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Abstract 

The Local Area Augmentation System (LAAS) is a differential GPS navigation system 

being developed to support aircraft precision approach and landing with guaranteed 

accuracy, integrity, continuity, and availability. To quantitatively appraise navigation 

integrity, an aircraft computes vertical and lateral protection levels using the standard 

deviations (sigma) of pseudorange correction errors broadcast by the LAAS Ground 

Facility (LGF). Thus, one significant integrity risk is that the true standard deviation of the 

pseudorange correction error distribution may grow to exceed the broadcast correction 

error sigma during LAAS operation. This event may occur due to unexpected anomalies of 

GPS measurements or the statistical uncertainty of the true error distribution.  

This thesis presents two approaches to ensure that the error distribution based on the 

broadcast sigma overbounds the true error distribution for a LAAS Category I (CAT I) 

precision approach. First, real-time sigma monitoring is needed to detect violations due to 

unexpected anomalies with acceptable residual integrity risk. Both the statistical sigma 

estimation method and Cumulative Sum (CUSUM) method are useful in this respect. 

Sigma estimation more rapidly detects small sigma violations, while the CUSUM variant 

more quickly detects significant violation that would pose a larger threat to user integrity. 

The thesis demonstrates that these two different sigma-monitoring algorithms together are 

capable of detecting any size of sigma violations that is hazardous to users. Second, sigma 

inflation is necessary to account for imperfect knowledge of the true error distribution. The 

main sources of the uncertainty are statistical estimation error during site installation and 

iv 



non-stationary error distributions caused by environmental changes that affect multipath, as 

well as the fact that the tails of the true error distribution may not be Gaussian. A new and 

detailed method of sigma inflation factor determination was created and validated with test 

results using the Stanford LGF prototype and a “pseudo-user” receiver. This test 

demonstrated that sigma overbounding with the resulting inflation factor is sufficient to 

support LAAS CAT I operation. 

Another concern related to sigma overbounding is that the conservatism applied to LAAS 

CAT I is no longer feasible if a navigation system requires higher performance. Thus 

LAAS CAT II/III precision approaches, which may need to meet tightened Vertical Alert 

Limit and higher availability requirements, cannot tolerate high levels of sigma inflation. 

This thesis describes how Position Domain Monitoring (PDM) may be used to improve 

system availability by reducing the inflation factor for the standard deviation of 

pseudorange correction errors. LAAS prototype testing using both a PDM receiver and a 

“pseudo-user” receiver verified the utility of PDM to enhance CAT II/III user availability. 

In addition, PDM helps to mitigate continuity risk using outputs of subsets of satellites in 

view while maintaining the required integrity. When combined with a CUSUM approach, 

PDM provides extra navigation integrity to users.  
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Chapter 1 

Introduction 

Local Area Augmentation of GPS is being developed to become the primary navigational 

aid in civil aircraft precision approach and landing. While the system promises great 

performance, a number of technical obstacles have been encountered in meeting aviation 

requirements. These obstacles include statistical uncertainties in the knowledge of the 

pseudorange correction error standard deviation (sigma) and potential changes of these 

“sigmas”. The broadcast sigmas are used by the aircraft to compute their position bounds. 

If the true sigma exceeds the broadcast sigma, increased integrity risk results. In this thesis, 

two approaches are presented to ensure that the error distribution based on the broadcast 

sigmas overbounds the true error distribution. The first method is real time sigma 

monitoring, based on the measurements of pseudorange correction error, which estimates 

sigma and detects anomalies. The second method is sigma inflation [1], which compensates 

for the uncertainty of the true error distribution. In addition, the thesis describes how 

position-domain monitoring may be used to support precision approaches with more 

stringent requirements.  

In this chapter, we first present some background on GPS and explain how to enhance GPS 

with differential techniques to become an aviation navigation aid. This is followed by a 

description of GPS augmentation systems and how they provide error bounds in real time 

and consequently guarantee flight safety. We then focus on error bounding using the sigma 
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values broadcast by GPS augmentation systems and present the motivation for this thesis. 

Next, previous work in related fields is presented. Finally, contributions are given along 

with an outline of the thesis. 

1.1 THE GLOBAL POSITIONING SYSTEM (GPS) 

The NAVSTAR Global Positioning System is a space-based radio-navigation system. This 

satellite system is deployed and managed by the U.S Department of Defense (DoD) 

originally to provide accurate information of position, velocity and time to military forces. 

However, GPS also provides significant benefits to civil users. The civil community has 

developed an increasingly large variety of applications in space and marine navigation, 

vehicle transportation, civil aviation, auto-farming, surveying and mapping, 

telecommunications, public safety, and outdoor leisure activities. Today, GPS serves nearly 

20 million users worldwide [2], and the vast majority are civilians. 

1.1.1 GPS SYSTEM SEGMENTS 

 

Figure 1.1: GPS Space Segment (Courtesy: FAA) 

 

GPS is comprised of three segments: the Space Segment, the Control Segment, and the 

User Segment. The space segment consists of at least 24 nominal satellites which are 

positioned in six nearly circular orbital planes with an orbital radius of 26,560 km and a 
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period of 11 hr 58 min or one-half of a sidereal day (After two rotations, each satellite rises 

at the same spot, but four minutes earlier than the day before [3]). These satellites provide 

the ranging signals and data messages to the user’s equipment.  

 

Figure 1.2: GPS Operational Control Segment Facilities (The MCS located at Colorado 
Springs; USAF monitor stations at Colorado Springs, Ascension Island, Diego Garcia, 
Kwajalein, Hawaii) 

 

The Operational Control Segment (OCS) operates the system and maintains the satellites in 

space. It monitors satellite orbits and satellite health and maintains GPS time. There are 

five monitor stations spread around the world, as shown in Figure 1.2. These stations 

passively track the satellites and transmit raw data and the received navigation message to 

the Master Control Station (MCS) located at Colorado Springs. The MCS then predicts 

satellite ephemerides and clock corrections and updates satellite navigation messages 

which are essential for users to estimate position, velocity and time. The user segment (i.e., 

GPS receivers) processes ranging signals transmitted from the satellites and performs the 

navigation. A GPS receiver acquires the locations of satellites based on the received 

navigation messages and measures the distance between the user and satellites in terms of 

transit time of the signal from satellites to users. To estimate position precisely using 

trilateration, accurate timing is essential. This is accomplished by synchronizing satellite 

atomic clocks very accurately. Although the clocks in the satellite and the receiver also 

must be synchronized to measure the true transit time of signals, this condition is generally 
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not met by the inexpensive quartz oscillators in most GPS receivers. GPS receivers, 

therefore, need at least four satellites in view to solve for the three-dimensional user 

position and receiver clock bias. In other words, four observation equations are needed to 

solve for four unknowns ( , , ,x y z f ). 

1.1.2 SIGNALS  

The GPS satellites transmit two radio frequencies: L1 centered at 1575.42 MHz and L2 

centered at 1227.60 MHz. These carriers are modulated with two types of codes and a 

navigation message. The two types of codes are the coarse/acquisition pseudorandom noise 

(PRN) code (C/A-code) on L1 carrier phase and the precision (encrypted) code (P(Y)-code) 

on both L1 and L2. P(Y)-code is accessible only to authorized users, and while C/A-code is 

provided for all users. Though current civil users can only access L1 C/A-code, there are 

receiver variations types such as codeless L2 tracking receivers that enable users to obtain 

centimeter-level measurement accuracy by utilizing the carrier phases of both the L1 and 

L2 frequencies.  

The GPS C/A-code is a Gold code [4] with a unique sequence length of 1023 bits, called 

“chips.” Since the chipping rate of the C/A-code is 1.023 MHz, the C/A-code is repeated 

each millisecond. The duration of each C/A-code chip is about 1 µs as shown in Figure 1.3, 

and the corresponding distance is about 300 m. The sequence length of P(Y)-code is 

extremely long (about 1014 chips) [3] and the repetition period is one week. Since the P(Y) 

code has a smaller “wavelength” of 30 m and, equivalently, a chipping rate of 10.23 MHz, 

the precision in range measurements is much greater than that for the C/A-code. The spread 

spectrum codes are designed to provide range measurements by having “peaked” auto-

correlation functions. In addition, the unique PRN sequences associated with each satellite 

are nearly uncorrelated with respect to each other. This property allows all satellites to 

transmit at the same frequency without any time-sharing. This modulation technique is 

called code division multiple access (CDMA) and is used for separating and detecting the 

GPS signals [5].       
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Each PRN code is modulated with navigation data, which is a binary code message 

transmitted at 50 bits per second (bps) [3]. The bit duration of the navigation message is 20 

ms as shown in Figure 1.3. The information contents of the message are satellite clock 

corrections, health status, ephemeris parameters, and almanac. This combined binary signal 

using modulo-2 addition then modulates the carrier using a specific technique, called 

binary phase shift keying (BPSK) [3].    

Carrier at 1575.42 MHz (L1)
1227.60 MHz (L2)

19 cm (L1)

…
Code at 1.023 Mcps (C/A)

Navigation Data at 50 bps
300 m = 1 µs 

…

20 ms = 6000 km

…

Carrier at 1575.42 MHz (L1)
1227.60 MHz (L2)

19 cm (L1)

…
Code at 1.023 Mcps (C/A)

Navigation Data at 50 bps
300 m = 1 µs 

…
300 m = 1 µs 

…

20 ms = 6000 km20 ms = 6000 km

…
 

Figure 1.3: GPS Signal Structure Showing Relations Between the Carrier, Code, and 
Navigation Data. The C/A coded signal on 1575.42 MHz is used as an example. 

 

1.1.3 MEASUREMENTS AND ERROR SOURCES   

Two types of measurements are of interest to GPS users. One is the pseudorange, which is 

the distance between the satellite and the receiver plus a bias due to the difference in the 

user clock from the GPS clock. Pseudoranges are a measure of the travel time of the PRN 

codes. To acquire a signal, first the receiver replicates the PRN code that is transmitted by 

the satellite. Then it attempts to shift the replica in time until it is aligned with the incoming 

PRN code. When the code replica matches the incoming code, the correlation is maximized. 
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At that point, the time shift required to achieve the maximum correlation is the transit time 

of the signal modulo 1 ms. The transmission time is “marked” on the signal with the 

satellite clock, and the reception time can be read from the receiver clock. The pseudorange, 

ρ, is determined from multiplying the transit time by the speed of light.  Code lock is 

maintained by a feedback control loop, called a delay lock loop (DLL), which continuously 

aligns the replica code with the incoming signal. Within the DLL, the PRN code is 

removed from the signal, and the carrier (modulated by the navigation message) is 

available for further processing.  

The second measurement, the carrier phase, is the difference between the received phase 

and the phase of a receiver oscillator at the epoch of measurement. The receiver continues 

tracking the carrier modulated by the navigation data with a phase lock loop (PLL). The 

PLL attempts to match the phase of the receiver-generated signal to that of the incoming 

signal. With the PLL, the receiver can measure only a partial cycle. However, this partial 

cycle, when combined with an initial unknown number of whole cycles, also indicates the 

range to the satellite. In order to take full advantage of the carrier phase measurements, φ, 

we need to resolve this unknown number of whole cycles, called the integer ambiguity [3]. 

The PLL also measures the Doppler shift, which can be converted into a pseudorange rate 

(this measurement is used for ultra-precise static and kinematic surveying or for attitude 

determination). After the phase lock is accomplished, the navigation message is extracted.  

The GPS observation equations for code and carrier phase measurements are: 

( )n n n n n
m m m m mR c b B I T M n

mρ ν= + − + + + +                                              (1-1) 

( )n n n n n n
m m m m m mR c b B I T N p n

mφ λ ε= + − − + + + +                                              (1-2) 

where, 

ρ  is the measured code phase measurement, or pseudorange, 

φ  is the measured carrier phase measurement, 
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n
mR  is true range from satellite n to receiver m, 

mb  is the receiver clock bias (offset from GPS time),  

nB  is the satellite clock bias (offset from GPS time), 

I  is the ionospheric delay, 

T  is the tropospheric delay, 

M , p are multipath errors, 

N  is the integer ambiguity, 

λ  is the carrier wavelength (for L1 frequency, 19
1

1 ≈=
L

L f
cλ  cm),  

ν represents other code phase measurement errors, and 

ε represents other carrier phase measurement errors. 

As shown in these observation equations, GPS measurements are subject to various errors. 

It is important to understand the effects of the measurement errors, since the quality of PVT 

estimates depends on the quality of the range and range-rate measurements.  
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Figure 1.4: Error Sources in GPS Measurements 

The primary GPS error sources are illustrated in Figure 1.4. These errors can be grouped 

into three categories [3]. The first set is due to control segment imperfections. The satellite 

ephemeris and clock parameters estimated by the control segment are broadcast to the user 

receiver. The satellite ephemeris error is the difference between the actual position and 

velocity of a satellite and those predicted by the broadcast ephemeris model. This error is 

typically 1-2 m in the root mean square (rms) sense. The satellite clock bias, the difference 

between the true clock and the satellite clock, also introduces about a 1-2 m range error in 

the rms sense. Civil users were also compromised by Selective Availability (SA), which 

intentionally dithered the clock to cause about 22 m error in rms [6] until it was deactivated 

on May 2, 2000 by Presidential decision [3].  

The second set of errors is introduced by uncertainties in the propagation mediums: the 

ionosphere and troposphere. The ionosphere is a region of ionized gases which affect the 

speed of GPS signal propagation from a satellite to a receiver. The code phase 
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measurements are delayed while the carrier phase measurements are advanced, as shown in 

Equations (1-1) and (1-2). Since this delay is inversely proportional to the signal frequency, 

dual frequency users can remove this error by themselves. Single frequency users can 

reduce this delay by approximately 50% after utilizing the Klobuchar ionospheric model 

broadcast in GPS navigation data [7]. The resulting ranging error, proportional to the total 

electron content (TEC) in the ionosphere, is about 1-5 m. The dry gases and water vapor 

composing the troposphere refract GPS signals and introduce an additional delay. The 

delay is small for satellites directly overhead and larger for low-elevation satellites. This 

tropospheric delay can be corrected using atmospheric models [8]. If corrected based on 

average meteorological conditions, the resulting error is about 0.1-1 m.  

The remaining errors are multipath and receiver noise.  Multipath errors are caused by the 

interfering signals reflected from surfaces. Since the code and carrier measurements are 

based on the sum of the direct and reflected signals, the ranging error depends on the 

strength of the reflected signal and the delay between direct and reflected signals [3]. 

Multipath affects code measurements with a 1-5 m error and carrier measurements with a 

1-5 cm rms error. Adopting a multipath-limiting antenna, a narrow correlator receiver or 

carefully choosing an installation site for the antenna can reduce these errors. Finally, 

receiver noise errors are due to thermal noise in the receiver front end, multi-access 

interference, and signal quantization noise. The receiver noise introduces less than 0.5 m of 

code measurement error and about 1-2 mm of carrier phase measurement error.  

1.2 GPS AND AVIATION NAVIGATION  

In an effort to make GPS service available to commercial, national and international civil 

users while maintaining the original U.S military function, two GPS services are provided. 

DoD authorized users have access to the Precise Positioning Service (PPS), which provides 

full system accuracy by utilizing extremely long and fast P(Y)-code (detailed in Section 

1.1.2). Access to PPS is restricted by cryptographic techniques, and users must be equipped 

with a decryption device to lock onto the encrypted P-code, referred to as the Y-code. This 

feature is called Anti-Spoofing (AS). The Standard Positioning Service (SPS) is provided 

to civilian and all other users throughout the world with a less accurate positioning 
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capability than PPS. Without SA, current GPS/SPS provides position accuracy of 

approximately 10 m (with 95% confidence) in the horizontal direction and 15 m (95%) in 

the vertical direction.  

A significant civil application of GPS is aviation navigation. With air travel doubling in the 

21st century, the aviation community is already relying extensively on GPS. The economy 

and safety of aircraft navigation, supported by on-board inertial navigation systems and 

ground-based radionavigation aids in the past, are now greatly enhanced with GPS. 

However, civil aviation requires greater accuracy than what GPS alone can provide. For 

instance, Category Ι Precision Approaches requires navigation sensor errors below 1 meter. 

The required accuracy of Category III precision approaches is even higher: the ranging 

error is restricted to decimeter-level [3]. These precision approach operations will be 

described in Chapter 2, which will also give the performance requirements in detail. This 

thesis focuses on how to augment GPS to be a primary system for precision approaches and 

auto-landing as well as en route and surface traffic surveillance.       

1.2.1 DIFFERENTIAL GPS 

As addressed earlier, standalone GPS is not capable of supporting all phases of flight from 

cruise to landing due to insufficient accuracy. In this context, the use of Differential GPS 

(DGPS) enhances standalone GPS accuracy. The basic concept of DGPS, shown in Figure 

1.5, lies in the mitigation of measurement errors with one or more stationary reference 

receivers viewing the same satellite as the roving users. DGPS places reference receivers at 

precisely surveyed locations. The biases associated with the worst error sources are similar 

if a user receiver is close to the reference receivers. DGPS estimates the errors in the 

reference measurements and broadcast these errors as correction. All users in the coverage 

area can then use differential corrections to improve their navigation accuracy. Since most 

of the ionospheric, tropospheric, satellite ephemeris and clock errors are correlated between 

receivers spatially and temporally, residual correction errors are small, as shown in Table 

1-1 [3]. On the other hand, multipath and receiver noise errors are uncorrelated between 

reference and roving receivers, and cannot be corrected by DGPS. However, these types of 

errors can be mitigated through receiver design, antenna design, and siting.          
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Figure 1.5: Differential GPS 

 

Source Error Size (GPS/SPS) Residual Error (DGPS) 

Satellite Clock Model 1 – 2 m (rms) 0.0 m 

Satellite Ephemeris Prediction 1 – 2 m (rms) 0.1 m (rms) 

Ionospheric Delay 2 – 10 m in zenith direction 0.2 m (rms) 

Tropospheric Delay 
2.3 − 2.5 m in zenith 

direction at sea level 

0.2 m (rms) plus 

altitude effect 

Multipath 
Code: 1 – 5 m 

Carrier: 1 – 5 cm 

Uncorrelated between 

reference and rover 

Receiver Noise 
Code: 0.5 m (rms) 

Carrier 1 – 2 mm (rms) 

Uncorrelated between 

reference and rover 

Table 1-1: A Summary of Error Size in GPS Measurements 
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1.2.2 CIVIL AIRCRAFT NAVIGATION  

Improving accuracy with DGPS is not enough to support aircraft operations. These 

operations also demand flight safety and reliability. For a better understanding of these 

demands, Figure 1.6 illustrates two concepts that are commonly used to describe aviation 

navigation systems. In order to conduct a safe flight, the pilot or aircraft guidance system 

should be alerted if the position error exceeds a certain bound. This bound (an outer red 

box in Figure 1.6) is defined as the Alert Limits: the Vertical Alert Limit (VAL) in the 

vertical direction and the Horizontal Alert Limit (HAL) in the horizontal direction. If the 

aircraft lies outside the box without any alarm, it may crash into an obstacle. For that 

reason, the pilot needs an error bound in real time. This error bound, indicating how poor 

the position fixes can be, is called the protection level: the Vertical Protection Level (VPL) 

in the vertical direction and Horizontal Protection Level (HPL) in the horizontal direction. 

As shown in Figure 1.6, for safety we need the protection levels always to be smaller than 

the alert limits corresponding to the current phase of flight. The computation of protection 

levels will be discussed in Section 1.4.  

Unlike land-based equipment, GPS accuracy varies significantly with time. As described 

earlier, several sources of error can corrupt the pseudorange measurement, and the position 

error thus varies. In view of this, computing protection bounds is necessary to obtain an 

assurance for the position solution at a certain level. In addition, for the safety of aircraft 

guidance, the system needs to provide warnings quickly enough for an aircraft to act when 

its position error exceeds alert limits. To fulfill these requirements, the concept of the 

augmentation system was introduced as an application of DGPS. Ground-based 

augmentation systems (GBAS) and Space-based Augmentation Systems (SBAS) are two 

major categories. They will be introduced in Section 1.3.  
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Figure 1.6: Vertical Alert Limit and Horizontal Alert Limit 

1.3 AUGMENTATION SYSTEMS 

Augmentation systems enhance GPS position estimates by sending differential corrections 

to a user and by improving satellite geometry. The reference stations also broadcast 

warnings of any system malfunctions and the quality of the corrections to the user in such a 

way that the system helps insure flight safety. These systems are categorized as “ground-

based” or “space-based” augmentation systems depending on the coverage area and how 

they improve the geometry. GBAS is designed to provide service in a local area (within 

several kilometers to tens of kilometers). Reference receivers are placed close to each other 

and determine the measurement errors at their locations. This system may include 

pseudolites (to augment the geometry), which are GPS-like ranging signals radiated from 

the ground. With these pseudolite signals, the system accuracy improves and sensitivity to 

the failure of any GPS signals is reduced. In contrast, SBAS operates in a wide area up to 

continental coverage [9].  A network of ground receivers at precisely known locations 

continually updates its error estimates and makes the correction available for each 
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monitored satellite [5]. This system requires geostationary satellites, which broadcast the 

correction message over the entire region of coverage and also augment the geometry with 

GPS-like signals. The Federal Aviation Administration (FAA) is developing a GBAS 

called the Local Area Augmentation System (LAAS) and an SBAS known as the Wide 

Area Augmentation System. Although this thesis concentrates on how to improve the 

performance of LAAS, my work is also relevant to WAAS. Both LAAS and WAAS will 

be described in Sections 1.3.1 and 1.3.2 respectively.     

1.3.1 LOCAL AREA AUGMENTATION SYSTEM (LAAS) 

 
Figure 1.7: Local Area Augmentation System (LAAS) Overview 

LAAS is a local area differential GPS system because it typically serves receivers close to 

the reference station. Differential corrections are computed based on the surveyed location 

of multiple nearby reference receivers and broadcast to an approaching airplane using a 
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VHF data link. The broadcast data also contains any alerts on system failures and error 

bounds on corrections. A LAAS user first measures the pseudoranges to the GPS satellites, 

and he/she then determines which satellites can be used safely based on the LAAS message 

and corrects their ranging measurements. The user also computes a VPL and an HPL in 

real time using the information on error bounds. These are then compared to the VAL and 

HAL, respectively, to determine whether the system provides safety to the user. 

Due to the proximity between the reference station and LAAS users, the pseudorange error 

components, which are common to all receivers within the local geographical area, can be 

nearly cancelled, and thereby sub-meter accuracy is achieved. The spatially correlated 

errors increase as the separation of the user from the reference station increases, and 

accordingly LAAS performance degrades. In general, LAAS is more accurate than SBAS 

if the user is within 100 km or so of the reference receiver.  

LAAS will provide many benefits for all users. It is capable of supporting Category I and 

II/III precision approaches, as will be explained in depth in Chapter 2. With LAAS, curved 

precision approaches will also be possible, while these approaches cannot be conducted 

using current instrument landing systems (ILS) [10]. Unlike ILS, which requires multiple 

installations to serve multiple runways, a single LAAS reference station will typically 

provide precision approach capability to all runways at an airport [10].  

