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Abstract

The increase in air traffic along the existing jet route structure has led to
inefficiencies and frequent congestion in en route airspace. Analysis of air-traffic data
suggests that direct operating costs might be reduced by about 4.5%, or $500 million per
year, if aircraft were permitted to fly optimal wind-routes instead of the structured routes
allowed today. To enable aircraft to safely fly along unstructured optimal routes,
automation is required to aid air-traffic controllers. This requires the global solution for
conflict-free optimal routes for many aircraft in real time. The constraint that all aircraft
must maintain adequate separation from one another results in a greater-than-
exponential increase in the complexity of the multi-aircraft optimization problem. The
main challenges addressed in this dissertation are in the areas of optimal wind-routing,
computationally efficient aircraft conflict detection, and efficient conflict resolution. A
core contribution is the derivation of an analytical neighboring optimal control solution
for the efficient computation of optimal wind-routes. The neighboring optimal control
algorithm uses an order of magnitude less computational effort to achieve the same
performance as existing algorithms, and is easily extended to compute near-optimal
conflict-free trajectories. A conflict detection algorithm as been developed which
eliminates the need to compute inter-aircraft distances. Simulaiion results are presented
to demonstrate an integrated horizontal route-optimization and conflict-resolution
method for air-traffic control. Conflict-free solutions have been computed for roughly
double the current-day traffic density for a single flight level (over 600 aircraft) in less
than 1 minute on a 450-MHz UNIX work station. This corresponds to a computation
rate of better than 25 optimal routes per second. Extrapolation of the two-dimensional
results to the multi-flight-level domain suggests that the complete solution for optimal

conflict-free routes can be achieved in about | min. using currently available hardware.

iv
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Chapter 1
Introduction

The objective of this dissertation is to work toward a real-time method to optimize and
deconflict en route trajectories of all aircraft in flight on a continental scale. Under certain
practical assumptions, optimization of en route aircraft trajectories is primarily a problem
of finding minimum-time horizontal routes through a varying wind field. A practical real-
time optimization method would enable the development of a system to perform strategic
optimization of air traffic within the National Airspace System (NAS) of the United
States, the largest and busiest air transportation system in the world. This has not been

possible using existing approaches to air-traffic control optimization.

Much of the en route air-traffic control research of the past decade has focused on
allowing aircraft to fly along less constrained routes than is possible today by relying on
distributed control to guarantee safe conflict resolution. Free Flight is the general term that
has been applied to these concepts. But the ultimate goal of Free Flight is to remove route
constraints so that the routes traveled are close to optimum (minimum fuel, minimum
time, minimum deviation from schedule, etc.), not to effect distributed control as an end in
itself. The theoretical optimum solution for all aircraft is generally considered to be
impossible to compute using current state-of-the-art optimization algorithms and
computer hardware. The development of a feasible approach to providing near-optimal
conflict-free air-traffic control solutions in real-time would constitute an important

contribution to the field of air-traffic control.
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1.1 Motivation

By creating a system that can safely and efficiently optimize aircraft routes in real
time, it becomes possible to move toward a system free of the many route constraints
imposed in the current structured routing system. An analysis of actual traffic data has
shown that a reduction of at least 4.5% in total flight time (or fuel use) is possible when
aircraft are permitted to fly unconstrained optimal routes. In real terms, this is a reduction
of about 500 hr per day in flight time, which translates to nearly $1 million per day ($360
million annually). In addition to direct cost savings, the air-traffic density would be
reduced for a given number of aircraft by spreading them over a larger airspace than is
possible in a structured routing system. This should improve safety by lessening the need

for tactical collision avoidance.

1.2  Challenges

The greatest challenge to real-time air-traffic control optimization is system
complexity. The airspace air transportation systems in the world. At any given time, there
may be as many as 3,000 aircraft operating in Class A airspace over the continental United
States, making it among the world’s busiest [1]. Just computing an optimal route for a
single aircraft is a difficult problem because of the varying wind field, but the great
increase in complexity begins when multiple aircraft and trajectory conflicts are

considered.

