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Abstract

The increase in air traffic along the existing jet route structure has led to
inefficiencies and frequent congestion in en route airspace. Analysis of air-traffic data
suggests that direct operating costs might be reduced by about 4.5%, or $500 million per
year, if aircraft were permitted to fly optimal wind-routes instead of the structured routes
allowed today. To enable aircraft to safely fly along unstructured optimal routes,
automation is required to aid air-traffic controllers. This requires the global solution for
conflict-free optimal routes for many aircraft in real time. The constraint that all aircraft
must maintain adequate separation from one another results in a greater-than-
exponential increase in the complexity of the multi-aircraft optimization problem. The
main challenges addressed in this dissertation are in the areas of optimal wind-routing,
computationally efficient aircraft conflict detection, and efficient conflict resolution. A
core contribution is the derivation of an analytical neighboring optimal control solution
for the efficient computation of optimal wind-routes. The neighboring optimal control
algorithm uses an order of magnitude less computational effort to achieve the same
performance as existing algorithms, and is easily extended to compute near-optimal
conflict-free trajectories. A conflict detection algorithm as been developed which
eliminates the need to compute inter-aircraft distances. Simulaiion results are presented
to demonstrate an integrated horizontal route-optimization and conflict-resolution
method for air-traffic control. Conflict-free solutions have been computed for roughly
double the current-day traffic density for a single flight level (over 600 aircraft) in less
than 1 minute on a 450-MHz UNIX work station. This corresponds to a computation
rate of better than 25 optimal routes per second. Extrapolation of the two-dimensional
results to the multi-flight-level domain suggests that the complete solution for optimal

conflict-free routes can be achieved in about | min. using currently available hardware.

iv
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Chapter 1
Introduction

The objective of this dissertation is to work toward a real-time method to optimize and
deconflict en route trajectories of all aircraft in flight on a continental scale. Under certain
practical assumptions, optimization of en route aircraft trajectories is primarily a problem
of finding minimum-time horizontal routes through a varying wind field. A practical real-
time optimization method would enable the development of a system to perform strategic
optimization of air traffic within the National Airspace System (NAS) of the United
States, the largest and busiest air transportation system in the world. This has not been

possible using existing approaches to air-traffic control optimization.

Much of the en route air-traffic control research of the past decade has focused on
allowing aircraft to fly along less constrained routes than is possible today by relying on
distributed control to guarantee safe conflict resolution. Free Flight is the general term that
has been applied to these concepts. But the ultimate goal of Free Flight is to remove route
constraints so that the routes traveled are close to optimum (minimum fuel, minimum
time, minimum deviation from schedule, etc.), not to effect distributed control as an end in
itself. The theoretical optimum solution for all aircraft is generally considered to be
impossible to compute using current state-of-the-art optimization algorithms and
computer hardware. The development of a feasible approach to providing near-optimal
conflict-free air-traffic control solutions in real-time would constitute an important

contribution to the field of air-traffic control.
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1.1 Motivation

By creating a system that can safely and efficiently optimize aircraft routes in real
time, it becomes possible to move toward a system free of the many route constraints
imposed in the current structured routing system. An analysis of actual traffic data has
shown that a reduction of at least 4.5% in total flight time (or fuel use) is possible when
aircraft are permitted to fly unconstrained optimal routes. In real terms, this is a reduction
of about 500 hr per day in flight time, which translates to nearly $1 million per day ($360
million annually). In addition to direct cost savings, the air-traffic density would be
reduced for a given number of aircraft by spreading them over a larger airspace than is
possible in a structured routing system. This should improve safety by lessening the need

for tactical collision avoidance.

1.2  Challenges

The greatest challenge to real-time air-traffic control optimization is system
complexity. The airspace air transportation systems in the world. At any given time, there
may be as many as 3,000 aircraft operating in Class A airspace over the continental United
States, making it among the world’s busiest [1]. Just computing an optimal route for a
single aircraft is a difficult problem because of the varying wind field, but the great
increase in complexity begins when multiple aircraft and trajectory conflicts are

considered.

The solution complexity becomes apparent when considering all the possible solution
sets, or orderings, of all aircraft. In this context, a solution set refers to all solutions to one
side or the other of a conflict-resolution maneuver in a horizontal plane. For N aircraft
traveling in a horizontal plane, the number of possible discrete solution sets of the aircraft

is given in general by
N = 2((NN-1))/2) (1.1)

The ordering of aircraft in the horizontal plane may be achieved by changes in speed

or heading, or by a combination of the two. For example, in the case of two aircraft at a
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Solution Set 2

Solution Set 1

~.,

AC,

Figure 1.1. Two possible solution sets (crossing orders) for two aircraft.

constant altitude there are two possible solution sets (fig. 1.1). In the first solution set,
aircraft AC, crosses ahead of aircraft AC, , with the order being reversed in the second
set of solutions. For three aircraft, the number of possible solution sets increases to eight
(fig. 1.2). When the current-day maximum number of aircraft at any given flight level is
considered (about 500 aircraft at FL330 or FL350), the number of possible solution sets
explodes to more than 1037:500 By examining equation (1.1), one sees that adding just
one additional aircraft leads to 2V times the number of possible solution sets. This
greater-than-exponential increase in computational complexity is typical of optimization

problems involving many independent vehicles or agents [2-5].

The optimum result within each solution set must still be computed and compared
with each other set to determine the global optimum solution. For the air-traffic control
problem, these individual optimization problems are essentially wind optimal routing
calculations. Computing wind optimal routes for a single aircraft is nontrivial because the
problem is both nonlinear and nonconvex. Efficient grid-search techniques such as
discrete dynamic programming (DP), and randomized search techniques such as Genetic
Algorithms (GA) have been applied to optimal wind routing, but they are still too
computationally intensive to solve the many-aircraft optimal conflict free routing problem

in real time [6-9].

Another subtle complexity of the air-traffic control optimization problem is that there

is no clear beginning or end. With the rare exception of the terrorist attacks of 11
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September 2001, there is always a significant number of active aircraft in the United

States airspace. This is not a difficulty in practice, as evidenced by the fact that the system

performs adequately today, but when one tries to compute an optimal solution instead of

just a feasible solution, the continuous nature of air traffic becomes vexing. The difficulty
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arises because inter-aircraft separation constraints couple the optimal solutions of each

aircraft to the controls of each other aircraft for all time.

An additional factor that contributes to the complexity is that significant unmodeled
disturbances exist, such as misforecast atmospheric conditions and aircraft flight technical
errors. These disturbances push the system well beyond linear perturbation limits and

ultimately require that optimal solutions be recomputed in real-time.

13 Contributions

The main contribution of this dissertation is the design of a system that computes a
complete set of conflict-free wind-optimal routes for double the current-day air-traffic
density at the busiest flight level in less than 1 minute on a 450-MHz UNIX work station.
This is orders of magnitude beyond the capabilities of any currently available algorithms,
and is a major contribution to the field of air-traffic control. To achieve this real-time,
conflict free optimal-route planning capability, several contributions are claimed in this

dissertation.

1.3.1 Neighboring Optimal Wind Routing

The first contribution is the development of a computationally efficient wind-optimal
routing algorithm based on neighboring optimal control techniques. The resulting
algorithm, called Neighboring Optimal Wind Routing (NOWR), computes near-optimal
routes in an amount of time that is proportional to the length of the route (this is referred to
as “order n,” or O(n) ) with a relatively small proportionality constant. The best prior
techniques have been shown to be O(nlogn) , with very large proportionality constants.
Aside from the improvement in computational efficiency, the NOWR algorithm has been

shown to be well suited to conflict resolution in a sequential optimization system.

1.3.2  Efficient Strategic Conflict Detection and Resolution

The next contributions are in the areas of aircraft conflict detection and resolution. The
problem of conflict detection is to predict whether the distance between any pair of

aircraft will be less than the allowable legal separation (generally 5 n.mi. for commercial
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aircraft), and the best existing conflict detection algorithms have been shown to be
O(nlogn) [10]. A new approach to conflict-detection that is coupled with the conflict-
resolution process is developed. The technique is called the Conflict Grid (CG) and is
shown to require a negligible amount of computation relative to that required to compute
an optimal trajectory (less than 0.1%). An enhancement to the NOWR algorithm is made
to enable the efficient computation of perturbed wind optimal routes. A very efficient
conflict detection and resolution strategy is developed based on the perturbation NOWR
algorithm for which the expected number of computations is proportional to
log(Cy/(Cy—n)), where n is the number of aircraft in the system, and C,, is a constant
parameter used to fit the computational model to empirical data. This is the first technique
to resolve conflicts while maintaining a sense of wind optimality for each aircraft route.
All previous approaches have either neglected winds entirely, or have assumed that some
nominal ground path was the desired objective so that conflict resolutions were computed

to minimize deviations from the nominal path [11].

Although there can be no claim of global optimality for the resulting solutions using
the techniques presented in this dissertation (an NP-hard problem cannot be solved in
polynomial time), the solutions are compared to a theoretical bound on the optimum

solution to give real-time measures of the optimization performance.

1.3.3  Airspace Capacity Modeling

Additional contributions have been made in system analysis using the techniques
developed in this dissertation. The first is the derivation of a practical airspace-capacity
model. Until now, there has never been a practical method for accurately estimating
airspace capacity for a given air-traffic-control strategy. The technique is derived by
hypothesizing a probabilistic model of the expected number of conflicts as a function of

the number of aircraft in the airspace.

Using the probabilistic airspace-capacity model, simulation studies have been
conducted to determine the relationship between legal aircraft separation standards and

airspace capacity. This relationship may be used to estimate the benefits to be gained by a
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reduction in minimum separation standards that will be possible with the introduction of
new surveillance technologies like the Wide Area Augmentation System (WAAS) and
Automatic Dependent Surveillance Mode-B (ADS-B). Until now, there has been no
practical or meaningful way to translate navigational accuracy improvements into air-

traffic capacity and efficiency gains.

By reasoning that the ultimate requirement for real-time recomputation of optimal
trajectories for all aircraft is driven by consideration of anomalies such as in-flight
emergencies, a computer performance requirement has been derived. The resulting
relationship gives the required computation rate as a function of the minimum separation

distance between aircraft.

14 Dissertation Outline

14.1 Background

Background on prior art in 4-D air-traffic control system concepts dating back to the
early 1970s is presented in chapter 2. The background discussion is followed by a
statement of the air-traffic-control optimization problem and a discussion of the
simplifying assumptions that are made to arrive at a practical method to achieve near-

optimum performance in real time.