1.3.2 WIDE AREA AUGMENTATION SYSTEM (WAAS) 

In contrast to LAAS, WAAS offers coverage over a continent-wide area based on the 

concept of wide-area DGPS [11]. WAAS was made operational over the Conterminous 

United States (CONUS) by the FAA on July 10, 2003. There are several WAAS-like GPS 

augmentations under development: the European Geostationary Navigation Overlay 

System (EGNOS) in Europe [12], the Multifunction Transportation Satellite (MTSAT)-

Based Satellite Augmentation System (MSAS) in Japan [13], and the GPS and GEO 

Augmented Navigation (GAGAN) in India.  

The architecture of WAAS is illustrated in Figure 1.8.  The master station collects 

observation data from about 25 WAAS reference stations (WRS) distributed over the 

15 



  
CONUS and in neighboring regions. It then generates two corrections for each satellite: 

one for the satellite clock and the other for the three dimensional location of the satellite. 

Because dual frequency (L1-L2) measurements are available, the master station also 

estimates a set of corrections for the ionospheric delay.  The WAAS data, which are the 

differential corrections and their error bounds, are coded in a 250-bps navigation message 

of GPS-like signals at L1. The message is uploaded to a geostationary satellite and 

transmitted back to users. The geostationary satellite not only serves as a data link but also 

as a potentially valuable source of ranging.  

• Corrections
• Error bounds
• Ranging source

Master Station

GPS message
Geo. 
Uplink

Figure 1.8: Wide Area Augmentation System (WAAS) architecture 
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1.4 PROTECTION LEVEL CALCULATION 

Most importantly, augmentation systems provide real-time error bounds. As noted in 

Section 1.2.2, these bounds are called protection levels (PLs). They are defined to meet the 

following requirement:   

( )Prob error PL γ> ≤                                             (1-3) 

Namely, the protection level (PL) must overbound the true position error, which is 

unknown in real time, with a probability of one minus γ  (γ  differs by application and is on 

the order of ). In this section we describe how PLs are calculated based on the 

information broadcast through the VHF data link by a user of LAAS, which is the primary 

system addressed in this thesis. (Refer to [10] for PL computation in WAAS.)    

710 10− −∼ 10

Let us first build a simple model for the corrected pseudorange measurement from the ith 

satellite,  

( ) ( ) ( ) ( ) ( )2 2 2( ) ( ) ( ) ; 1,2,...,n n n n n
c x x y y z z b nρ ε= − + − + − + + = N            (1-4)                     

where the position of the nth satellite, ( ) ( ) ( )( , ,n n n )x y z , is computed based on the navigation 

message, and the user position , ( , , )x y z , is to be determined. b  is the unknown user clock 

bias and ( )nε  are the errors that remain after applying the LAAS correction for the 

measurement errors discussed in Section 1.1.3. We solve the N equations by linearizing 

them about initial estimates of the user position and the clock bias: x0 , y0 , z0 and b0 . Let the 

expected ranging value based on these initial guesses be:  

( ) ( ) ( ) ( )2 2
0 0 0 0( ) ( ) ( )n n n n 2

0x x y y z zρ = − + − + − + b                             (1-5) 

We now develop the linearized equation in which , ,x y zδ δ δ and bδ are the unknowns to 

be solved.  
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where δρ is an N dimensional vector containing the differentially corrected pseudorange 

measurement ( cρ ) minus the expected ranging value ( 0ρ ). G is the user-satellite geometry 

matrix consisting of N rows of line of sight vectors ( ), augmented by a “1” for the clock.   ( )1 N
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1 1

1 1
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⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

                                                  (1-7) 

The next step is to obtain the optimal solution by the least-squares method iteratively until 

the change in the estimates is sufficiently small. The weighted least-squares solution for the 

corrections to the estimates of states can be written as [14] 

( ) 1

ˆ
ˆ
ˆ
ˆ

T T

x
y

G WG G Wz

b

δ
δ

δρ
δ

δ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥ =⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                        (1-8) 

For simplicity, let us define the weighted least-squares projection matrix as  

 ( ) 1TS G WG G W
−

≡ T                                                (1-9) 

To account for unequal measurement quality, the measurement residuals are weighted with 

a covariance matrix, which characterizes the errors,ε , in the pseudorange measurements. 

This covariance matrix is called the least-squares weighting matrix and the inverse of it is 
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                                              (1-10) 

The weighting matrix treats the measurement errors from different satellites as zero-mean, 

uncorrelated, and Gaussian distributed; otherwise such a characterization is very difficult in 

general. For each measurement we have an error model given by 

2 2 2 2 2
, , , , _ ,PR n air n tropo n iono n pr gnd nσ σ σ σ σ= + + +                                         (1-11) 

The airborne error, airσ , is determined from the receiver noise estimate and the specified 

multipath model. The second and the third terms are introduced by the residual 

tropospheric and ionospheric errors respectively (see Appendix A for details). The ground 

error, _pr gndσ , includes the ground station receiver noise and multipath error. The LAAS 

message broadcasts this fourth term for each satellite [15]. The vertical position error is 

then characterized by its standard deviation, 

2 2
, ,

1

N

VerticalPositionError vertical n PR n
n

Sσ
=

= ∑ σ                                        (1-12) 

where  is the projection of the local vertical component for the nth ranging source. 

Assuming that vertical position errors are Gaussian distributed, the vertical protection 

levels (VPL) can be computed as 

,vertical nS

ffmd VerticalPositionErrorVPL K σ=                                                 (1-13) 

where Kffmd is the quantile of a unit Gaussian distribution corresponding to γ . The 

computation of horizontal protection levels (HPL) is essentially the same except to project 

pseudorange errors onto the horizontal direction. Since the vertical direction requirement is 

the most stringent and errors in this direction are the largest, we will only focus on the VPL 

in this thesis. Note that the VPL in Equation (1-13) is computed under the hypothesis of 
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“fault-free” conditions (H0). The VPLs computed under different operational hypotheses– 

single reference-receiver failure or single satellite ephemeris fault [14] – at an aircraft are 

out of scope for this work.   

1.5 REAL TIME ERROR BOUNDING 

LAAS avionics use the computed PL in real time to determine whether an operation is safe. 

As stated earlier, the protection level needs to be smaller than the required alert limit (AL) 

in order for the operation to be conducted. For this reason, the computed PL must be 

credible. If the PL fails to bound the true position error, then the pilot may attempt a flight 

that is not safe. However, we encounter some technical challenges in the error bounding. In 

Section 1.5.1, three problems concerning the error bounding are explained. The previous 

work on error bounding is then discussed in Section 1.5.2. 

1.5.1 CHALLENGES IN ERROR BOUNDING 

The first problem is that the error model of differentially corrected pseudorange 

measurements may not be accurate enough to be used for error bounding. As described in 

the previous section, the algorithms for the generation of PL assume a zero-mean and 

normally distributed error model for corrected measurements. Yet the errors are neither 

necessarily zero-mean nor Gaussian. Since an accurate characterization of the correlation 

across errors is very difficult, we assume the errors for each satellite are uncorrelated. 

However, such an assumption may be unjustified. The standard deviation of correction 

error, “sigma,” is further assumed to be equal to the broadcast value determined with the 

error model. Because the computation of PL is based on these broadcast values of standard 

deviations, as shown in Equations (1-11), (1-12) and (1-13), special care must be taken 

with these assumptions. If the error model does not overbound the true error distribution, it 

may cause a serious threat to the aircraft. The approach taken in LAAS to ensure the error 

model overbounds the true distribution is, for each satellite, to transmit an inflated value of 

the standard deviations. Previous research on this subject will be discussed in the next 

section, and a new approach to determine how much we should inflate the broadcast sigma 

will be presented in Chapter 4. 
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The second problem arises in abnormal situations. Let us suppose that the broadcast sigma 

is magnified enough so that the true error distribution is bounded by a zero-mean Gaussian 

distribution defined with that inflated sigma. This technique enables the aircraft to compute 

the PL that can ensure an acceptable level of risk. However, this may not be true in all 

conditions. There may be unexpected anomalies that cause the true sigma to exceed the 

broadcast sigma. The source of such anomalies in corrected pseudoranges can be: multipath 

error increases when environmental conditions vary, receiver noise error amplifications due 

to a receiver or antenna failure, or all other possible malfunctions. In order to provide 

reliable PL, LAAS is required to detect these abnormalities and send an alarm to users 

within the required time-to-alert. This task can be accomplished by monitoring the standard 

deviation of pseudorange correction error in real time. This “sigma monitoring” is the 

subject of Chapter 3.      

The LAAS sigma-overbounding issue is especially difficult for Category II/III operations 

(which will be further discussed in Chapter 2), because the Alert Limits (ALs) are small. In 

other words, because of the tightened Vertical Alert Limit (VAL), the VPLs cannot be 

overly conservative, and high levels of sigma inflation cannot be tolerated. Otherwise, the 

full capacity of the system will not be utilized. Consequently, the goal is to make the sigma 

inflation as small as possible while maintaining the reliability of VPLs, which are driven by 

the broadcast sigmas. In order to accomplish this goal, the Position Domain Monitor 

(PDM) concept has been proposed. Previous work on PDM will be discussed in the next 

section. In Chapter 5, we will describe a new use of PDM to support smaller inflation of the 

broadcast sigma.    

1.5.2 PREVIOUS WORK 

The first group of previous studies deals with sigma establishment and estimation.  The 

goal of this research is to characterize the broadcast standard deviation well enough to be 

used for the computation of protection levels. A detailed approach to establishing the 

broadcast sigma was suggested by Pervan and Sayim [16]. This suggested method 

computes the root-sum-square (RSS) of the standard deviation due to receiver noise, 

diffuse multipath, and ground reflection multipath. The implicitly assumed zero-mean 

21 



  
Gaussian error model appears to be a consistent one for receiver noise and diffuse 

multipath errors. Thus, the standard deviations of those receiver noise and diffuse multipath 

error models can be obtained from experimental data for a specified LAAS installation. In 

contrast, ground reflection multipath can slowly vary with environmental conditions and, 

consequently, it is impractical to characterize the underlying distribution with experimental 

data alone. The sigma for ground reflection multipath is established by first obtaining a 

theoretical model and then validating the model with empirical data. This approach has 

been applied to define standardized standard deviations based on currently available GPS 

receiver/antenna technology by McGraw et al. [17].            

The second group of prior work addresses statistical uncertainty in the definition of the 

broadcast sigma. The estimated sigma from the error model may not be a good 

representative of the true sigma, because of the finite sample sizes used to generate the 

model and error correlation across multiple reference receivers. The sigma needs to be 

inflated to account for this statistical uncertainty. In this regard, the minimum acceptable 

inflation parameters for the value of the broadcast sigma have been derived by Pervan and 

Sayim in [1]. This work implicitly assumed the zero-mean Gaussian error model associated 

with thermal noise and diffuse multipath. However, the authors acknowledged that other 

error sources, such as ground reflection multipath and systematic reference 

receiver/antenna errors, may not be zero-mean Gaussian distributed. Because a user 

computes PLs assuming a zero-mean Gaussian distributed error model based on the 

broadcast sigma, an overbound concept needs to be applied if the error distribution is not 

Gaussian. Shively and Braff [18] derived inflation factors to deal with this non-Gaussian 

effect using a synthetic model of a Gaussian core and Laplacian tails. Despite all this 

progress, the study of sigma overbounding and inflation is not complete. To establish a 

reliable model of the error distribution, more strong physical bases are needed. The 

resulting inflation factors from the model of Laplacian tails may significantly be larger than 

would be needed if the tails were known to be nearly Gaussian. In contrast, even with tens 

of thousands of samples, the resulting inflation factors may provide a limited confidence 

without a dependable overbounding method. Rife [19] introduced a modified overbounding 

technique, called core overbounding. His Gaussian Core with Gaussian Sidelobe (GCGS) 
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approach mitigates over-conservatism associated with bounding heavy tails by providing 

an allowable envelope of tail distributions. Many researchers actively work on these issues. 

Another concern of sigma overbounding is that the same conservatism cannot be adopted 

for Category II/III approaches. The concern led to the application of a position domain 

method, which was originally introduced by Markin and Shively in [20] as an alternative to 

a range domain method. The computed protection levels in the range domain may be 

conservative, since the range domain method requires a transformation from pseudorange 

correction errors to position error estimates. In contrast, this alternative technique avoids 

the conservatism by performing a safety check directly in the position domain. An 

extended benefit from the position domain method has been shown by Braff [21]. In this 

work, the method was found to be effective to reduce any inflation factor that was applied 

to protect against the event that the pseudorange correction error distribution was not 

modeled properly.     

Lastly, the previous work on the Cumulative Sum (CUSUM) method is essential, since this 

method is directly applied to the sigma monitoring in real time. The CUSUM method was 

originally invented by Page in 1954 [22].  The principles and applications of this method 

were analyzed in depth by Hawkins and Olwell [23]. Pullen first considered adapting the 

CUSUM method to LAAS and used the method to validate protection level overbounds for 

ground-based and space-based augmentation systems [24].        

1.6 OUTLINE AND CONTRIBUTIONS 

Since major contributions will be described thoroughly in the thesis, only a brief summary 

of those efforts is given here with an outline of this thesis. The second chapter gives a more 

detailed picture of the LAAS architecture and of the requirements for aviation navigation. 

Chapter 2 also describes the Stanford University Integrity Monitor Testbed (IMT), which is 

a prototype of the LAAS ground facility. It is not a contribution in this thesis, but it needs 

to be explained since it is the basis upon which the new monitors are implemented.  

The third chapter explains how to estimate and monitor standard deviations of differentially 

corrected pseudorange errors in real time. This chapter also shows the responses of sigma 
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monitors under the failure modes. In order to detect and remove abnormal behaviors of the 

pseudorange correction error distribution, two different sigma-monitoring algorithms were 

developed: the sigma estimation method and Cumulative Sum (CUSUM) method. The 

former detects relatively smaller violations faster, while the latter detects larger violations 

faster. This is one of the most valuable contributions of this thesis, as the two sigma-

monitoring algorithms together are able to detect any size of sigma violation that is 

hazardous to users. At the end of Chapter 3 we include an analysis of mean monitors. The 

“head-start” CUSUMs are superior to the mean estimation method and sufficient to detect 

mean anomalies during LAAS operations.   

The fourth chapter creates the new inflation factor determination method and analytically 

derives the inflation factor for the broadcast sigma based on both experimental and 

theoretical data. To do that, the effect of sigma monitor performance on the determination 

of the inflation factor was evaluated.  

The fifth chapter theoretically demonstrates the advantages of position-domain monitors 

and shows how to improve the overall system performance based on empirical tests. The 

last important contribution resides in the fact that the position-domain monitoring 

algorithm added to the current algorithm can support a reduced inflation factor. Used in 

combination, a 25% reduction in VPL is achieved with the same safety standard. 

Finally, in Chapter 6, the accomplished work is summarized, and directions for future 

research are suggested.  
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Chapter 2 

The Local Area Augmentation System 

2.1 INTRODUCTION 

GPS is already used for many different types of aircraft navigation: cruising through 

oceanic routes, flight over continents, etc. In time, GPS will also be used for the final 

approach to airports and auto-landings. Among these operations, precision approach and 

landing navigation demand the greatest safety and reliability. To serve these applications, 

the Federal Aviation Administration (FAA) has been developing a ground-based system to 

augment GPS. This augmented system is known as the Local Area Augmentation System 

(LAAS) [25] because it locates a reference station on the ground at an airport to improve 

the performance of airborne GPS receivers approaching that airport (over approximately a 

20-30 mile radius). This chapter starts by giving a brief description of the LAAS 

architecture. The completed augmentation system will meet stringent requirements with 

respect to accuracy, integrity, continuity, and availability. Chapter 2 introduces these 

technical terms which will be used to describe the performance of LAAS. It also defines 

categories of LAAS precision approach and landing based on the level of these 

requirements. The chapter then reviews how the GPS measurements are processed to 

generate differential corrections, and how their residual errors are characterized in LAAS. 

Finally, its attention turns to the Stanford Integrity Monitor Testbed (IMT), which has been 

developed to evaluate whether LAAS can meet the defined integrity requirements.  
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2.2 LAAS ARCHITECTURE OVERVIEW 

VHF Data 
Broadcast
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Airborne 
User

Ranging Signal
Orbit parameters

1) Differential corrections

LAAS Ground Facility 
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2) Detect failure and Alarm user

Multiple 
Receivers

 

Figure 2.1: Local Area Augmentation System (LAAS) Architecture 

As shown in Figure 2.1, LAAS consists of three segments: the space segment, the LAAS 

Ground Facility (LGF), and the airborne user segment. The space segment provides 

ranging signals and orbit parameters to the LGF and to users. The LGF includes a small 

collection (typically 3 or 4) of GPS reference receivers and antennas placed at precisely 

known locations. With this set of receivers, the LGF continuously tracks, decodes, and 

monitors GPS signals and generates differential corrections. To help insure flight safety, it 

is also responsible for detecting both space segment and ground segment failures and 

rapidly warning users. The corrections, along with integrity parameters and approach-path 

information, are broadcast to approaching aircraft via a Very High Frequency (VHF) data 

link. The airborne GPS receivers use this information to correct their own ranging 

measurements, obtain the required accuracy, and verify the required integrity.     
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2.3 LAAS REQUIREMENTS 

In order to specify requirements for precision approaches using LAAS, we must first 

introduce the terminology that is used to describe all aircraft navigation applications. The 

four criteria to evaluate the performance of air navigation systems are defined as follows 

[25, 26] and illustrated in Figure 2.2.  

• Accuracy: A measure of the difference between the estimated position and the true 

aircraft position under nominal fault-free conditions. It is typically a 95% bound on 

navigation sensor error (NSE).  

• Integrity: The ability of a navigation system to detect anomalies and provide 

warnings to users in a timely fashion.  

• Continuity: The probability that the system supports Accuracy and Integrity 

requirements throughout a flight operation without interruption.  

• Availability: The percentage of time for which the system is operational and the 

Accuracy, Integrity and Continuity requirements are met.   

Figure 2.2 illustrates this terminology in a two-dimensional plane for simplification. The 

origin indicates the true position, and a dot specifies the estimated position. Integrity fails 

when the position error (the dot) exceeds a certain AL (alert limit) (the outer circle) and this 

event is not notified to a pilot within a specified time-to-alarm. Thus integrity risk is 

defined as the probability that no alert is issued while the position error exceeds the AL for 

a time longer than the time-to-alarm. However, the true position, and consequently, the 

position error are not quantities that can be known in real-time. For that reason, protection 

bounds (the inner circle in Figure 2.2), defined as VPL and HPL in Section 1.4, need to be 

computed with respect to the acceptable level of integrity risk.  

In contrast to integrity risk, continuity risk is defined as how often the system fails during a 

specified time interval. Continuity and integrity are competing requirements. If integrity 

algorithms are overly sensitive, too many “false alarms” will be sent to the user, and the 
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system continuity will decrease. Lastly, if the protection bound (the inner circle) exceeds 

the AL (the outer circle), the system is no longer available. If this occurs before an 

approach, there will be only availability loss. On the other hand, if the system fails during 

the approach, continuity risk will increase along with availability loss.  

System 
Unavailable

Continuity

Alert limit

Availability

Integrity

Protection Bound

North

Accuracy

East

System 
Unavailable

Continuity

Alert limit

Availability

Integrity

Protection Bound

Integrity

Protection Bound

North

Accuracy

East

Figure 2.2: Aviation Navigation Requirements 
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Figure 2.3: Precision Approach and Landing Categories [27, 28] 

 

We now turn our attention to categorizing precision approaches based on their capability to 

provide various levels of accuracy, integrity, continuity, and availability. As shown in 

Figure 2.3 [27, 28], Lateral Precision Approach with vertical guidance (LPV) and 

Approach with Vertical guidance (APV-2) guide an aircraft to a minimum altitude known 

as the Decision Height (DH) after which the aircraft can proceed only if the runway is 

visible. LAAS Category I (CAT I), CAT II and CAT III Precision Approaches (PA) are the 

subjects of interest in this thesis. CAT II and CAT III involve more stringent requirements 

that allow users to operate at lower DHs. The current requirements and VAL/HAL – a 

bound on maximum tolerable VPL/HPL – for these precision approaches are summarized 

in Table 2-1 [15, 25]. As an example, if Hazardously Misleading Information (HMI) causes 

a CAT I user’s vertical position error to exceed 10 meters, the LGF must detect the event 

and alert the user within a 6-second time-to-alarm. The probability of the LGF failing in 

this task, Pr(HMI), should be no greater than 2 x 10-7 per approach.  
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Integrity Phase 
of 

Flight 

Accuracy 
(95% 
error) 

Time 
to 

Alert 
Pr(HMI) 

Alert Limit 
(H: Horizontal 

V: Vertical) 
Continuity Availability 

LPV 
(APV1.

5) 

H: 16 m 
V: 20 m 10 sec 2 x 10-7 / 

approach 
H: 40 m 
V: 50 m 

5.5 x 10-5 / 
approach 

0.99 to 
0.99999 

APV-2 H: 16 m 
V: 7.6 m 6 sec 2 x 10-7 / 

approach 
H: 40 m 
V: 20 m 

5.5 x 10-5 / 
approach 

0.99 to 
0.99999 

CAT I 
H: 16 m 

V: 4 to 7.6 
m 

6 sec 2 x 10-7 / 
approach 

H: 40 m 
V: 10 to 12 m 

5.5 x 10-5 / 
approach 

0.99 to 
0.99999 

CAT II H: 6.9 m 
V: 2.0 m 2 sec 2 x 10-9 / 

approach 
H: 17.4 m 
V: 5.3 m 

4 x 10-6 / 
15 sec 

0.99 to 
0.99999 

CAT III H: 6.1 m 
V: 2.0 m 

1 to 2 
sec 

2 x 10-9 / 
approach 

H: 15.5 m 
V: 5.3 m 

H: 2 x 10-6 
/ 30 sec 

V: 2 x 10-6 
/ 15 sec 

0.99 to 
0.99999 

 
Table 2-1: Requirements for Precision Approach and Landing 

 
Although the FAA originally proposed a VAL of 5.3 meters for CAT II/III, the appropriate 

value is being reconsidered by the Radio Technical Commission for Aeronautics (RTCA). 

Tim Murphy of Boeing developed an alternative methodology to determine the alert limits 

and showed that the probability of unsuccessful landing is still on the order of 10-7 or less 

for alert limits up to 10 meters [29]. 
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2.4 LAAS GROUND FACILITY PROCESSING ALGORITHMS 

The LGF is responsible for generating and broadcasting carrier-smoothed code differential 

corrections to users. The processing algorithms, including carrier smoothing and the 

computation of differential corrections, will be explained in Section 2.4.1. As addressed 

earlier, the broadcast also carries integrity data which estimates the quality of the correction. 