The solution complexity becomes apparent when considering all the possible solution
sets, or orderings, of all aircraft. In this context, a solution set refers to all solutions to one
side or the other of a conflict-resolution maneuver in a horizontal plane. For N aircraft
traveling in a horizontal plane, the number of possible discrete solution sets of the aircraft

is given in general by
N = 2((NN-1))/2) (1.1)

The ordering of aircraft in the horizontal plane may be achieved by changes in speed

or heading, or by a combination of the two. For example, in the case of two aircraft at a



1.2. Challenges 3

Solution Set 2

Solution Set 1

~.,

AC,

Figure 1.1. Two possible solution sets (crossing orders) for two aircraft.

constant altitude there are two possible solution sets (fig. 1.1). In the first solution set,
aircraft AC, crosses ahead of aircraft AC, , with the order being reversed in the second
set of solutions. For three aircraft, the number of possible solution sets increases to eight
(fig. 1.2). When the current-day maximum number of aircraft at any given flight level is
considered (about 500 aircraft at FL330 or FL350), the number of possible solution sets
explodes to more than 1037:500 By examining equation (1.1), one sees that adding just
one additional aircraft leads to 2V times the number of possible solution sets. This
greater-than-exponential increase in computational complexity is typical of optimization

problems involving many independent vehicles or agents [2-5].

The optimum result within each solution set must still be computed and compared
with each other set to determine the global optimum solution. For the air-traffic control
problem, these individual optimization problems are essentially wind optimal routing
calculations. Computing wind optimal routes for a single aircraft is nontrivial because the
problem is both nonlinear and nonconvex. Efficient grid-search techniques such as
discrete dynamic programming (DP), and randomized search techniques such as Genetic
Algorithms (GA) have been applied to optimal wind routing, but they are still too
computationally intensive to solve the many-aircraft optimal conflict free routing problem

in real time [6-9].

Another subtle complexity of the air-traffic control optimization problem is that there

is no clear beginning or end. With the rare exception of the terrorist attacks of 11
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September 2001, there is always a significant number of active aircraft in the United

States airspace. This is not a difficulty in practice, as evidenced by the fact that the system

performs adequately today, but when one tries to compute an optimal solution instead of

just a feasible solution, the continuous nature of air traffic becomes vexing. The difficulty
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arises because inter-aircraft separation constraints couple the optimal solutions of each

aircraft to the controls of each other aircraft for all time.

An additional factor that contributes to the complexity is that significant unmodeled
disturbances exist, such as misforecast atmospheric conditions and aircraft flight technical
errors. These disturbances push the system well beyond linear perturbation limits and

ultimately require that optimal solutions be recomputed in real-time.

13 Contributions

The main contribution of this dissertation is the design of a system that computes a
complete set of conflict-free wind-optimal routes for double the current-day air-traffic
density at the busiest flight level in less than 1 minute on a 450-MHz UNIX work station.
This is orders of magnitude beyond the capabilities of any currently available algorithms,
and is a major contribution to the field of air-traffic control. To achieve this real-time,
conflict free optimal-route planning capability, several contributions are claimed in this

dissertation.

1.3.1 Neighboring Optimal Wind Routing

The first contribution is the development of a computationally efficient wind-optimal
routing algorithm based on neighboring optimal control techniques. The resulting
algorithm, called Neighboring Optimal Wind Routing (NOWR), computes near-optimal
routes in an amount of time that is proportional to the length of the route (this is referred to
as “order n,” or O(n) ) with a relatively small proportionality constant. The best prior
techniques have been shown to be O(nlogn) , with very large proportionality constants.
Aside from the improvement in computational efficiency, the NOWR algorithm has been

shown to be well suited to conflict resolution in a sequential optimization system.

1.3.2  Efficient Strategic Conflict Detection and Resolution

The next contributions are in the areas of aircraft conflict detection and resolution. The
problem of conflict detection is to predict whether the distance between any pair of

aircraft will be less than the allowable legal separation (generally 5 n.mi. for commercial
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aircraft), and the best existing conflict detection algorithms have been shown to be
O(nlogn) [10]. A new approach to conflict-detection that is coupled with the conflict-
resolution process is developed. The technique is called the Conflict Grid (CG) and is
shown to require a negligible amount of computation relative to that required to compute
an optimal trajectory (less than 0.1%). An enhancement to the NOWR algorithm is made
to enable the efficient computation of perturbed wind optimal routes. A very efficient
conflict detection and resolution strategy is developed based on the perturbation NOWR
algorithm for which the expected number of computations is proportional to
log(Cy/(Cy—n)), where n is the number of aircraft in the system, and C,, is a constant
parameter used to fit the computational model to empirical data. This is the first technique
to resolve conflicts while maintaining a sense of wind optimality for each aircraft route.
All previous approaches have either neglected winds entirely, or have assumed that some
nominal ground path was the desired objective so that conflict resolutions were computed

to minimize deviations from the nominal path [11].

