied to a light-adapted P. Penicillatus specimen.  The specimen only reacts to the two

light-off events longer than 0.6 seconds.  A series of two action potentials was recorded for the

light-off event lasting 0.92 seconds.

The parameters of the action potential function, , were tuned based on this dataset,

assuming a 100 ms latency.  The resulting parameter selections were as follows.

(7.29)

The light-response model qualitatively reflects the source data, as shown by Figure 7.7(b).  Only

small discrepancies are noticeable, such as the oscillations in the SMN voltage after the first action

potential, for instance, which result in an increased base voltage and a reduced trigger time for the

action potentials associated with the last of the four light-off events.  This phenomenon appears to

be the result of dynamic behavior of , which is not captured by the algebraic description of

(7.26)-(7.28).

Validation
In order to evaluate parameter tuning based on the first dataset, a second experimental dataset was

used for model validation.  The validation dataset, drawn from [16], reports swimming motor neu-

ron voltage, , for a Polyorchis penicillatus specimen subjected to a swept-frequency square

wave.  The frequency sweep begins at 0.5 Hz, increases to 4 Hz,  and then returns back to 1.6 Hz.

Figure 7.8(a) plots the experimental data.  The plot indicates that the animal subject responds with

an apparent shadow reflex for each dark period before the 36th second of the run.  Subsequent dark

periods, shorter than 0.6 s, do not trigger a shadow reflex, with the exception of an anomalous set

of action potentials between seconds 40 and 43.  No further SMN action potentials were recorded

until the dark period again lengthened beyond 0.6 s (after the 57th second of the experiment).

The model response qualitatively resembled the experimental data.  The choice of the model

parameters for the ramp slope, , and the base-voltage threshold, , appear consistent with

the data, as shown by Figure 7.8(b).  The spike width, , and the spike height, , also appear con-

sistent with experimental data.  Also, the model is seen to repeatedly trigger shadow responses for

g xd( )

vmax 10 mV= γ  70 mV=

α 20 mV/s= τ 0.05 s=
t1P 0.60 s= t2P 0.92 s=

xsmn

xsmn

α vmax

τ γ
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multiple successive light-off periods.  This fact indicates the LR mode plays a role in resetting the

shadow reflex, and that the hysteresis voltage, , is properly set.

In general, the timing of the first action potential, at , was also consistent with

observed data.  Shadow reflex action potentials predicted by the model stopped at the 36th second

and resumed after the 57th, as indicated by the experimental data.  However, the model did not

predict the burst of anomalous spikes between seconds 40 and 43, which occurred during dark

periods of only 0.4 s in length.  This set of four action potentials may be the result of the chemo-

electrodynamics of the cell, which are modeled only with algebraic equations in the model.  A

more complex dynamic form would be required to capture the observed phenomenon, which

appears to have a narrow band resonance peak near 2.5 Hz.  As a final observation, the  param-

eter appears to be longer than 0.92 for the validation dataset.  The discrepancy may be attributed to

the relative lack of data represented in the training dataset.

In summary, the validation dataset gives confidence that the light-response model can qualita-

tively predict the reactions of P. Penicillatus in response to a sequence of pulsed lighting events.

The validation dataset does indicate, however, a warning about model validity for pulsed

sequences with a dominant Fourier frequency component near 1.25 Hz.  Such sequences may

cause resonance of the base voltage and, as a consequence, may result in action potentials not pre-

dicted by the light-response model.  The proposed light pattern, which runs at 0.7 Hz with a pulse

duration of 17 ms, does not have a significant Fourier component near this 1.25 Hz resonance

point (as shown by Figure 7.9), and appears, thus, to be a valid input for the light-response model.    

7.3.3 Applying the Light-Response Model to the Design of a Strobed 
Lighting System    

In minimizing the lighting power budget for an energy-constrained AUV, Section 7.2.2 recom-

mended the use of strobed lighting with a pulse duration of approximately 0.017 s and an inter-

pulse spacing of approximately 1.4 s .  Because changes in illumination level may

stimulate artificial behaviors in observed gelatinous animals, it is important to consider the poten-

tial impact of this strobe pattern on biological observation.  The new light-response model offers a

means of addressing this concern.  The model predicts how a particular species of medusa, Poly-

orchis penicillatus, responds to the proposed low-energy strobe pattern.  Assuming that other pho-

tosensitive gelatinous animal species display neural, reflex, and adaptation reactions over time