14.2 System Concept

The system architecture is presented in chapter 3, followed by an analysis of the
computational requirements and performance capabilities of the chosen system. The
system concept is based on the strategic optimization of all aircraft trajectories. Aircraft
then would follow the optimal trajectory clearances using closed-loop 4-D guidance and
control. The optimal solution is approximated by solving for the optimal conflict-free
trajectories of each aircraft sequentially, while holding previously computed trajectories
fixed. This approximation reduces problem complexity to that which may be solved in

polynomial time.
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143 Optimal Wind Routing

Prior art in the computation of optimal wind routes is presented in chapter 4. This is
followed by the development of an algorithm called Neighboring Optimal Wind Routing
(NOWR), which is shown to be an efficient method for computing optimal wind routes.
The chapter concludes with a discussion of the benefits of NOWR over those of existing
approaches, and of recommendations for future to further improve the performance of

NOWR.

144  Strategic Conflict Detection and Resolution

The prior art in solving the related problems of strategic conflict detection and
resolution is discussed in chapter 5, followed by the development of more efficient
solution approaches that retain optimality in winds. For conflict detection, an algorithm is
developed that is essentially free, from a computational standpoint. For conflict-
resolution, the NOWR algorithm is enhanced so that it may be used in an iterative manner

for conflict-resolution.

1.4.5 Simulation and Performance Evaluation

The algorithms developed in this dissertation are integrated into a complete simulation
system in chapter 6. The design of the simulator is presented, including a pseudo-code
listing of the simulator source code. The results of a set of parametric studies are then
presented to demonstrate how the optimization algorithms might be used in practice, and
to demonstrate the kinds of analyses that may be conducted with the simulator. The
chapter concludes with a computational timing analysis of the neighboring optimal wind

routing functions to show that real-time optimization has been achieved.

1.4.6 Conclusion

The final chapter presents a summary of the main conclusions and contributions of the

dissertation. Recommendations for future research are also presented.



Chapter 2
Background

2.1 Introduction

The goal of en route air-traffic-control (ATC) optimization is to find the most efficient
trajectories for all aircraft operating in the national airspace system (NAS) while
maintaining a safe separation distance between all aircraft. This is a complex dynamic
optimization problem with inequality constraints on the separation between aircraft. The
optimization criterion is to minimize the direct operating cost (DOC) for each aircraft in

the system, where DOC is a weighted combination of fuel and time costs.

The large number of constraints has led to the classification of this problem as a
nondeterministic polynomial-time hard (NP-hard) or NP-complete problem. This means
that the problem is characterized by an inherent complexity that causes the solution effort
to increase at a rate greater than can be expressed by a polynomial function. Two excellent
sources for non-mathematicians on computational complexity are found in references 2
and 3, and a more rigorous description may be found in reference 4. The NP-hard nature
has been proven for some abstract forms of the aircraft conflict-resolution problem and
will be assumed true for the purposes of this dissertation [S]. Because the complexity of

this problem precludes its rigorous solution, approximate solutions are required.

There are many approximate solution approaches to the ATC optimization problem.
To explore each of them is beyond the scope of this work. Instead, the goal is to use

practical system analysis to help guide the choices and approximations made to obtain
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near-optimal solutions in real-time. To find a feasible solution, the problem must be
transformed into one that can be solved in polynomial time. The challenge is to make
approximations that do not significantly degrade the optimality of the solution.

In this chapter, the en route ATC optimization problem is posed as a dynamic
optimization problem so that the complexity of the solution may be discussed. The
complexity will be shown to originate from the aircraft separation constraints. Prior
approaches to solving this problem are then discussed. The remainder of this chapter
introduces simplifying approximations that enable solutions in polynomial time without
greatly sacrificing optimization performance. A brief description of the current en route
air-traffic control system is now presented to provide perspective for the work in this

dissertation.

2.2 Current En Route Air-Traffic Control

Airspace over the continental United States is classified as either Class A, B, C, D, E,
or G according to the type of air-traffic services provided (fig. 2.1). Class A airspace

314,500 MSL

' MSL - mean sca level
" AGL. - above ground level
. FL - flight level

Figure 2.1. Airspace classifications in the United States.
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extends from 18,000 ft above mean sea level (MSL) up to 60,000 ft, and is the domain of
interest for en route air-traffic control. Altitudes in Class A airspace are discretized by
flight level, where a flight level (FL) is defined as a surface of constant atmospheric
pressure which is related to a specific standard pressure datum (standard pressure: 29.92
in. Hg or 1,013 hPa) and is separated from other such surfaces by specific pressure
intervals which are stated in three digits that represent hundreds of feet. For example,
FL600 is 60,000 feet MSL. The distinction is made between a flight level and a
geopotential altitude in air-traffic control so that aircraft operating on barometric
altimeters will all have common altitude references in any local region. In this way,
aircraft can maintain unambiguous altitude references while following isobars. Note that
standard pressure altitude may differ from true geopotential altitude by a few thousand

feet as atmospheric conditions change.

Within Class A airspace from FL180 up to FL390 there are 17 distinct flight levels.
From FL180 through FL290, the flight levels are separated by 1,000 ft and alternate
westbound and eastbound traffic, with FL180 being a westbound level (headings from
000° through 179°). Above FL290, the flight levels are separated by 2,000 ft, again with
alternating westbound and eastbound traffic. FL290 is an eastbound flight level. With the
desire to move toward free flight, changes to the flight-level rules are planned. Under a
program called Reduced Vertical Separation Minimum (RVSM), the separation between
flight levels over the North Atlantic has already been reduced to 1000 foot increments.
The same change is due to be phased in over the continental United States in January
2005. More fundamental changes in the flight-level definitions have also been considered,
such as using a finer quantization of flight levels depending on a more detailed

quantization of the direction of each aircraft [12].

A recent study of air-traffic conflicts for free and structured routing reported that of
the approximately 57,000 aircraft flying during a typical 24-hr period in the U.S., about
38,000 operated in Class A airspace [1]. The peak number of aircraft operating at any one

time in Class A airspace is about 3,000, with a little more than half of that traffic operating
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Maximum Aircraft Count per Flight Level on March 18, 2000

Maximum Aircraft Count
g8 & 8 & 8 8

3

290 310 330 350 370 390 410
Flight Level, hundreds of feet

Figure 2.2. Maximum aircraft count per flight level over the U.S. on 18 Mar. 2000.

above FL290. The maximum number of aircraft operating at any given flight level is about
360 at FL330 and FL350 (fig. 2.2).

The airspace over the United States is divided into 20 Air Route Traffic Control
Centers (ARTCC, pronounced “art-see,” or referred to as a “Center”) (fig. 2.3). A Center
is a facility established to provide air-traffic control service to aircraft operating on
Instrument Flight Rule (IFR) flight plans within controlled airspace, principally during the
en route phase of flight. The Centers are further divided into sectors, and the sectors are
partitioned into low-altitude, high-altitude, and sometimes super-high-altitude sectors.
The size and dimensions of the sectors are determined by the traffic patterns and radar
surveillance coverage in the area, and are each nominally controlled by one air-traffic

controller.
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Figure 2.3. An ATC sector map of the United States.

In the current system, many additional constraints are placed upon aircraft trajectories
in order to make tactical decisions tractable for human controllers and pilots. Among these
constraints is a system of defined jet routes and navigation way points which aircraft must
adhere to under normal circumstances. Within these constraints, aircraft must file flight
plans prior to departure to specify their desired altitude, airspeed, and 2-dimensional (2-D)
route of flight.

Airlines and business-jet opérators use methods of varying levels of sophistication to
choose routes that take into account the predicted wind patterns. They also consider
constraints such as regions of predicted bad weather or turbulence. Each aircraft operator
solves the optimization problem for himself without considering aircraft separation
constraints. Separation constraints are handled by air-traffic controllers and pilots as they
arise during flight. The current system performs reasonably well because the en route
airspace is relatively sparsely populated. Air-traffic control also imposes flow constraints
as required by weather or traffic congestion. Flow constraints are imposed by ground

holds or ground stops, or through what are known as playbook routes. Playbook routes are
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general sets of routes that are used to quickly route traffic around particular regions and

that are implemented when bad weather conditions are encountered.

The problem with the current system is that it is inflexible and overconstrained.
Requests for flight-plan changes are often not granted because controller work load is too
high, and sometimes the desired route cannot be well approximated within the route
constraints. Sometimes a desired route straddles sector boundaries in a way that is not
permitted. If automation tools could be introduced that would enable controllers to use a
longer-term, or strategic, approach to resolving inter-aircraft conflicts, efficiency would
improve. These improvements would come from resolving conflicts more efficiently, and

by permitting a reduction in the number of trajectory constraints.

2.3 Mathematical Problem Statement

Here, an abstract version of the optimal air-traffic control problem is posed to help
introduce the assumptions and solution techniques that lead to the system concept. The
main assumption is that the airspace is relatively sparsely occupied so that an approximate

solution approach is expected to exhibit good performance.

Because the ATC system is so complex, one cannot write out a complete optimal
control problem statement in functional form; however, much can be learned by
abstracting and examining the properties of the general problem. For instance, it becomes
clear why the optimal air-traffic control problem is considered to be NP-hard. The single-
aircraft trajectory optimization problem is stated first, and then expanded to the multi-
aircraft case by summing together the many individual trajectory optimization cost

functions and adding the inter-aircraft separation constraints.

A general cost function for a single aircraft with adjoined final-state constraints may

be expressed as

J = J: :’ L,[x,(0), u,(0), t1dt @.1)
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where x, is the state vector, ¢ is time, L, is the Lagrangian function for this aircraft, and
u, is the control vector. One may put any desired terms in the Lagrangian, but for
commercial aircraft one typically includes fuel-flow rate and total flight velocity terms in

the Lagrangian.

The constraints consist of aircraft and other system state dynamic constraints (such as

atmospheric parameters and winds):

x(0) = flx,, up, 1) 22)
initial-state constraints:
and final-state constraints:

The objective is to choose the controls, u , and the final time, o minimize equation

(2.1) subject to the constraints in equations (2.2) through (2.4).

This single aircraft optimization problem is challenging, but it has been solved for
many common flight scenarios. In the absence of winds, the optimum horizontal route is
simply a great circle so that only the optimum vertical profile need be calculated. A great
circle is the shortest distance between two points on the surface of a sphere, the spherical
equivalent of a straight line in a Cartesian system. The goal of the vertical profile
optimization problem is to find the optimal speed and altitude profiles to achieve
minimum fuel or the minimum direct operating cost (DOC) for a specified range. A
discussion of the solution of the vertical-profile optimization problem is deferred until
later in this chapter when a justification is presented for decoupling the vertical and

horizontal trajectory optimizations.
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Horizontal path optimization by means of equations (2.1) through (2.4) is generally
not solved using calculus of variations techniques because of the excessive number of
computations required, and because the solutions obtained may only be local minima.
Discrete dynamic programming and randomized search algorithms have been used to
obtain solutions. These are discussed in greater detail in the next chapter, where a
neighboring optimal control solution is developed to solve the optimal horizontal route

problem efficiently.