We will define a ground facility error standard deviation, _pr gndσ , and present the error 

model in Section 2.4.2. The last important role of the LGF is to insure that all ranging 

sources, for which LAAS corrections are broadcast, are safe to use by detecting faulty 

measurements. Since fault detection involves highly complex mechanisms and requires a 

lengthy explanation, LGF monitoring algorithms will be presented separately in Section 2.5.  

2.4.1 CARRIER SMOOTHING AND PSEUDORANGE CORRECTIONS 

The first step to compute a differential correction is the smoothing of pseudorange 

measurements, ρ , with the change in carrier phase measurements, φ . Carrier smoothing 

reduces rapidly changing errors in raw pseudorange measurements such as high frequency 

errors due to receiver noise. For each channel, a pair consisting of Receiver m - Satellite n 

at epoch k, the following filter is applied with a time constant, sτ , of 100 seconds. The 

sample interval, sT , is 0.5 seconds; thus sN  is equal to 200 [15, 30].   

( ), , , , , , ,
11( ) ( ) ( 1) ( ) ( 1)s

s m n m n s m n m n m n
s s

Nk k k k k
N N

ρ ρ ρ φ φ−
= + − + − −                   (2-1)  

where 

100 0.5 200s s sN Tτ= = =                                                       (2-2) 

We then compute corrections for both pseudorange and carrier phase measurements [31]. 

The smoothed pseudorange correction, scρ , and the raw carrier phase correction, cφ , for 

each channel (m, n) are: 
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, , , , , ,( ) ( ) ( ) ( )sc m n s m n m n m nk k R k kρ ρ τ= − +                                            (2-3) 

, , , , , , ,( ) ( ) ( ) ( ) (0)c m n m n m n m n ci m nk k R k kφ φ τ φ= − + −                                    (2-4) 

where is the range from reference antenna to satellite (computed based on the known 

location of the reference antenna and the broadcast ephemeris), and 

nmR ,

nm,τ  is the satellite 

clock correction. The initial carrier phase correction, )0(,, nmciφ , is equal to 

, , ,(0) (0) (0)m n m n m nRφ τ− + . After generating the individual corrections for each channel 

using Equations (2-3) and (2-4), we adjust receiver clock biases as follows to allow 

measurements to be compared across receivers [31]: 
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Here,  designates a set of  ranging sources in the maximum common set, which will 

be detailed in Section 2.5.2.4. Lastly, we compute the averaged corrections for each 

satellite using the following equations.  
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In these equations,  is a set of nS nM  reference receivers, and , , (0)ca m nφ  is evaluated at the 

first measurement epoch for channel (m, n). This computed corrρ  is broadcast to all LAAS 

users. The carrier-phase corrections, corrφ , are not needed for CAT I but may be needed for 

CAT II/III users on account of their tightened VAL of 5.3 meters. 
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2.4.2 GROUND FACILITY ERROR STANDARD DEVIATION 

In the previous chapter, we saw how user aircraft compute their protection levels using the 

standard deviation of differentially corrected pseudorange measurements. This section 

reminds the reader of the different components of the standard deviation.    

2 2 2 2
, , , , _( ) ( ) ( ) ( ) ( )PR n air n tropo n iono n pr gnd nk k k kσ σ σ σ σ= + + + , k                        (2-9) 

The first three terms are the airborne RMS pseudorange error, the residual tropospheric 

error and the residual ionospheric error, respectively. The error models corresponding to 

these terms are specified in Appendix A. Let us now turn our attention to the fourth term, 

the ground facility pseudorange error, which is broadcast to users by the LGF. When 

combined with the differential correction methodology, this broadcast _pr gndσ  is a critical 

factor for airborne users to compute their position and integrity protection levels (VPL and 

HPL) as shown in Section 1.4. This error standard deviation for each ranging source should 

account for all equipment and environmental effects, including receiver noise, local 

interference, and ground station multipath.  

Working Group-4 of RTCA Special Committee 159 developed standard error models for 

LAAS differential processing [15]. The standard GPS interference environmental 

conditions – the RF interference environment, at and around L-band frequencies, for LAAS 

airborne receivers – assumed in the models are defined in Appendix D of the LAAS 

Minimum Operational Performance Standards (RTCA/DO-253A [32]). The group defined 

Ground Accuracy Designators (GADs) that reflect different performance levels of GPS 

receiver technologies [17]. GAD-A represents a level of performance achievable with early 

and low-cost LAAS installations using a standard correlator receiver and a single-aperture 

antenna. GAD-C was defined to characterize the performance realizable with a narrow 

correlator receiver and a multipath limiting antenna (MLA). GAD-C performance is 

expected to be able to support LAAS CAT II/III precision approaches. GAD-B represents 

an intermediate level of performance between GAD-A and GAD-C. The performance of 

GAD-B is attainable with advanced receiver technologies similar to GAD-C but with a 

single-aperture antenna instead of an MLA. 
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The standard deviation of the ground facility error is [15]: 

 ( )
0

2( )

0 1
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_ , 2( )
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M k
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−⎛ ⎞
+⎜ ⎟

⎝ ⎠= a+                                             (2-10) 

where M is the number of reference receivers that are averaged to obtain a differential 

correction, nθ is the nth ranging source elevation angle, and  and 0 1 2, ,a a a 0θ  for the 

applicable Ground Accuracy Designators (GAD) are defined in Table 2-2.  

Ground Accuracy 
Designator 0a  meters 1a  meters 2a  meters 0θ  degrees 

GAD-A 0.50 1.65 0.08 14.3 
GAD-B 0.16 1.07 0.08 15.5 

35o
nθ ≥  0.15 0.84 0.04 15.5 

GAD-C 
35o

nθ <  0.24 0 0.04 - 
Table 2-2: Ground Facility Error Allocation Model 

2.5 STANFORD LAAS INTEGRITY MONITOR TEST-BED (IMT) 

As addressed earlier in this chapter, the LGF guarantees users that it is safe to use all 

ranging sources for which LAAS corrections are broadcast. If a failure threatening user 

safety occurs, the LGF must detect and alert users – by not broadcasting the correction for 

the affected measurement – within a 3-second time-to-alarm (out of the 6-second 

requirement) for CAT I precision approaches. Furthermore, the probability of failing this 

task should be less than 2x10-7 per approach as shown in Section 2.3. In order to evaluate 

whether the LGF can meet these integrity requirements, Stanford University researchers 

have developed an LGF prototype known as the Integrity Monitor Testbed (IMT) [30, 33-

37].     

Section 2.5.1 will first give an overall picture of the IMT system architecture. Section 2.5.2 

will then briefly present the integrity monitor algorithms and failure-handling logic 

implemented in IMT. For a full description of the IMT, please refer to [38].   
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2.5.1 IMT HARDWARE CONFIGURATION 

The LGF requires redundant DGPS reference receivers to be able to detect and exclude 

failures of individual receivers. Figure 2.4 shows the configuration of the three IMT 

antennas on the Stanford HEPL (Hansen Experimental Physics Laboratory) rooftop. The 

existing IMT antennas are connected to three NovAtel OEM-4 reference receivers which 

are connected to the IMT computer by a multiport serial board. The separations between 

these three NovAtel Pinwheel (survey grade) antennas are limited to 20 – 65 meters by the 

size of the HEPL rooftop but are sufficiently separated to minimize the correlations 

between individual reference receiver multipath errors (this has been demonstrated by 

previous work) [33, 39].  

A2 5.90m

19.1m

61.97m

A1 5.52m

A4

North

Low roof
(antenna #3)

High roof
(antennas #1,2)

gps-ground

HEPL
roof

 

Figure 2.4: IMT Hardware Configuration 
 

Each receiver can track as many as 12 satellites simultaneously. Each receiver samples 

GPS signals every 0.5 seconds and provides receiver measurement packets, which contain 

pseudorange measurements, carrier-phase measurements, and navigation messages. These 

GPS measurements are fed into the IMT processor for further calculations.  
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2.5.2 IMT FUNCTIONS 

The LGF must apply a comprehensive set of monitoring algorithms to detect a varied array 

of possible failures in the GPS Signal in Space (SIS) or in the LGF itself. In order to 

coordinate the LGF response to detected failures (some of which may trigger more than 

one monitoring algorithm), complex fault-handling logic is included in the LGF. This logic 

is called Executive Monitoring (EXM), and it isolates failed measurements and 

reintroduces these measurements only after the failure is clearly determined to have been 

corrected. 

Figure 2.5 shows the IMT functional blocks. The preliminary functions are RF 

conditioning and Signal-in-Space Receive and Decode (SISRAD) functions. The role of 

these functions is to provide pseudorange measurements, carrier-phase measurements, and 

navigation data messages in order to enable the generation of differential corrections. The 

core of IMT processing consists of three parts: nominal processing (carrier smoothing and 

Figure 2.5: IMT Hardware Configuration 
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calculation of differential corrections), integrity monitor algorithms, and executive 

monitoring (EXM). We have already discussed nominal processing in Section 2.4.1. We 

can divide the integrity monitor algorithms into Signal Quality Monitoring (SQM), Data 

Quality Monitoring (DQM), Measurement Quality Monitoring (MQM), Multiple 

Reference Consistency Check (MRCC), Sigma-Mean (σµ) monitoring, and Message Field 

Range Test (MFRT) classes. In addition to the IMT processing core, the LGF also contains 

VHF Data Broadcast (VDB). It is an essential component through which the LAAS 

corrections and integrity data will be broadcast to users.  

2.5.2.1 SIGNAL QUALITY MONITORING (SQM) 

SQM identifies deformations of the C/A-code broadcast by GPS satellites [40-42]. The 

IMT SQM component comprises distinct Signal Quality Receivers (SQR) which report 

C/A-code correlation measurements at several different correlator spacings. These 

measurements are processed to determine whether signal-deformations have altered the 

ideal triangular C/A-code correlation shape significantly. The details of its algorithms and 

performance are demonstrated in [43, 44]. 

SQM also confirms that received satellite signal power is within SPS specifications [45] by 

averaging the reported receiver carrier-to-noise power density ratio, C/N0. If the signal 

power is significantly lower than the specification, ranging errors may increase and present 

an integrity risk. The averaged C/N0 for each channel (m, n) at the current epoch k and the 

one at the previous epoch (k-1) is: 

( )0 _ , , 0, , 0, ,
1/ ( ) / ( 1) / (
2Avg m n m n m nC N k C N k C N k= − + )                   (2-11) 

This value is compared with a threshold value that is predetermined based on the hardware 

configuration, antenna sites, antenna gain patterns, and cable losses. The general method to 

determine thresholds utilized in the IMT is proposed in [38]. If the averaged C/N0 is less 

than the threshold, a flag is issued for this channel.  
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Separate SQM algorithms are used to confirm that the received signals do not include an 

anomalous amount of code-carrier divergence, which would interfere with carrier 

smoothing and could lead to larger errors. A geometric moving averaging (GMA) method 

and a divergence cumulative sum  (CUSUM) method are applied to estimate the code-

carrier divergence (see [38, 46] for details of the code-carrier divergence monitor). 

2.5.2.2 DATA QUALITY MONITORING (DQM) 

The role of DQM is to verify that the received satellite navigation data are sufficiently 

reliable. Several DQM methods have been developed to validate the GPS ephemeris and 

clock data of each satellite for two different situations: when a satellite first rises into view 

of the LGF and when navigation data messages are updated [47, 48].  

For a newly-risen satellite, DQM compares the satellite positions over the next six hours at 

5-minute intervals based on the broadcast ephemeris message to those generated from the 

most recent almanac message. Ephemeris parameters are updated by a satellite every two 

hours, while the almanac is a subset of the clock and ephemeris data of all satellites and is 

updated much less frequently with reduced precision [3]. DQM then insures that the 

ephemeris-based satellite positions always agree with the almanac-based positions to 

within 7000 meters, where this threshold is set by the accuracy of the almanac [38]. When 

navigation messages are updated, DQM computes satellite positions based on both old and 

new ephemerides and compares them to insure that the new ephemeris is consistent with 

the old and validated ephemeris to within 250 meters.  

DQM works in cooperation with Message Field Range Test (MFRT) functions (see Section 

2.5.2.7). Although most large errors will be detected by the MFRT test, ephemeris errors 

orthogonal to the line-of-sight between a failed satellite and an LGF are not detectable by 

this test. To account for this possibility, a monitor concept has been developed that is 

known as the “Yesterday Ephemeris-minus-Today Ephemeris (YE-TE) test.” This test is a 

more precise validation of ephemerides for newly risen satellites than the ephemeris-minus-

almanac test. The concept of the YE-TE test is to confirm that today’s broadcast ephemeris 
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data for each GPS satellite is correct by comparison with the most recently validated 

ephemeris data. The detailed algorithms and performance of this test are presented in [48]. 

2.5.2.3 MEASUREMENT QUALITY MONITORING (MQM) 

MQM is designed to detect sudden step errors and any other rapidly changing errors due to 

GPS clock anomalies or LGF receiver failures by verifying the consistency of the 

pseudorange and carrier-phase measurements over the last few epochs [30, 31]. It consists 

of three monitors: the Receiver Lock Time check, the Carrier Acceleration-Step test, and 

the Carrier-Smoothed Code (CSC) Innovation test. MQM generates one flag per channel if 

it detects any failure of the channel from these three tests. 

First, the Receiver Lock Time Check ensures continuous receiver phase lock by computing 

the numerical difference of the lock times reported by each reference receiver. Since this 

type of failure is most likely not hazardous and frequently occurs when a receiver tracks 

satellites at low elevation angles, this test is implemented in such a way that EXM will not 

declare the channel to be failed. Instead, the IMT initializes and resets several memory 

buffers properly before using them, including re-initializing its carrier smoothing filter 

discussed in Section 2.4.1. This prevents the system from a loss of continuity.  

Second, the purpose of the carrier acceleration-step test is to detect an impulse, step, 

excessive acceleration, or other rapid changes in carrier phase measurements. Such 

anomalies could cause errors in the pseudorange corrections or in the carrier-phase 

corrections. The last 10 continuous epochs (i.e., from epoch k-9 to epoch k) of φ* are 

calculated for each channel (m, n) at each epoch k by this equation:  

*
. , , , ,

( )

1( ) ( ) ( )
m

m n c m n c m j
j S km

k k
N

φ φ φ
∈

= − ∑ k                                 (2-12) 

where  is computed by Equation (2-4), and S, ,c m nφ m is the set of Nm satellites tracked on 

receiver m. These ten fitting points are used to fit the following quadratic model:  
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The least-squares method is used to solve for the coefficients of this model [15]. The 

acceleration and ramp are defined as: 

2 *
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                                  (2-14) 
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                                        (2-15) 

The third test statistic expresses the apparent change (or “step”) in the latest measurement 

and is defined as [31]: 

* *
, , , ,( ) ( ) ( )m n meas m n pred m nStep k k kφ φ≡ −                                    (2-16) 

where  is the actual value at the current epoch k from Equation (2-14), and  

is the predicted value from Equation (2-13). If any of the acceleration, ramp, and step test 

statistics on a channel exceed their thresholds, the channel fails and is flagged for later 

exclusion by EXM-I (see Section 2.5.2.4). 

*
, ,meas m nφ *

, ,pred m nφ

Lastly, the Carrier-Smoothed Code (CSC) Innovation Test is designed to detect impulse 

and step errors on raw pseudorange measurements. The innovation test statistic is defined 

as [31]: 

( ), , , , , ,( ) ( ) ( 1) ( ) ( 1)m n m n s m n m n m nInno k k k k kρ ρ φ φ≡ − − + − −                     (2-17) 

where , ,s m nρ  is  the output of the carrier smoothing computed by Equation (2-1). If two or 

all of innovations at three successive epochs exceed thresholds, a flag will be issued from 

this CSC innovation test, and the channel will be excluded by EXM-I. If only the 

innovation at the current epoch is over its threshold, the smoothing filter does not use the 

raw pseudorange for that epoch. Instead, the carrier-smoothed code is updated based only 
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on the carrier phase measurement (if the carrier measurement fails the acceleration-step test, 

EXM-I will treat this as a failed channel).  

2.5.2.4 PHASE ONE OF EXECUTIVE MONITORING (EXM-I) 

In the previous sections, we described each of the LGF quality monitoring (QM) 

algorithms. Each integrity monitor is targeted to detect certain failures and may generate 

one flag per receiver-satellite pair. Once these monitors begin flagging questionable 

measurements, several steps of logical reasoning and trial removals are required to 

determine which failed system elements are the source of the problem. This LGF function 

is known as "Executive Monitoring" (EXM). In this section, we will explain the first phase 

of EXM (EXM-I), which is designed to exclude measurements flagged by any of the SQM, 

DQM, and MQM algorithms. The measurements that survive EXM-I can then enter the 

second phase, which will be described in Section 2.5.2.8. 

The details of EXM-I fault handling logic are given in [31]. The first step is to build two 

matrices, called tracking (T) and decision (D) matrices, to support EXM. Each entry in the 

matrices is for a single channel or receiver-satellite pair. We record which satellites are 

physically tracked on each receiver in the T-matrix. We construct the D-matrix by 

combining the three QM flags in a logical-OR operation (a flag from any QM algorithm 

causes a flag in D). We then match these matrices to a set of 11 generic failure cases to 

determine which measurements should be excluded from correction generation. We can 

consider all but two of these cases as combinations of three fundamental situations: 

a) Flag on a single satellite on a single reference receiver; 

b) Flags on a single satellite and multiple reference receivers; 

c) Flags on multiple satellites on a single reference receiver. 

If a flag is found to meet case (a), a single flagged measurement cannot be used. Cases (b) 

and (c), where multiple flags exist on a single satellite or reference receiver, lead to the 

exclusion of that satellite or receiver entirely. When flags meet both case (b) and (c), all 

suspicious satellites and receivers are excluded – no attempt is made to determine whether 

a satellite or receiver is the cause of the failure, because there is no particular reason to 

41 



  
believe that one is more likely to fail than the other. These rules are conservative because 

the EXM exclusion logic is based on the assumption that failures and fault-free alarms are 

truly rare. Thus, any cases with multiple flags should be treated very cautiously. 

 
Figure 2.6: An Example of Selecting a Common Set [30] 

 

Once we determine which measurements should be excluded, we select a common set, , 

of visible satellites that survive EXM-I. This set of satellites is used to calculate the 

receiver clock adjustment as shown in Equations (2-5) and (2-6). The measurements of this 

set are also used to compute candidate corrections as shown in Equations (2-7) and (2-8). 

We form the common set based on two principles [31]:  

cS

1. If all three reference receivers track at least four satellites, the common set 

comprises all satellites tracked by all three receivers; 

2. Otherwise the common set is the largest set of satellites tracked by any two of the 

three receivers. 

As an example of selecting the common set, a table similar to the form of the D and T-

matrices is shown in Figure 2.6. In this case, the common set that we will select is the one 
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circled by the solid line instead of the dashed line. Let us assume that we cannot approve a 

common set of at least four satellites, and it was not predicted by an LGF “constellation 

alert” algorithm that takes known satellite outages into account. If such an event occurs, we 

should exclude all measurements and reset the IMT. 

2.5.2.5 MULTIPLE REFERENCE CONSISTENCY CHECK (MRCC) 

MRCC is designed to isolate an anomalous receiver that creates large errors in the 

candidate corrections. To accomplish this task, we examine the consistency of corrections 

for each satellite across all reference receivers by computing B-values [30, 31, 49]. These 

B-values are best thought of as the estimates of pseudorange errors under the hypothesis 

that a given reference receiver has failed. The B-values are generated by the following 

equations: 
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In these equations, corrρ and corrφ  are the pseudorange correction and the carrier-phase 

correction, respectively (see Equations (2-7) and (2-8)), scaρ  and caφ  are clock-adjusted 

corrections (see Equations (2-5) and (2-6)), and  denotes a set of nS nM  reference receivers 

as explained in Section 2.4.1. Let us assume that a given reference receiver, m, has failed. 

In that case, the best estimate of the true pseudorange correction is the correction computed 

by taking the average of all receivers except the one hypothesized to have failed. This is the 

second term in the right side of Equation (2-18). We can see from Equation (2-7) that the 

first term, , ( )corr n kρ , is computed by averaging all receivers including the hypothetically 

failed receiver. The difference between these two terms, the B-value, thus expresses the 

resulting error if the failed receiver were not excluded. It is broadcast to users so that they 
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can compute an “H1” protection level, which is the position error bound under this 

hypothesis [33, 49].   

 
Figure 2.7: MRCC Fault Detection Flowchart [38] 

 

After we compute B-values for pseudorange and carrier-phase measurements, we compare 

each B-value with its threshold. Then we follow the logic of the MRCC fault detection 

process as shown in Figure 2.7. If there are any B-values that exceed their thresholds, we 

find the largest Bρ and Bφ over the thresholds. Next, we determine whether they are B-

values of different types (Bρ and Bφ), and whether the different types of the largest B-values 

are on the same channel.  
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Figure 2.8: EXM-II Pre-Screen Flowchart [38] 

 

The final procedure in MRCC is to isolate any receiver channels that create anomalously 

large errors in the corrections. The MRCC isolation procedure, which is also referred to as 

the “EXM-II pre-screen,” is shown in Figure 2.8. We pick up the detection status from 

Figure 2.7 and continue to isolate errors [31]. If the MRCC fault detection returns a status 

of 0, which means that no B-values are over threshold, then we do not isolate any channel. 

If the status is 2, which implies that the largest Bρ and Bφ are not on the same channel, the 

pre-screen is not able to handle this complex situation. Thus we pass this task to the similar, 

but more comprehensive, logic of EXM-II (see Section 2.5.2.8). For all other cases, we 

remove the channel with the largest B-value and then re-compute B-values using a reduced 

common set. If we see no remaining MRCC flags, we can conclude that the pre-screen was 

successful. Otherwise, it means that the pre-screen may have mishandled the failure. 

Therefore we retrieve the original B-values and pass the task from MRCC to EXM-II. 
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2.5.2.6 SIGMA-MEAN (σµ) MONITORING 

The purpose of sigma-mean monitoring is to ensure that the zero-mean Gaussian 

distribution defined with the broadcast _pr gndσ  overbounds the true error distribution of 

broadcast differential corrections [16, 50]. We have already described the broadcast _pr gndσ  

in Section 2.4.2. We have also derived B-values, which are used as input to this sigma-

mean monitor, in the previous section. In order to detect both mean and sigma violations, 

we implement two different monitoring algorithms: the estimation method and the 

Cumulative Sum (CUSUM) algorithm [24]. The details of these monitors are a key focus 

of this thesis and are covered in Chapter 3. 

2.5.2.7 MESSAGE FIELD RANGE TEST (MFRT) 

The function of MFRT is to confirm that the computed average pseudorange corrections 

and correction rates are within the confidence bounds [31]. This test is the last step of 

EXM-II before approving corrections to be broadcast. The computed average pseudorange 

corrections, corrρ , from Equation (2-7) should be within a bound of ± 125 meters, and the 

correction rates, 
corr

Rρ , need to be within a threshold of ± 0.8 m/sec [51]. These thresholds 

are determined based on nominal data (the detailed method is described in [38]). 
corr

Rρ  is 

the rate of change of corrρ  and is equal to: 
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where the sample interval, sT , is 0.5 seconds.  