vhys

t1P 0.6 s=

t2P

fp' 0.7 Hz≈( )
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Figure 7.9  Frequency Domain Description of Pulsed-Light Sequences
Time and frequency domain representations are shown for three sequences, all of which repeat with a
1.25 Hz frequency.  The first sequence is a sine wave, the second a square wave with even light-on and
light-off periods, and the third a strobe sequence with very short strobe pulses (τd=0.017 s).  Frequency
domain plots are shown for each of the three signals, with the DC component stripped and the
remaining components normalized such that total signal power was equal to unity.  Whereas the sine
wave and square wave signals have a very strong power component at 1.25 Hz, the pulsed strobe
sequence only has a very small component at 1.25 Hz.
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Figure 7.10  Applying Light-Response Model to Proposed Low-Energy Strobe Pattern
The low-energy strobe pattern from Section 7.2.2 was used as an input to the light-response model.  The
model was initialized assuming the subject animal was light adapted, .  (a)  The upper plot
shows the time response of the swimming motorneuron voltage as a function of time, subject to a strobe
pattern with period 1.4 s and light-on pulse duration of 0.017 s.  A shadow reflex is observed when the
lighting environment first switches to the strobed pattern.   (b) The lower plot shows the behavior mode
as a function of time.  The dominant behavioral mode switches, at light-off, from maintenance
swimming (MS) to the dark reflex mode (DR) to the dark adaptation mode (DA) and finally back to
maintenance swimming in the dark-adapted state, .
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scales similar to that of P. penicillatus, the model enables the evaluation of the proposed lighting

pattern to assess its impact on biological observation studies.

Figure 7.10 shows the predicted light-response of the reference medusa to the proposed low-

energy strobe pattern.  The response is plotted assuming the subject animal is adapted, initially, to

bright light.  When the strobe sequence begins, the first light-off event triggers an immediate

shadow response.  The following, 17 ms light-on event does not last long enough to effectively

trigger the LR mode to reset the shadow reflex.  As such, the dark cycle is permitted to complete

the dark reflex (DR), to complete dark adaptation (DA),  and to return to the maintenance swim-

ming (MS) mode in the dark adapted state.  The model thus converges on the dark-adapted MS

mode after a sufficient time interval.  The converged state is, in fact, a periodic steady state, with

intermittent sweeps through the LN, LA, DN, and DA modes during and after each 17 ms light

pulse.  The model never enters the reflex states (LR or DR), and hence, no artificial motion behav-

iors are triggered by the proposed low-energy strobe sequence once the model converges to its

periodic steady-state.

Thus, according to the model, the proposed low-energy strobed lighting pattern does not

appear to negatively impact the quality of biological observations of photosensitive animals.

Although the medusa ocellus may produce a small neural response following each pulsed lighting

event, no artificial motions are triggered and the animal’s dominant behavior mode remains as

dark-adapted maintenance swimming.

Surprisingly, pulsed lighting may actually enable studies not otherwise possible using con-

stant illumination.  Under the strobed lighting pattern, the model achieves a dark-adapted periodic

steady-state in the MS mode.  By comparison, the constant illumination input places the model in a

light-adapted steady-state in the MS mode.  When adapted to bright lighting, the animal subject

may lose its sensitivity to subtle changes in natural lighting level, .  Thus constant lighting may

interfere with behaviors mediated by subtle changes in lighting level, such as DVM.  Because the

strobed lighting sequence allows the animal to adapt to darkness, the animal may retain greater

sensitivity to changes in natural ambient lighting.  In this sense, pulsed lighting may offer benefits

not just in terms of energy savings, for AUV applications, but also in terms of the quality of bio-

logical observations, a factor relevant both for AUV and ROV applications.

ε
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7.3.4 Choice of an Illumination Wavelength

Strobed lighting provides one means of reducing illumination disturbances on a tracked animal.

The choice of illumination wavelength provides a second means of influencing the lighting distur-

bance environment [7,167,175].  Selecting an illumination wavelength away from the wavelength

of peak photoreceptor sensitivity reduces an animal’s ability to perceive artificial lighting stimuli.

Figure 2.8, which plots the spectral sensitivity for the ocelli of two representative species, Sarsia

Tubulosa and Polyorchis Penicillatus, suggests that small changes in illumination wavelength can

significantly impact an animal’s ability to perceive ambient illumination.  At 700 nm, these photo-

receptors have a sensitivity more than 25 times lower than their peak value.  Sensitivity also

decreases into the blue, but the potential hazard of radiation damage under ultraviolet light [53]

limits the sensitivity reduction achievable at shorter wavelengths.