The problem becomes considerably more difficult when more aircraft are added. Itis a
challenge just to write the multi-aircraft cost function because different aircraft are
continually entering and leaving the problem domain. One straightforward approach is

simply to sum the individual cost functions for each aircraft:

Ty = ij,. = g"[ 7 L0, 400, t]dt] 2.5)
i=1 i=1
The constraints are:
x{t) = flx, u,t) 1<i<N (2.6)
x{t;0) —Xip = 0 1<i<N 2.7)
x{t)—xp=0 1<i<N (2.8)

If these were the only constraints; then the multi-aircraft optimization problem would
simply be N decoupled single-aircraft optimization problems. However, there are more

constraints to add that create the air-traffic control problem, that each aircraft must
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maintain a minimum distance of separation from each other aircraft. These inequality

constraints may be expressed as

1<i<N
Ax;2d 1Sj<N (2.9)
i®j

where Ax;; is the distance between the i th and j th aircraft, and d,;; is the minimum
allowable separation. When expanded, equation (2.9) represents N(N - 1)/2 constraint
equations that couple the optimal controls of each aircraft to those of each other aircraft.
For 500 aircraft, that corresponds to almost 125,000 constraint equations. As discussed in
chapter 1, there would be nearly 1037-300 possible aircraft orderings to examine in order
to guarantee that the optimal solution had been found. That this is a difficult problem is an

understatement.

Most of these constraints would not be active, because many of the aircraft would
never physically encounter one another, but trajectory modifications for an aircraft may
indirectly affect the optimal controls of any other aircraft. An interesting feature of the air
transportation system is that there is no clearly defined beginning and end time for
performing conflict detection and trajectory optimization. With the rare exception of the
aftermath of the terrorist attacks on 11 September 2001, when all flights were grounded,
there are commercial flights operating in the United States airspace at all times [13].
Because of the continuous nature of air transportation, the separation constraints
effectively couple every trajectory in the airspace for all time. When performing strategic
optimization, a flight that will oceur 10 days or even 10 years from now can be shown to
be coupled with a flight today by a continuous chain of separation constraints. A simple

thought experiment shows why this is the case.

Imagine computing optimal trajectories for a set of aircraft that are scheduled to depart
some time in the future. An aircraft (AC,) is scheduled to depart from New York at 0000
Universal Coordinated Time (UTC) on 1 January 2000, and to arrive at San Francisco at
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0600 UTC. Five hours later, at 0500 UTC, another aircraft (AC,) takes off from San
Francisco heading for New York along a trajectory that conflicts with AC, so that a
conflict-resolution maneuver must be made. In general, an optimal maneuver would
require that both aircraft must adjust their trajectories so that AC; would have to alter its
trajectory beginning at 0000 UTC. Then, at 1100 UTC, well after AC, is scheduled to
have landed, another aircraft (AC3) is scheduled to depart New York for San Francisco,
and this new aircraft conflicts with AC, which is arriving from San Francisco. The
optimal resolution would require that both AC, and AC; adjust their trajectories, which in
turn would affect the optimal resolution of the first predicted conflict between AC, and
AC,. In this way, the optimal trajectory for AC, is shown to be dependent upon the
trajectory of AC;, which is not scheduled to depart until after AC, has arrived at its

destination. By induction, this process continues as long as there is no gap in air traffic.

This fact does not have disastrous consequences for finding feasible solutions in
practice, but it does make strategic optimization extremely challenging. The couplings
among aircraft become weak with time so that the look-ahead time for trajectory
optimization may be safely cut off, with the caveat that the globally optimal solution to the

real problem is being abandoned.

24 Prior Art: 4-Dimensional System Concepts

The air-traffic-control optimization concept presented in this dissertation is based on
an idea that has been around for several decades. This is the idea that aircraft would be
assigned 4-dimensional (4-D) flight plans designed to be conflict-free, and that they would
use closed-loop 4-D control to follow the assigned flight plans without requiring regular
tactical instructions from air-traffic control (fig. 2.4). If each aircraft guarantees that it is
following its assigned 4-D trajectory, and if the trajectories are designed to be conflict-
free, then tactical conflicts will not arise. Verification for this algorithm is achieved by
verifying each individual 4-D control system rather than by verifying a complex system of
stochastic multi-aircraft tactical conflict resolution. This concept is referred to as 4-D

Time-Based Control, or simply 4-D Control. In addition to determining feasible conflict-
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Figure 2.4. High level concept diagram of 4-D time-based air-traffic control.

free 4-D trajectories for all aircraft, a further goal is to find trajectories that are efficient.
This is conceptually different from the current air-traffic control system in which much

more use is made of tactical confliet resolution.

The current air-traffic control system may be thought of as an approximate solution to
the ATC optimization problem, although it has probably never been formally considered
in this way. In the current ATC systém, aircraft operators file a flight plan which includes
a proposed departure time, a coarsely defined horizontal flight route, an intended flight-
level (altitude), and an intended airspeed. The flight plan does not include intended time
along the proposed flight route. Air-traffic controllers monitor aircraft positions and make
adjustments to aircraft speeds, flight-level assignments, and headings to keep aircraft

safely separated from one another.
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Figure 2.5. Block diagrams of 4-D ATC and the current ATC system.

The conceptual difference between the current ATC system and a 4-D ATC system is

depicted in figure 2.5. The current air-traffic control system is shown as a feedback

control system in which 3-D trajectory clearances are input to the aircraft, and the control

loop is closed through the control actions of air-traffic controllers. The aircraft are

monitored along their clearances by air-traffic controllers who issue tactical advisories as

required to maintain safe separation among the aircraft. In the 4-D air-traffic control

system concept, inputs to the aircraft are 4-D trajectories that specify the clearance as
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position versus time. The aircraft close the control loop locally using 4-D control to
maintain thier positions along thier assigned 4-D clearances. Occasional trajectory

replanning is required for large disturbance mitigation.

Among the first 4-D air-traffic control concepts were those proposed by Erzberger
beginning in the early 1970s. One of the first such research studies was to be applied to
short takeoff and landing (STOL) vehicles [14].

Just a few years later, a time-based ATC system was proposed by a group headed by
Ralph Erwin at Boeing Commercia! Airplane Co. [15]. Again, the basic concept was that
ATC would determine non-conflicting 4-D flight paths for all aircraft and that the pilots
would execute the clearances by accurately flying the assigned 4-D paths. It was
suggested that speed be used to adjust aircraft spacing rather than path-stretching. The 4-D
trajectory clearances would be computed to meet assigned arrival times at the respective
arrival runways. The paper concluded with the following statement: “It seems inevitable

that this system is coming. The question is, how soon will it get here?”

It has been 25 years, and although many advances have been made in guidance and
navigation, weather prediction, and other air-traffic control technologies, the
implementation of a time-based air-traffic control system seems still to be far off. One of
the primary reasons for the delay is that the computation of efficient conflict-free 4-D

trajectories for all aircraft in real-time has remained an unsolved problem.

The next advances in 4-D concepts were made in the development of ground-based
automation tools. It was realized that airborne 4-D control concepts could not be fully
exploited unless air-traffic control could accommodate 4-D capabilities. By equipping the
ATC system with accurate 4-D trajectory planning, effectively giving the system the
capability to serve as a flight management system for all aircraft in its domain, the hope
was that time-based ATC would move closer to reality. Several concepts were developed
to varying degrees of technological readiness [16-20]. The most highly developed system,
called the Center TRACON Automation System (CTAS), was developed by a team of
researchers led by Erzberger at the NASA Ames Research Center from the mid-1980s
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through the present day [17]. The CTAS concept uses scheduled time-of-arrival (STA)
control under which aircraft are given clearances to arrive at a meter fix or runway ata
scheduled time. The precise trajectory leading to the final condition is not specified, and
tactical advisories are to be issued for conflict resolution (fig. 2.6). Prototypes of CTAS

4-DuTrajectory Control: Follow Path vs. Time
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Figure 2.6. 4-D trajectory control and 4-D STA control.

have been successfully field tested at several Air Route Traffic Control Centers (ARTCC)
and Terminal Radar Approach Control (TRACON) facilities, but the active 4-D control
aspects have not yet been adopted. Many of the reasons are human-factors related, but
there have also been some difficult practical problems to overcome when trying to use
time-based control in the extremely busy terminal-area environment. Some of the human-
factors difficulties stem from deciding whether or not air-traffic controllers are legally
responsible for aircraft separation assurance when advisories are being provided by

automation.
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The Group for ATM R&D Technology in Europe (GARTEUR) conducted research in
the late 1980s on a time-based air-traffic control concept [19]. The GARTEUR concept
was to provide aircraft with trajectory constraint boundaries, within which they could self-
optimize. The GARTEUR approach was superseded by a new initiative called the
Programme for Harmonised ATM Research in Europe (PHARE). The PHARE concept
was to develop and implement 4-D time-based control using conflict-free 4-D tubes [19,
20] negotiated between aircraft operators and air-traffic control. Tubes are volumes of
airspace that are to be assigned to aircraft as functions of time so that a clearance would
consist of both a nominal 4-D trajectory and a buffer region around the trajectory. The
program developed to the point where detailed tube specifications were created for
communicating tube clearances between ATC and an advanced new 4-D flight
management system. The PHARE program ended without the implementation of the tube
concept. Anecdotal evidence suggests that the assigned 4-D trajectories were deemed to
be too restrictive and cumbersome by both pilots and controllers. The fundamental
problem of safely and reliably computing conflict-free 4-D tube updates in real time was

never solved.

A concept called “Trajectory Space” was proposed in the early 1990s. Trajectory
Space was conceptually similar to the GARTEUR concept developed in Europe [19]. The
idea was for ATC to communicate constraint regions to aircraft which would then self-
optimize within those constraints. Only a brief concept description was presented.
Although conceptually appealing, Trajectory Space would be extremely difficult to
implement in the suggested manner. The specification of regions of unavailable airspace
and the coordination among aircraft would be difficult to code into a feasible algorithm.
Many other difficult problems arise, such as guaranteeing that a feasible trajectory even

exists for a given set of constraints.

The Free-flight concept was proposed beginning in the mid-1990s [21]. The initial
idea was that aircraft could use advanced conflict-detection and resolution technologies to
perform tactical conflict resolution without any direction from ATC. The hope was that
aircraft could then fly on free routes, unrestricted by the jet route structure in the NAS



2.4. Prior Art: 4-Dimensional System Concepts 24

today. Over time, a more sober view of free flight emerged in which ATC would have a
role in monitoring for conflicts and providing separation services when resolution
maneuvers could not be worked out by the aircraft involved. As research has progressed,
free routing still remains a distant hope; technologies have not yet been developed that can
assure that multi-aircraft conflict situations can always be resolved tactically. Significant
theoretical advances have been made in this area using hybrid control theory [22, 23], but
the application of these ideas to practical air-traffic control systems remains for the subject

of future work.