Although there can be no claim of global optimality for the resulting solutions using
the techniques presented in this dissertation (an NP-hard problem cannot be solved in
polynomial time), the solutions are compared to a theoretical bound on the optimum

solution to give real-time measures of the optimization performance.

1.3.3  Airspace Capacity Modeling

Additional contributions have been made in system analysis using the techniques
developed in this dissertation. The first is the derivation of a practical airspace-capacity
model. Until now, there has never been a practical method for accurately estimating
airspace capacity for a given air-traffic-control strategy. The technique is derived by
hypothesizing a probabilistic model of the expected number of conflicts as a function of

the number of aircraft in the airspace.

Using the probabilistic airspace-capacity model, simulation studies have been
conducted to determine the relationship between legal aircraft separation standards and

airspace capacity. This relationship may be used to estimate the benefits to be gained by a
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reduction in minimum separation standards that will be possible with the introduction of
new surveillance technologies like the Wide Area Augmentation System (WAAS) and
Automatic Dependent Surveillance Mode-B (ADS-B). Until now, there has been no
practical or meaningful way to translate navigational accuracy improvements into air-

traffic capacity and efficiency gains.

By reasoning that the ultimate requirement for real-time recomputation of optimal
trajectories for all aircraft is driven by consideration of anomalies such as in-flight
emergencies, a computer performance requirement has been derived. The resulting
relationship gives the required computation rate as a function of the minimum separation

distance between aircraft.

14 Dissertation Outline

14.1 Background

Background on prior art in 4-D air-traffic control system concepts dating back to the
early 1970s is presented in chapter 2. The background discussion is followed by a
statement of the air-traffic-control optimization problem and a discussion of the
simplifying assumptions that are made to arrive at a practical method to achieve near-

optimum performance in real time.

14.2 System Concept

The system architecture is presented in chapter 3, followed by an analysis of the
computational requirements and performance capabilities of the chosen system. The
system concept is based on the strategic optimization of all aircraft trajectories. Aircraft
then would follow the optimal trajectory clearances using closed-loop 4-D guidance and
control. The optimal solution is approximated by solving for the optimal conflict-free
trajectories of each aircraft sequentially, while holding previously computed trajectories
fixed. This approximation reduces problem complexity to that which may be solved in

polynomial time.
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143 Optimal Wind Routing

Prior art in the computation of optimal wind routes is presented in chapter 4. This is
followed by the development of an algorithm called Neighboring Optimal Wind Routing
(NOWR), which is shown to be an efficient method for computing optimal wind routes.
The chapter concludes with a discussion of the benefits of NOWR over those of existing
approaches, and of recommendations for future to further improve the performance of

NOWR.

144  Strategic Conflict Detection and Resolution

The prior art in solving the related problems of strategic conflict detection and
resolution is discussed in chapter 5, followed by the development of more efficient
solution approaches that retain optimality in winds. For conflict detection, an algorithm is
developed that is essentially free, from a computational standpoint. For conflict-
resolution, the NOWR algorithm is enhanced so that it may be used in an iterative manner

for conflict-resolution.

1.4.5 Simulation and Performance Evaluation

The algorithms developed in this dissertation are integrated into a complete simulation
system in chapter 6. The design of the simulator is presented, including a pseudo-code
listing of the simulator source code. The results of a set of parametric studies are then
presented to demonstrate how the optimization algorithms might be used in practice, and
to demonstrate the kinds of analyses that may be conducted with the simulator. The
chapter concludes with a computational timing analysis of the neighboring optimal wind

routing functions to show that real-time optimization has been achieved.

1.4.6 Conclusion

The final chapter presents a summary of the main conclusions and contributions of the

dissertation. Recommendations for future research are also presented.



Chapter 2
Background

2.1 Introduction

The goal of en route air-traffic-control (ATC) optimization is to find the most efficient
trajectories for all aircraft operating in the national airspace system (NAS) while
maintaining a safe separation distance between all aircraft. This is a complex dynamic
optimization problem with inequality constraints on the separation between aircraft. The
optimization criterion is to minimize the direct operating cost (DOC) for each aircraft in

the system, where DOC is a weighted combination of fuel and time costs.