2.5.2.8 PHASE TWO OF EXECUTIVE MONITORING (EXM-II) 

A significant fraction of the IMT code is dedicated to processing alert messages generated 

by different IMT monitor algorithms. EXM isolates faulty measurements based on those 

alerts as needed to meet the integrity requirements while minimizing incorrect exclusions 
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to the degree possible. In Section 2.5.2.4, it was shown how to execute the first phase of 

EXM (EXM-I) and remove measurements flagged by the various QMs. This section 

describes the second phase of EXM (EXM-II), which tries a series of exclusion steps based 

on MRCC, the σµ monitor, and MFRT flags [30, 36].  

 
Figure 2.9: EXM-II Flowchart [38] 

 

It is not simple to handle MRCC flags because we usually need to reduce the common set 

Sc when we attempt to exclude measurements. When this happens, we must re-compute 

corrections and B-values for all remaining measurements and confirm that this new, 

reduced set of measurements passes MRCC. This procedure has been named “EXM-II Pre-

Screen”, and is shown in Figure 2.8. Including this block, Figure 2.9 shows the whole 

diagram of the EXM-II flowchart. In this diagram, “EXM-II isolation” operates based on 

logic similar to that of EXM-I. In other words, single B-value flags on individual channels 

are removed, but if more than one B-value is flagged on a given satellite or receiver, the 
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entire satellite or receiver is excluded. In order to complete EXM-II before the next epoch 

begins, we place a limit of four attempts to exclude measurements and repeat the EXM-II 

isolation-MRCC fault detection process before we “give up” and exclude all 

measurements. In addition, we must confirm that all measurements pass the σµ monitor 

and MFRT. Any flags from these tests also demand EXM-II exclusions.  

Lastly, we complete the EXM-II process by managing excluded ranging sources and/or 

receiver channels. Once we exclude faulty measurements detected by the σµ monitor or 

MFRT, they are excluded for the entire pass of the satellite in question. This is because it is 

difficult to verify that the faults detected by these monitors are no longer present during the 

current pass. In most other cases, we put excluded measurements into a “self-recovery” 

mode, in which the carrier smoothing filters are re-initialized. During self-recovery, we 

compare the re-smoothed measurement with thresholds tightened to 3-sigma levels – the 

original thresholds are approximately at 6-sigma levels. If this measurement passes all tests, 

it is declared safe for use again and is reintegrated into the set of usable measurements [31, 

33]. We also apply the tightened thresholds to measurements excluded due to σµ monitor 

or MFRT flags in the previous pass. These stringent thresholds are used to insure that the 

probability of reintroducing a measurement that still fails is below 1.94×10-9 [52]. If a 

rejected channel does not pass the tests with the tightened thresholds, it enters the self-

recovery mode again and repeats the recovery process. If self-recovery fails a second time, 

the defective channel enters an “external maintenance” mode and cannot be used again 

until the affected equipment is certified to be healthy by an external agency, such as FAA 

maintenance personnel [31]. 

2.6 CONCLUSION 

This chapter provided the background information on LAAS: the description of the LAAS 

architecture, the requirements of the LAAS performance (accuracy, integrity, continuity, 

and time availability), and the various types of LAAS precision approaches and landings. 

We have also seen how the LGF computes and broadcasts differential corrections to users 

in real time. However, users cannot eliminate the errors of their pseudorange measurements 

entirely even after applying these differential corrections. What is important here is that the 
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residual error bounds should also be sent, because this information is essential for 

computing position bounds within the specified integrity level. The chapter described the 

broadcast sigma of the ground facility error representing various allocation models.  

The last part of this chapter presented the functions of the IMT integrity monitoring 

algorithms. Each monitor is designed to detect and exclude its targeted faulty 

measurements before those faults influence the broadcast correction. The sigma-mean 

monitor is one of the key integrity monitors, since the broadcast sigmas are used in the 

calculation of the protection levels. In Chapter 3, we will see how the sigma-mean 

monitoring algorithms were incorporated to the IMT.   

 

 

 

49 



  

Chapter 3 

Sigma-Mean Monitoring  

3.1 INTRODUCTION 

In the previous chapter, we saw how GPS measurements are processed to obtain 

differential corrections and integrity parameters in real time. We also investigated how the 

LGF integrity monitors are designed to detect and remove anomalies such as ground-based 

or space-based system failures. This chapter focuses on monitoring the standard deviations 

of pseudorange correction errors, _pr gndσ , which are one of the key integrity parameters 

broadcast to users. As explained in Chapter 1, aircraft use these _pr gndσ  values to compute 

the Vertical Protection Level (VPL) and the Lateral Protection Level (LPL) as position 

bounds. Since user navigation integrity is quantitatively appraised by the position bounds 

and these bounds are based on _pr gndσ , user integrity relies on these “sigmas”. Because of 

the direct connection between the broadcast _pr gndσ  and user integrity, real-time sigma 

monitoring is necessary to detect anomalies or other events in which the true sigma exceeds 

the broadcast _pr gndσ  during LAAS operations. 

First, we need to define the “threat space” (or integrity risk space) for sigma and mean 

monitoring. Section 3.2 establishes the territory of unexpected anomalies which the sigma-

mean monitoring is targeted to resolve. Note that these anomalies are not large enough to 
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represent immediate hazards; failures resulting in immediate hazards must be detected 

within the time-to-alert by the other monitors described in Chapter 2. Second, Section 3.3 

presents sigma-monitoring methods to detect violations with acceptable residual integrity 

risk. Both the sigma estimation and the Cumulative Sum (CUSUM) methods are useful in 

this respect. These algorithms have been implemented in the IMT and have been tested 

under both nominal and failure conditions. In Section 3.4, we turn our attention to 

monitoring the mean. Real-time monitoring of the mean of pseudorange correction errors is 

needed to detect unforeseen conditions that cause the true mean to become substantially 

non-zero. We will also describe the mean estimation and CUSUM algorithms implemented 

in the IMT and report their test results. The results of both nominal and failure tests 

demonstrate that the sigma-mean monitoring algorithms can detect failures large enough to 

threaten user integrity and are integrated smoothly with the Executive Monitoring (EXM) 

Phase II logic in the IMT [38]. We will then compare the estimation and CUSUM methods 

analytically in Section 3.5. Overall, the estimation method more rapidly detects small 

violations of _pr gndσ , but the “fast-impulse-response” (FIR) CUSUM variant more 

promptly detects significant violations that would pose a larger threat to user integrity.  

3.2 THREAT SPACE 

There are two major assumptions in the calculation of protection level (PL). One is that the 

error distribution of the broadcast pseudorange corrections can be characterized with a 

zero-mean, normally distributed fault-free error model. The other is that the error 

distribution based on the broadcast _pr gndσ  overbounds the “true” error distribution so that 

the computed PL also bounds the true position error. However, these assumptions may not 

hold when man-made or natural system failures are experienced. In particular, a sudden 

change in environmental conditions – as an example, a fire truck enters the protected zone 

of the LGF – may cause multipath errors to increase significantly. In such cases, one 

significant integrity risk is that the mean of the pseudorange correction error distribution 

becomes non-zero. To make matters worse, the standard deviation (sigma) for the 

correction error may grow to exceed the broadcast correction error sigma, _pr gndσ . We 

therefore need real-time mean and sigma monitoring to help insure that the true error 
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distribution is bounded by the zero-mean Gaussian distribution defined by the broadcast 

sigma value.  

3.3 SIGMA MONITORING  

Sigma monitoring plays an important role in ensuring that the possibility of the true sigma 

exceeding the broadcast sigma poses no significant integrity risk to LAAS users. Among 

many proposed algorithms for monitoring sigmas in real-time, the following two 

algorithms – the estimation method and the CUSUM – have been implemented in the 

Stanford IMT. The detailed algorithms are described in Sections 3.3.1 and 3.3.2, 

respectively. Next we analyze the expected performance of the methods theoretically. To 

show that the requirements in the LGF specification are achievable [15], it is important to 

verify that the monitor works as designed. Thus, in Section 3.3.3, we will explain how to 

conduct verification testing under both nominal and failure conditions, as well as show 

some test results. 

3.3.1 SIGMA ESTIMATION METHOD  

The real-time sigma estimation method estimates sample standard deviations of the 

pseudorange correction error from LGF B-values, Bρ , computed in the Multiple Reference 

Consistency Check (MRCC) for each visible satellite. As explained in Chapter 2, since the 

B-values represent pseudorange correction differences across reference receivers – ideally, 

the pseudorange corrections from all reference receivers should be the same for a given 

satellite – the B-values represent pseudorange correction errors that would exist if a given 

reference receiver has failed [30, 31]. 

3.3.1.1 ALGORITHM 

The normalized values of Bρ  (i.e., B-values divided by their theoretical sigmas, Bρ
σ ) are 

the inputs to sigma estimation:   
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where we can compute _ , ( )pr gnd n kσ  using Equation (2-10) at the epoch k, and nM  is the 

number of reference receivers for the nth ranging source. Now that we have the normalized 

B-values, we can compute the estimated sigma, 
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According to the Gaussian error model, the estimated sigma has a chi-square distribution, 

given by:  
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with N(k)-1 degrees of freedom, where N(k) is the number of independent samples used to 

derive the estimate at the epoch k.  Note that the interval between independent B-values is 

expected to be equal to 200 seconds, which is twice as long as the time constant of the 

carrier-smoothing filter.  In other words, the relation between the number of independent 

samples and k is: 

                                                    ( ) /( 200) / 400sN k k T k= × =                                         (3-5) 

Typically the sample interval, sT , is 0.5 seconds. Regardless of sT , it takes at least one hour 

to collect 18 independent B-values.   

53 



  

0.6 0.8 1 1.2 1.4 1.6 1.8
10

10

10

10

10

10

10

10

10

10

10

10

-10

-8

-6

-4

-2

0

-10

-8

-6

-4

-2

0

Normalized Sigma Estimate

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty
 (P

r(σ
es

t
>

X)

Theoretical 
σ Value

Nind = 30

50

100

200

Set threshold at 10-7

upper bound to limit 
fault-free alarms

 
Figure 3.1: Chi-Square Distribution of Sigma Estimate 

 
Figure 3.1 shows the resulting cumulative distributions of the sigma estimates for varying 

numbers of independent samples. As expected, more independent samples provide tighter 

distributions on 
_

ˆ
normalBρ

σ . Based on this chi-square distribution, the detection threshold is 

set to provide an acceptably low fault-free alarm rate (10-7, based on a sub-allocation of the 

specified Category I continuity risk allowed per 15-second interval [15]). The estimated 

sigma is then compared to this time-dependent threshold, which is lowered as more 

independent samples are collected. Any alerts generated from this monitor are passed on to 

the second phase of EXM (EXM-II) for resolution, as described in Section 2.5.2.8. 
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3.3.1.2 THEORETICAL ANALYSIS 
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Figure 3.2: Performance of Sigma Estimation Method and MRCC Test 
 

As introduced in Chapter 2, the existing Multiple Reference Consistency Check (MRCC) 

has some utility to screen IMT B-values on an epoch-by-epoch basis as a sigma monitor, 

but its times-to-alert are much longer than that for sigma estimation. Figure 3.2 compares 

the theoretical performance of the MRCC test to the sigma estimation method. We compute 

the mean number of independent samples prior to detection based on the probability of the 

normalized sigma exceeding thresholds and convert it into detection time. The out-of-

control sigma, 1σ , is a potential sigma violation as the ratio of an actual sigma over a 

theoretical sigma. We can see that the MRCC test requires much more time for detection 

than the sigma estimation method does. This is because the MRCC test checks only the 

latest B-value, while the sigma estimation method accumulates prior information. 

However, the sigma estimation method has a limitation of one hour to detect a sigma ratio 
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greater than 2 because we need at least 18 independent samples (one hour) to estimate the 

sigma in order to rely on this sigma estimation method. As shown in Figure 3.1, the 

thresholds for this method are derived from the chi-square distribution assuming that 

random samples of size N are taken from a population having a normal distribution and that 

the sample variance has a chi-square distribution with N-1 degrees of freedom. Yet, we 

cannot assure that the population (i.e., the error distribution) is a normal distribution. In 

order to reasonably use the chi-square distribution, we need a large N, so that the 

distribution of the sum of N independent variables approaches a normal Gaussian 

distribution by the Central Limit Theorem. In this sense, N=18 represents an assessment of 

the minimum allowable number for this application.   

3.3.2 SIGMA CUMULATIVE SUM METHOD 

Cumulative Sum (CUSUM) monitoring is very simple and is relatively easy to analyze. It 

can be shown to be "optimal" in terms of minimizing time-to-alert under specified failure 

conditions [23]. It is thus commonly used in manufacturing, where the goal is to detect 

poor-quality products with reasonably low missed-detection and false-alarm rates (but 

nowhere near as low as required by the LGF). The CUSUM is theoretically the most 

expeditious tool to detect small but persistent shifts of random process parameters under 

two assumptions [23]: first, the input to the CUSUM can be characterized with a Gaussian 

distribution under nominal conditions and is statistically independent at each epoch; 

second, we know the “true” mean and standard deviation of the parameter of interest under 

nominal conditions.  

3.3.2.1 ALGORITHM 

The basic idea of the CUSUM is to maintain running sums of statistically independent 

quality metrics (see Appendix B.1). A “windowing factor” k is subtracted from the running 

sum at each update.  This factor is chosen to minimize the time-to-alert for a particular 

failure case with a specific out-of-control distribution. If the targeted fault case is a large 

deviation from nominal, k will be large as well to reduce the sensitivity of the CUSUM to 

smaller anomalies. If the targeted fault is closer to nominal performance, k gets smaller, but 
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the price is more fault-free alerts unless the CUSUM threshold, h, is increased to 

compensate. 

As implemented in the IMT, the CUSUM method collects cumulative sums ( ,m nC+ ) of 

squared and normalized B-values ( ) for each receiver channel (m, n) tracking a GPS 

satellite and is updated every 200 seconds. Note that updates must be statistically 

independent in time. If we increment a CUSUM with highly correlated inputs greater than 

the k factor, it will quickly exceed the threshold as similar values are added one after 

another. In this case, each independent epoch, N, corresponds to two carrier-smoothing 

time intervals (see Equation (3-5)). We start the CUSUM at zero or a head-start value of 

 and then increment each epoch by the size of the monitored input, Y, minus the 

windowing factor, k. 
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This desired failure slope, k, is based on the targeted out-of-control sigma, 1σ , that 

represents “failed” performance (the derivation of the k factor is shown in Appendix B.2). 

The sigma in a nominal case is defined as 0σ  and is called the in-control sigma. Since the 

CUSUM is sensitive to only one direction, separate upward “ + ” and downward “ − ” 

CUSUMs are used. However, this is not true if sigma is the input, as decreasing sigma is 

not a concern. As shown in Equation (3-6), if the CUSUM falls below zero on a given 

epoch, it is reset to zero. If the sum is above zero at any update epoch, the CUSUM is 
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compared to a threshold, h, which does not vary with time. If it accumulates to above the 

threshold, an alert is issued. 

While CUSUM behavior is more complicated than sigma estimation, it can be analyzed via 

Markov Chains (MCs) [23]. CUSUMs follow the Markov property, since each CUSUM 

belongs to a finite set of states, and the distribution of the CUSUM state at epoch N 

depends only on its state at the previous epoch N-1 and the distribution of the incrementing 

value at epoch N. In Figure 3.3, we introduce the MC model for CUSUMs. Using a mesh 

of width , we discretize the range of possible /h M∆ = C + values into the states: 

                  (3-9) [ ]
0 0

( 1) , 1,2,...,

1

State C
State i C i i i M

State M C h
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+

+

=

∈ − ∆ ∆ =
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Under either nominal or specified failure conditions, we can derive a "one-step" MC 

transition matrix, P, with elements: 

, Pr( ( 1) | ( ) ) , 0,1,..., 1i jP C N State j C N State i i j M+ += + ∈ ∈ = +             (3-10) 

This transition matrix gives the probability of going from each discretized CUSUM state 

between zero and the threshold h on epoch N to each possible state on epoch N+1.  We can 

determine each element by using the known distribution function of the input, Y, and using 

Simpson’s rule for a more accurate approximation of the transition probabilities (see 

Appendix B.3). A state is called “absorbing” if the system remains in the state once it 

enters there, as shown in the right-bottom corner of Figure 3.3. In other words, when the 

CUSUM exceeds its threshold, it will be restarted.   

From this P, we can compute the steady-state distribution of the MC and thus determine 

how long, on average, it takes for the MC to exceed a given value [23]. If this value is the 

threshold h, this gives the average run length (ARL). We want long runs before false 

alarms occur but short runs after the parameters actually shift to insure low integrity risk. 

The nominal (or in-control) ARL should be sufficiently long in order to result in a low 
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probability of false alarms. In contrast, a short out-of-control ARL is desired to detect 

failures as quickly as possible. 
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Figure 3.3: CUSUM Performance Modeling with Markov Chains 
 

An alternate approach to finding ARLs is to solve the following matrix representation:  

 ( )redP λ− =I 1                                                       (3-11) 

We use the matrix, , which disregards the transitions to and from the last state, M+1. redP

λ is the vector of ARL values with a length of M+1, and each component represents the 

ARL starting in the corresponding states 0,1,…,M. I is the identity matrix, and 1 is a vector 

of length M+1 all of whose elements are 1. The normal solution process is to guess a 

threshold value h, form the nominal MC, and then solve for the in-control ARL, iterating 

on h until the resulting in-control ARL equals the inverse of the desired fault-free alert rate 

[24].   

In addition, multiplying P by itself d times (e.g., computing Pd) gives the transition 

probabilities between epoch N and epoch N+d. This allows us to determine, from the 

failure-state MC, the number of epochs required to exceed the threshold with a given 

missed-detection probability. Thus, we change the MC to represent the failed or "out-of-
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control" state, compute the out-of-control ARL (or mean time to detect), and successively 

multiply the P matrix by itself until it shows a probability of exceeding the threshold that is 

one minus the desired missed-detection probability [23, 24]. 

3.3.2.2 THEORETICAL ANALYSIS 

As a function of 1σ , Figure 3.4 shows the resulting failure-state average run lengths for the 

various CUSUMs: zero-start ( H + = 0) and “head-start” (H+ = h/2 or 3h/4) CUSUMs. The 

“head start” or “Fast Initial Response (FIR)” CUSUM improves its performance if the 

process is already out of control when the CUSUM charting begins. We can see that the 

FIR CUSUMs result in much faster detection because starting the CUSUM part way 

toward the threshold will hasten detection compare to starting it at zero. However, we have 

to pay for this improved initial response somewhere. To maintain the same in-control ARL, 

it may be necessary to increase the threshold, resulting in slightly slower detection if the 

process starts in control.   

Figure 3.5 shows the CUSUM threshold (h), which is set to achieve the desired average run 

length (ARL = 107 independent epochs) under nominal conditions based on the sub-

allocated LGF continuity requirement, and the optimal k given by the target out-of-control 

sigma ( 1σ ). Because the threshold must be very large to achieve an ARL of 107 epochs, the 

ARL under nominal conditions is practically the same for the zero-start (H+ = 0) and ‘fast-

impulse-response’ (FIR; H+ = h/2 or 3h/4) CUSUMs. Thus, the thresholds are almost the 

same, and there is little continuity penalty for using the FIR CUSUM. Under these 

conditions, the CUSUM with the highest H+ that does not give a significant increase in the 

fault-free alarm probability is optimal. 
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Figure 3.4: Failure-State ARLs for Sigma CUSUM Method 
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Figure 3.5: Threshold for Sigma CUSUM Method 
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3.3.3 IMT TEST RESULTS  

Based on analytical results shown in Sections 3.3.1.2 and 3.3.2.2, we have implemented 

and tested the sigma estimation and CUSUM methods in the IMT under both nominal and 

failure conditions. Under nominal conditions, both sigma estimates and CUSUMs stay 

below the relevant detection thresholds for all visible satellites in the IMT dataset (a 4 hour 

dataset collected on March 20, 2000) we have tested.  In failure testing, we induce sigma 

violations by modifying stored IMT receiver packets collected under nominal conditions to 

represent sigma anomalies, and inject the altered measurements back into the IMT in a 

post-processing mode [36]. Both sigma estimation and CUSUM methods reliably detect 

injected sigma violations, although both methods are limited by the 200-second interval 

between independent B-values.  

3.3.3.1 NOMINAL TESTING 

Figure 3.6 shows the results of applying the sigma estimation algorithm to the IMT under 

nominal conditions. The darker (blue) curves show the normalized sigma estimate of a 

satellite (SV 9) on three reference receivers, and the lighter (green) curves show the 

detection thresholds, which get smaller and converge to one over time as the number of 

independent samples increases. As mentioned earlier, monitoring starts after 18 

independent B-values have been collected, which corresponds to one hour with a 200-

second interval between independent updates. The normalized sigma estimates stay well 

below the detection thresholds and converge toward one over time. Thus, the theoretical 

sigma, Bρ
σ (see Equation (3-2)), which depends on satellite elevation angles, appears to be 

a good estimate. Very similar results have been obtained from other satellites in this and 

other IMT datasets. 

The ‘zero-start’ CUSUM and FIR CUSUM variants have also been tested with the same 

IMT data under nominal conditions. The top plot in Figure 3.7 presents the zero-start 

CUSUM result for Satellite 2 and IMT Reference Receiver (RR) 2, and the lower plot 

shows the normalized B-values from Equation (3-1) that fed the CUSUM.  The CUSUM in 

this case is targeted at an out-of-control sigma twice that of the theoretical sigma ( 1σ  = 2), 
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which gives a high windowing factor (k = 1.848). The CUSUM rarely departs far from 

zero due to subtraction of k at each independent B2 update and stays well below the 

threshold (h = 36). 
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Figure 3.6: Sigma Estimation Results from IMT Nominal Data (the thick blue curves 
show the sigma estimates and the light green curves show the detection thresholds) 

 

The FIR CUSUM result of Satellite 7 and IMT Receiver 1 is shown on the top plot of 

Figure 3.8. The CUSUM is initialized at h/2 = 18 and is reset there every time the CUSUM 

falls below zero. Recall that the CUSUM is updated every 200 seconds so that successive 

updates are statistically independent. Under nominal conditions, the CUSUM slowly falls 

toward zero and is then reset, since the normalized B2 is usually below k and k is subtracted 

off at each epoch. The other satellites tracked by this IMT dataset show very similar 

patterns for both the zero-start CUSUM and the FIR CUSUMs. The threshold of 36 is 

never threatened, and no flags are observed at all. 
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Figure 3.7: Zero-Start CUSUM Result from IMT Nominal Data 
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Figure 3.8: FIR CUSUM Result from IMT Nominal Data 
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3.3.3.2 FAILURE TESTING 

In order to conduct failure testing, we inject controlled errors into the IMT and test the 

detection of anomalies with the current sigma monitoring algorithms. We first induce 

sigma violations by inserting errors into stored nominal receiver packets. To roughly 

estimate the nominal error in rawρ , we use pseudorange-minus-carrier measurements with a 

polynomial fit to remove ionosphere divergence (multipath and receiver noise errors are 

left afterward). The estimated error for Channel (m, n) at the epoch k is:  

, , , , , , , , , ,( ) ( ) ( ) ( ) ( )estimate m n raw m n raw m n raw m n raw m nerror k k k Polyfit k kρ φ ρ φ⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦          (3-12)  

where Polyfit finds the coefficients of a polynomial curve that fits the data in a least square 

sense. The sigma of the nominal pseudorange error is approximately increased to L times 

the previous value by adding (L-1) times this error estimate to the nominal measured rawρ :   

                                             (3-13) , , , , , , ,( ) ( ) ( 1) ( )failed raw m n estimate m n raw m nk error k L kρ ρ⎡ ⎤= × − +⎣ ⎦

We then put these modified pseudorange measurements back into the IMT in a “post-

processing” mode (In this mode, the data packets stored in a non-volatile storage device 

can be processed repeatedly [36].)  