Recently, work has begun on the design of practical automated airspace architectures
that would enable implementation of some of the key optimization and conflict resolution
functions developed over the past decade [24]. The goal is to use automation to lower air-
traffic controller work load so that en route airspace capacity may be increased while
enabling aircraft to fly along unrestricted trajectories. Particular attention is given to the
development of a core system to guarantee safe separation for all aircraft. This is an
approach that may enable the implementation of free-flight concepts. The development of
automated airspace architectures will create the infrastructure required for trajectory

optimization approaches such as the one offered in this dissertation.

The concepts of free flight and 4-D time-based control are not mutually exclusive. The
goal of free flight is not to enable airborne anarchy; the goal is to remove the restrictions
of the jet route structure and to allow aircraft to fly along more efficient trajectories. As is
pointed out in this dissertation, when free routing is permitted, the airspace is relatively
sparsely occupied so that the trajectories that would result from tactical conflict
resolutions proposed under free flight might still be quite close to a theoretical global
optimum solution. However, if any degree of congestion is encountered, one must rely on
strategic optimization to achieve the most efficient solution. The strategic optimization of
trajectories is what is enabled by 4-D time-based control. One might think of 4-D time-
based control as a free-flight system run in fast-time to determine a set of optimal

trajectories that would then be followed by aircraft.
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2.5  Analysis and Simplifying Assumptions

Although the en route air-traffic control problem may be posed fairly concisely, it
appears to be too complex to solve in real-time. One must make insightful simplifying
assumptions so that the solution to the approximate problem is close to the solution to the
original optimization problem. Thre¢ main simplifications that lead to a feasible solution
approach with near-optimum performance are discussed here. The first is that aircraft
trajectory optimization may be deeoupled into vertical profile optimization and horizontal
route optimization. The second assumption is that the airspace is relatively sparsely
occupied. This leads to the third simplification, the hypothesis that a sequential
optimization and deconfliction approach could produce feasible near-optimum solutions.
Air-traffic control by means of a sequential optimization approach is shown to be a
problem that can be solved in polynomial time. This means that as the number of aircraft
increases, the amount of time required to solve the problem may be expressed as a finite

polynomial function of the number of aircraft rather than as an exponential function.

2.5.1 Horizontal/Vertical Optimization Decoupling

The optimization of vertical profiles (airspeed and altitude schedules) for commercial
jet transport aircraft has received considerable attention over the past 40 years [25-34].
The essence of this problem is to balance the time and fuel costs to travel between a
specified origin and destination. Fuel use is a function of airspeed and ambient pressure
and temperature. These latter two quantities may be expressed as functions of altitude for
an assumed standard atmosphere.

The basic vertical optimization problem is to minimize the direct operating cost

(DOC) expressed in dollars:

_cIslolawmltel, ol sz
Jooc = c,.{lb}f' o(j(V, h){hr}+ Cl{ h })dt (2.10)

where Jp,c is a measure of the total cost for a given aircraft trajectory from the specified

initial time, ¢, to the free final time, t;. The cost of fuel, expressed in dollars per pound, is
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given by C;, and the fuel-flow rate for the particular aircraft/engine combination is given
as a function of airspeed and altitude by AV, k), expressed in pounds per hour. The Cost
Index, CI, represents the cost of time relative to the cost of fuel. Calculus of variations
techniques have been successfully applied to this problem for a fixed range and free final
time in a standard atmosphere using an energy-state formulation of the problem [25, 26].
In the energy-state formulation, the integral cost function of equation (2.10) is converted
into an equivalent form by defining an energy state as the sum of kinetic and potential
energy of the aircraft and integrating over that variable instead of over time. One of the
benefits of converting to the energy state formulation is that the free final-time problem is
converted to a problem with a fixed terminal condition. These methods were extended to
the computation of optimal vertical profiles for problems with fixed final time. In this
case, the cost index is varied iteratively until the desired final time is achieved [27, 28].
The effects of winds on optimum vertical profiles has also been examined, with practical
constraints on commercial aircraft flights being considered [29-33]. Research has also
been conducted on the use of soft dynamic programming approaches to minimizing

equation (2.10) when there are multiple time constraints [34].

The main conclusion of vertical-profile optimization for long-range commercial jet
aircraft is that optimal profiles consist of short climb and descent segments and a long

cruise-climb segment with a shallow climb angle (fig. 2.7). The shallow climb segment
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Figure 2.7. Optimal cruise-climb and step-climb profiles.

results because the optimal altitude slowly increases as the aircraft burns off fuel. In the

current constrained air-traffic control environment where aircraft must operate at flight
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levels that are separated by 4,000 ft, the optimal cruise climb segments have been shown
to consist of a stair-step segments that are about 500 n. mi. long [32]. This may be
considered as a constant altitude for the purpose of determining optimum horizontal

routes.

Since the winds vary in a nonlinear fashion, the optimization problem with wind may
have many local minima, and is more difficult to solve. Fortunately, the range of efficient
altitudes for contemporary commercial jet aircraft is narrow, so that a practical approach is
to examine one or two altitudes near the optimal no-wind altitude and then to choose the
one that gives the minimum cost. This trial and error search method is reasonably efficient

and is what is used today by airlines and commercial flight planning services.

There will ordinarily be some coupling between the optimal vertical profile and the
optimal horizontal route owing to variations in the winds. If an optimal vertical profile is
computed for a great-circle route using the procedure outlined above, it may be possible
that shifting the horizontal route to take advantage of horizontal wind shear might take the
aircraft to a region of airspace where a different altitude would be more efficient. In
mathematical terms, the rate of change in the wind vector with altitude is also a function of
horizontal position. Empirical evidence suggests that, except near the boundaries of a jet
stream, the coupling of vertical and horizontal wind shear is weak. The practical approach
to finding a feasible optimum solution is again to perform a local iterative search of
altitudes and routes nearby the optimum no-wind solution. The iterative procedure would

be as follows:
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1. Compute optimum altitude and airspeed profile assuming zero winds

2. Compute the cost of flying at the nearest legal altitudes above and below the zero-

wind optimum altitude and choose the one with minimum cost

3. Fix the altitude and airspeed and compute the optimum horizontal route for the
given wind conditions
4. Fix the horizontal route and search the nearest legal altitudes above and below the

altitude chosen in step 2; choose the one with minimum cost

5. Iterate until desired convergence is achieved

The vertical-profile optimization and horizontal-route optimization may therefore be
precomputed in parallel by aircraft operators. This is a significant simplification in the
aircraft trajectory optimization problem, because it decouples the fairly straightforward
vertical-profile optimization from the much more challenging horizontal-route
optimization problem. Efficient algorithms for computing the optimum horizontal route

are still required; this problem is addressed in chapter 3.

2.5.2  Sparse Airspace Assumption

A review of recent ATC research literature suggests that en route air-traffic congestion
is a severe problem. In the vicinity of a busy commercial hub airport, one might be able to
count a steady stream of arrival and departure aircraft, but these aircraft would occupy
linear regions of airspace, and they would still be separated by more than 5 n. mi. Except
for the choke points created by air-traffic-control route restrictions, the en route airspace is
actually sparsely occupied and will continue to be so until many more airports are built.
This has important implications for the computation of approximate optimal air-traffic-

control solutions.

A recent study examined the properties of air-traffic conflicts for both structured
routing and great-circle routing [1]. Flight plan data were taken from the Enhanced Traffic
Management System (ETMS) for a 24-hr period in March 2000. The Future Air Traffic
Management Concepts Evaluation Tool (FACET) [44] was used to simulate aircraft flying
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either along the filed flight plans or along great-circle routes between the scheduled origin
and destination airports within Class A airspace (above FL180). At each 15-sec
integration time-step, the number of active conflicts in the airspace was recorded, as was

the total number of aircraft in the airspace at that time.

These conflict data may be used to evaluate the aircraft density of the airspace
environment. A high number of conflicts and a steep rate of growth of conflicts would
suggest that the airspace was nearing saturation. Conversely, a low number of conflicts
and a shallow growth rate would suggest that the airspace still had plenty of extra

maneuvering volume remaining.

The plot of the number of instantaneous conflicts versus the number of aircraft flying
shows that for both structured routing and great-circle routing, the number of conflicts is
quite low, and the growth rate is still shallow (fig. 2.8) (Note: The study [1] referred to
great-circle routing as “free routing,” but as shown in chapter 4, optimal routes may be
quite different than great-circle routes). Without assuming any prior knowledge of aircraft
paths, it is equally likely that one aircraft will be in conflict with any other aircraft. This
suggests that the number of conflicts, X, for any aircraft may be modeled as a binomial

random variable such that the probability mass function is given by

n <p<l
P(X:x)=(x)p"(l-p)"" {21”:1 ) @.11)

where n=(N-1), N is the number of aircraft flying, and

§ h n 2.12
x=>'lc005ex=>m ( )

With this model, the expected number of conflicts for a single aircraft in a field of N

aircraft is given by

E[Xyl = (N-1)p (2.13)
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Figure 2.8. Conflict counts for structured and great-circle routes.
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and the expected sum total number of conflicts (divided in half so that conflicts are not

counted twice) is given by

N
_y EIX] _ N(N-1)p
v=y 24 M

i=1

2.149)

By choosing the aircraft-to-aircraft conflict probability, p, to fit the data in a least

square error sense, the following probabilities and expected values are computied for

structured or great-circle routing (table 2.1):

Table 2.1. Conflict statistics from binomial random variable model.

Statistic Description Flight plan | Great circle
p Probability of aircraft i conflicting withany | gy107° 7x10'6
other aircraft j
E[X;09,] | Expected number of conflicts per aircraft in | 0.027 0.021
Class A airspace with 3,000 aircraft
000 Expected sum total number of conflicts in 40.5 31.5
z [X] | Class A airspace with 3,000 aircraft
; 2
E[X30000] | Expected number of conflicts per aircraftin | 0.27 0.21
Class A airspace with 30,000 aircraft
(extrapolated)
30000 Expected sum total number of conflicts in 4050 3150
Z E[X] | Class A airspace with 30,000 aircraft
< 2 (extrapolated)

These probabilities and expected numbers of conflicts are exceedingly low. In a field

of 3,000 aircraft, only about 1% of the aircraft are ever expected to experience a conflict.

Conflict probabilities are somewhat lower for great-circle routing than for flight plan

routing because aircraft are able to utilize a greater amount of airspace.
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For a free routing system, the airspace at current levels of operation appears to be quite
sparsely occupied, with plenty of airspace available for additional aircraft operations. But
what about in the future? How many more aircraft can operate in the airspace before
conflict probabilities increase to an unmanageable level? An interesting way to examine
these questions is to estimate the average number of aircraft that can be expected in the

airspace if all current airports are operating at maximum arrival and departure rates.