The large number of constraints has led to the classification of this problem as a
nondeterministic polynomial-time hard (NP-hard) or NP-complete problem. This means
that the problem is characterized by an inherent complexity that causes the solution effort
to increase at a rate greater than can be expressed by a polynomial function. Two excellent
sources for non-mathematicians on computational complexity are found in references 2
and 3, and a more rigorous description may be found in reference 4. The NP-hard nature
has been proven for some abstract forms of the aircraft conflict-resolution problem and
will be assumed true for the purposes of this dissertation [S]. Because the complexity of

this problem precludes its rigorous solution, approximate solutions are required.

There are many approximate solution approaches to the ATC optimization problem.
To explore each of them is beyond the scope of this work. Instead, the goal is to use

practical system analysis to help guide the choices and approximations made to obtain
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near-optimal solutions in real-time. To find a feasible solution, the problem must be
transformed into one that can be solved in polynomial time. The challenge is to make
approximations that do not significantly degrade the optimality of the solution.

In this chapter, the en route ATC optimization problem is posed as a dynamic
optimization problem so that the complexity of the solution may be discussed. The
complexity will be shown to originate from the aircraft separation constraints. Prior
approaches to solving this problem are then discussed. The remainder of this chapter
introduces simplifying approximations that enable solutions in polynomial time without
greatly sacrificing optimization performance. A brief description of the current en route
air-traffic control system is now presented to provide perspective for the work in this

dissertation.

2.2 Current En Route Air-Traffic Control

Airspace over the continental United States is classified as either Class A, B, C, D, E,
or G according to the type of air-traffic services provided (fig. 2.1). Class A airspace

314,500 MSL

' MSL - mean sca level
" AGL. - above ground level
. FL - flight level

Figure 2.1. Airspace classifications in the United States.
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extends from 18,000 ft above mean sea level (MSL) up to 60,000 ft, and is the domain of
interest for en route air-traffic control. Altitudes in Class A airspace are discretized by
flight level, where a flight level (FL) is defined as a surface of constant atmospheric
pressure which is related to a specific standard pressure datum (standard pressure: 29.92
in. Hg or 1,013 hPa) and is separated from other such surfaces by specific pressure
intervals which are stated in three digits that represent hundreds of feet. For example,
FL600 is 60,000 feet MSL. The distinction is made between a flight level and a
geopotential altitude in air-traffic control so that aircraft operating on barometric
altimeters will all have common altitude references in any local region. In this way,
aircraft can maintain unambiguous altitude references while following isobars. Note that
standard pressure altitude may differ from true geopotential altitude by a few thousand

feet as atmospheric conditions change.

Within Class A airspace from FL180 up to FL390 there are 17 distinct flight levels.
From FL180 through FL290, the flight levels are separated by 1,000 ft and alternate
westbound and eastbound traffic, with FL180 being a westbound level (headings from
000° through 179°). Above FL290, the flight levels are separated by 2,000 ft, again with
alternating westbound and eastbound traffic. FL290 is an eastbound flight level. With the
desire to move toward free flight, changes to the flight-level rules are planned. Under a
program called Reduced Vertical Separation Minimum (RVSM), the separation between
flight levels over the North Atlantic has already been reduced to 1000 foot increments.
The same change is due to be phased in over the continental United States in January
2005. More fundamental changes in the flight-level definitions have also been considered,
such as using a finer quantization of flight levels depending on a more detailed

quantization of the direction of each aircraft [12].

A recent study of air-traffic conflicts for free and structured routing reported that of
the approximately 57,000 aircraft flying during a typical 24-hr period in the U.S., about
38,000 operated in Class A airspace [1]. The peak number of aircraft operating at any one

time in Class A airspace is about 3,000, with a little more than half of that traffic operating
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Maximum Aircraft Count per Flight Level on March 18, 2000

Maximum Aircraft Count
g8 & 8 & 8 8

3

290 310 330 350 370 390 410
Flight Level, hundreds of feet

Figure 2.2. Maximum aircraft count per flight level over the U.S. on 18 Mar. 2000.

above FL290. The maximum number of aircraft operating at any given flight level is about
360 at FL330 and FL350 (fig. 2.2).