Figure 3.9 shows the results of applying the sigma estimation algorithm under failure 

conditions. The pseudorange error on Channel (RR 2, SV 2) is increased to L = 3 times the 

nominal error. The dark (blue) line of the second plot shows the normalized sigma 

estimate, which exceeds the detection threshold through the whole IMT run. For the 

purpose of this test, the Executive Monitoring (EXM) logic is not active for sigma 

monitoring flags, such that the sigma values are estimated over time without a reset. After 

integrating sigma monitor flags into EXM, the flagged measurement will be excluded by 

EXM, and its sigma value will be reset upon recovery of the measurement (after the failure 

goes away). The EXM fault-isolation logic has been tested in prior work [36, 38] and is 

summarized in Chapter 2. Since threshold checks must wait until enough independent 

samples have been collected for the sigma estimates to be reliable, the initial transient is 
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ignored – the first check starts when 18 independent B-values have been collected 

(corresponding to 1 hour) as shown in Figure 3.9 – and sigma estimates for Channel (RR 1, 

SV 2) and Channel (RR 3, SV 2) do not exceed the threshold over time. However, the 

sigma estimates for those channels also converge to values over 1 due to the fact that the B-

values are correlated across the three receivers (recall that the B-values are the difference 

between the correction computed by taking the average of all receivers except the one 

hypothesized to have failed and the correction computed by averaging all receivers 

including the hypothetically failed receiver). 
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Figure 3.9: Sigma Estimation Results from Failure Test (the thick blue curves show the 
sigma estimates and the light green curves show the detection thresholds) 

 

We have performed the failure test of IMT sigma monitoring with various L factors. With L 

= 1.7 on the same Channel (RR 2, SV 2), the sigma estimates remain just under thresholds, 

meaning that no flag was issued before the end of the run. The sigma estimates of the other 

two receivers and this satellite appear essentially nominal.  
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Figure 3.10 shows the result of applying the FIR CUSUM variant to failure-injected IMT 

data for the same Channel (RR 2, SV 2) shown in the previous plot. The CUSUM is tuned 

to be optimal at an out-of-control sigma twice that of the theoretical sigma ( 1σ = 2), which 

gives the windowing factor (k = 1.848). Based on this windowing factor and the ARL, the 

detection threshold (h) is determined to be 36. The FIR CUSUM, initialized at h/2 = 18, 

adds up the increased normalized B-values due to the severe error factor (L = 3). The 

CUSUM crosses the threshold at the third independent epoch – which corresponds to 600 

seconds (10 minutes) – after the fault is injected. This is much faster than the sigma 

estimation method for a newly risen satellite because of the 1-hour delay before sigma-

estimate threshold checks can be made. Recall that the sigma estimation method requires 

this 1-hour delay for applying the Central Limit Theorem to the sample distribution, which 

the CUSUM method does not need. Since EXM is not active in order to demonstrate how 

CUSUM responds with respect to injected failures, Channel (RR 2, SV 2) is not excluded, 

and the CUSUM continually grows regardless of subtraction of the windowing factor at 

each independent B2 update. The flat line on the lower plot indicates that the Multiple 

Reference Consistency Check (MRCC) isolates normalized B-values at this point. In failure 

tests like this one where severe errors are injected, very similar results have been obtained 

from the other satellites tracked by the IMT in this dataset. 

The top plot in Figure 3.11 shows the FIR CUSUM result of the nominal reference receiver 

(RR 3) and the same satellite (SV 2) affected by injected pseudorange errors on Channel 

(RR 2, SV 2). We can see that the FIR CUSUM slightly exceeds the threshold at epoch 21 

due to the B-value correlation among three reference receivers and then decreases towards 

zero. However, when EXM is active in a real operation, we see a different result: Because 

the source of the failure is excluded after 10 minutes as expected from Figure 3.10, the B-

values on Channel (RR 1, SV 2) and Channel (RR 3, SV 2) would be protected from the 

RR 2 error and would return to normal. 
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Figure 3.10: FIR CUSUM Results from IMT Failure Test 
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Figure 3.11: FIR CUSUM Results of Nominal RR from IMT Failure Test 
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We have also conducted the failure test of IMT sigma CUSUM monitoring with various L 

factors. With a moderate error factor of L = 1.7 on the same Channel (RR 2, SV 2), the FIR 

CUSUM exceeds the threshold at the 21st epoch (1.1 hours after error injection). Neither 

CUSUM nor MRCC flags appear on the non-failed receivers (RR 1 and RR 3). In the case 

of L = 1.4, no violation is detected. This fault is too small to be reliably detected during the 

4-hour IMT run used here, as predicted by the theoretical result in Figure 3.4. 

Overall, the CUSUM times-to-detect are much shorter (typically well under one hour) for 

large anomalies than those of the sigma estimation method, which requires waiting one 

hour until 18 independent samples are collected. Moreover, a FIR CUSUM with a “head 

start” at 3h/4 would detect violations quicker than a FIR CUSUM with initialization at h/2 

under the same failure conditions, but it has slightly higher continuity risk under fault-free 

conditions. We have also tested multiple CUSUM monitors tuned to target different values 

of the out-of-control sigma ( 1σ  = 1.7 and 2.3), but these do not improve the time-to-detect 

measurably over a single CUSUM with σ1 = 2. A subset of these failure tests has been 

rerun after integration with the EXM-II logic, and these tests confirmed that the IMT 

properly excludes measurements that triggered CUSUM and/or sigma estimation alerts. 
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3.4 MEAN MONITORING 

As addressed in Section 3.2, real-time mean monitoring is required to detect possible 

protection-level violations due to non-zero means of the true pseudorange-correction errors. 

Similar to sigma monitoring, a common approach is to estimate real-time sample means. In 

Section 3.4.1, we present the mean estimation method. A mean CUSUM algorithm is 

described in Section 3.4.2. Lastly, Section 3.4.3 analyzes two methods with IMT test 

results.  

3.4.1 MEAN ESTIMATION METHOD 

The mean estimation method derives sample means from LGF B-values for each visible 

satellite.  As with the sigma estimation method, normalized B-values from Equation (3-1) 

are the inputs to mean estimation. The estimates are compared to time-dependent 

thresholds, which are set based on the normal distribution of the sample mean, 
_

ˆ
normalBρ

µ . 

The normal distribution as a function of the number of independent measurements, N, is:  

( ) _ , ,

_ , , _ , ,

( )
ˆ ~ ( ) ,

( )
normal m n

normal m n normal m n

B
B B

k
k Normal k

N k
ρ

ρ ρ

σ
µ µ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

                      (3-14) 

Note that using the B-values as inputs to mean monitoring – both for the estimation and 

CUSUM methods – limits the observability of non-zero means to cases where mean 

violations occur on only one reference receiver.  A common-mode failure that causes the 

same non-zero mean to occur on all three receivers is not observable from B-values and 

must be made extremely improbable to meet the LGF integrity allocation to multiple-

receiver failures [51]. 

3.4.2 MEAN CUMULATIVE SUM METHOD 

CUSUM applied to mean monitoring is essentially the same as CUSUM for sigma 

monitoring. Thus, this section mainly explains the differences to be made with the purpose 

of adapting the CUSUM for mean monitoring.    
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3.4.2.1 ALGORITHM 

The input Y  for the mean CUSUM method is the normalized Bρ, whereas the square of the 

normalized Bρ is the input for the sigma CUSUM method: 

, , ,
,

,

( ) ( )
( )

( )
m n B n

m n
B n

B N N
Y N

N
ρ

ρ

ρ µ

σ

−
=                                         (3-15) 

We choose a windowing parameter (k) based on a target out-of-control mean ( 1µ ), which 

represents “failed” performance (see Appendix B for derivation): 

0

2
kµ

1µ µ+ +
=                                                        (3-16) 

where the mean in a nominal case is defined as 0µ , and referred to as the in-control mean. 

Note that, unlike sigma violations, threatening mean violations can be either positive or 

negative; thus two parallel CUSUMs (C + and C − ) are needed for each measurement so 

that violations in either direction will be detected.  

3.4.2.2 THEORETICAL ANALYSIS 

The CUSUM threshold (h) is found by numerical search to match the desired average run 

length (ARL) and k value, which is derived in Equation (3-16) given the target out-of-

control mean ( 1µ ). As a function of 1µ , Figure 3.12 shows the resulting thresholds to 

achieve an ARL of 107 independent epochs for the mean CUSUM monitor on the left and 

the resulting failure-state ARLs for the zero-start (H+ = 0) and FIR (H+ = h/2) CUSUMs on 

the right. The out-of-control ARL for the FIR CUSUM is significantly better than the zero-

start CUSUM; and as with the sigma CUSUM method, it is possible to increase H+ beyond 

h/2 to decrease detection time further with little nominal false alarm penalty. Again, the 

nominal thresholds for these two CUSUMs are essentially the same due to the fact that very 

large thresholds are needed to achieve an ARL of 107 under nominal conditions. 
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Figure 3.12: Thresholds and Failure-State ARLs for Mean CUSUM Monitor 
 

3.4.3 IMT TEST RESULTS 

As with sigma monitoring, both the estimation and CUSUM algorithms are implemented in 

the Stanford IMT for mean monitoring. This section discusses their test results under both 

nominal and failure conditions. 

3.4.3.1 NOMINAL TESTING 

Figure 3.13 shows the results of applying the mean estimation algorithm to the IMT under 

nominal conditions. The mean estimates of a single satellite (SV 2) on all three IMT 

reference receivers are shown here. The dark (blue) curves show the mean estimates of the 

normalized B-values, and the light (green) curves show the detection thresholds. For the 

same reason explained in sigma monitoring, mean monitoring starts after 6 independent B-

values have been collected, or after 20 minutes. Note that the mean estimates stay well 

below the detection thresholds – which get smaller over time as the number of independent 

samples increases – and converge over time toward zero. We restart the mean monitor 
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when there is no B-value (if the GPS satellite sets and its elevation angle drops too low, 

then the receiver loses lock and no B-value is generated).    
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Figure 3.13: Mean Estimation Results from IMT Nominal Data (the thick blue curves 
show the mean estimates and the light green curves show the detection thresholds) 

 

The mean FIR CUSUM has also been tested with the same IMT data shown in the previous 

plot. The top plot in Figure 3.14 presents the FIR CUSUM result for Channel (RR 1, SV 2), 

and the lower plot shows the normalized B-values that fed the CUSUM. The Mean 

CUSUM method is tuned to an out-of-control mean, 1µ  = 0.4, which gives a windowing 

factor, k = 0.2. Based on the desired average run length (ARL) and k value, we determine 

the Mean CUSUM threshold (h = 32.85) using numerical search, since we can consider the 

CUSUM as a Markov Chain as described in Section 3.3.2.1. Again, the CUSUM is updated 

every 200 seconds, which makes each update statistically independent. We initialize the 

CUSUM at h/2 = 16.4 and reset it there every time the CUSUM falls below zero. The 

normalized Bρ is usually below k; thus the CUSUM slowly falls toward zero and is then 
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reset. We see the same patterns on the negative CUSUM, which we skip here. Again, we 

get very similar results for the other satellites included in this IMT dataset, and no flags are 

generated by either the mean estimation or mean CUSUM methods. 

Time (hours)

N
or

m
al

iz
ed

 B
ρ

M
ea

n 
 C

U
SU

M

Time (hours)

N
or

m
al

iz
ed

 B
ρ

M
ea

n 
 C

U
SU

M

Figure 3.14: Mean FIR CUSUM Results from IMT Nominal Data 
 

3.4.3.2 FAILURE TESTING 

Both the mean estimation and mean CUSUM methods have been tested under failure 

conditions to verify the capability of mean monitoring to detect threatening anomalies. In 

order to induce mean violations, we insert controlled bias errors into stored nominal 

receiver packets previously collected through the IMT antennas. The bias added to rawρ  at 

each epoch is pre-selected to be L times the nominal sigma of the error in rawρ . Then we 

put this modified rawρ  back into the IMT in post-processing mode. 
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We have tested IMT mean monitoring with three different non-zero mean values (L = 0.4, 

0.8, and 1.2). Unlike the failure test of sigma monitoring, EXM-II is active with the mean 

monitors such that flagged measurements are removed. The results of the mean estimation 

method are presented in Figure 3.15. The mean of pseudorange errors on Channel (RR 2, 

SV 2) is increased to 0.8 times the nominal error. The lower plot shows that the mean 

estimate of the normalized B-values (the dark blue line) on Channel (RR 2, SV 2) is reset to 

zero at 2.72 hours. This is due to the fact that the mean FIR CUSUM (C = 33.17) exceeded 

its threshold (h = 32.85) at 2.72 hours, as shown in the lower plot of Figure 3.16. Since the 

EXM logic is active, the flagged Channel (RR 2, SV 2) is excluded, and the mean estimate 

and CUSUM (and all other measurements of that channel) are reinitialized at the same 

time. The top plots in Figures 3.15 and 3.16 show that Channel (RR 1, SV 2) is not affected 

much by the injected errors on Channel (RR 2, SV 2); thus the mean estimate and CUSUM 

of Channel (RR 1, SV 2) remain nominal.  Since the bias is in the positive direction, no 

flags are seen in the negative CUSUM. 
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Figure 3.15: Mean Estimation Results from IMT Failure Test with L=0.8 Injected on 
Channel (RR2, SV 2) (the thick blue curves show the mean estimates and the light green 
curves show the detection thresholds) 
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Figure 3.16: Mean FIR CUSUM Results from IMT Failure Test with L=0.8 Injected on 
Channel (RR2, SV 2) 

 

When L is lowered to 0.4 on the same Channel (RR 2, SV 2), no flag is generated by either 

mean estimation or CUSUM methods, which is predicted by the theoretical performance 

analysis in Figure 3.12.  With a severe mean error with L = 1.2 on the same Channel (RR 2, 

SV 2), the positive FIR CUSUM exceeds its threshold at 1.65 hours after the fault was 

injected. Again the FIR CUSUM method gives a faster detection then the mean estimation 

method in this case, and thus the mean estimate is reset to zero at 1.65 hours. Neither 

CUSUM nor mean flags appear on the non-failed receivers (RR 1 and RR 3).    
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3.5 COMPARISON OF ESTIMATION AND CUSUM RESULTS 

So far, we have analyzed and tested two sigma-mean monitoring algorithms: the estimation 

and CUSUM methods. In this section, we compare and summarize the performance of 

these methods.    

Figure 3.17 compares the average times-to-detect for the sigma estimation monitor and 

three CUSUMs based on potential sigma violations as a function of the out-of-control 

sigma (these are combined results from Figures 3.2 and 3.4).  Here we can see that the 

sigma estimation method is best for 1 1.45σ < , but the FIR CUSUM (H+ = h/2) is superior 

for higher sigma values, which is important because larger sigma violations lead to more 

severe integrity threats. As explained earlier, the FIR (head-start) CUSUM achieves faster 

detection by initializing the CUSUM to a non-zero value closer to the threshold every time 

the CUSUM resets while having little continuity penalty (see Section 3.3.2.2). The 

CUSUM has an additional advantage: CUSUM monitoring begins immediately, while 

sigma estimation requires that 18 independent epochs (1 hour) be observed before 

threshold checks can begin (Prior to one hour, the sigma estimate is too unreliable to be 

compared to a chi-square-based threshold). Thus, we can improve sigma monitoring 

further, especially when 1σ  is greater than 2, by adding CUSUM algorithms. Overall, the 

IMT is sufficient to detect any threatening size of sigma violation using sigma estimation 

and sigma CUSUM methods.  
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Figure 3.17: Time-to-Alert for Sigma CUSUM and Sigma Estimation Monitors 

 

As explained earlier, modeling the CUSUM as a Markov chain allows us to determine the 

probability of exceeding the threshold h under failure conditions at any future epoch. Thus 

we can determine how soon the failure is detected with a probability of 0.999, or, 

conversely, a missed-detection probability (PMD) ≤ 0.001. Figure 3.18 compares the times-

to-detect with PMD ≤ 0.001 for three CUSUMs and the mean estimation method based on 

potential non-zero mean violations as a function of the out-of-control mean. The results 

show that FIR CUSUM methods are superior to the mean estimation method in detecting 

any mean violations. Note that the zero-start CUSUM is slightly worse than mean 

estimation, but the h/2 FIR CUSUM is significantly better for all 1µ . This can be further 

improved – with slight loss of continuity under fault-free conditions – by increasing H+ 

above h/2. Both CUSUM and mean estimation methods detect larger mean violations 
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almost simultaneously, though the FIR CUSUM with a “head start” of 3h/4 achieves faster 

detection.  
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Figure 3.18: Time-to-Alert with PMD<0.001 for Mean Estimation and 
Mean CUSUM Monitor Performance 

 

The CUSUM method is often compared to the Exponentially Weighted Moving Average 

(EWMA) method, which may also be called the geometric moving average [23]. The 

EWMA is a method that can be nearly as fast as the CUSUM in detecting step changes. 

Another attraction of this method is that its value at any time gives an immediate estimate 

of the current process mean, something that the CUSUM provides only after measuring the 

slope of the latest segment and adding in the reference value. On the other hand, the 

EWMA is not as fast as the CUSUM in detecting step shifts and is not as good as the 

CUSUM for estimating when the step changes or shifts occurred.  
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3.6 CONCLUSION 

This chapter has summarized the direct estimation algorithms and analyzed the application 

of CUSUM algorithms for mean and sigma monitoring. The Sigma-Mean monitor has been 

successfully implemented in the Stanford LAAS Integrity Monitor Testbed and tested 

under both nominal and failure conditions. We have seen that the test results from both 

estimation and CUSUM methods generally agree with analytical predictions.  

FIR CUSUMs are superior to mean and sigma estimation in most cases, although sigma 

estimation should still be used to detect relatively small sigma violations. Further 

improvement of FIR CUSUM performance is possible with higher “head-start” H + . 

However this causes the fault-free alarm rate to increase. Given this trade-off, the optimum 

head start is yet to be determined, but the h/2 head start implemented in the IMT is a 

reasonable compromise; in fact, the choice / 2H h+ =  is recommended for general use by 

Lucas and Crosier [53]. While CUSUM mean times-to-detect are well under one hour for 

large violations, the time-to-detection with PMD ≤ 0.001 is somewhat longer.   

Since small mean and sigma violations are not detectable, some inflation of the nominal 

sigma (roughly a factor of 1.4 – 1.5) is needed to provide margin for sigma-mean 

monitoring so that anomalies too small to be detected are not hazardous to users. With this 

amount of inflation, the performance achieved by the CUSUMs appears good enough to 

meet the LGF specification requirement [15, 51]. In other words, "non-minimal-risk" 

anomalies – which cause the computed protection levels to be well below reality – can be 

detected within one to three hours with 99.9% reliability, while the mean detection times 

will be typically under one hour. If faster times-to-detect are desired, additional sigma 

inflation could be implemented, but "diminishing returns" applies above an inflation factor 

of 2.0 because the CUSUM time-to-detect does not improve much further. Further analysis 

will come when we investigate sigma inflation in Chapter 4. 

The Sigma-Mean monitor has been smoothly integrated with the EXM logic within the 

Stanford IMT and clearly accomplishes removal of single-channel anomalies, allowing 

other nominal measurements to continue to be used. Overall, this monitor is sufficient to 
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detect anomalies that cause the true sigma to exceed the broadcast sigma or the true mean 

to become non-zero during LAAS operations; thus, it helps to provide navigation integrity 

to airborne users.  
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Chapter 4 

Sigma Inflation  

4.1 INTRODUCTION 

In Chapter 3, the Sigma-Mean monitor was developed to guarantee the safety of the 

broadcast _pr gndσ  when measurements are corrupted by unexpected anomalies. However, 

monitoring alone is not sufficient to ensure that a zero-mean Gaussian distribution with the 

broadcast sigma “overbounds” the true (unknown) error distribution. Even in nominal 

conditions, the true sigma may exceed the broadcast _pr gndσ  due to the uncertainty of the 

true error distribution. The main sources of this uncertainty are mean and sigma estimation 

error during site installation and non-stationary error distributions caused by environmental 

changes that affect multipath. In order to deal with this statistical uncertainty, we need to 

broadcast an inflated _pr gndσ  such that the broadcast distribution overbounds all reasonable 

error distributions out to the probabilities assumed in the computation of the protection 

levels (PLs).  

A great deal of prior work has been done regarding sigma inflation that accounts for each 

individual cause of the uncertainty [1, 18]. However, an inflation factor that copes with all 

of these uncertainties at once has not yet been investigated. This chapter will introduce a 

comprehensive method of determining the inflation factor to insure that the zero-mean 
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Gaussian distribution implied by the broadcast sigma values overbounds the tails of the true 

distribution (which is possibly non-Gaussian and non-zero-mean). We will continue by 

deriving the inflation factor for the broadcast _pr gndσ  with this method. In the last section 

we will evaluate the induced inflation factor by computing PLs and quantitatively appraise 

LAAS navigation integrity with these position bounds.  

4.2 SIGMA INFLATION FACTOR DETERMINATION METHOD   

As addressed earlier, sigma inflation is needed to provide the safety margin on protection 

bounds, since the error distribution of the differentially corrected pseudorange 

measurements is subject to the following sources of uncertainty: finite sample size, process 

mixing, and the limitation of the sigma monitor. In Section 4.2.1, we consider the effect of 

sigma estimation error due to the limited number of samples. As mentioned in Chapter 1, a 

basic assumption in PL computing is that correction errors are zero-mean Gaussian 

distributed. However, in practice, the tails of the true error distribution may not be exactly 

Gaussian due to time-varying environmental conditions. In addition, even though we 

assume a stationary condition, mixing of Gaussian errors with different sigmas may cause 

the fattened tails. In Section 4.2.2, we deal with mixing of time-varying errors – such as 

ground reflection multipath – and mixing of different Gaussian distributions. A buffer 

parameter is derived for the non-Gaussian tails. Then we review the performance of sigma 

monitoring and provide a factor to overcome its limitations in Section 4.2.3. Lastly we 

present a way to combine all factors and determine the inflation factor for the broadcast 

_pr gndσ . 