The same study [1] showed that there are approximately 40,000 daily flights and that
at any instant in time there are 3,000 or fewer aircraft in Class A airspace. Further
examination of the data shows that there are only about 200 airports serving Class A
airspace on a regular basis. The average number of active runways for these 200 airports is
difficult to compute precisely, but two active runways per airport is a reasonable

assumption.

The maximum arrival rate per runway, R, may be estimated by landing aircraft at 5

n.mi. separation at a typical landing speed of about 160 knots:

R - 1 air.craft 160 nmi _ 32 aircraft 2.15)
5 nmi-rwy hr hr-rwy

so that the average acceptance rate per airport at full capacity is approximately 65 aircraft

per hour.

Analysis of daily air traffic operating at flight levels 330 and 350 (approximately
33,000 ft and 35,000 ft MSL, respectively) shows that the average flight time is about 2.4
hr. By computing the number of aircraft that would be in the airspace after operating for
2.4 hr at the maximum average acceptance rate, R, the maximum number of en route

aircraft, N may be approximated as

max ?
N .« = 200 airports - 65 ac/hr-airport - 2.4 hr = 30000 aircraft (2.16)

This is a factor of 10 greater than the number of aircraft operating today. By equations
(2.13) and (2.14), this means that one would expect 10 times the number of conflicts for
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each aircraft, and 100 times the sum total number of conflicts (table 2.1). This would be a
significant increase over current operations, but the conflict probabilities would still be

low.

The implication is that even if all the current airports ran continuously at full capacity,
the airspace would still be relatively sparsely occupied. For this to occur, many more
aircraft would need to be manufactured as well. This means that a sparse airspace
assumption is not only valid for current traffic levels, but will continue to be valid for
many years to come until more airports and runways are built, or until other existing

airports are utilized for high-altitude air traffic.

2.6 Sequential Trajectory Optimization

The sparse airspace assumption tums out to be one of the keys to achieving fast and
efficient solutions to the air-traffic control optimization problem. Because of this
assumption, the use of an iterative trial-and-error approach to finding conflict-free routes
is possible. The importance of this must not be underestimated. By the sparse airspace
assumption, one only need know that there is a conflict. It is not important with which
constraint the conflict is taking place, or even the particular geometry of the conflict.
Without this assumption, one must compute precise conflict-resolution maneuvers using
information about all aircraft involved in each specific conflict situation. The
computational overhead required can overwhelm even the computations required for route

optimization.

The sparse airspace assumption implies that the cost function in equation (2.5) is flat
near the optimum solution. This means that of the many conflicts that might arise, one
would obtain nearly the same total cost no matter how the conflicts were resolved as long
as the initial trajectories were nearly optimal. Many researchers have examined
approaches to conflict resolution (for small numbers of aircraft) that are in some way
optimal. These approaches are discussed in greater detail in chapter 5. When extended to
the case of many aircraft, the attempt to find optimal resolution maneuvers contributes to

the explosion in complexity. This happens because each conflict-resolution maneuver
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changes the constraints faced by every other aircraft. To reduce the complexity from NP to
polynomial-time, the problem solution must be constrained. A reasonable place to start is
with the optimal trajectories for each aircraft independent of any conflicts that might
occur. The computation complexity for this task, using the optimization algorithm
described in chapter 4, is just N, where N is the number of aircraft. The next step is to
detect any conflicts and to make adjustments in the aircraft trajectories to resolve those
conflicts. It is already known that if all possible resolution maneuvers are examined, the
problem complexity is probably NP-hard, so a much smaller subset of resolution

maneuvers needs to be selected for examination.

One approach to limiting the number of possible conflict-resolution maneuvers is to
allow only heading maneuvers to one side or the other until all conflicts for that aircraft
have been resolved. Similar approximations have been suggested in previous research,
also for the purpose of reducing the complexity of the problem [45]. If this procedure is
followed in a sequential manner, with trajectories of previously planned aircraft being
held fixed, then the worst-case situation would occur if each aircraft had a conflict with
each previously planned aircraft. For a set of N aircraft, the maximum number of

resolution maneuvers would be

N
Nyg= 3 G-1) = —(N—Z‘ﬁ @.17)

This problem may be solved in polynomial-time, even in the worst case.

There are potentially many different ways to compute feasible trajectory solutions that
meet all the separation constraints, but to explore each of these would be well beyond the
scope of this dissertation. Instead, only this sequential optimization approach is
developed. No claims are made regarding whether the sequential optimization approach is
the best possible, only that solutions may be computed in polynomial time. This
approximate approach will be used to justify several other algorithm choices. The guiding
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principle is to keep the computations as simple as possible so that near-optimum

performance can be achieved in real-time.

2.7 A Practical Bound on the Optimum Solution

Although it is not currently possible to compute the true optimum conflict-free
solution in a reasonable amount of time, a conservative bound on the minimum cost can be
computed by summing the optimum costs for all aircraft while ignoring any conflicts or

other constraints that might arise.

Aircraft trajectory optimization is usually only concerned with minimizing direct
operating costs. If vertical-profile optimization is decoupled from horizontal-route
optimization, then the optimal aircraft speed and altitude profiles are fixed. This turns the
horizontal-route optimization problem into a minimum-time problem for fixed aircraft

airspeed.

The minimum flight time for aircraft i, without regard to separation constraints, is
denoted by J*;. This is computed by minimizing equation (2.1) with the Lagrangian
function set to unity so that the cost function is simply the total flight time, and by
constraining the aircraft to fly at a specified altitude and airspeed profile. The
minimization is subject to the initial and final state, and the dynamic constraints of
equation (2.2) through (2.4). The essence of this optimization problem is to compute the
heading commands that will cause the aircraft to travel between the initial and final-state

constraints in the minimum time.

The total minimum time for a set of N aircraft is given by

rr= Y0 (2.18)
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In any situation where additional constraints may be placed upon the aircraft, the
actual total flight time for a set of N aircraft is given by

=Y 2.19)

The efficiency of any particular solution to the air-traffic control optimization problem
is now defined as
J*
Natc = (2.20)
T
By definition, the actual cost must always be greater than or equal to the minimum
cost. At least one feasible solution to the air-traffic control optimization problem can
always be shown to exist (e.g., all aircraft fly their routes sequentially, with only one
aircraft being allowed in the air at any given time) so that the actual cost is finite. This

leads to the following bounds on the efficiency parameter:

0<Muarcs1 (2.21)

This efficiency parameter is relatively easy to compute, so it provides a practical
means of evaluating optimization performance. The efficiency parameter also provides an
excellent means of evaluating the sparse airspace assumption. If feasible solutions to the
air-traffic control optimization problem have low efficiencies, it would suggest that the
sparse airspace assumption is invalid. Conversely, if feasible solutions with high
efficiencies are commonly found by using simple algorithms, the sparse airspace

assumption would then be strongly substantiated.

2.8 Summary

This chapter introduced the en route air-traffic control optimization problem,
including a high-level description of how the air-traffic control system handles en route

traffic today. The problem was posed as one of minimizing the sum of N cost functions
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subject to up to N((N — 1)/2) inter-aircraft separation constraints. These constraints were
identified as the reason why this problem is considered to be NP-hard, and therefore

intractable. Prior solution approaches and their limitations were then presented.

Analysis of the aircraft trajectory optimization problem was used to justify decoupling
the vertical-profile and horizontal-route optimization functions, which greatly simplifies
the trajectory optimization problem. A probabilistic model of the expected number of
aircraft conflicts was derived and fitted to empirical data to support the assumption that en
route airspace at present traffic levels is sparsely occupied. Further analysis was used to

show that the airspace will continue to be sparsely occupied well into the future.

The sparse airspace assumption led to the choice of a sequential optimization
algorithm using an optimal wind-routing algorithm with a guided trial-and-error approach
to conflict resolution. A simple optimization performance metric was derived to enable the
real-time monitoring of optimization performance for the sequential optimization

algorithm.

The next chapter defines the detailed system concept. After presenting the high-level
concept, the component algorithms are identified for further description in the following
chapters. Among these component algorithms are an optimal wind-routing algorithm, a
conflict-detection algorithm, and a conflict-resolution algorithm. A computational

analysis of the sequential optimization algorithm is also presented.
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Chapter 3
System Concept

3.1 Introduction

The need to compute feasible sets of conflict-free trajectories for all aircraft in real
time has been identified as a major challenge to the implementation of 4-dimensional (4-
D) time-based air-traffic control in the National Airspace System (NAS). This problem is
compounded by the fact that aircraft operators (primarily commercial airlines) will not
accept merely feasible routes, they require efficient (optimal) routes. In the current tactical
system, airlines file flight plans along routes that are predicted to be wind-optimal within
the constraints of the NAS, but these flight plans are not checked for predicted conflicts.
Instead, aircraft routes are significantly constrained so that tactical conflict-resolution
maneuvers may safely be used. Tactical conflict-resolution maneuvers degrade the
performance of aircraft routes, and a system that relies on tactical conflict-resolution
cannot be proven to be safe. In an automated 4-D time-based system where flight plans
must be guaranteed to be conflict-free, some form of strategic trajectory optimization that

satisfies the separation constraints is required.

The air-traffic control optimization problem introduced in chapter 2 has been
categorized as NP-hard [5]. Analysis of the practical problem led to a few key simplifying
assumptions so that feasible solutions might be achieved without greatly sacrificing
optimality. In summary, these simplifying assumptions and their implications are as

follows:

39
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1. Horizontal- and vertical-trajectory optimization are loosely coupled: The
implication is that horizontal- and vertical-trajectory optimization may be
computed independently. This greatly simplifies the task of trajectory
optimization.

2. The airspace is relatively sparsely occupied, and will continue to be so: The sparse
airspace assumption implies that the air-traffic control cost function is flat near the
optimum solution. This suggests that sequential trajectory optimization by means

of a trial and error approach should lead to feasible near-optimum solutions.

The simplifications and approximations used to solve the optimal air-traffic control
problem are necessary to enable real-time computation because of the prohibitive
complexity of the original problem. Throughout the development of this approach, an
appeal is made to the two key simplifying assumptions listed above. The sequential
optimization approach introduced in this chapter is shown to produce near optimum

solutions in polynomial time.