Although both strobed lighting and wavelength selection can improve the quality of biologi-

cal data collection by reducing illumination disturbances, they have opposite affects on the system

energy budget.  While strobed lighting reduces illumination power requirements, wavelength

selection increases power requirements.  Power increases for wavelength selection over the 400-

700 nm band are moderate, less than a factor of two.  An elbow in the energy cost curve results in

exponential increases in power requirements when lighting at wavelengths above 700 nm, as illus-

trated by Figure 7.2(b).

Thus red illumination (~700 nm) provides a good compromise between concerns about bio-

logical disturbances and concerns about the energy budget for AUV operations.  The energy reduc-

tions afforded by geometric improvements and strobing more than compensate for the modest

(two-fold) increase in energy costs required to illuminate at 700 nm.  At the same time, the combi-

nation of strobed and red lighting offers the potential for a tremendous reduction in the lighting

disturbance environment and a corresponding improvement in the quality of biological data col-

lected.  Consequently, such a lighting system may offer benefits not only for AUV-based tracking,

but also for ROV applications.

7.4 Summary
The major challenge in transferring experimentally validated tracking technologies from an ROV

platform to an AUV platform involves the reduction of sensing power requirements and, in partic-
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ular, the power required for illumination.  An energy budget analysis for a conceptual jelly-track-

ing AUV places the illumination power requirement at approximately 20 W, a 200-fold reduction

in power relative to that used by the experimental ROV system.  Converting from the diffuse illu-

mination used for ROV operations to focused spotlighting reduces the illumination energy require-

ment by as much as a factor of 25.  The use of strobed lighting (at a sample rate of 0.7 Hz) can

further reduce power requirements by a factor of approximately 80.  Achieving these low-energy

benefits requires accurate modeling of vehicle and target motions so as to permit low-sample rate

control.  Thus, under the assumption of accurate low-sample rate control, scaling arguments sug-

gest that the combination of spotlighting and strobing, together, can permit the use of the experi-

mentally validated jelly-tracking system for an energy-constrained AUV application.

Prior investigations have demonstrated that alternating patterns of bright light and darkness

can trigger reflex swimming in photosensitive medusa.  As a means of evaluating the biological

impact of the proposed low-energy strobed lighting pattern, this chapter introduced a hybrid model

for the light response of a representative medusa.  Subject to the 0.7 Hz low-energy strobe pattern,

the model quickly reached periodic steady state in the maintenance swimming mode.  In this

mode, the strobe pattern triggers a small neural response following each light flash but provokes

no artificial motion behaviors.  Moreover, the strobe pattern allows the subject animal to adapt to

the darkness and to retain sensitivity to natural lighting.  As subtle variations in natural lighting

level may trigger diel vertical migration (DVM), strobed lighting affords a better opportunity to

study long-duration behavioral phenomena, like DVM, than steady lighting.  Thus strobed lighting

appears to have a beneficial effect on jelly observation, rather than the detrimental effect initially

suspected.

That strobed illumination may offer not only an energy benefit, but also a reduction in light-

ing disturbances, implies that pulsed lighting may benefit both AUVs and ROVs.  Use of mono-

chromatic red wavelengths (~ 700 nm), in conjunction with strobing, could further reduce the

lighting disturbance environment with little impact on system energy requirements.  The resulting

strobed, red-light illumination component could thus meet the constrained-energy budget require-

ments for AUV operations and simultaneously improve the quality of biological data collection for

both AUV and ROV applications.
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Conclusion

Long term visual tracking of single individuals seems possible, but obviously will require 
considerable effort and expense. 

- H.J. Price et al., 1988 [77] 

The jelly-tracking project has focused on developing new technologies that enable automated

robotic tracking of deep-ocean gelatinous animals, both using tethered ROV platforms and unteth-

ered AUV platforms.  This chapter summarizes the key achievements of the jelly-tracking project.

The chapter also proposes directions for engineering development, to assist in transfer of the jelly-

tracking technology into regular marine operations, and for future research, to extend the work of

this dissertation to tackle other visual tracking applications, to enable tracking in hotspots of bio-

logical activity, and to address remaining control challenges in the development of AUV-based

jellyfish tracking.

8.1 Core Research Contributions
The jelly-tracking research project has tackled a new application area at a system level.  Previous

technologies for observing deep-ocean gelatinous animals over long durations faced two major

problems:  fatigue of human pilots and cost of infrastructure.  Automating robotic jelly-tracking

addresses these two problems.  Specifically, new techniques introduced in this dissertation enable

an ROV-based pilot assist that frees the pilot from the fatiguing burden of servo-level control.

These technologies will also serve as key components to enable jelly tracking with AUVs.  AUVs,

untethered platforms that perform simple, repetitive tasks and require less operational infrastruc-

ture than ROVs, will, in the future, reduce research costs and permit very long-duration tracking

activities, on the order of 24 hours or more.