4.2.1 FINITE SAMPLE SIZE 

When we determine the broadcast sigma of the ground facility error, we account for 

specific environmental conditions – antenna siting, gain patterns, and system configuration 

– of each LGF site. Even though these conditions are factored very accurately into sigma 

estimation and the environment is assumed to be stationary, the estimated sigma may have 

a statistical noise due to finite sample size. Previous research on this subject has been done 

by Pervan and Sayim in [1]. They investigated the sensitivity of integrity risk to statistical 
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uncertainties to which the correction error standard deviation and error correlation between 

multiple reference receivers are susceptible. Based on their work, the minimum acceptable 

buffer parameter for the broadcast _pr gndσ  is approximately 1.2 (we skip the details in this 

thesis).    

4.2.2 PROCESS MIXING 

As noted above, the true LGF error distribution may change with time, as the environment 

condition varies. In addition, mixing of the time-varying errors – ground reflection 

multipath and systematic receiver/antenna errors – makes the characteristics of the error 

distribution to be complex. Even if stationary Gaussian error distributions are assumed, 

some degree of the mixture problem is expected. The standard deviation of the true error 

distribution varies as a function of the elevation angle of each satellite. If pseudorange 

correction errors are normalized by the theoretical sigma which depends on the ranging 

source elevation angle but which is not perfect, this normalization cause to mix Gaussian 

distributions with different sigmas. The process mixing may result in non-Gaussian tails.  

Figure 4.1 shows the distribution of the LGF B-values collected by the Stanford IMT for a 

period of five hours. Recall that the B-values represent the correction errors of pseudorange 

measurements. Here we can clearly see that the correction error distribution (the dotted 

curve) has non-Gaussian tails (note that the scale of its vertical axis is logarithmic). Thus 

we should inflate the nominal 1σ Gaussian distribution – shown as the dashed curve – to 

overbound the error distribution with non-Gaussian tails. However, this error distribution 

modeled with experimental data is not sufficient to represent the true error distribution. In 

other words, the reliable estimation of the tail probabilities is impossible because their 

small magnitude (on the order of 10-10) requires a huge sample size (greater than 1010) that 

cannot be collected in a realistic time frame. Hence the limited number of samples makes a 

theoretical model necessary for estimating the error distribution. We use the following 

Gaussian-Mixture distribution as the theoretical model  

0 0 1 1

0 1 0 1

(1 ) ( , ) ( , );
0.15, 0, 0.75, 1.82

GMf N Nε µ σ ε µ σ
ε µ µ σ σ

= − ∗ + ∗
= = = = =

                             (4-1) 
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where ( , )N µ σ  is a normal distribution with mean, µ, and sigma, σ. Thus this function is 

the weighted sum of two normal distributions with one nominal sigma and one relatively 

large sigma. This model (the solid green curve) shown in Figure 4.1 well characterizes the 

actual distribution of Gaussian-core and non-Gaussian tails. Again, the nominal sigma 

should be inflated in order to cover the non-Gaussian tails of the actual distribution with a 

normal distribution. For CAT I approaches, the tails need to be overbounded so that the 

probability of the error exceeding protection levels is less than or equal to 96 10−×  under 

the hypothesis of fault-free conditions (H0); for CAT II/III approaches the required 

probability is . To meet the integrity requirement, we need to inflate the sigma by 

a factor of 2.32 or greater. We can see that the 2.32

101.2 10−×

σ Gaussian distribution (the solid red 

curve) well overbounds the theoretical model (the solid green curve). As a result the 

minimum tolerable inflation factor is 2.32. Note that test statistics highly depend on system 

configurations; thus this analysis should be conducted at each LGF site.    

 
Figure 4.1: Probability Density Function of the Normalized B-values 
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4.2.3 LIMITATION OF SIGMA MONITORS 

The possibility of sigma violations exists because of not only the nominal sigma 

uncertainty but also unexpected anomalies. As explained in Chapter 3, the sigma monitor is 

designed to provide necessary integrity in the event that the true sigma significantly 

exceeds the broadcast sigma [50]. However, the current sigma monitor has a limitation on 

mean time-to-detect which must be overcome with an additional inflation factor. First we 

derive the additional parameter assuming that the error distribution is Gaussian in Section 

4.2.3.1. Second we assume a specific non-Gaussian error distribution and then derive the 

buffering parameter in Section 4.2.3.2.   

4.2.3.1 GAUSSIAN ASSUMPTION ON ERROR MODEL 

 
Figure 4.2: Failure-State Average Run Lengths for CUSUM 
and Sigma Estimation Monitors 
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Let us review the performance of the sigma monitor implemented in the IMT. Figure 4.2 

shows the Average Run Lengths (ARL) for different sigma monitoring methods to detect 

certain failure-states – out-of-control sigmas ( 1σ ) – given the condition that the error 

distribution is Gaussian. We now turn our attention to the LGF requirements specified in 

[15] and reexamine the capability of this monitor. Based on the time-to-alert requirements, 

if the actual integrity risk is greater than the total allocation but the resulting risk increase is 

minimal (i.e., is no greater than one order of magnitude), it is defined as “minimal-risk-

increase.” Since degraded performance due to such sigma failure is minimal, we need not 

detect it immediately but instead within a day. Note that if sigma failure causes “non-

minimal-risk-increase” (i.e., the integrity risk is increased by more than one order of 

magnitude from the total allocation), it should be detected within an hour. The limitation of 

the sigma monitor is now defined: Assuming that we can continuously collect data in one 

satellite pass for five hours on average, the minimum out-of-control sigma detectable 

within a day is 1.41. Since out-of-control sigmas ( 1σ ) greater than the inflation factor 

( ) are categorized as “minimal-risk-increase” (i.e. the actual sigma exceeds the 

broadcast sigma), by definition: 

inflationf

1 ;Actual Broadcast
inflation

Theoretical Theoretical

fσ σσ
σ

=
σ

=                                      (4-2) 

if the inflation factor is less than 1.41, sigma violations with minimal risk – between the 

inflation factor and 1.41 – cannot be alarmed within a day. Accordingly, in order to meet 

the LGF requirements, the inflation factor should be at least 1.41. 

4.2.3.2 NON-GAUSSIAN ASSUMPTION ON ERROR MODEL 

As we pointed out in Section 4.2.2, the error distribution may not be precisely Gaussian. 

Thus, we also need to consider the restriction of the sigma monitor given the assumption 

that the errors are non-Gaussian distributed. Results corresponding to Figure 4.2 are 

generated using the non-Gaussain model described in Equation (4-1). This model is an 

example to represent the actual distribution. From this distribution we collect 90 

independent samples to compute a sample standard deviation. Note that 90 is the number of 
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independent samples that we can collect continuously in five hours, since 18 independent 

samples correspond to one hour. Repeating this process randomly, we then generate 

100000 sample sigmas. As a result, the probability density function (PDF) of sample sigma 

is shown in Figure 4.3.  Based on the specified fault-free alarm rate, 10-7 (a sub-allocation 

of Category I continuity risk allowed per 15-second interval [15]), the minimum out-of-

control sigma detectable within five hours is now 1.58. Consequently, to protect this 

particular non-Gaussian error model, the inflation factor should be at least 1.58 for the 

same reason explained in Section 4.2.3.1.       

Figure 4.3: Probability Density Function of Sample Standard Deviation 
 

4.2.4 TOTAL INFLATION FACTOR 

So far we have investigated three sources of sigma uncertainty and derived a buffering 

parameter for each source. The final step is to determine the total inflation factor for the 

broadcast _pr gndσ  considering all conditions discussed in Sections 4.2.1,4.2.2 and 4.2.3:  
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• The theoretical (or pre-estimated) sigma is to be inflated by a factor of 1.2 to 

account for finite sample size (Section 4.2.1). 

• The buffering parameter to overbound the tails of the non-Gaussian distribution 

derived from IMT data is 2.32 (Section 4.2.2). 

• The inflation factor should be at least 1.58 to overcome limitations of the existing 

sigma monitor (Section 4.2.3). 

In Figure 4.4, we present the inflation factor determination method for the broadcast 

_pr gndσ . Since the conditions described in Sections 4.2.1 and 4.2.2 are independent, we 

multiply the two parameters (1.2 and 2.32). The resulting factor (2.78) already exceeds 

what is required by the sigma monitor (which is 1.58) satisfying the third condition. Thus, 

the total inflation factor is 2.78.   

1.2

1. To cover finite sample 
size limitation

2. To cover uncertainty 
due to mixing of time-
varying errors

3. To insure sigma monitors 
can detect anomalies at 
allocated risk or above 

Gaussian Dist. :

Non Gaussian Dist.:

2.32

1.41

1.58

2.78

max

max2.78

1.58

Final

 
Figure 4.4: Inflation Factor Determination Method for Broadcast _pr gndσ  
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4.3 PERFORMANCE ANALYSIS 

For a safety-critical system like LAAS whose main purpose is to provide integrity to users, 

a key requirement is the capability to provide a hard bound on the position error. For this 

reason, the fundamental requirement on sigma inflation is that the computed error bounds 

with the inflated sigma are really bounding the possible position error. In this section, we 

compute protection levels by applying the total inflation factor determined in Section 4.2.4 

to the broadcast _pr gndσ  and evaluate the performance of the LGF with sigma inflation.  

4.3.1 STANFORD LAAS PERFORMANCE TEST-BED 

In order to test the ability to meet the LAAS precision approach requirements, we have 

installed a static “pseudo-user” receiver in addition to the existing Stanford IMT 

architecture (see Chapter 2). In Figure 4.5 we show the configuration of the three IMT 

antennas on the Stanford HEPL laboratory rooftop as well as the “pseudo-user” 

antenna/receiver on top of the nearby parking structure. The NovAtel Pinwheel antenna 

(“pseudo-user” antenna) and the center of the IMT are approximately 230 meters apart. The 

NovAtel OEM-4 receiver connected to the “pseudo-user” antenna collects pseudorange 

measurements, carrier-phase measurements, and navigation messages of GPS satellites 

(“pseudo-user” and IMT receivers are set up to collect measurements simultaneously). 

These measurements are post-processed in a single computer where the processing 

algorithms have been developed and tested.   
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Figure 4.5: Stanford LAAS Performance Test-bed Hardware Configuration 

 

4.3.2 PERFORMANCE TEST RESULTS 

In order to evaluate IMT system performance with sigma inflation, we first compute 

position errors, which are obtained by comparing the surveyed location of the pseudo-

user’s antenna to position solutions. Pseudo-user position solutions are computed in the 

manner required of the LAAS airborne receivers to mirror LAAS aircraft operations to the 

degree possible (the detailed algorithm is specified in the RTCA LAAS Minimum 

Operational Performance Standards (MOPS)[14] and in Section 5.2.2). In this analysis, 

Accuracy Designator C (AD-C) is applied to the pseudorange error model [54], as the 

upcoming hardware installation for CAT I will most likely be similar to those of CAT 

II/III. Second, we compute protection levels, through which the final quantitative appraisal 

of the navigation performance is realized. The Vertical Protection Level (VPL) under the 

hypothesis of fault-free conditions (H0) is (from Equations (1-11), (1-12) and (1-13)): 

( )22 2 2 2
0 , , , ,

1

N

H ffmd vertical n air n tropo n iono n inflation pr gnd n
n

VPL K S fσ σ σ σ
=

_ ,
⎡ ⎤= ⋅ + + + ⋅⎢ ⎥⎣ ⎦∑         (4-3) 
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where  is the inflation factor and Kinflationf ffmd is a specified multiplier that determines the 

probability of fault-free missed detections [14]. Again, since the vertical direction is the 

most stringent one and errors in this direction are generally worse than those in the lateral 

direction, we only pay attention to the vertical direction.   

Figure 4.6 shows the results of applying sigma inflation to the broadcast _pr gndσ . The 

pseudo-user’s Vertical Position Errors (VPEs), the Vertical Protection Levels (VPLs), and 

the Vertical Alert Limit (VAL) for CAT I are plotted in this figure. First, we can see that 

the VPEs are well within  meters; thus the accuracy requirements for LAAS precision 

approaches are met (see Table 2.1). The next question is how well system integrity is 

guaranteed; i.e. whether the computed error bounds are really bounding the position errors. 

The results show that the VPEs are well below the VPLs without sigma inflation 

( ). However, this is not enough for us to be confident that the error bounds are 

always an upper bound of the position errors; note that the requirement is 

. Thus the VPLs with sigma inflation ( ) provide 

better safety margin on integrity than those without sigma inflation. Lastly, the VPLs never 

exceed a VAL of 10 meters. As a consequence, the continuity and availability requirements 

are also met for CAT I precision approaches in this period of time.  

2±

1inflationf =

( ) 7Prob 10error PL −> ≤ 2.78inflationf =
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Figure 4.6: Stanford LAAS Pseudo-User Performance 

 

4.4 CONCLUSION 

This chapter provides a comprehensive method to determine the sigma inflation factor. The 

derived inflation factor includes partial parameters for all sources of the sigma uncertainty 

and for the limitation of the current sigma monitor. Pseudo-user performance test has 

demonstrated that navigation integrity can be improved by applying sigma inflation.   
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Chapter 5 

Position Domain Monitoring  

5.1 INTRODUCTION 

Chapters 3 and 4 found a way to insure that the zero-mean Gaussian distribution based on 

the broadcast _pr gndσ  overbounds the true distribution, which may be non-Gaussian and 

non-zero-mean. This is done by broadcasting an inflated _pr gndσ  and detecting violations of 

the resulting overbound using the sigma-mean monitor. However, the LAAS sigma 

overbounding issue persists because high levels of sigma inflation cannot be tolerated for 

CAT II/III precision approaches. In Figure 5.1 we review the performance of the Stanford 

LGF prototype shown in Chapter 4. Here we can see that the VPLs with sigma inflation are 

too conservative to meet CAT II/III requirements (when the VPLs exceed the VAL, LAAS 

is not available). While the system promises to support CAT I operations, significant 

technical challenges are encountered in supporting CAT II/III operations on account of the 

tightened VAL of 5.3 meters and similarly high availability requirements (0.999 or higher, 

depending on the airport). For this reason, we introduce Position Domain Monitoring 

(PDM) and investigate how PDM may be used to improve system availability by reducing 

the inflation factor for the standard deviation of pseudorange correction errors.  
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Figure 5.1: Stanford LAAS Pseudo-User Performance 

  

This chapter starts by introducing the basic function of PDM and a proposed algorithm in 

Section 5.2. Once we have gotten position solutions from this algorithm, we discuss the 

characteristics of error distributions in the position domain. Then we demonstrate that PDM 

supports a smaller _pr gndσ  inflation factor needed for CAT II/III operations in Section 5.3. 

For this purpose the inflation factor determination method (developed in Chapter 4) is used 

to derive the new inflation factor in the position domain. We will continue by field-testing 

the improved performance of the Stanford IMT in Section 5.4, demonstrating that PDM 

helps meet the availability requirement of CAT II/III once it is integrated in the LGF 

architecture. Furthermore, in Section 5.5 we examine different methodologies to enhance 

system integrity and continuity using PDM outputs. 
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5.2 POSITION DOMAIN MONITORING (PDM) 

Position domain monitoring (PDM) was introduced in the mid-1990 by Markin and 

Shively in [20]. PDM performs the integrity check by monitoring position solutions 

computed based on LGF differential corrections. This method was considered an 

alternative to range domain monitoring (RDM), which monitors each pseudorange 

measurement individually and approves each satellite for the aircraft to use. Relying on 

only PDM turned out to be impractical due to limited data-link capacity and flexibility 

because it was thought that PDM required generating every possible combination of 

satellites that may be used to compute the position solution and approving usable sets on a 

combination-by-combination basis. Thus, the current LGF is based on RDM, as shown in 

Chapter 2.  

Given that an enhanced LGF architecture is required to meet CAT II/III requirements, the 

PDM concept has been reconsidered in [21, 55]. In this concept, PDM collects 

measurements with a remote receiver and derives position solutions by applying LGF 

corrections to all visible satellites approved by the LGF and all possible subsets of 

satellites. The position solutions are then compared to the known (surveyed) location of the 

PDM antenna. By performing the integrity check directly in the position domain, this 

method avoids the conservatism that prevails in the range domain (RDM requires a 

transformation from an estimate of the pseudorange correction errors to a bound on user 

position error, and the resulting position error estimate may be conservative). Thus, an 

inflation factor for the broadcast _pr gndσ  can be reduced in the position domain, as will be 

discussed further in Section 5.3. Consequently, the use of the position domain concept will 

provide an availability advantage on the LAAS.    

PDM could play an important role in providing extra integrity. It would augment sigma-

mean monitoring (discussed in Chapter 3) and help detect when the true sigma exceeds the 

broadcast sigma. The possibility of sigma violation exists because of sigma anomalies 

(caused by man-made or natural system failures) and because of the limited number of 

independent samples (limited by the 200 second interval between independent B-values) 
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[50]. Thus, sigma monitoring cannot always detect when the broadcast _pr gndσ  fails to 

bound the true sigma. Moreover B-values are sensitive only to multipath errors, while 

position errors are sensitive to all error sources, including residual tropospheric and 

ionospheric errors, and ephemeris errors. Therefore, this position-domain approach can 

improve upon the existing range-domain sigma monitoring.  

In this section, we describe the Stanford PDM architecture and present the PDM algorithm 

to compute position error estimates and perform a safety check in the position domain. We 

also explain how to derive detection thresholds for PDM and show test results under both 

nominal and failure conditions.  

5.2.1 PDM HARDWARE CONFIGURATION 

A prototype of PDM has been implemented as a LAAS “pseudo-user” receiver 

augmentation to the Stanford IMT shown in Chapter 2. Figure 5.2 gives the configuration 

of the three IMT antennas on the Stanford HEPL laboratory rooftop and a PDM antenna on 

the Stanford Durand building. We use the existing Stanford WAAS Reference Station 

antenna for the PDM antenna, which is separated by approximately 145 meters from the 

IMT antennas. The NovAtel OEM-4 receiver connected to the PDM antenna collects 

pseudorange measurements, carrier-phase measurements, and navigation messages. The 

measurements are processed in a single computer where the PDM algorithm is developed 

and tested. To compare performance, one post-processing run is conducted with existing 

IMT measurements only, and a second run is executed using the combined IMT-PDM 

algorithms. 
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Figure 5.2: IMT-PDM Hardware Configuration 

 

5.2.2 PDM ALGORITHM 

PDM position solutions are computed using the approach required of LAAS airborne 

receivers – as specified in the LAAS Minimum Operational Performance Standards 

(MOPS) [14] – to emulate LAAS aircraft conditions as much as possible (the same method 

has been used to obtain pseudo-user position estimates and evaluate performance in 

Chapter 4). In order to reduce errors in raw pseudorange measurements, we first apply the 

following carrier-smoothing filter in the same manner executed in the IMT [14, 15, 31, 56]. 

The smoothed pseudorange for satellite n at epoch k is:  

( ), ,
11( ) ( ) ( 1) ( ) ( 1) ; 1, 2,...,s

s n n s n n n
s s

Nk k k k k n
N N

ρ ρ ρ φ φ N−
= + − + − − =    (5-1) 
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where φ  is the carrier phase measurement, and sN  is equal to 200 since this filter uses a 

time constant, sτ , of 100 seconds and a sampling interval, sT , of 0.5 seconds. 

100 0.5 200s s sN Tτ= = =                                                  (5-2) 

Next we apply the set of LGF differential corrections to these carrier-smoothed code 

measurements [14]. The corrected pseudorange measurements are: 

, , , ,( ) ( ) ( 1) ( ) ( ) ( )
corrc n s n corr n n s nk k k R k T TC k c tρ kρ ρ ρ= − − − ⋅ + + ⋅ ∆                        (5-3) 

where corrρ  and
corr

Rρ are the pseudorange correction and the range rate correction from the 

IMT-approved message (see Equations (2-7) and (2-20)). TC is the tropospheric correction 

and is small enough to be neglected in this application (see Appendix A). The parameter c  

represents the vacuum speed of light, and nt∆  is the satellite clock correction computed 

using clock parameters in Sub-frame 1 of the GPS navigation message. Based on this set of 

differentially corrected measurements, we compute three-dimensional positions using a 

linearized, weighted least-squares estimation method. The linearized measurement model is 

(see Section 1.4):  

                                           , 0,

( )
( )

( ) ( )
( )
( )

c n n

x k
y k

k k G
z k

y b k

x

δ
δ

ρ ρ ε
δ
δ

⎡ ⎤
⎢ ⎥
⎢ ⎥− = +
⎢ ⎥
⎢ ⎥∆
⎣ ⎦

∆

   (5-4) 

where  is the four dimensional position/clock vector, x∆ y∆  is an N dimensional vector 

containing the corrected pseudorange measurements minus the expected ranging values 

based on the location of the PDM antenna and satellites, ε  is an N dimensional vector 

containing the errors in the corrected measurements (y), and G is the observation matrix 

consisting of N rows of line-of-sight vectors from each satellite to the PDM antenna, 

augmented by a “1” for the clock. Thus, the nth row of G corresponds to the nth satellite in 
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view and can be written in terms of the azimuth angle ( ) and the elevation angle ( ). 

This matrix is unitless and is defined as: 

nAz nEl

1 1 1 1 1

2 2 2 2 2

cos ( ) cos ( ) cos ( )sin ( ) sin ( ) 1
cos ( ) cos ( ) cos ( )sin ( ) sin ( ) 1

cos ( )cos ( ) cos ( )sin ( ) sin ( ) 1N N N N N

El k Az k El k Az k El k
El k Az k El k Az k El k

G

El k Az k El k Az k El k

− − −⎡ ⎤
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

       (5-5) 

We find the weighted least-squares solutions for the estimate of the states by: 

                                       ( ) 1
ˆ ; T Tx S y S G WG G W

−
∆ = ⋅ ∆ ≡  (5-6) 

where S is the weighted least square projection matrix, and the inverse of the least-squares 

weighting matrix is:  

 

2
,1

2
,21

2
,

0 0
0 0

0
0 0 0

PR

PR

PR N

W

σ
σ

σ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                           (5-7)         

Here, ,PR nσ  is the fault-free error model associated with satellite n:  

             2 2 2 2 2
, , , , _ ,PR n air n tropo n iono n pr gnd nσ σ σ σ σ= + + +                                    (5-8)            

We describe the details of the first three terms in Appendix A (or see Section 1.4). For the 

fourth term, _pr gndσ , we apply the Ground Accuracy Designator C (GAD-C) model 

explained in Section 2.4.2. Although the purpose of PDM is to imitate aircraft operations, 

the PDM is still a ground-based system with ground-reflection multipath. Thus, we need to 

replace the airborne error sigma, airσ , with the ground facility error sigma, _pr gndσ . 

Comparing the position solutions ( ) to the known location of the PDM antenna (x̂ surveyedx ), 

we have:  
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ˆ ˆ,VPE surveyed HPE surveyedvertical horizontal
ENU x x ENU x xχ χ⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦          (5-9) 

Here, VPEχ  is the vertical component and HPEχ  is the horizontal component of the position 

error in an east, north, up (ENU) coordinate system. These position errors are compared to 

a fixed threshold which is derived in the next section. Finally, if the position error exceeds 

the detection threshold, a flag is issued and sent to Executive Monitoring (EXM), which 

excludes the underlying faults.   