3.2  Sequential Optimization Algorithm

A high-level flowchart for the sequential optimization algorithm is presented in figure
3.1. The algorithm begins by putting all scheduled aircraft into an ordered list called the
Active Aircraft List (AAL), which is to be described in more detail. The optimal vertical
profiles for each aircraft are assumed to have been chosen, and they are inputs to the
horizontal-route optimization algorithm. This was enabled by the decoupling of horizontal
and vertical trajectory optimization. The optimal horizontal route for the first aircraft on
the AAL is computed and checked for conflicts. Note that there will be no conflicts with
other aircraft for the first aircraft on the AAL, but conflicts with regions of bad weather or
with special-use airspace may occur. If any conflicts are found, the trajectory is iteratively
modified until a conflict-free trajectory results. The algorithm proceeds through all aircraft
on the AAL until all have optimal conflict-free trajectories. At this point, the trajectories
may be communicated to the aircraft as clearances, and the optimization procedure may be

restarted as often as required. In between recomputation cycles, it may be advantageous or
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Figure 3.1. Sequential route optimization algorithm flowchart.

even necessary for aircraft to use active control to follow their assigned 4-D trajectories to
ensure conflict-free operations. The main component blocks depicted in the flowchart are

now introduced, but detailed discussion is deferred to later chapters.

3.2.1 The Active Aircraft List

The Active Aircraft List (AAL) is defined as all aircraft currently in flight in the
airspace domain of interest, plus all aircraft scheduled to enter the domain within the next
ATy time period. Most aircraft entering the domain will enter after departing from their
respective airports, but aircraft may also enter through any arbitrarily chosen airspace
boundaries. For example, if Class A airspace over the continental United States is the
domain of interest, then arriving international flights will enter the domain at points not

associated with any particular airport.
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The purpose of ATp is to provide for the computational latency for a complete pass
through the AAL. If the latency were not accounted for, then new aircraft would enter the
airspace domain before conflict-free trajectories had been computed for them. This would
be unacceptable. Therefore, AT, must be set according to the expected maximum time to
complete a pass through the AAL. Some additional time should be allotted in practice to
provide ample time to address any potential optimization or conflict-resolution difficulties
before aircraft enter the airspace domain. The value of AT}, is left as a variable parameter
so that the processing speeds of different hardware systems may be evaluated in

simulation.

The ordering of the AAL still must be chosen. Many different factors might be used to
order the aircraft. Among these are the following:

* Random selection
o Market-driven (aircraft operators pay for the right to higher priority in trajectory
planning)

 First-scheduled-first-served

Without performing complete parametric studies on actual traffic patterns and
accurate models of system uncertainties, the first-scheduled-first-served (FSFS) option
makes intuitive sense and is used here. Studies have indicated that when uncertainty is
considered, there is an optimal look-ahead time for resolving conflicts because there is a
trade-off between solution efficiency and the probability that a conflict will actually occur
[46]. For a given level of uncertainty, there is a theoretical optimum time to perform
conflict-resolution, and this suggests that conflicts should be resolved in chronological
order; this makes intuitive sense because, on average, aircraft that have entered the
airspace domain earlier will have less time remaining on their trajectories, and therefore
any conflict-resolution maneuvers will increase costs more than resolution maneuvers for

aircraft with more of their trajectories remaining. A simple example shows why this is the

casc.

For an aircraft traveling from point A to point B, imagine that there is a conflict that
will occur somewhere along the trajectory at point C (fig. 3.2). The resolution of the

conflict requires that the aircraft deviate from the straight-line path to point E before
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Figure 3.2. Resolving conflicts earlier in a deterministic system is more efficient.

resuming course to point B. If the conflict is resolved from point A, the total additional

flight distance for this first resolution case is given by

dy = dyp+dgp G.D

The total additional flight distance for a second resolution case where the aircraft waits

until a later point, D, to begin the resolution maneuver is given by

The additional distance for the second resolution is always greater than for the first
resolution maneuver. One caveat here is that the assumption has been made that
minimizing distance is more efficient. In the absence of wind gradients, this is true, but
when wind gradients are present, the shortest distance between two points is not always

the most efficient option for minimizing either flight time or fuel use.

The vertical profiles of each aircraft are assumed to have been provided as inputs to
this optimization algorithm. Presumably, aircraft operators would compute optimal
airspeeds and flight levels at which to operate their aircraft for the chosen flight route, but
other profiles may be used, such as a fastest-speed profile. Many practical constraints may
also be considered when choosing a vertical profile, such as regions of bad weather or
turbulence. The important point is that the chosen airspeed and flight level for each

aircraft are to be given as an input to the sequential optimization algorithm.
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3.2.2 Optimal Wind Routing

The optimal wind routing function must take the desired vertical profile (speeds and
altitudes) for each aircraft as inputs, and must return a complete 4-D trajectory. At this
stage, the trajectory has not yet been checked for conflicts or for the satisfaction of other
constraints. The accuracy and resolution of the output trajectory must be such that it can
be adequately compared against other trajectories or airspace constraints. Approximate
straight-line segments with assumed average speeds will not suffice. The quantitative
computational requirements are derived in more detail later in this chapter, but it is already
clear that the route-optimization function must be efficient because it is called on each
pass through the loop. The computation of optimal routes is addressed in much more detail

in chapter 4.

3.23 Conflict Detection

The conflict-detection function must accept a complete 4-D trajectory for the current
aircraft and must determine whether or not the given trajectory is in conflict with any
previously planned trajectories. A generalization of the conflict-detection function is to
consider the satisfaction of additional constraints such as air-traffic control sector loading
limits, special use airspace definitions, or regions of bad weather. Depending upon what
kind of conflict-resolution function is used, the conflict-detection algorithm must return
more or less information about conflicts. If a precise pairwise optimal conflict-resolution
function is to be used, then the conflict-detection function must return detailed
information about the location and geometry of each conflict, including information about
the other aircraft or constraints that are involved. Multi-aircraft conflict-resolution
schemes would require even more detailed information. Another approach is to just
determine that a conflict is predicted without considering any of the specific details. This
approach has the benefit of greatly simplifying the conflict-detection task and is the basic
approach taken in this dissertation. The details are presented in chapter S.
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3.24 Conflict Resolution

The conflict-resolution function may be a sophisticated optimal-resolution algorithm,
or a simple random-perturbation algorithm. A sophisticated algorithm might be able to
resolve detected conflicts while minimizing added path length, or flight time, but these
algorithms would require a significant amount of computational resources. A simpler
approach is to request that the 4-D trajectory be randomly perturbed away from the
potential conflict. This is justified based on the sparse-airspace assumption because one
would expect to find many conflict-free routes near the optimum solution. A modified
version of this approach is explored in this dissertation. Instead of making a completely
random resolution perturbation, a perturbation is made in the general vicinity of the
conflict such that the perturbed trajectory resolves the conflict while retaining wind
optimality. This increases the chances of finding an efficient conflict-free resolution in a

small number of iterations. More details are presented in chapter 5.

3.25 4-D Control

Once a conflict-free trajectory has been computed for an aircraft, a 4-D clearance may
be sent to the aircraft. Depending on the recomputation rate of 4-D trajectories, it may be
advantageous or even necessary for the aircraft to use closed-loop 4-D trajectory control
(fig. 2.6) to mitigate the effects of small disturbances in between recomputation cycles.
Many techniques have been explored for 4-D control and may be adapted for this purpose
[30, 47-61]. However, 4-D control should be used only to the extent required to maintain
conflict-free trajectories, because unnecessary use of 4-D control increases fuel use. This
is intuitive since an aircraft flying at an optimal airspeed that uses airspeed perturbations
to overcome disturbances can only increase its costs over the optimum. An analysis of the
costs of 4-D control is now undertaken to quantify the additional cost of 4-D control. The
goal is to show that 4-D control should be used as sparingly as possible. The following
analysis leads to a relationship between the longitudinal position error variance of an

aircraft using closed-loop 4-D control, and the increased fuel cost over the optimum result.
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The longitudinal perturbation dynamic model of an aircraft traveling through a wind

field with stochastic errors is given by

Ax| |-k 1] Ax + 0
. - w
[Auw] [0 “w] [A"w] ["w] Iw~N(O, 1) (3.3)

where Ax is the longitudinal-position perturbation from the optimum position (from

flying at the optimum airspeed), Au,, is the perturbation in longitudinal winds from the
predicted winds, & is a feedback gain parameter that may be adjusted to either tighten or
loosen the 4-D control loop, a,, is the time constant of the wind-error model, and w is
zero-mean Gaussian white noise that drives the wind-error model. The value of a,, based
on analyses of Rapid Update Cycle (RUC) wind-model errors is approximately

a,, = (1/300) sec!. This corresponds to a time constant of 5 min., which is the
approximate correlation constant of RUC wind model errors [62]. Because this time
constant is so much longer than the speed control dynamics of the aircraft, the speed

control dynamics for the aircraft can be safely neglected in this analysis.
For the system in equation (3.3), the state-error covariance matrix is given by

P=FP+PFT+LWLT (3.9

where W is the error variance of the wind-model error. Substituting in the matrix values

from equation (3.3) leads to the following expressions for the variance of the position
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error, the covariance of the position error with the wind model error, and the wind-model

error variance:

)
= 2 = ——
_ __w (3.5)

Py, = E[(Au,)?] = W?

The fuel cost of an aircraft is simply the integral of the fuel flow rate, either specified
as a function of time or of path distance:

_ frof,, _ rof

where df/dt is the time rate of change of fuel weight, and df/ds is the equivalent path-
distance rate of change of fuel weight. The path-distance expression is used in the

remaining discussion.

The fuel-flow rate of an aircraft is a function of atmospheric parameters and aircraft
speed, but for an analysis of perturbations near the optimum fuel flow rate for a given
altitude and set of atmospheric conditions, the fuel-flow rate may be adequately modeled
as a quadratic function of airspeed. The following is an approximate model for the Boeing
767 aircraft operating at optimum cruising altitude:

by = 4140( Ib/(n.mi./sec)?)/sec
f,=bouZ+ byu, + b, b, = -995.8(Ib/(n.mi./sec))/sec G.7)
b, = 78.27 Ib/sec

where u, is the airspeed of the aircraft in nautical miles per second, and f; is the rate of

change of fuel weight with path distance [30].
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By taking the derivative of equation (3.7) with respect to u,, setting to zero, and
solving for the airspeed that gives minimum fuel-flow rate, the following result is
obtained:

-b,

uopt = —b; (3-8)

N

The additional fuel-flow rate caused by flying at a non-optimum airspeed may be

written as

Af;‘ = -f;'_fsm (3.9)
= bolugy + Auy)? + by (ugy + Au,) + by — [bouZy + byt + b3 ]

This expression simplifies to

Af, = byAu,? + 2bgu,Au, + b Au, (3.10)

opt

The airspeed difference, Au,, is simply the feedback perturbation of the airspeed as

shown in equation (3.3) to be given by

Au, = —kAx (3.11)

This is a stochastic perturbation that is driven by the white noise in the wind-error
model, also shown in equation (3.3), so the mathematical expectation must now be used to
determine the expected additional cost. Introducing the expectation operator, substituting

equation (3.11) into equation (3.10), and simplifying leads to

E[Af,] = ~2bgku o E[AX] + bok? E[Ax?] — b kE[Ax] (3.12)

This expression is simplified further by noting that the average position error is zero,

so that the expected additional fuel flow rate is given by

bok
(k+a,)

E[Af,] = byk?P,, = (3.13)
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Figure 3.3. Plot of additional fuel use vs. regulated position error.