The airspace over the United States is divided into 20 Air Route Traffic Control
Centers (ARTCC, pronounced “art-see,” or referred to as a “Center”) (fig. 2.3). A Center
is a facility established to provide air-traffic control service to aircraft operating on
Instrument Flight Rule (IFR) flight plans within controlled airspace, principally during the
en route phase of flight. The Centers are further divided into sectors, and the sectors are
partitioned into low-altitude, high-altitude, and sometimes super-high-altitude sectors.
The size and dimensions of the sectors are determined by the traffic patterns and radar
surveillance coverage in the area, and are each nominally controlled by one air-traffic

controller.
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Figure 2.3. An ATC sector map of the United States.

In the current system, many additional constraints are placed upon aircraft trajectories
in order to make tactical decisions tractable for human controllers and pilots. Among these
constraints is a system of defined jet routes and navigation way points which aircraft must
adhere to under normal circumstances. Within these constraints, aircraft must file flight
plans prior to departure to specify their desired altitude, airspeed, and 2-dimensional (2-D)
route of flight.

Airlines and business-jet opérators use methods of varying levels of sophistication to
choose routes that take into account the predicted wind patterns. They also consider
constraints such as regions of predicted bad weather or turbulence. Each aircraft operator
solves the optimization problem for himself without considering aircraft separation
constraints. Separation constraints are handled by air-traffic controllers and pilots as they
arise during flight. The current system performs reasonably well because the en route
airspace is relatively sparsely populated. Air-traffic control also imposes flow constraints
as required by weather or traffic congestion. Flow constraints are imposed by ground

holds or ground stops, or through what are known as playbook routes. Playbook routes are
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general sets of routes that are used to quickly route traffic around particular regions and

that are implemented when bad weather conditions are encountered.

The problem with the current system is that it is inflexible and overconstrained.
Requests for flight-plan changes are often not granted because controller work load is too
high, and sometimes the desired route cannot be well approximated within the route
constraints. Sometimes a desired route straddles sector boundaries in a way that is not
permitted. If automation tools could be introduced that would enable controllers to use a
longer-term, or strategic, approach to resolving inter-aircraft conflicts, efficiency would
improve. These improvements would come from resolving conflicts more efficiently, and

by permitting a reduction in the number of trajectory constraints.

2.3 Mathematical Problem Statement

Here, an abstract version of the optimal air-traffic control problem is posed to help
introduce the assumptions and solution techniques that lead to the system concept. The
main assumption is that the airspace is relatively sparsely occupied so that an approximate

solution approach is expected to exhibit good performance.

Because the ATC system is so complex, one cannot write out a complete optimal
control problem statement in functional form; however, much can be learned by
abstracting and examining the properties of the general problem. For instance, it becomes
clear why the optimal air-traffic control problem is considered to be NP-hard. The single-
aircraft trajectory optimization problem is stated first, and then expanded to the multi-
aircraft case by summing together the many individual trajectory optimization cost

functions and adding the inter-aircraft separation constraints.

A general cost function for a single aircraft with adjoined final-state constraints may

be expressed as

J = J: :’ L,[x,(0), u,(0), t1dt @.1)
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where x, is the state vector, ¢ is time, L, is the Lagrangian function for this aircraft, and
u, is the control vector. One may put any desired terms in the Lagrangian, but for
commercial aircraft one typically includes fuel-flow rate and total flight velocity terms in

the Lagrangian.

The constraints consist of aircraft and other system state dynamic constraints (such as

atmospheric parameters and winds):

x(0) = flx,, up, 1) 22)
initial-state constraints:
and final-state constraints:

The objective is to choose the controls, u , and the final time, o minimize equation

(2.1) subject to the constraints in equations (2.2) through (2.4).

This single aircraft optimization problem is challenging, but it has been solved for
many common flight scenarios. In the absence of winds, the optimum horizontal route is
simply a great circle so that only the optimum vertical profile need be calculated. A great
circle is the shortest distance between two points on the surface of a sphere, the spherical
equivalent of a straight line in a Cartesian system. The goal of the vertical profile
optimization problem is to find the optimal speed and altitude profiles to achieve
minimum fuel or the minimum direct operating cost (DOC) for a specified range. A
discussion of the solution of the vertical-profile optimization problem is deferred until
later in this chapter when a justification is presented for decoupling the vertical and

horizontal trajectory optimizations.
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Horizontal path optimization by means of equations (2.1) through (2.4) is generally
not solved using calculus of variations techniques because of the excessive number of
computations required, and because the solutions obtained may only be local minima.
Discrete dynamic programming and randomized search algorithms have been used to
obtain solutions. These are discussed in greater detail in the next chapter, where a
neighboring optimal control solution is developed to solve the optimal horizontal route

problem efficiently.