Integrity checks with satellite outages are needed to anticipate cases where the aircraft is 

not tracking all satellites approved by the LGF. Thus, we compute position solutions from 

the LGF corrections using not only all visible satellites approved by the LGF but also all 

reasonable subsets of these satellites to which an aircraft may be limited. These subsets 

include the “all approved SVs in view” case (approved by the LGF prior to the PDM taking 

action), all “one-SV-out” combinations, and all “two-SV-out” combinations. Again PDM 

compares the position errors of each subset to a fixed threshold, and an alarm is issued if 

the position error exceeds the threshold. If all alerts include a single common satellite, that 

satellite can be excluded (by EXM) from the broadcast correction. If all alerts include two 

common satellites, it is acceptable for EXM to exclude one of them and recheck on the next 

epoch provided that the LGF time-to-alert requirement is still met. If neither one nor two 

common satellites exist, the system must exclude all corrections and generate empty Type 

1 messages. This should be rare because the majority of failures will be limited to 

individual ranging sources.   

5.2.3 THRESHOLD DERIVATION 

The position-domain monitor is designed to detect anomalous behavior in a satellite or 

reference receiver that is too small to be detected by the existing LGF range-domain 

monitors. The key in monitoring is to determine what anomalous behavior of the system 

would result in an integrity or safety risk. For this reason, thresholds for the monitors are 

derived and verified using real data.  A threshold may be determined theoretically. 

However, in most cases, it is hard to find a theoretical model for an actual distribution that 

is accurate beyond two to three standard deviations. In addition, the theoretical bounds are 
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not reliable since test statistics are highly dependent on a system configuration such as 

antenna siting, gain pattern, and operation environment. Thus we calculate the threshold 

from a Gaussian distribution that overbounds the two tails of the apparent – observed from 

data – distribution. This overbounding procedure is applied to most of the integrity monitor 

test statistics [38]. 

Here we determine the threshold based on empirical data. The vertical position 

errors, _VPE normalχ , are normalized by their theoretical sigma, VerticalPositionErrorσ , which is 

projected into the position domain. They are used as inputs for deriving the threshold.  

         2 2
_ , ,

1
;

N
VPE

VPE normal VerticalPositionError vertical n PR n
nVerticalPositionError

Sχχ σ
σ =

= = ∑ σ           (5-10)        

Based on the distribution of _VPE normalχ , a sigma inflation factor is determined so that a 

zero-mean Gaussian distribution overbounds the apparent tails of the measured distribution. 

In order to limit fault-free alarms, the PDM threshold is set as six times its theoretical 

standard deviation based on the continuity sub-allocation [15], that is, 

 _ 6PDM VPE normal VPE normalThreshold f _µ σ≡ ± ⋅ ⋅                                     (5-11) 

where _VPE normalµ  and _VPE normalσ  are the sample mean and standard deviation of the test 

statistics, respectively, and f is the sigma inflation factor.  

The threshold for the IMT-PDM is established based on real data collected on 25 

November 2002. Figures 5.3 and 5.4 show the probability density function and the 

cumulative distribution function of the normalized vertical position errors on a log scale. 

For this nominal IMT-PDM dataset, the required sigma inflation factor is 1.56, and the 

resulting upper and lower thresholds are ± 6.2531.  
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           Figure 5.3: Probability Density Function of Normalized Vertical Position Errors 
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      Figure 5.4: Cumulative Distribution Function of Normalized Vertical Position Errors 
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5.2.4 NOMINAL TESTING 

The position domain monitor has been tested for the cases of “all SVs in view”, all “one-

out” SV combinations, and all “two-out” SV combinations under nominal conditions. For 

these tests, we applied the Ground Accuracy Designator B (GAD-B) model for _pr gndσ . 

Figure 5.5 shows the results of applying the PDM algorithm with “all SVs in view” of the 

IMT. The thick curve displays the normalized Vertical Position Errors (VPE), which stay 

well between the fixed detection thresholds of ± 6.2531. Thus, the theoretical sigmas 

appear to be good estimates.  
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Figure 5.5: Normalized Vertical Position Errors and Detection Thresholds from 
IMT-PDM Nominal Data (All Approved SVs in View) 
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Figure 5.6: Normalized Vertical Position Errors and Detection Thresholds from 
IMT-PDM Nominal Data (all “one-SV-out” combinations) 
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Figure 5.7: Normalized Vertical Position Errors and Detection Thresholds from 
IMT-PDM Nominal Data (“two-SV-out” combinations) 
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Figures 5.6 and 5.7 show the results obtained from all “one-out” and “two-out” SV 

combinations in this IMT-PDM dataset. For “one-out” cases, the number of combinations 

is N, where N is the number of measurements or satellites approved by the IMT. Since the 

maximum number of measurements is eight in this dataset, the resulting number of cases is 

eight. For “two-out” cases, the number of combinations is 28, or N(N-1)/2 permutations,  

where the maximum N is eight. Similar to the result of the “all SVs in view” case the 

normalized VPEs stay well between the fixed detection thresholds for all combinations 

over time. The results from only four combinations out of eight and 28 permutations are 

presented and very similar results have been achieved from the remaining combinations. 

5.2.5 FAILURE TESTING 

PDM has been tested under failure conditions to verify that it can detect threatening 

anomalies. In failure testing, controlled errors are injected into IMT datasets to test the 

detection of anomalies. In order to induce sigma violations, we first insert errors into stored 

nominal receiver packets previously collected by the IMT antennas. We have presented the 

detailed method to modify nominal pseudorange measurements in Section 3.3.3.2 (see 

Equations (3-12) and (3-13)). The sigma of the nominal pseudorange error is 

approximately increased to L times the previous value. Then we put these modified values 

back into the IMT in a post-processing mode. Lastly, we apply the erroneous pseudorange 

corrections generated with failure-injected IMT datasets to the PDM algorithms.   
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    Figure 5.8: IMT-PDM Sigma Failure Test with L=3 (All Approved SVs in view) 
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   Figure 5.9: IMT-PDM Sigma Failure Test with L=8 (All Approved SVs in view) 
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Here we show the results of applying the PDM algorithms under failure conditions. The 

rawρ  errors on a single satellite (SV 4) and all three reference receivers are increased to L = 

3 times the nominal error at every epoch. The dotted line in Figure 5.8 shows the 

normalized vertical position errors, which exceed the detection threshold at 92.5 minutes 

after the PDM starts its run.  The position error monitor may not detect moderate sigma 

violations faster than the sigma monitor, which normally flags in one hour (when 18 

independent B-values have been collected) [50]. However, when the anomalies are not 

immediately hazardous, the position error monitor is a better discriminator than the sigma 

monitor from the airborne user’s point of view; it has the ability to separate anomalies 

which can be tolerated from those which must be alerted to protect LAAS user integrity.  

In addition to the sigma failure test as described above, another failure test has been done 

with an increased error factor of L = 8, for which an immediate alarm is required. Errors 

with L = 8 are injected on all three receivers and SV 4, which may not be detected by the 

Multiple Receiver Consistency check (MRCC) in the IMT, since B-values represent 

pseudorange correction differences across reference receivers. The normalized VPEs – 

shown in Figure 5.9 as the dotted line – cross the lower threshold (-6.2531) at 9.3 minutes 

after the fault is injected. Overall these tests suggest that the position error monitor properly 

detects urgent hazards and provides added integrity to LAAS users. 
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5.3 SIGMA INFLATION IN POSITION DOMAIN 

As mentioned earlier, the PDM can avoid conservatism encountered by range domain 

monitoring (RDM) when computing protection bounds. This comes from the fact that PDM 

supports a smaller inflation factor for the broadcast _pr gndσ . To demonstrate this, we will 

first examine an error distribution in the position domain, since the inflation factor strongly 

depends on this error distribution. After that, we will derive a new inflation factor based on 

both empirical data – the results from Section 5.3.1 – and the inflation factor determination 

method described in Chapter 4.   

5.3.1 ERROR DISTRIBUTIONS  

In this section we investigate how range domain error statistics are converted into position 

domain error statistics. The purpose here is to show that the error distribution has thinner 

tails than before the conversion, which is a key factor supporting a smaller sigma inflation 

factor.  First let us examine the relationship between pseudorange correction errors and 

position errors. We have:  

                  1 1 1 2 2 2ˆ ˆ ˆ( ) ( )... (N N NS b S b S b )χ ε ε ε= − + − + −                            (5-12) 

In this equation, ˆnε  is the pseudorange correction error with zero-mean and  is the mean 

bias of the correction errors for each satellite n. The position error,

nb

χ , is the sum of mean-

biased correction errors, which are also weighted by the coefficients of the projection 

matrix ( ). We now develop the connection between error distributions in the range and 

position domains. By application of the Central Limit Theorem, the probability density 

function (PDF) of the sum of the weighted and mean-biased independent variables is the 

convolution of their respective scaled and mean-shifted PDFs [57]. Based on this theorem 

and Equation (5-12), the probability density function of position errors

nS

( )f χ  is:  

 1 1 2 2

1 1 2 2

ˆˆ ˆ1 1 1( ) ( ) ( )... ( )N N

N N

bb bf f f f
S S S S S S

εε εχ −− −
= ∗ ∗                    (5-13) 
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Since ˆnε  is weighted by and biased by , the PDF of nS nb ˆnε  is scaled by  and shifted by 

. We take convolutions of these PDFs to obtain 

nS

nb ( )f χ . 

A theoretical model of pseudorange correction errors ( ˆnε ) was developed in Section 4.4.2 

(see Equation (4-1)). Using this model – shown in Figure 5.10 as an outer (blue) curve – we 

transform the error distribution in the range domain into the position domain. This is done 

by convolving the correction error PDFs, which are scaled and mean-shifted. The given 

weighting parameters, , and mean-bias parameter, , make the established position 

error model into a good representation of the empirical data (which will be shown in Figure 

5.11). It is clear that the tails of the position error distribution (the inner green curve in 

Figure 5.10) are thinner than those of the individual correction error distributions.      
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Figure 5.10: Error Distributions in Position Domain and in Range Domain 
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5.3.2 SIGMA INFLATION FACTOR  

The result from the previous section implies that PDM allows us to reduce the inflation 

factor for broadcast _pr gndσ  because its error density has thinner tails. The purpose of this 

section is to determine a new inflation factor which will be used for an availability analysis 

in the next section. For this we will use the inflation factor determination method 

developed in Chapter 4. We have already discussed three sources of sigma uncertainty: the 

finite sample size, process mixing, and the limitation of the sigma monitor on mean time-

to-detect. Among induced parameters to cope with these sources, only the second one – the 

buffering parameter to cover process mixing – will change; the others remain the same in 

the position domain.  

 
Figure 5.11: Probability Density Function of the Normalized Vertical Position Errors 
(Error Distribution in Position Domain) 
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In Figure 5.11 we show the distribution of vertical position errors, computed using the 

PDM algorithm for a period of 5 hours. The actual position error distribution (the dotted 

curve) is well characterized by the theoretical model (the solid green curve) shown in 

Figure 5.10. Note that this distribution has a shifted mean due to the mean biases of 

pseudorange correction errors. Since we assume a zero-mean normally distributed error 

model in the computation of PLs, we need to inflate the nominal sigma of a zero-mean 

Gaussian distribution to cover the non-Gaussian tails of the non-zero actual distribution. 

Thus we inflate the sigma to meet the H0 integrity risk allocation (1.2x10-10 for CAT II/III 

[15]). We see that the 1.56σ Gaussian distribution (the solid red curve) well overbounds 

the theoretical model (the solid green curve). Consequently the minimum tolerable 

buffering parameter to mitigate integrity risks due to mixing of process is 1.56, which is 

identical to the buffering parameter shown in Figure 5.3. We then combine this factor with 

other partial parameters derived in Chapter 4 and obtain the total inflation factor using the 

same method presented in Chapter 4. As shown in Figure 5.12, when we add PDM to the 

current RDM, we have decreased the overall inflation factor from 2.78 to 1.87.   
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Figure 5.12: Inflation Factors for Broadcast _pr gndσ  with RDM Only and RDM+PDM 
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5.4 PERFORMANCE ANALYSIS  

In order to test the capability to meet the high availability requirement for CAT II/III 

precision approaches, we have tested LAAS augmented with the PDM algorithm proposed 

here. We use the same LAAS “pseudo-user” receiver introduced in Chapter 4. In Figure 

5.13, we show the configuration of the Stanford LAAS performance test-bed. We skip the 

details because we have presented “pseudo-user” augmentation in Section 4.3.1 and the 

PDM setup in Section 5.2.1.  The distance between the pseudo-user antenna and the PDM 

antenna is approximately 360 meters.  

159 m

111 m

230 m 93 m

LGF Ref/Mon
Antennas/Receivers

Pseudo-User 
Antenna/Receiver

PDM
Antenna/Receiver

159 m

111 m

230 m 93 m

LGF Ref/Mon
Antennas/Receivers

Pseudo-User 
Antenna/Receiver

PDM
Antenna/Receiver

 
Figure 5.13: Stanford LAAS Performance Test-bed 
IMT-PDM-User Hardware Configuration 

 

We have already computed pseudo-user position errors while evaluating the performance 

of LAAS with only RDM (i.e., IMT) in Section 4.3.2. These quantities are not affected by 

augmenting the current LGF – which consists of range domain monitors only – with PDM. 

However, this augmented system provides users with sharper confidence bounds due to the 

reduced inflation factor. We now focus on computing the new vertical protection levels 

under the “fault-free” H0 hypothesis. From Equation (1-13):  
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0H ffmd inflation VertialPositionErrorVPL K f σ=                                      (5-14) 

where VerticalPositionErrorσ  is the standard deviation of vertical position errors, and 

(equal to 1.87) is the inflation factor derived in Section 5.3.2. inflationf ffmdK  is the quantile 

of a unit Gaussian distribution corresponding to 10-9 for CAT II/III operations and is equal 

to 6.441 when the number of ground reference receivers is three [14]. We know that  

2 2 2 2 2 2 2
, , , , , , _

1
;

N

VerticalPositionError vertical n PR n PR n air n tropo n iono n pr gnd n
n

Sσ σ σ σ σ σ
=

= = + +∑ ,σ+    (5-15) 

from Equations (1-11) and (1-12). Because the “pseudo-user” receiver is located on the 

ground, we replace the airborne error sigma, airσ , with the ground facility error sigma, 

_pr gndσ . Then we can write:   

2 2 2 2 2
0 , _ , , , _ ,

1
3

N

H ffmd inflation vertical n pr gnd n tropo n iono n pr gnd n
n

VPL K f S σ σ σ σ
=

⎡ ⎤= ⋅ + + +⎣ ⎦∑          (5-16) 

Here , _3air n pr gnd nσ σ= ,  since _ ,pr gnd nσ is set based on three reference receivers (see 

Equation (2-10)). We also use the fact that ,tropo nσ  and ,iono nσ are negligible because of the 

short distance (approximately 230 meters) between the IMT and “pseudo-user.” As a result 

we have: 

( ) ( )2 22
0 , _ , _ ,

1
3

N

H ffmd vertical n inflation pr gnd n inflation pr gnd n
n

VPL K S f fσ σ
=

⎡ ⎤= ⋅ ⋅ + ⋅⎢ ⎥⎣ ⎦∑           (5-17) 

This means that we can directly apply the inflation factor derived using the position domain 

error statistics to the broadcast . _pr gndσ
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Figure 5.14: System Performance in Vertical Direction with RDM and PDM 

 

Figure 5.15: System Performance in Vertical Direction with RDM only 
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Figure 5.14 shows the performance of the PDM-augmented system. For the purpose of 

comparison, we reproduce the performance results with RDM only – which have already 

been shown in Section 4.3.2 – and plot it in Figure 5.15. Horizontal axes indicate the 

absolute value of Vertical Position Errors ( VPE ), and Vertical Protection Levels (VPLs) 

are plotted in the vertical axes. Each bin represents the number of occurrences of a specific 

(error, protection level) pair and the color of each grid indicates the total number of epochs 

when that pair occurred. The VPE s are always less than 2 meters, which means that both 

types of LGF systems meet the accuracy requirement for CAT II/III approaches. As noted 

earlier, integrity risk is defined as the probability that the position error exceeds the alert 

limit and no navigation system alert occurs within the time-to-alarm. The event with VPL 

less than the Vertical Alert Limit (VAL) but error greater than the VAL – which leads to 

Hazardously Misleading Information (HMI) – indicates a violation of integrity. In both 

plots, the errors are always less than the VPL and also VAL; thus no points constitute 

integrity failures. 

Now we turn our attention to LAAS availability, which is defined as the fraction of time for 

which the system is providing position fixes to the specified level of accuracy, integrity and 

continuity (see Section 2.3). If computed protection levels exceed the alert limit, then the 

system no longer meets the integrity requirement and thus loses availability. As we know, 

the VAL for CAT II/III precision approaches – indicated with horizontal and vertical lines 

in Figures 5.14 and 5.15 – is 5.3 meters based on the 1998 RTCA LAAS MASPS [56] (see 

Table 2.1). Without PDM (and given the condition that available satellites in view are more 

than five), the system availability achieved in this analysis is only 89.258 %, as shown in 

Figure 5.15. Thus RDM alone cannot meet the availability requirement of CAT II/III 

approaches, which is 99.999 %. In contrast, we can see in Figure 5.14 that the system 

augmented with PDM maintains the availability of 99.999% or greater in vertical 

positioning (when the same GPS constellation is provided as in the RDM only case). Since 

PDM supports a smaller inflation factor ( 1.87inflationf =  versus 2.78) – inserted in Equation 

(5-17) to compute VPLs – and consequently provides sharp protection bounds, the PDM-

augmented system is able to meet the high CAT II/III availability requirements.  
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5.5 USE OF POSITION DOMAIN MONITOR MEASUREMENTS 

So far, we have dealt with PDM for providing sharp error bounds and supporting high 

availability in the previous section. In this section, we examine two proposed 

methodologies to further enhance integrity and continuity using PDM: the PDM 

Cumulative Sum (CUSUM) Monitor and the Screening Process Method. Test results are 

presented along with the algorithms.  

5.5.1 PDM CUMULATIVE SUM (CUSUM) MONITORING 

As we saw in Chapter 3, the Cumulative Sum (CUSUM) method effectively detects sigma-

mean anomalies. In this section, we apply the CUSUM to PDM error statistics to further 

improve integrity. The CUSUM algorithm implemented in PDM is essentially the same as 

that of the range-domain sigma monitoring (refer to Section 3.3.2.1 for the details of this 

algorithm). The only change is that the input (Y) for each epoch (N) is the squared and 

normalized values of the vertical position errors (VPE).  

    
2

( ) ( )( )
( )

VPE VerticalPositionError

VerticalPositionError

NY N
N

χ µ
σ

⎛ ⎞−
= ⎜

⎝ ⎠

N
⎟                                     (5-18) 

The Head-Start CUSUM variant has been tested with the IMT-PDM data under nominal 

conditions. The top plot in Figure 5.16 displays PDM-CUSUMs, and the lower plot shows 

the normalized VPE that fed the CUSUM. Note that the required inflation factor in the 

position domain is 1.87 as shown in Section 5.3, and any out-of-control sigma greater than 

this inflation factor should be detected within a day based on the LGF specifications. Thus, 

the CUSUM in this case is targeted at an out-of-control sigma 1.87 times that of the 

theoretical sigma ( 1σ  = 1.87), which gives a high windowing factor (k = 1.753). The 

CUSUM is initialized at h/2 = 18.9 and is reset there every time it falls below zero. Under 

nominal conditions, the CUSUM slowly falls toward zero, since the normalized VPE2 is 

usually below k and k is subtracted off at each epoch.  We update the CUSUM every 200 

seconds, which correspond to two times the carrier-smoothing intervals, so that successive 
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updates are statistically independent. The threshold of 37.8 is never approached, and no 

flags are observed. 
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Figure 5.16: PDM-CUSUM Results from Nominal Data 

 

Range measurements from all reference receivers could possibly experience errors with 

equal variances under failure conditions.  However, the existing range-domain sigma 

monitors may not observe common mode failures (for example multipath correlation), 

since those monitors rely on B-values, which are based on differences between 

pseudorange corrections across reference receivers. In order to simulate such failure 

conditions, we injected controlled errors into stored nominal receiver packets using the 

code-minus-carrier method (refer to Section 3.3.3.2). The rawρ  errors on all satellites in 

view are increased to three times the nominal error, and these injected errors are exactly the 

same for all reference receivers. 
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Figure 5.17 shows the result of applying the Head-Start CUSUM variant to failure-injected 

IMT-PDM. The Head-Start CUSUM – initialized at h/2 = 18.9 – adds up the increased 

normalized VPE due to the severe errors injected onto range measurements. The PDM-

CUSUMs cross the detection threshold at 26.65 minutes after the fault injection. In 

contrast, these anomalies were not detected by the current range-domain sigma monitoring 

algorithms because the fault could not be observed in the B-values.  
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Figure 5.17: PDM-CUSUM Results from Failure Test 
(3 x Error Sigma on All SV and All RR) 
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5.5.2 SCREENING PROCESS 

The procedure to determine the satellite subsets to be processed by the PDM is called the 

“screening process.” Each subset is considered based on its calculated vertical protection 

level (VPL) at the PDM, and only those with VPLs that are less than VAL are processed 

further. As explained, PDM derives position solutions by applying LGF corrections to all 

visible satellites approved by the LGF and all reasonable subsets of these satellites – 

determined by this screening process – that an aircraft may be limited to using.  

If we use the PDM outputs from the screening process, we can improve LGF performance. 

The idea is to relax a key assumption of Category II/III LGF monitoring, which is that all 

airborne users have vertical protection levels (VPLs) right at the 5.3-meter maximum 

imposed by the Vertical Alert Limit (VAL) [58]. In practice, the truth is almost certainly 

better, as shown Figure 5.15. Figure 5.18 illustrates how this information is used in real 

time to improve average continuity. If the worst computed VPL from the PDM outputs 

(denoted as W_VPL) is less than the VAL, as shown in the left-hand fork, the effective 

VPLH0 can be made to be equal to the VAL by loosening the integrity monitor detection 

thresholds. This increases the effective Minimum Detectable Errors (MDEs). As a result of 

this process, continuity risk is lowered while integrity is maintained.  

On rare occasions, aircraft may happen to see a subset of GPS satellites that was not 

directly checked by the PDM. These cases are still protected by their own VPL 

calculations; they only suffer a slight increase in integrity risk if their VPL exceeds 

W_VPL but is still below VAL (if it were above VAL, the aircraft could not conduct a 

Category II/III approach). This limited integrity risk increase is deemed acceptable for 

sigma-mean monitoring if it is sufficiently rare and implies no greater than one order of 

magnitude of increased overall system risk [15].   
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Figure 5.18: Use of PDM Screening Process Outputs to Enhance Average Continuity 

 

The limitation of this concept is that to achieve a required availability of 0.999 or higher  

the LGF must still meet the integrity and continuity requirements when W_VPL exceeds 

VAL (the right-hand fork of Figure 5.18). Since no threshold increase is possible in this 

case, the baseline thresholds must meet the worst-case continuity requirement.    