By solving equation (3.5) for k in terms of P,, and substituting into equation (3.13),
the following expression for the expected additional fuel-flow rate as a function of the

position error variance is obtained:

2 -
Jal + 4(W2/P,,) aw:| G.14)

E[Af,]] = b VVZ[
° Jai +4(W2/P,,) +a,

This relationship has been plotted for a,, = (1/300) sec™! and three different values of
W, the RMS wind-model error (fig. 3.3).

Two qualitative trends are apparent from the plot. The first is that reducing wind
modeling errors, or other equivalent longitudinal position errors such as navigation and
flight technical errors, will directly reduce costs. The second is that 4-D control clearly

induces increased fuel costs.

Although the magnitude of the fuel cost increase is modest (of the order of a few

tenths of a percent), even this is important to commercial aircraft operations where
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notoriously tight profit margins cause airlines to increase efficiency wherever possible. In
this case, where no additional computational effort is required on the part of the sequential
optimization system to achieve 4-D control on the aircraft, and where the aircraft would be
using some form of 4-D control anyway, it would make sense to use as efficient 4-D

control as possible.

3.3  Computational Requirements of the Sequential Optimization Algorithm

The computational requirements of the sequential optimization algorithm are derived
here. The resuits of this analysis establish the need for a more efficient optimal wind-

routing algorithm.

Even without trajectory prediction uncertainty, the number of conflicts that may arise
during the computations is not known a priori so that a probabilistic approach must be
taken. This difficulty arises because of the NP-hard nature of the problem. As is to be
shown, deterministic bounds for this problem are unrealistically conservative and not of
much practical use. By following a probabilistic approach, one gives up the elegance of a
deterministic solution or bound, but one gains a much more practical computation bound
in the process. The probabilistic approach leads to a parametric expression for the
expected number of computations. The parameters of the resulting expression may be
adjusted to match observed data for any problem of interest. In addition to the
computational estimate, a useful feature of the derived expression for the expected number

of computations is that it also provides an estimate of the maximum airspace capacity.

In the discussion that follows, the term “computations” represents consistent units for
expressing computational effort, such as floating point operations or computer clock

cycles. These units are all interchangeable through proportionality constants.

The expected number of computations to arrive at a minimum-time sequential

optimization solution for the i th aircraft, is given by

E[E;] = E[R;- (Eyo + &cq)] (3-15)
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where E[ ] is the expectation operator, &; is the total number of computations for aircraft
i, R; is the number of conflict-resolution iterations for aircraft i, &, is the number of

computations required to compute a single wind-optimal route, and € ; is the number of
computations required to check a single route for conflicts. Since the number of conflicts
that may arise is independent of the computations required to compute optimal routes or to

detect conflicts, equation (3.15) becomes

E[E;] = E[R;]-(E[&y,] + E[Ec4]) (3.16)

Similarly, the expected total number of computations over all N aircraft is given by

N N
E[Z é-] = [Z E[R,']J - (E[E, ] + E[E4]) G.17)

i=1 i=1

As seen in equation (3.17), the expected numbers of computations to compute optimal
routes or to detect conflicts are both multiplied by the total number of conflict-resolution
iterations. At least one iteration is required for all aircraft, so that the total number of

conflict-resolution iterations is greater than or equal to the number of aircraft:

N
Y ER]2N (3.18)

i=1

One may theorize that the actual number of iterations will depend upon the following
quantitative and qualitative parameters:

Size of the airspace

Structure of allowable aircraft routes

Number and distribution of aircraft

Specific restricted airspace owing to statutory regulations or bad weather
Conflict-resolution algorithm details
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Figure 3.4. Conflict probability is hypothesized to be memoryless.

These parameters do not easily lead to a closed-form theoretical expression for the
expected number of conflict-resolution iterations. Therefore a parametric model is derived

which can be fitted to empirical data for different conditions.

33.1 Conflict Iteration and Capacity Model

The goal here is to derive a practical model to predict the computations required to
obtain conflict-free trajectories for some given number of aircraft. The hypothesis is that
for a sequential conflict-resolution strategy, it is equally likely at each iteration that
another conflict may be encountered (fig. 3.4). This may be described as a memoryless
property, and suggests the use of the geometric random variable (GRV) for the conflict

iteration model, because the GRYV is the only discrete random variable with the

memoryless property.

If R; is modeled as a GRV representing the number of iterations required to resolve all

conflicts for the i th aircraft, where each resolution iteration is considered to be an
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independent Bernoulli trial with probability P; of being conflict-free, then the probability
mass function (pmf) for R; is given by

i=12,..,N

3.19
k=12,.. G-19)

Pi = Pi(1 ‘Pi)(k-l){
where p,, is the probability of resolving a conflict in k iterations for the i th aircraft.
Typical values of P; are close to unity so that the probability of finding a conflict-free
solution during the first iteration is high, and the probability that a conflict-free trajectory

will not be found until a later iteration decreases rapidly.

The expected value of the GRV, R, is

E[R] = (3.20)

1
P;
As an extension to the standard GRV model, P; is modeled as a function of the aircraft
number. The reason for doing so is that the probability that a particular aircraft trajectory
will be conflict-free decreases as the number of aircraft increases. The first aircraft will
have a conflict-free trajectory with probability 1, while later aircraft will have increasing

conflict probabilities.

In the interest of developing a simple model with a small number of parameters, a
linear form for P; is chosen as
(Co + 1) _ 1

i=—¢ ¢ (3.21)

where C, and C, are parameters that are to be determined to best fit observed data. The

form for the coefficients of P; was chosen to simplify the final results.
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Substituting equation (3.21) into equation (3.20) leads to

¢
EIR] = =y (322)
As a practical model, equation (3.22) is not yet convenient. To generate enough data to
curve-fit equation (3.22), one would have to perform multiple simulations or experiments
to generate many data points at each value of i/ so that the expected number of resolution
iterations could be determined to some degree of statistical significance. A curve-fit of

these expected values as a function of i could then be used to determine C and C, ina

least square error sense.

A better approach is to derive an expression for the sum of equation (3.22). By doing
so, only one simulation need be run while maintaining a running total of the number of
conflict iterations. Each element of the sum is an independent measurement so that many
independent measurements contribute to the sum as a function of the number of aircraft. A

curve-fit of the summation function may then be used to obtain values for C;, and C, .

The summation of equation (3.22) leads to the following analytical expression:

N
Yy= z E[R;]
i=1 (3.23)
C

N
N
= X =i - (@ g )

"~ Cy(Cy—N)
where ¥ (x) is the digamma function, defined as

¥(x) E%m(r(x)) (3.24)
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and the gamma function, I'(x) , is defined as

)= _[0 txr-De~tdy (3.29)

Although equation (3.23) is quite compact, it would be inconvenient to leave the
expression in this form. Routines for computing the digamma function are becoming more
common, but the digamma function is not particularly well-known. In the region of
interest for this problem, the digamma function is asymptotically close to the natural
logarithm, In(x). This leads to the following approximate form of equation (3.23):

_ MmN
Yy=Y'y = Cl(ln(Co)—ln(Co N) A N)) (3.26)

P il
T T Go-N) T Cy(Cy-N)
A discussion of the physical nature of equation (3.26) is now presented, during which

the second term will be shown to be negligible in the region of interest so that the expected

total number of conflict iterations for a given number of aircraft is well approximated by

A Co

By examining equation (3.21), one can determine some properties of the conflict-
iteration model parameters. The first aircraft will only require one resolution iteration
(ignoring special-use airspace and weather cells for the moment), with probability 1,

leading to the following relation:

Ch+1
P1=(0 )_

1
— = 28
C, C, l (3.28)
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so one would expect

Co=C, (3.29)

When curve-fitting actual data, the fits obtained using two parameters are much better
than single-parameter curve-fits because the data are not absolutely random; as a result,
both parameters are retained. However, the analysis above shows that one might expect
the values for C, and C, to be numerically close. In real air-traffic data, there are often
concentrations of aircraft traveling along the more popular city-pair routes at peak travel
times so that the air traffic is not randomly distributed as presupposed by the GRV model
assumption. Because of these unmodeled properties in the real air-traffic data, the GRV
model is not a perfect fit, but it is close and leads to a practical method for estimating

computation requirements for conflict resolution.

Restricting attention to optimization in the horizontal plane, for free-routed air traffic
at the busiest flight levels over the continental United States (flight levels 330 and 350),
C, and C, are both around 1,200 (e.g., fig. 6.8, chapter 6). The maximum number of
aircraft found at these flight levels is about 500. For these parameter values, the two terms

in equation (3.26) are given by

CO
1200
C.In = IZOOIn(———) — 646.8
‘ (Co—N) 1200 - 500

(3.30)
CN  1200-500

CoCa=N) ~ 1200(1200—500) - 7!

The second term is negligible when compared to the first, and is always less than
0.015% of the expected total number of conflict iterations up to the discontinuity at
N = C, = 1,200 . The magnitude of the difference between the logarithm approximation
(eq. (3.27)) and the exact version (eq. (3.23)) is less than 0.12% up to N = 1,000 , and is
always less than 4.1% up to the discontinuity (fig. 3.5).
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Figure 3.5. Expected No. of conflict iterations and approximation errors.

An important property of the derived conflict-iteration model is that there is a
discontinuity when C,, equals N. This discontinuity occurs in the same place in each of
the various approximations of the model and is related to a physical result: it is not merely
an abstract mathematical anomaly. It is instructive to consider the underlying reason for

this discontinuity.

For a given situation, including the traffic patterns, the weather situation, and the
chosen conflict-resolution algorithm, there is a theoretical maximum number of aircraft
that can fit in the allotted airspace. Without any empirical data, one might try to determine
a bound for the maximum number of aircraft by simply dividing the airspace area by the
legally required area per aircraft. This is what has typically been done in the past. In en

route airspace, aircraft must always maintain at least a 5-n.mi separation between
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themselves and all other aircraft, so a reasonable approximation is to allow one aircraft per
25 square nautical miles. The continental United States covers approximately 3.8 million

square nautical miles, so this simple bound would predict that 150,000 aircraft could fit at
each flight level. To remain conflict-free, this would necessarily have to correspond to the
situation where all aircraft were traveling in exactly the same direction at exactly the same

speed (fig. 3.6). This is clearly not of much use in practice.
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Figure 3.6. Two illustrations of airspace capacity limits.