Two major research challenges arise in automating a jelly-tracking robot.  To perform long-

duration biological observation, the system must achieve both (1) high system reliability and, (2)
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for AUV-applications, low system energy consumption.  The research of this dissertation examines

the role played by individual components in achieving these system-level goals.  In particular this

work emphasizes the first challenge, that of achieving high system-level reliability.  To this end,

the dissertation has examined the design of custom visual sensing and feedback control software

tailored for the jelly-tracking task.  Deep-ocean experiments have validated the reliability of this

software package as a pilot-assist for ROV-based jelly tracking.  Because the field-demonstrated

system relies on significant power availability, a final design study complements experimental

work and suggests methods to modify sensor illumination to satisfy the low-energy requirement

for AUV-based deployment.

8.1.1 System Reliability for ROV-Based Tracking

The major contributions of this work involve design and experimental validation of technologies

that enable a reliable jelly-tracking pilot assist for ROV operations.

Experimental Contribution:  First-Ever Demonstration of Deep-Ocean Animal Tracking
This work performed the first-ever experiments to demonstrate automated robotic tracking of an

animal in the deep-ocean.  The duration of uninterrupted tracking served as the primary metric to

establish system reliability.  Early baseline experiments, deploying off-the-shelf technologies, con-

sistently lost the animal target after fewer than three minutes of tracking.  By contrast, the

improved jelly-tracking pilot assist pursued a swimming Ptychogena specimen for 89 minutes.

The improved system also tracked other animals for periods longer than thirty minutes.  Of the

four longest runs, only one run (tracking a Solmissus specimen) ended because of a software fail-

ure.

Vision Contribution:  Design of Visual Tracking Systems for Natural Scenes
This dissertation introduced a new design technique to streamline the synthesis of vision-process-

ing methods for jelly-tracking and for other tracking applications in unstructured, natural environ-

ments.  In these environments the engineer cannot control or modify the visual appearance of the

target or the surrounding scene.  Previously, the standard design method for new visual tracking

applications involved implementing a large number of vision-processing strategies and empirically

evaluating them on a reference set of video clips.  The new design approach circumvents this time
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consuming activity by directly analyzing the information content in a video database and using this

analysis to identify a small subset of vision algorithms with filtering and topology processing sub-

components that best differentiate targets in a reference dataset.  This design method, called the

segmentation efficiency method, was applied to a jelly-tracking database consisting of 182 video

clips of transparent gelatinous animals imaged under a variety of uneven lighting conditions.  The

segmentation efficiency analysis focused the design process and, despite the complexity of midwa-

ter scenes, enabled jelly-tracking using a relatively simple, computationally efficient algorithm

based on a morphological-gradient threshold.  In experiments, the vision-processing method con-

sistently and successfully identified tracking targets of varied species under varied illumination

conditions with no parameter-tuning by a human operator.

Control Contribution:  Design of a Control Law Tailored for ROV-Based Jelly Tracking
This dissertation developed a control law that addresses the critical issues associated with visual

observation of a gelatinous animal.  These issues included (1) the definition of a control objective

consistent with the physical camera sensor, (2) the selection of a thruster map to minimize thruster

outputs which might disturb the animal target, and (3) the specification of additional control terms

that enforce the limits of the camera viewing cone in the face of large disturbances.  Since the

ROV plant acts, in essence, as a damped second-order system, a classical proportional-derivative

(PD) control formed the core of the tracking law.  A first modification to the baseline control law

accounted for the nature of desired visual science data.  Acquiring this data required animal track-

ing in only three of the system’s four degrees of freedom.  A decomposition of the vehicle dynam-

ics into two subspaces, one associated with the control objective and the other an orthogonal null

space, permitted a precise definition of the control law in terms of the input of the system’s visual

sensor.   A second modification involved the mapping of the control input to the vehicle thrusters.

In implementing this map, which incorporated control in both the control-objective and null

spaces, the thruster map was optimized to minimize total thrust output in an attempt to reduce

hydrodynamic stimuli that could affect animal behavior.  A third modification involved the aug-

mentation of the linear control law with two additional control terms to compensate for large dis-

turbance forces.  Because the linear control law was designed with low gains, to permit tracking of

animal swimming motions without requiring large thruster outputs, the linear control law does not

effectively reject large disturbances.  The supplementary control terms, an estimator-based distur-
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bance-accommodation law and a nonlinear boundary-control law, provided more aggressive thrust

to prevent loss of the target from the camera viewing cone in the face of large low and high-fre-

quency environmental forcing.