The problem becomes considerably more difficult when more aircraft are added. Itis a
challenge just to write the multi-aircraft cost function because different aircraft are
continually entering and leaving the problem domain. One straightforward approach is

simply to sum the individual cost functions for each aircraft:

Ty = ij,. = g"[ 7 L0, 400, t]dt] 2.5)
i=1 i=1
The constraints are:
x{t) = flx, u,t) 1<i<N (2.6)
x{t;0) —Xip = 0 1<i<N 2.7)
x{t)—xp=0 1<i<N (2.8)

If these were the only constraints; then the multi-aircraft optimization problem would
simply be N decoupled single-aircraft optimization problems. However, there are more

constraints to add that create the air-traffic control problem, that each aircraft must
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maintain a minimum distance of separation from each other aircraft. These inequality

constraints may be expressed as

1<i<N
Ax;2d 1Sj<N (2.9)
i®j

where Ax;; is the distance between the i th and j th aircraft, and d,;; is the minimum
allowable separation. When expanded, equation (2.9) represents N(N - 1)/2 constraint
equations that couple the optimal controls of each aircraft to those of each other aircraft.
For 500 aircraft, that corresponds to almost 125,000 constraint equations. As discussed in
chapter 1, there would be nearly 1037-300 possible aircraft orderings to examine in order
to guarantee that the optimal solution had been found. That this is a difficult problem is an

understatement.

Most of these constraints would not be active, because many of the aircraft would
never physically encounter one another, but trajectory modifications for an aircraft may
indirectly affect the optimal controls of any other aircraft. An interesting feature of the air
transportation system is that there is no clearly defined beginning and end time for
performing conflict detection and trajectory optimization. With the rare exception of the
aftermath of the terrorist attacks on 11 September 2001, when all flights were grounded,
there are commercial flights operating in the United States airspace at all times [13].
Because of the continuous nature of air transportation, the separation constraints
effectively couple every trajectory in the airspace for all time. When performing strategic
optimization, a flight that will oceur 10 days or even 10 years from now can be shown to
be coupled with a flight today by a continuous chain of separation constraints. A simple

thought experiment shows why this is the case.

Imagine computing optimal trajectories for a set of aircraft that are scheduled to depart
some time in the future. An aircraft (AC,) is scheduled to depart from New York at 0000
Universal Coordinated Time (UTC) on 1 January 2000, and to arrive at San Francisco at
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0600 UTC. Five hours later, at 0500 UTC, another aircraft (AC,) takes off from San
Francisco heading for New York along a trajectory that conflicts with AC, so that a
conflict-resolution maneuver must be made. In general, an optimal maneuver would
require that both aircraft must adjust their trajectories so that AC; would have to alter its
trajectory beginning at 0000 UTC. Then, at 1100 UTC, well after AC, is scheduled to
have landed, another aircraft (AC3) is scheduled to depart New York for San Francisco,
and this new aircraft conflicts with AC, which is arriving from San Francisco. The
optimal resolution would require that both AC, and AC; adjust their trajectories, which in
turn would affect the optimal resolution of the first predicted conflict between AC, and
AC,. In this way, the optimal trajectory for AC, is shown to be dependent upon the
trajectory of AC;, which is not scheduled to depart until after AC, has arrived at its

destination. By induction, this process continues as long as there is no gap in air traffic.

This fact does not have disastrous consequences for finding feasible solutions in
practice, but it does make strategic optimization extremely challenging. The couplings
among aircraft become weak with time so that the look-ahead time for trajectory
optimization may be safely cut off, with the caveat that the globally optimal solution to the

real problem is being abandoned.

24 Prior Art: 4-Dimensional System Concepts

The air-traffic-control optimization concept presented in this dissertation is based on
an idea that has been around for several decades. This is the idea that aircraft would be
assigned 4-dimensional (4-D) flight plans designed to be conflict-free, and that they would
use closed-loop 4-D control to follow the assigned flight plans without requiring regular
tactical instructions from air-traffic control (fig. 2.4). If each aircraft guarantees that it is
following its assigned 4-D trajectory, and if the trajectories are designed to be conflict-
free, then tactical conflicts will not arise. Verification for this algorithm is achieved by
verifying each individual 4-D control system rather than by verifying a complex system of
stochastic multi-aircraft tactical conflict resolution. This concept is referred to as 4-D

Time-Based Control, or simply 4-D Control. In addition to determining feasible conflict-
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Figure 2.4. High level concept diagram of 4-D time-based air-traffic control.

free 4-D trajectories for all aircraft, a further goal is to find trajectories that are efficient.
This is conceptually different from the current air-traffic control system in which much

more use is made of tactical confliet resolution.