When used to model a particular air-traffic system, the value of C, that is determined
by curve-fitting actual data is a prediction of the maximum airspace capacity. This is an
important result, because it provides, for the first time, a practical means of evaluating
different conflict-resolution algorithms for their effect on airspace capacity. Much use of

this capacity metric is made in this dissertation.

3.3.2  Extrapolating 2-D Solutions to the Full 3-D Problem

The complexity of the en route air-traffic-control optimization problem lies primarily
in the area of horizontal route optimization and conflict resolution. Even though the
vertical and speed profiles are computed separately in this concept, conflicts need to be
checked over all altitudes. This adds a greater volume of airspace and a greater number of

aircraft, but no inherent increase in solution complexity. Although possible on higher-end



3.3. Computational Requirements of the Sequential Optimization Algorithm 59

current-day computer hardware, solving the air-traffic-control optimization problem for
all of Class A airspace exceeds the amount of RAM available on the computer that has
been used for algorithm development and simulation (256 MByte). This is largely because
of the method used to achieve efficient conflict detection. Also, since MATLAB is used
for algorithm development, simulation, and presentation of results, the processing speed is
not as fast as would be the case in a compiled-code version of the algorithm. This is
because MATLAB is partially an interpreted computer language. Because of the reduced
processing speed, the solution for the typical numbers of aircraft in all of Class A airspace
(3,000 - 5,000) would result in excessive simulation times. For these reasons, it is
desirable during the algorithm development stage to address the reduced-scope problem of
optimization in a horizontal plane and to relate the results of the reduced-scope problem to

the solution of the full Class A problem.

As discussed in chapter 2, optimal vertical profiles consist of essentially constant
altitude cruise segments at constant airspeed (fig. 2.7). This implies that most of the
conflicts that can be expected will be between aircraft at the same altitude. Therefore, it is
hypothesized that solution properties for all aircraft at a single flight level will scale

linearly with the number of flight levels in Class A airspace.
The number of conflict iterations for the full Class A problem (3-D) is given by
- Co
Yip = Cy ln(__——) (3.31)
Co-Nsp

where N, is a variable representing the number of aircraft for the 3-D Class A airspace
problem. Both C and C; are model parameters for the 3-D problem that are to be

determined through simulation.
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If the assumption is made that there are relatively few conflicts in en route airspace
between climbing/descending aircraft and aircraft in level flight, the expected number of

conflict iterations at any one flight level out of N, flight levels is then given by
and the number of aircraft at any one flight level is given by

Substituting equations (3.32) and (3.33) into equation (3.31) and solving for Y, leads

to the following expression for the expected number of conflicts at any one flight level:

C
Y,p = C m( 0 ) 3.34
= GINETy (3.34)
where
Co=Co/Ng, (3.35)
and
C,=C/Ng, (3.36)

Equation (3.34) has exactly the same form as equation (3.31) so that under the given
assumptions, the number of aircraft at a single flight level is expected to follow the same
functional form as for the full Class A airspace problem. The model parameters C, ana

C, are simply scaled by the number of flight levels.

This leads to a dramatic reduction in the effort required to obtain results that apply to
the full Class A problem. In the common flight altitudes of Class A airspace (FL180
through FL390), there are 17 distinct flight levels at which up to 3,000 aircraft may be
found at any instant in time (chapter 2). Instead of running simulations of 3,000 or more

aircraft to determine the model parameters of equation (3.31), one may run much simpler
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simulations of about 175 aircraft (3000/17) at constant altitude. Air traffic is not evenly
distributed among the flight levels (fig. 2.2) because it is more efficient for most large jet
aircraft to operate at about 35,000 ft. Therefore, constant-altitude simulations must use a
few more aircraft than prescribed by equation (3.33) (about 400 is the maximum number
of aircraft found at FL330 or FL350 at any instant in time). Simulating several times this
value is easily achieved on the development platform, an IBM ThinkPad 750-MHz laptop
with 256 MB RAM, running MATLAB. The values of C;, and C, may be determined by
curve-fitting the simulation data, and then equations (3.35) and (3.36) may be used to
determine the equivalent values for the full Class A problem (e.g. fig. 6.8 & fig. 6.10,

chapter 6). This is a significant reduction in the effort required to estimate these values.

34 Summary

Equation (3.17) showed that both the wind-optimal routing calculations and the
conflict-detection calculations are computational primitives for this system concept. Both
of these quantities are multiplied by the expected number of conflict iterations, which may
be a large number. This requires that both the optimization and conflict-detection

functions be made as efficient as possible so that the algorithm may be run in real-time.

A parametric model of the expected number of conflict iterations as a function of the
number of aircraft has been derived based on a geometric random variable conflict model.
The model has been derived for the general 3-D problem for all of Class A airspace, and
then a similar model for the equivalent 2-D case was then derived. The equivalent 2-D
model allows much simpler simulations to be conducted to obtain computational resuits
for the full 3-D problem. This simplification is required to make algorithm development
and simulation possible on a typical 750-MHz laptop computer.
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Chapter 4
Optimal Wind Routing

4.1 Introduction

This chapter introduces the concept of computing minimum-time routes through wind
fields, and a new solution technique called Neighboring Optimal Wind Routing (NOWR).
Optimal wind-routing is a core function of the sequential optimization algorithm, and
therefore must be computationally efficient (fig. 3.1, chap. 3). The NOWR technique is
shown to have excellent optimization performance characteristics, and is computationally
efficient when compared to existing algorithms. This makes NOWR ideally suited for
computing conflict-free optimal routing solutions in real-time with the sequential

optimization technique.

The reason that NOWR is so efficient is that it is a linear feedback algorithm.
Perturbations in the winds along the entire nominal trajectory are fed back to perturb the
aircraft heading such that the resulting trajectories are optimal to second order. Although
this is mathematically no different than any other formulation of time-varying linear state
feedback, NOWR is unusual because of the feedback of perturbations in the future wind
states. The NOWR algorithm anticipates the winds that will be experienced at later stages
in the flight and modifies the aircraft heading accordingly. This is made apparent through

several illustrative examples in this chapter.

As noted in chapter 2, vertical-profile optimization and horizontal-route optimization

are often decoupled. Although some optimization performance may be lost, the

63



4.1. Introduction 64

computational simplification achieved is a significant benefit. The solution to the vertical-
profile optimization problem with the goal of minimizing direct operating cost (DOC)
yields a schedule of altitudes and airspeeds for a particular aircraft and particular route.
The optimal vertical profiles for typical commercial jet aircraft are accurately
characterized as constant-altitude or piecewise constant-altitude segments at constant or
piecewise constant airspeed (fig. 2.7). The corresponding horizontal-route optimization
problem becomes a minimum-time problem since the speed of the aircraft is fixed. In the
absence of winds, or in a constant wind field, the optimum solution is a straight line
between the origin and destination (a great-circle route on a spherical surface). In varying
winds, the horizontal-route optimization problem is essentially that of finding minimum
time routes through a varying wind field. This is referred to as an optimal wind-routing

problem.

In regions of strong winds and horizontal wind shear, optimal wind-routes save an
average of about 1.6% of flight time (or fuel burn) over the corresponding great-circle
routes on long-distance flights (500 n.mi. or greater). An even greater savings, nearly
4.5%, can be achieved over the corresponding constrained flight-plan routes in use today.
This is a reduction of about 500 hr per day in flight time, which translates to nearly $1
million per day ($360 million annually). Large savings on the order of 12% have been
observed during strong wind conditions typical of the winter months. More is said about
these statistics later in this chapter. In addition to direct cost savings, the air-traffic density
would be reduced for a given number of aircraft by spreading aircraft over a greater
volume of airspace than is possible in a structured routing system. This may enhance
safety by lessening the chance for collisions. Because of the clear economic advantage and
potential system benefits offered by optimal wind routes, it is not surprising that airlines
attempt to operate aircraft along optimal wind routes as nearly as possible within the
constraints of the current air-traffic control system. Airlines will continue to fly optimal
wind routes as the air-traffic control system transitions to a more flexible system based on

Free Flight concepts [21].
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Although airlines currently compute approximate optimal wind routes for their
aircraft, the techniques they use are not well-suited to real-time operation in the
computation of conflict-free optimal wind paths for a large number of aircraft. As shown
in chapter 3 (equation (3.17)), when computing conflict free optimal routes for a large
number of aircraft with a sequential optimization approach, the wind-optimal

computations must be efficient because they are repeated many times.

This chapter continues with a general discussion of the potential benefits of optimal
wind routes. Next, a discussion of the computation of minimum-time paths for aircraft
traveling at a constant speed and altitude through a wind field is presented. After
introducing this problem and the prior art applied to its solution, the neighboring optimal
control solution is presented. The neighboring optimal control solution is derived for the
general case of an aircraft flying through a generally-varying wind field in spherical
coordinates. The resulting algorithm is called Neighboring Optimal Wind Routing
(NOWR).

A simulation study is conducted to evaluate the performance of NOWR. A discrete
dynamic programming (DP) algorithm is used to compute true optimal routes to a fairly
high degree of certainty. As with any directed graph optimization algorithm, there is a
trade-off between optimization performance and computational speed. A comparison of
NOWR and DP solutions is conducted to evaluate the performance/computation speed

trade-off, and the results are presented.

One of the most important attributes of the NOWR algorithm developed in this
dissertation is that it eliminates the difficulty of computing the nominal optimal
trajectories that usually must be computed for neighboring optimal control. Because of
this contribution, NOWR is an O(N) algorithm, meaning that the computational effort
required increases at a rate proportional to the length of the trajectory being computed.
Actually, the normalized implementation of the NOWR algorithm has made it an O(k)
algorithm, where k is a constant. Since the trajectories are normalized, the amount of

computation required to compute a neighboring optimal route between any two points is
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independent of the trajectory length. All previous optimal wind-routing algorithms exhibit
computational complexity of O(NlogN) or higher.

4.2 Motivation: The Potential Benefits of Optimal Wind-Routing

The potential benefits of optimal wind-routing may be estimated by comparing flight
times for optimal wind-routes with the corresponding times for filed flight-plan routes and
great-circle routes. Obtaining complete data sets including winds, convective weather and
turbulence, and aircraft schedule and track information is challenging because it requires
vast amounts of computer memory and patience while awaiting the fulfillment of requests
for data from various sources. Blending data from disparate sources is also a challenge. A
comprehensive data analysis spanning over at least 1 year would be ideal, but this level of
effort is beyond the scope of this dissertation. Instead, a limited analysis is conducted
across a set of representative days so that the magnitude of potential benefits may be

estimated. This demonstrates how more detailed data analyses might be conducted.

4.2.1 Optimal Wind Routes versus Great-circle Routes

A representative selection of 42 common long-rang