8.1.2 System Energy Consumption for AUV-Based Tracking

This dissertation also analyzed power consumption for sensor illumination and proposed methods

for reducing power requirements to a level consistent with AUV-based jellyfish tracking.  Illumi-

nation for visual sensing was the major power sink for the ROV-based tracking system.  Powered

via a tether to the surface ship, the experimental ROV drew approximately 4 kW power for light-

ing and sensing.  By comparison, an AUV platform should draw approximately 20 W in order to

achieve 24-hour tracking.  In addition to energy concerns, the illumination system design must

also consider the impact of illumination on the behavioral patterns of photosensitive gelatinous

animals.  Prior experimental evidence suggests that bright lights and sudden step changes between

illumination and darkness may affect the behavior of certain gelatinous animals.

The lighting component analysis introduced in this dissertation considers the design of an

illumination system given both the animal-behavior and energy-budget ramifications of lighting

design.  The first step involved a radiometric analysis that assessed the power reductions possible

by varying lighting geometry and strobe parameters.  The second step involved modeling the light

response of a reference photosensitive medusa (Polyorchis penicillatus) and applying this model

to evaluate potential animal reactions to the proposed low-energy light pattern.  Altogether, the

analysis recommended the use of a focused-beam, strobed illumination pattern; based on vision-

system constraints, the optimal strobe frequency falls at approximately 0.7 Hz, with a light-on

duration of about 20 ms.  The light response model suggests that this strobe pattern does not

adversely impact observed animal behaviors, and that it may, in fact, preserve the animal’s

response to subtle environmental lighting changes, such as those associated with DVM.

8.2 Engineering Development to Support Operational 
ROV-Based Tracking

Experiments have clearly demonstrated the capability of the new jelly-tracking vision and control

software package to enable an ROV-based pilot assist.  Minor modifications to the present system
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are required, however, to support the transition of the research-oriented system into operational

use.  Four engineering development activities are identified as requirements prior to deploying the

the jelly-tracking pilot assist in the field.  These modifications address pilot acceptance issues and

include (1) improvements to the software interface, (2) changes to the baseline control to address

occasional limit cycles, (3) automation of the stereo-geometry calibration and (4) control system

modifications to enable bumpless transfer from human control to combined human-computer con-

trol in the presence of a significant bias disturbance on the ROV.

8.2.1 Interface

The research software used a complex interface that permitted a high degree of on-the-fly custom-

ization for field experiments.  The lack of a streamlined, user-friendly interface remains the single

largest barrier to pilot acceptance of the jelly-tracking system.

8.2.2 Limit Cycles

Previous work by Yoerger et al. demonstrated that thruster nonlinearities may result in a limit

cycle during ROV station-keeping activities [164].  Indeed, occasional limit cycles appeared dur-

ing jelly-tracking, but only in the absence of significant quasi-steady bias forces (which shift the

thruster away from its singularity at zero rotation rate).  Although these limit cycles, as described

by the plots of Figure 6.6, appear infrequently, they are a nuisance in acquiring presentation video

footage.  Yoerger recommends the use of sliding-mode control to eliminate ROV thruster-induced

limit cycles.  Substitution of a sliding mode control law for the linear control block of Figure 5.2c

might eliminate the limit-cycle nuisance.  The requirement to avoid excessive thruster action dur-

ing jelly tracking, however, limits the acceptable thrust differential across the sliding-mode bound-

ary layer.

8.2.3 Stereo Camera Calibration

Switching to a short-baseline parallel-stereo configuration enhanced the reliability and functional-

ity of the pilot assist, as discussed in Chapter 6.  However, obtaining reliable range measurements

from the short-baseline configuration requires a careful geometric calibration.  The current calibra-

tion procedure is labor intensive, requiring several manual steps.  Because recalibration should fol-
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low any maintenance action that affects the camera mounts, a simpler procedure is required for

field operations.  Two possible strategies for simplifying the stereo calibration procedure include

(1) the construction of a dedicated stereo camera mount, which automatically enforces a precali-

brated camera geometry, or (2) the creation of a software calibration tool that automates the cali-

bration procedure given an appropriate set of input images.

8.2.4 Smooth Transfer to Shared Control

The current low-frequency control term enables smooth transfer of the bias offset during transi-

tions from human pilot control to computer-only control.  This type of transition, which nulls

human pilot commands at system initialization, does not match pilot expectations, as the pilots

desire to maintain some manual control capability at all times during the tracking run.  Thus a sys-

tem modification is required to permit transition between human pilot control and shared human-

computer control.  A problem with this type of shared-control transition arises with the current

control system in the presence of large quasi-steady bias forces on the ROV.  In this case, the low-

frequency control term and the human pilot may both attempt to offset the environmental distur-

bance.  This double compensation may lead to target loss (see Figure 6.8).  The key to avoiding

double compensation involves interpreting the human pilot command and phasing in the low-fre-

quency control term only as the human pilot eases off the control stick.