The current air-traffic control system may be thought of as an approximate solution to
the ATC optimization problem, although it has probably never been formally considered
in this way. In the current ATC systém, aircraft operators file a flight plan which includes
a proposed departure time, a coarsely defined horizontal flight route, an intended flight-
level (altitude), and an intended airspeed. The flight plan does not include intended time
along the proposed flight route. Air-traffic controllers monitor aircraft positions and make
adjustments to aircraft speeds, flight-level assignments, and headings to keep aircraft

safely separated from one another.
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Figure 2.5. Block diagrams of 4-D ATC and the current ATC system.

The conceptual difference between the current ATC system and a 4-D ATC system is

depicted in figure 2.5. The current air-traffic control system is shown as a feedback

control system in which 3-D trajectory clearances are input to the aircraft, and the control

loop is closed through the control actions of air-traffic controllers. The aircraft are

monitored along their clearances by air-traffic controllers who issue tactical advisories as

required to maintain safe separation among the aircraft. In the 4-D air-traffic control

system concept, inputs to the aircraft are 4-D trajectories that specify the clearance as
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position versus time. The aircraft close the control loop locally using 4-D control to
maintain thier positions along thier assigned 4-D clearances. Occasional trajectory

replanning is required for large disturbance mitigation.

Among the first 4-D air-traffic control concepts were those proposed by Erzberger
beginning in the early 1970s. One of the first such research studies was to be applied to
short takeoff and landing (STOL) vehicles [14].

Just a few years later, a time-based ATC system was proposed by a group headed by
Ralph Erwin at Boeing Commercia! Airplane Co. [15]. Again, the basic concept was that
ATC would determine non-conflicting 4-D flight paths for all aircraft and that the pilots
would execute the clearances by accurately flying the assigned 4-D paths. It was
suggested that speed be used to adjust aircraft spacing rather than path-stretching. The 4-D
trajectory clearances would be computed to meet assigned arrival times at the respective
arrival runways. The paper concluded with the following statement: “It seems inevitable

that this system is coming. The question is, how soon will it get here?”

It has been 25 years, and although many advances have been made in guidance and
navigation, weather prediction, and other air-traffic control technologies, the
implementation of a time-based air-traffic control system seems still to be far off. One of
the primary reasons for the delay is that the computation of efficient conflict-free 4-D

trajectories for all aircraft in real-time has remained an unsolved problem.

The next advances in 4-D concepts were made in the development of ground-based
automation tools. It was realized that airborne 4-D control concepts could not be fully
exploited unless air-traffic control could accommodate 4-D capabilities. By equipping the
ATC system with accurate 4-D trajectory planning, effectively giving the system the
capability to serve as a flight management system for all aircraft in its domain, the hope
was that time-based ATC would move closer to reality. Several concepts were developed
to varying degrees of technological readiness [16-20]. The most highly developed system,
called the Center TRACON Automation System (CTAS), was developed by a team of
researchers led by Erzberger at the NASA Ames Research Center from the mid-1980s
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through the present day [17]. The CTAS concept uses scheduled time-of-arrival (STA)
control under which aircraft are given clearances to arrive at a meter fix or runway ata
scheduled time. The precise trajectory leading to the final condition is not specified, and
tactical advisories are to be issued for conflict resolution (fig. 2.6). Prototypes of CTAS

4-DuTrajectory Control: Follow Path vs. Time

C -

rajectory Y X,, ¥ 2.}
Generator
+

{Ar, Ay, Az} Control Au u Aircraft
— Law L >

{xe.’_ Yer Ze} | position < {x,y,2}
Sensor

. 4-D STA Control: Meet a Time

tf Scheduler

' Control u Aircraft
tf Predictor | Law > %
] {x. Yes %e} _ Position {x, 5, z}
Sensor -

Figure 2.6. 4-D trajectory control and 4-D STA control.