The worst VPLH0 obtained from “two-out” SV combinations with the same IMT-PDM 

dataset are plotted in Figure 5.19. The maximum number of measurements is ten in this 

dataset, resulting in 45 permutations. Given that all W_VPLs are less than VAL, increased 

detection thresholds can be applied for sigma monitoring, as shown in Figure 5.20. The 

existing detection threshold, 1.87, is equal to the inflation factor in position domain, since 

an out-of-control sigma above the inflation factor is defined as a failure. The increased 

inflation factor – with which the effective VPLH0 would be the same as VAL – becomes the 

new detection threshold. If W_VPL is greater than VAL, there will be no benefit from 

using the PDM outputs. 
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Figure 5.19: The Worst-case VPLHO Out Of All "Two-SV-Out" combinations 
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Figure 5.20: Increase Detection Thresholds Such That Effective VPLH0 = VAL 
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Figure 5.21 presents the prior probability density function of an out-of-control sigma (σooc) 

modeled as a Gamma distribution with parameters a = 20.5 and b = 0.024. In this case, the 

probability of σooc exceeding the detection threshold, 1.87, is set to 10-4. Based on this prior 

PDF and the results shown in Figure 5.20, we compute probabilities of σooc exceeding new 

thresholds. The synthetic result demonstrates an improvement on average continuity (Mean 

Time Between Failure) by 27%.  
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Figure 5.21: Prior Probability Density Function for Out-Of-Control σ 

 

The improvement in average continuity is also a substantial benefit to Executive 

Monitoring (EXM). The most difficult task of EXM is to distinguish between different 

failure classes and to separate hazardous anomalies from fault-free alerts [36, 59]. As 

thresholds are pushed lower to satisfy tighter Category II/III integrity requirements, smaller 

off-nominal conditions that are not hazardous to LAAS users are more likely to be flagged. 

As a result, EXM has more trouble distinguishing “real” failures. In contrast, increasing 

thresholds will reduce the rate of off-nominal but non-hazardous exclusions and lessen the 

conservatism of EXM fault exclusion and recovery. Thus, this practice improves overall 

satellite availability for LAAS in addition to lowering average continuity risk.   
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5.6 CONCLUSION  

Position Domain Monitoring (PDM) improves the performance of the existing Category I 

LGF such that it can support Category II/III operations. We found that the performance 

achieved by adding PDM aids significantly in meeting the stringent availability 

requirements of Category II/III operations. This improvement is possible because PDM 

supports a lower inflation factor for the broadcast _pr gndσ . We have also seen that the PDM 

algorithm implemented in the Stanford LAAS Integrity Monitor Testbed detects 

threatening anomalies, including sigma violations that would not be detected by RDM 

alone. In addition, the PDM CUSUM approach improves upon the PDM algorithms by 

providing extra navigation integrity to users. Lastly the PDM screening process – utilizing 

protection level for subsets of satellites in view – lowers average continuity risk while 

maintaining the required integrity.  
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Chapter 6 

Conclusion 

6.1 SUMMARY OF CONTRIBUTIONS 

The objective of this thesis was to design a set of algorithms for ground based 

augmentation systems that bound the error of differentially corrected measurements and 

position estimates without excessive conservatism. These algorithms process GPS 

measurements collected by a set of redundant reference receivers. They estimate and 

monitor the standard deviation (sigma) of differentially corrected pseudorange errors and 

provide an error bound. Several problems are addressed in this thesis. First, it is difficult to 

characterize the error distribution of differentially corrected pseudorange measurements 

precisely. Second, sudden and unexpected measurement anomalies may occur. Third, the 

estimated sigma has statistical uncertainties and must be inflated when broadcast to aircraft 

users. Finally, the same level of sigma inflation applied for LAAS CAT I precision 

approaches may be not acceptable for CAT II/III operations, which require higher 

availability. The contributions of this work in solving these problems are summarized in 

the following sections. 

125 



  
6.1.1 SIGMA-MEAN ESTIMATON AND MONITORING 

Two sigma-monitoring algorithms were designed in Chapter 3. The first algorithm 

computes the sample standard deviations of the pseudorange correction errors in real time. 

The classical application of the estimation method requires knowledge of the error 

distribution. Since the error distribution is not known in our problem (we cannot assure that 

the population is normally distributed), a significant number of independent samples are 

needed to ensure that the estimated sigma has a chi-square statistic. This results in the time 

to detection of sigma violations (i.e., the response time) being at least one hour for errors of 

any size. In contrast, the Cumulative Sum (CUSUM) method does not require any initial 

waiting duration before the first check, since the Markov property of the CUSUM allows 

us to determine the threshold regardless of a sample size. Further improvement is possible 

with “head-start” CUSUMs; these expedite detection by starting the CUSUM closer to the 

threshold. Figure 3.17 (repeated here as Figure 6.1) shows that the sigma estimation 

method detects smaller violations faster, and the “head-start” CUSUM is superior for 

detecting larger sigma anomalies. The successful combination of these two sigma-

monitoring algorithms provides the most rapid detection regardless of fault magnitude.   

This thesis also applies both direct estimation and CUSUM methods to mean monitoring. 

Real-time monitors are needed to detect unexpected situations in which the true mean 

becomes non-zero and, consequently, the position error exceeds the protection bound.  It is 

shown that the performances of the estimation and CUSUM methods are similar when 

detecting larger mean violations (refer to Figure 6.2, which is a duplicate of Figure 3.18).  

For smaller mean anomalies, the “head-start” CUSUM achieves faster detection as the 

head-start values increase.  

All sigma-mean monitors have been successfully integrated with the existing IMT fault-

exclusion logic and have been demonstrated to detect anomalies that cause the true sigma 

to exceed the broadcast sigma or the true mean to become non-zero during LAAS 

operations. Specifically, any out-of-control sigma or mean greater than 1.8 can be detected 

within one hour. This performance meets the LGF requirements.    
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Figure 6.1: Time-to-Alert for Sigma CUSUM and Sigma Estimation Monitors 
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Figure 6.2: Time-to-Alert with PMD<0.001 for Mean Estimation and Mean 
CUSUM Monitor Performance 
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6.1.2 SIGMA INFLATION AND PERFORMANCE 

The second step of my dissertation (Chapter 4) addressed sigma inflation based on the 

characterization of the error distribution. This thesis considered three main sources of 

statistical uncertainties on the estimated sigma. First, the limited size of measurements 

available to estimate the sigma and mean prior to commissioning introduces the estimation 

error. Second, time-varying environmental conditions and normalization by imperfect 

theoretical sigmas introduce mixing and therefore, the Gaussian assumption may not be 

valid. Lastly, a limited number of samples available in real time for sigma monitors 

necessitates inflating sigma to meet reasonable time-to-alert requirements. The thesis 

developed the inflation factor determination method and determined the total inflation 

factor for the broadcast sigma by combining all necessary buffering parameters. This sigma 

inflation method, when combined with my monitoring scheme shown in Chapter 3, is 

sufficient to maintain user integrity under both nominal and failure conditions. This thesis 

showed that for Category I approaches, the requirements of continuity and availability are 

also met with sigma inflation.  

6.1.3 POSITION DOMAIN MONITORING 

Chapter 5 showed that the position-domain algorithm designed in this thesis improves 

availability relative to the current range-domain algorithm. This position-domain method 

computes a position estimate by applying LGF corrections to range measurements, and it 

generates a position error estimate by comparing this position estimate to the known true 

position. The sigma inflation factor derived from the position error statistics was smaller 

than that derived from the range correction error statistics. In fact, it is difficult to meet the 

tightened requirements of Category II/III approaches with the sigma inflation factor derived 

in the range domain. In this case, the availability of a system was 89% as shown in Figure 

6.3. In contrast, the system augmented with the position-domain algorithm provides an 

availability of 99.999% or higher, because there is no availability penalty due to the 

conservative inflation factor as there is with the range-domain method. 
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Further improvement on navigation integrity was achieved by applying the position domain 

monitor (PDM) and the PDM CUSUM monitor. Both methods perform integrity checks 

using the position solutions generated from the position-domain algorithm as inputs.  

The thesis has also shown that outputs from the PDM screening process can be used to 

improve continuity. This improvement does not have an impact on the required integrity, 

since this method takes advantage of the margin between the maximum tolerable position 

error (i.e., alert limit) and the actual protection levels (all monitors are designed to protect 

users assuming that their protection levels are right at the alert limit). As an average over all 

satellite combinations, this algorithm will provide at least a 20% improvement (from 610−  

to ) in average continuity. 60.8 10−×

 
Figure 6.3: Stanford LAAS Pseudo-User Performance  

 

 

129 



  
6.2 SUGGESTIONS FOR FUTURE WORK 

As mentioned in Chapter 4, test statistics for determining a sigma inflation factor depend 

heavily on antenna sites, gain patterns, and the nearby environment. Thus, the inflation 

factor derived in Chapter 5 is not applicable to all situations. For example, a challenging 

airport site or a ground-based system with upgraded hardware would require different 

inflation factors. Future research should focus on constructing more PDM test statistics 

with datasets collected from different environmental conditions for a longer period of time 

(multiple 24-hour datasets).  Analyzing these statistics will help better evaluate PDM 

performance. 

Another area of future work is real-time integration of PDM into the Stanford integrity 

monitor testbed (IMT). This may be necessary to better emulate an operational LGF. Since 

the PDM computer has access to a T1 network connection, it is possible to relay the 

processed PDM test statistics (worst VPL, position error, and CUSUM) back to the IMT 

computer in real-time. This would make it possible for Executive Monitoring (EXM) to 

better isolate hazardous anomalies from fault-free alerts. Reducing the rate of off-nominal 

but non-hazardous exclusions will reduce the conservatism of EXM fault exclusion and 

thereby improve overall LAAS availability in addition to lowering average continuity risk.  

Further improvement of PDM-CUSUM performance is possible with the Bayesian 

CUSUM [60]. By combining the CUSUM with an application of Bayes’ rule and a prior 

probability distribution for the sigma parameter being monitored, we can infer a real-time 

posterior distribution of sigma based on the current CUSUM state. This gives ground 

systems more flexibility in responding to sigma increases before an alert (possibly causing 

loss of user continuity) is required. Figure 6.4 shows how the Bayesian PDM-CUSUM 

could be used to improve real-time LGF response to anomalies. The Bayesian CUSUM 

offline analysis results provide a map relating CUSUM states to H0 integrity risk 

conditions. When the PDM-CUSUM exceeds the state that defines a “minimal” risk 

increase (Cmin), no immediate action is required because this condition is allowed to last for 

one day before being alerted [15]. The sigma estimation monitor will separately detect this 

condition if it lasts long enough to be of concern.  
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Figure 6.4: Real-Time Use of Bayesian CUSUM Outputs to Preserve 
Continuity and Availability while Protecting Integrity  

 

When the PDM-CUSUM exceeds the “non-minimal” risk increase state (Cnon-min), action is 

taken. The broadcast _pr gndσ  is increased such that the H0 integrity risk becomes 

acceptable again. In this case, to confirm no loss of continuity, the constellation-alert-check 

procedure is performed assuming an inflated value of _pr gndσ . If VPL remains under VAL, 

neither continuity nor availability will be lost; thus, inflation can be implemented. At the 

same time, the CUSUM must be recomputed – based on the re-normalized prior sigma 

distribution and B-value inputs – to confirm that the revised CUSUM state is below Cnon-min. 

If inflation cannot be implemented without possible continuity loss, exclusion of 

problematic measurements would be tried next using the same constellation-check and 

CUSUM-reset process. In this manner, integrity monitoring is potentially enhanced while 

better preserving continuity and availability.  
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Appendix A 

LAAS ERROR MODELS FOR NOISE, MULTIPATH, TROPOSPHERE, AND 

IONOSPHERE 

This appendix describes the LAAS Accuracy Models used in this thesis. These models are 

required to compute the protection levels.  

A.1 MODEL OF AIRBORNE PSEUDORANGE PERFORMANCE  

This section defines airborne pseudorange error allocations for carrier-smoothed code 

processing. Let us consider two components. First, noiseσ  is the error due to wideband noise 

and interference including receiver noise, thermal noise, inter-channel biases, extrapolation 

and processing errors, and is modeled as: 

1

/
, 0 ; 5 90n c o o

noise n na a e θ θσ θ−= + ≤ ≤  

where nθ is the nth ranging source elevation angle, and  and 0 1,a a cθ  for the applicable 

Airborne Accuracy Designator (AAD) are defined in Table A-1. The AADs were defined 

to reflect different performance levels of GPS receiver technologies [17].  
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Airborne Accuracy 

Designator 0a  meters 1a  meters cθ  degrees 

GAD-A 0.15 0.43 6.9 
GAD-B 0.11 0.13 4.0 

Table A-1: Airborne Error Model Parameters 

Second, multipathσ  is the error due to airframe multipath and is described by the distribution, 

where: 2(0, )multipathN σ

/10
, 0.13 0.53

o
n

multipath n e θσ −= +  

The overall airborne accuracy model is computed as follows: 

                                             2 2
, ,air n noise n multipath nσ σ σ= + ,    

A.2 MODEL OF TROPOSPHERIC RESIDUAL UNCERTAINTY 

An airborne subsystem needs to correct for a differential tropospheric delay error because 

the airborne user is at a different altitude than the ground reference receivers. The 

differential tropospheric delay correction is computed as follows [32]: 

0

6

0 2

10 (1 )
0.002 sin ( )

h
h

R

n

TC N h e
θ

− −∆

= −
+

 

where: Refractivity index transmitted by the ground subsystem in the LAAS Type 2 

message (unitless) [61],                                                                               

Height of the aircraft above the GBAS reference point (meters),                    

RN =

h∆ =

nθ = Elevation angle of the satellite n,                                                                     

Tropospheric scale height from the LAAS Type 2 message (meters). 0h =

In addition to the tropospheric correction, the airborne subsystem must also estimate the 

standard deviation of the post correction error [32]: 
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where Nσ  is the refractivity uncertainty from the LAAS Type 2 message (unitless). 

The LAAS Ground Facility (LGF) is responsible for providing broadcast parameters 

( 0, ,R NN ,hσ and ) that are consistent with prevailing conditions at the site. If this real 

time estimation process is to be avoided, then these parameters must be set to constant 

values that cover the worst case conditions expected during operations [17].   

h∆

A.3 MODEL OF IONOSPHERIC RESIDUAL UNCERTAINTY 

Ionospheric temporal and spatial decorrelation can lead to differential LAAS user range 

errors. The uncertainty of this residual ionospheric error is defined as [32]: 

_ _ ( 2iono pp vert iono gradient air airF X )σ σ τ= × × + × ×ν  

where is the vertical-to-slant obliquity factor (unitless) for a given satellite. It is 

computed as follows. 

ppF

 

1
2 2cos( )1 e n

pp
e I

RF
R h

θ
−

⎡ ⎤⎛ ⎞
⎢= − ⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

⎥                                                                                                   

eR =  Radius of the earth = 6378.1363 km                                                                           

 = Ionospheric shell height = 350 km                                                                                 Ih

nθ  = Elevation angle of the satellite n     

_ _vert iono gradientσ  is the standard deviation of a normal distribution associated with the 

residual ionospheric uncertainty due to spatial decorrelation (a parameter provided by the 

ground subsystem in the LAAS Type 2 message). airX  is the distance (slant range) 

between the aircraft and the GBAS reference point meters). ( τ  is the time constant of the 

smoothing filter (100 seco s), and airnd ν  is the horizontal speed of the aircraft (meters/sec).  
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Finally, the total error model is given by ( _pr gndσ  is the ground error model provided in 

Equation (2-10)):  

2 2 2 2
_PR air tropo iono pr gndσ σ σ σ σ= + + +  
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Appendix B 

CUMULATIVE SUM (CUSUM) DESIGN  

This appendix contains theoretical foundations of the CUSUM Design used in this thesis 

[23]. In the first section, we will start with the general CUSUM for the exponential family 

of distributions, which is important in theoretical statistics because of its good inferential 

properties. Based on this general theory, we will derive the CUSUM for a normal 

distribution in the second section. The last section deals with the computation of transition 

probabilities to implement Markov Chain approaches introduced in Chapter 3.  

B.1 THE GENERAL EXPONENTIAL FAMILY 

Let us consider the probability density for any member of the exponential family written as 

[62]: 

{ }( | ) exp ( ) ( ) ( ) ( )f x a x b c x dθ θ= + + θ                                 (B-1) 

where θ  is the single parameter of the distribution and X is the corresponding random 

variable. This formulation includes the normal distribution with an appropriate choice of a, 

b, c, and d. The expression for the joint density, where x  is a random vector of independent 

identically distributed exponential variables, is: 
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1 1

( | ) exp ( ( )) ( ) ( ( )) ( )
N N

i i

f a x i b c x i Ndθ θ θ
= =

⎧ ⎫
= + +⎨ ⎬

⎩ ⎭
∑ ∑x  

Now suppose we want to test whether the process has gone from an in-control parameter 

value 0θ  to an out-of-control value 1θ . Then we have the “score” variables, ( )Z i , which 

are logarithms of the likelihood ratio ( 0 ( )f X  and 1( )f X  are associated with a null (in-

control) hypothesis (H0) and an alternative (out-of-control) hypothesis (H1), respectively).  

{ } {1
1 0 1 0

0

( ( ))( ) ln ( ( )) ( ) ( ) ( ) ( )
( ( ))

f X iZ i a X i b b d d
f X i

}θ θ θ θ
⎛ ⎞

= = − + −⎜ ⎟
⎝ ⎠

 

In practice, the sequential probability ratio test (SPRT) works with this log-likelihood, and 

is based on the cumulative sum of ( )Z i . If the hypothesis H1 is true, ( )Z i  will have a 

positive expected value and the cumulative sum of ( )Z i  will tend to drift upward. If the 

hypothesis H0  is true, ( )Z i  will have a negative value and the sum will tend to drift 

downward. The primary difference between SPRT and CUSUM tests is that, in the 

CUSUM, we never accept the hypothesis of in-control, H0, and stop sampling. Instead, we 

restart the test – by setting the sum to zero – each time the evidence supports the hypothesis 

that we are in control (i.e. when the sum is negative).  

Let us define a generic decision interval CUSUM with its recursion as: 

( )
{ } {( )1 0 1 0

( ) max 0, ( 1) ( )

max 0, ( 1) ( ( )) ( ) ( ) ( ) ( )

D N D N Z N

D N a X N b b d dθ θ θ θ

= − +

= − + − + − }
 

If 1 0( ) ( ) 0b bθ θ− > , we can rescale by dividing the CUSUM in this equation through by 

1 0{ ( ) ( )}b bθ θ− . The expression above is now: 

( )( ) max 0, ( 1) ( )C N C N Y N k+ += − + −                                 (B-2) 

where we define , ( ) ( ( ))Y N a X N= { }1 0( ) ( ) ( ) ( )C N D N b bθ θ+ = − , and   
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1

1 0

( ) ( )
( ) ( )

d dk
b b

0θ θ
θ θ

−
= −

−
                                                   (B-3) 

If 1 0( ) ( ) 0b bθ θ− < , then dividing the CUSUM through by 1 0{ ( ) ( )}b bθ θ−  reverses the 

direction of the CUSUM, giving the recursion:  

( )( ) min 0, ( 1) ( )C N C N Y N k− −= − + −                                   (B-4) 

The CUSUM signals if its recursion exceeds a detection threshold. 

B.2 DERIVATION OF CUSUM FOR A NORMAL SIGMA-MEAN SHIFT 

Given the general formulation for the CUSUM shown in the previous section, we can 

easily derive the CUSUM for a mean or sigma shift of a normal distribution. Let us first 

regard σ as fixed and known, and consider monitoring for possible changes in µ . The 

normal density in “exponential family” form is given by: 

2 2

2 2( | ) exp ln( 2 )
2 2

y yf y µµ σ 2

µπ
σ σ σ

⎛ ⎞
= − − −⎜ ⎟

⎝ ⎠
                             (B-5) 

From Equations (B-1), (B-3), and (B-5), it follows that 

2

2

2

2 2 2
1 0 0

2
1 0

( )

( )

( )
2
( ) (2 )

( ) 2

a y y

b

d

k

µµ
σ

µµ
σ

1µ µ σ µ
µ µ σ

µ

=

=

= −

− + +
= − =

−

 

Applying Equations (B-2) and (B-4), we obtain the CUSUM scheme for the mean of a 

normal distribution as follows: 
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( )
( )

( 1) max 0, ( ) ( )

( 1) min 0, ( ) ( )

C N C N Y N k

C N C N Y N k

+ +

− −

+ = + −

+ = + −
                                 (B-6) 

This scheme signals if or ( )C N h+ +> ( )C N h− −< − , where h±  are chosen so that the 

scheme has a specified in-control ARL.  

Now let us turn our attention to monitoring possible shifts in σ  with the mean known. We 

want to rewrite the normal density in the form: 

 

2

2

( )( | ) exp ln( ) ln( 2 )
2

yf y µσ σ π
σ

⎛ ⎞−
= − − −⎜ ⎟

⎝ ⎠
 

If we identify the components, we have: 

2

2 1

( ) ( )
( ) (2 )
( ) ln

a y y
b
d

µ

σ σ
σ σ

−

= −

= −
= −

 

which yields the CUSUM with a reference value: 

 ( ) ( )
( ) ( )

1 0
1 12 2

1 0

ln ln

2 2
k

σ σ

σ σ
− −

−
= −

−
 

and the CUSUM scheme shown in Equation (B-6).  

B.3 MARKOV CHAIN ANALYSIS OF TRANSITION PROBABILITY 

In Section 3.3.2.1 we needed to find the transition probabilities for our transition matrices, 

P, shown in Figure B.1 (a duplicate of Figure 3.3). In other words, we sought a general way 

to find:   
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( ( 1) | ( )P a C N b c C N d+ + )< + < < <  

Let us define ( )yη to be the distribution function of  conditional on , 

and the distribution function of 

( )C N+ ( )c C N d+< <

( )Y a X= to be . Then we have: ( )F y

{ }( ( 1) | ( ) ) ( ) ( ) (
d

c
P a C N b c C N d F b c k F a c k d cη+ +< + < < < = − + − − +∫ )

] / 6

 

If we use Simpson’s rule for the interval [c, d] with midpoint m, we can further 

approximate the integral. As a result, we obtain the following approximation: 

{ }
{ }

( ( 1) | ( ) )
[ ( ) 4 ( ) ( )

( ) 4 ( ) ( )

P a C N b c C N d
F b c k F b m k F b d k

F a c k F a m k F a d k

+ +< + < < <

= − + + − + + − +

− − + + − + + − +

 

We apply this equation repeatedly to find accurate values for the transition matrices.   
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Figure B.1: CUSUM Performance Modeling with Markov Chains 
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