8.3 Topics for Future Research
A number of new research directions have arisen as part of this dissertation effort.  This section

groups new research topics into three technical areas:  vision, control, and biology application.

8.3.1 Vision

Chapter 4 presented research to enable vision-based tracking of gelatinous animals.  This work

involved both the development of a general design technique for visual tracking in unstructured,

natural environments and the application of this technique to the jellyfish-tracking task.  Future

research opportunities exist to extend both of these contributions:  to evaluate the general design

strategy for other vision applications and to extend the jelly-tracking vision-processing strategy to

extreme conditions and to long-duration AUV applications.
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Extension of the Segmentation Efficiency Design Concept
The new visual-tracking design strategy, called segmentation efficiency design, was developed

with a particular application in mind.  Additional insight into the utility of this method would be

gained by applying it to new applications.  

Further research, moreover, could extend the basic segmentation design strategy to address a

wider range of visual tracking applications.  The design strategy presented in this dissertation

focused on high sample-rate applications.  As such, the strategy emphasized segmentation effi-

ciency over recognition quality, under the assumption that recognition features, such as prior target

location, are always available for high sample-rate  applications.  Additional research could pro-

vide a recognition efficiency metric, parallel to the segmentation efficiency metric, that would

extend the new design strategy to lower sample-rate applications.  Unlike segmentation efficiency,

however, this new recognition efficiency will depend strongly on sample period, since most recog-

nition features vary weakly over time.  The nondimensionalized sample period, or recognition

number, as introduced in Chapter 4 may thus play an important role in the future derivation of a

recognition efficiency.

Further research could also generalize the segmentation efficiency concept to higher dimen-

sional spaces.  The current segmentation efficiency technique queries each processing filter and

topology to determine the pair that best distinguishes target and background pixels.  A higher

dimensional metric, based on machine learning techniques, could extend the analysis to handle

groups of filters applied simultaneously to identify targets in extremely noisy environments.

Recognition Improvements for Hotspots and for Long Duration Tracking
The analysis of Chapter 4.4.1 described the limitations of the recognition technique used in the

jelly-tracking system.  These limitations lie in the recognition assumptions of low animal density

and high sample rate sensing.  Further research is required to make the jelly-tracking system robust

to situations in which these assumptions do not hold. 

The ROV-based jelly-tracking system uses a high sample rate (> 10 Hz) to image a solitary

swimming animal.  For certain types of experiment, however, the ROV-based system may be used

to track a specimen through a biologically active hotspot.  In such regions, the high frequency of

animal appearance severely degrades the expected tracking duration.  Experimental results con-

firm this limitation.  During the 10/11/2002 dive, several experiments attempted to track a Solmis-

sus medusa through a hotspot consisting of a large squid population feeding on an abundance of
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krill (Chapter 6.4.1).  Several instances of partial target occlusion by squid resulted in system fail-

ure, reducing the day’s average tracking duration to only 10 minutes.

In addition to enabling hotspot observation tasks, an improved recognition strategy is neces-

sary to implement a low-sample rate AUV-based tracking algorithm.  AUV based tracking would

be used to extend practical tracking times from a few hours, for ROVs, to 24 hours in duration.  In

order to meet the energy-budget constraints of long-duration AUV tracking, Chapter 7 proposes an

illumination strategy based on low-rate visual sampling (< 1 Hz).  Low sample rate and long run

duration combine to make reliable recognition a difficult challenge.  Figure 4.10 indicates the

severe impact of these two factors, combined, on the likelihood of mission success.  Whereas the

figure indicates an 85% chance of successfully completing a 1.5 hour tracking run for the ROV-

based system, the figure indicates only a 0.25% of successfully completing a longer 24 hour track-

ing run given a slower sampling AUV-based system.

Automated Target Acquisition for AUV Tracking
The ROV-based system relies on initialization by a human pilot.  Although an AUV-based tracking

system could be launched by an ROV to permit human initialization, further research might also

provide new techniques to enable fully automated target acquisition and tracking.  From a vision-

processing viewpoint, this task requires three new technologies:  (1) event detection, (2) target

classification, and (3) stabilization in the absence of a vision profile.  The event detection capabil-

ity would involve the detection of possible animal targets from midwater video, cluttered with

marine snow and marked by nonuniform illumination.  Next, subsequent to detecting a specimen,

an automated target acquisition routine would need to classify the target to assess its potential util-

ity as a subject for long duration biological observation.  

Finally, an alternative positioning capability is required to support classification.  During this

classification period, no target profile would be available; without a profile, the visual-tracking

algorithm described in this dissertation cannot be initialized.  A possible alternative positioning

approach involves water-relative position rather than animal-relative positioning.  A doppler

velocity log (DVL) could be used to acquire this measurement; alternatively, a vision-based track-

ing technique could be employed calculating a 3D position relative to a moving field of marine

snow.  In either case, it seems likely that water-based positioning could enable effective tracking

during this brief classification and training phase.
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8.3.2 Control for Low Sample-Rate AUV Tracking

Implementing a control law for AUV-based jelly tracking introduces several new research chal-

lenges.  These challenges involve control law stability for low-rate sampling, incorporation of low-

rate control performance into the AUV energy budget and adaptation of control parameters based

on available target information in order to further optimize AUV-energy consumption.  The null

space thrust map might also be refined to effect further reductions in mechanical disturbances on

the tracked target.

Stability for Low Sample Rate Tracking
Assuming vision sensing at 1 Hz, the sensor sample rate would fall below the Nyquist limit based

on the vehicle bandwidth.  To achieve stable tracking at this low sample rate would require

improved system modeling and/or a new sensor fusion strategy.  Better predictive models of AUV

motion and of the motion of a target animal would enable improved open-loop maneuvering

between vision samples.  These vision samples would then serve more to correct an open-loop

model than to provide a continuous control signal.  Alternatively, dead reckoning sensors, such as

acoustic water velocity sensors, compass, depth, or inertial sensors, could be fused with the vision

sensor to help provide a smooth, higher rate positioning updates.  Of course the power required by

these sensors would further factor into the overall system design.

Incorporation of Low Sample Rate into the AUV Actuator Energy Budget
The energy budget analysis of Chapter 7 made a “perfect tracking” assumption.  Drift errors, espe-

cially given low-rate visual sampling, could add significantly to the unsteady actuation energy

budget.  If these actuation energy costs are sufficiently large, the balance between accurate track-

ing, with lower actuation energy costs, and low-rate sampling, with lower illumination energy

costs, provides an opportunity for system optimization.

Adaptive-Parameter Control Using Measurements of Animal Behavior or Morphology
Chapter 2.6.5 discussed the potential to predict animal behavior based on morphology.  Animals of

different fineness ratio (length over width), for example, tend to behave differently.  Prolate (long)

animals tend to pulse infrequently but accelerate rapidly when they do pulse.  Oblate (wide) ani-

mals tend to pulse continuously but move with slower steady velocity.  In this sense, predicted ani-
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mal behaviors, based on visual measurements, might be used to adapt control parameters for

optimal energy efficiency.

Exploiting Nonlinear Dynamics in Designing the Null-Space Thruster Map
The thruster map of Chapter 5.3.1 did not explicitly take into account the relative angles between

the camera sensor and the vehicle actuators.  Rather the thruster map was designed to minimize the

total actuator output in a global sense.  In operational jelly-tracking, however, the riskiest thruster

outputs are those pointed directly toward the target animal.  Thus the thruster map could be

dynamically reconfigured to preferentially use those thrusters pointed away from the target animal.

In addition to the linear null space described in Chapter 5.3.1, this dynamically reconfigured

thruster map could leverage the nonlinear accelerations associated with the cylindrical dynamic

equation for the tracking vehicle (5.18).  Specifically, the centripetal acceleration term can be used

to increase range through lateral thruster actuation, without requiring any radial thrust toward the

target.  Such a control law may be achieved by writing a feedback linearization of (5.18) assuming

a zero actuation component in the radial direction.  In generating these equations, the lateral con-

trol input automatically enters the radial dynamic equation through the centripetal acceleration

term.  Ultimately, the use of a dynamically reconfigured thruster map could further reduce

mechanical disturbances on the animal target; alternatively, the dynamic map might also permit

tracking at closer ranges to the target, further reducing the energy costs associated with lighting, as

discussed in Chapter 7.

8.3.3 Biology Applications

The motivation for the jelly-tracking robot roots, at the deepest level, in a biological application.

The most important future research to extend from this dissertation will be the application of the

tracking system to collect biology data.  Validating the jelly light-response model provides an

opportunity for further biology research.

Collection of Biology Data Using Automated Jelly-Tracking Methods
Automated jelly-tracking technologies have been designed to enable new experiments in behav-

ioral biology.  Chapter 6.4.2 offers an experimental demonstration of the capabilities of an ROV-

based jelly-tracking system to obtain never-before-acquired quantitative measurements for jelly-
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motion studies.  This potential will be fully realized by future experimental biology that exploits

the new jelly-tracking technologies.

Effects of Strobed Illumination
Chapter 7 used a light response model for Polyorchis penicillatus to advance two hypotheses

related to strobed illumination.  The first hypothesis held that the strobed illumination pattern, pro-

posed for a low-energy AUV application, would not trigger artificial reflex behaviors in photosen-

sitive medusa.  The second hypothesis held that strobed illumination might actually provide better

quality behavioral data, as strobed lighting, unlike continuous lighting, would permit the specimen

to respond to low-level natural ambient light.  Further experimental investigations will be neces-

sary to validate the light-response model for other animal species and to verify the two hypotheses

based on the model.

8.4 Summary
This dissertation has introduced and experimentally validated new technologies to enable auto-

mated robotic tracking of deep-ocean jellyfish.  These technologies will serve as a springboard for

exciting new research opportunities, both of an engineering nature, in the development of

improved visual recognition and control technologies to enable 24-hour duration AUV-based

tracking, and of a biological nature, in the application of ROV-based and, in the future, AUV-based

jelly tracking technologies to make new discoveries about the ecology and behaviors of deep-

ocean gelatinous zooplankters.
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Appendix A:  ROV Parameters 

Two days of the 12-day Ventana dive series focused on parameter identification (Chapter 6.1.1).

These dives collected step-response data for each of the four axes of ROV motion.  Measurements

were taken using a correlation-based vision system for benthic (ocean-floor) positioning

[107,118].  The disturbance environment was unknown.  The dominant disturbance consisted of a

strong current moving across the ocean floor.  To counteract current and tether disturbances, auto-

matic control was applied on all axes orthogonal to the step-response axis.

Table A.1 summarizes parameter identification results.  The assumed form for ROV dynam-

ics was that of an axis-independent inertial mass subject to linear drag.  

(A.1)

Here the state vector, , describes the translation and yaw rotation of the vehicle, v, relative to

the benthic surface, b.  The damping and force-scaling matrices,  and , are assumed diagonal.

The control input, u, is taken to be a floating-point value on a scale of -5 to +5.

Identified Parameters x-axis (fore/aft) y-axis (lateral) z-axis (vertical) psi-axis (yaw)

0.024 m/s2 0.024 m/s2 0.054 m/s2 0.016 rad/s2

0.20 1/s 0.24 1/s 0.38 1/s 0.27 1/s

Typical Control Params

20 1/m 20 1/m 10 1/m 20 (unitless)

10 s/m 10 s/m 5 s/m 10 s

Effective Bandwidth

0.69 rad/s 0.69 rad/s 0.73 rad/s 0.56 rad/s

0.11 Hz 0.11 Hz 0.12 Hz 0.09 Hz

TABLE A.1. Approximate Parameter Values for Ventana
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Appendix B:  Code Structure

The complete code listing for the jelly-tracking software package is archived with the Aerospace

Robotics Lab on the Sun-Valley server (in /apps/arl/cvsroot/MBARI/PrecControl/sensor7).  The

following table maps sections of this thesis to objects within the C++ project, to provide a rough

guide to the layout of the jelly-tracking software.

Functionality Thesis Chapter Sensor7 Code Object::Method

Main 
Thread

-- -- CAVPEngineThread

Data 
Logging

-- -- CDataLoggerThread

Vision Segmentation Chapter 4.3.3 CStackOut::NextStack

Recognition Statistics Chapter 4.3.4 CStackOut::NextList

Identification of Best 
Match and Declaration 
of False-Positives

Chapter 4.3.4 CStackOut::NextMatch

Control Frame Transformations Chapter 5.2.2 & 
Chapter 5.3.1

CGlobalDisplacement::Execute

Error Formation Chapter 5.2.2 CErrorCalculation::CalcJellyError

Control Law Chapter 5.5 CController::Execute

Application of Thrust 
Map

Chapter 5.3 CErrorCalculation::CalcJellyError

Activation of Boundary Chapter 5.4.3 CJellyDisp::ProcessMatchData

Disturbance-
Accommodation 
Estimator

Chapter 5.4.3 CGlobalDisplacement::DecoupledAxisCorrector  
AND
CGlobalDisplacement::DecoupledAxisPredictor

Disturbance-
Accommodation 
Control

Chapter 5.4.3 CController::Execute

TABLE B.1. Approximate Parameter Values for Ventana
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