have been successfully field tested at several Air Route Traffic Control Centers (ARTCC)
and Terminal Radar Approach Control (TRACON) facilities, but the active 4-D control
aspects have not yet been adopted. Many of the reasons are human-factors related, but
there have also been some difficult practical problems to overcome when trying to use
time-based control in the extremely busy terminal-area environment. Some of the human-
factors difficulties stem from deciding whether or not air-traffic controllers are legally
responsible for aircraft separation assurance when advisories are being provided by

automation.
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The Group for ATM R&D Technology in Europe (GARTEUR) conducted research in
the late 1980s on a time-based air-traffic control concept [19]. The GARTEUR concept
was to provide aircraft with trajectory constraint boundaries, within which they could self-
optimize. The GARTEUR approach was superseded by a new initiative called the
Programme for Harmonised ATM Research in Europe (PHARE). The PHARE concept
was to develop and implement 4-D time-based control using conflict-free 4-D tubes [19,
20] negotiated between aircraft operators and air-traffic control. Tubes are volumes of
airspace that are to be assigned to aircraft as functions of time so that a clearance would
consist of both a nominal 4-D trajectory and a buffer region around the trajectory. The
program developed to the point where detailed tube specifications were created for
communicating tube clearances between ATC and an advanced new 4-D flight
management system. The PHARE program ended without the implementation of the tube
concept. Anecdotal evidence suggests that the assigned 4-D trajectories were deemed to
be too restrictive and cumbersome by both pilots and controllers. The fundamental
problem of safely and reliably computing conflict-free 4-D tube updates in real time was

never solved.

A concept called “Trajectory Space” was proposed in the early 1990s. Trajectory
Space was conceptually similar to the GARTEUR concept developed in Europe [19]. The
idea was for ATC to communicate constraint regions to aircraft which would then self-
optimize within those constraints. Only a brief concept description was presented.
Although conceptually appealing, Trajectory Space would be extremely difficult to
implement in the suggested manner. The specification of regions of unavailable airspace
and the coordination among aircraft would be difficult to code into a feasible algorithm.
Many other difficult problems arise, such as guaranteeing that a feasible trajectory even

exists for a given set of constraints.

The Free-flight concept was proposed beginning in the mid-1990s [21]. The initial
idea was that aircraft could use advanced conflict-detection and resolution technologies to
perform tactical conflict resolution without any direction from ATC. The hope was that
aircraft could then fly on free routes, unrestricted by the jet route structure in the NAS
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today. Over time, a more sober view of free flight emerged in which ATC would have a
role in monitoring for conflicts and providing separation services when resolution
maneuvers could not be worked out by the aircraft involved. As research has progressed,
free routing still remains a distant hope; technologies have not yet been developed that can
assure that multi-aircraft conflict situations can always be resolved tactically. Significant
theoretical advances have been made in this area using hybrid control theory [22, 23], but
the application of these ideas to practical air-traffic control systems remains for the subject

of future work.

Recently, work has begun on the design of practical automated airspace architectures
that would enable implementation of some of the key optimization and conflict resolution
functions developed over the past decade [24]. The goal is to use automation to lower air-
traffic controller work load so that en route airspace capacity may be increased while
enabling aircraft to fly along unrestricted trajectories. Particular attention is given to the
development of a core system to guarantee safe separation for all aircraft. This is an
approach that may enable the implementation of free-flight concepts. The development of
automated airspace architectures will create the infrastructure required for trajectory

optimization approaches such as the one offered in this dissertation.

The concepts of free flight and 4-D time-based control are not mutually exclusive. The
goal of free flight is not to enable airborne anarchy; the goal is to remove the restrictions
of the jet route structure and to allow aircraft to fly along more efficient trajectories. As is
pointed out in this dissertation, when free routing is permitted, the airspace is relatively
sparsely occupied so that the trajectories that would result from tactical conflict
resolutions proposed under free flight might still be quite close to a theoretical global
optimum solution. However, if any degree of congestion is encountered, one must rely on
strategic optimization to achieve the most efficient solution. The strategic optimization of
trajectories is what is enabled by 4-D time-based control. One might think of 4-D time-
based control as a free-flight system run in fast-time to determine a set of optimal

trajectories that would then be followed by aircraft.
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2.5  Analysis and Simplifying Assumptions

Although the en route air-traffic control problem may be posed fairly concisely, it
appears to be too complex to solve in real-time. One must make insightful simplifying
assumptions so that the solution to the approximate problem is close to the solution to the
original optimization problem. Thre¢ main simplifications that lead to a feasible solution
approach with near-optimum performance are discussed here. The first is that aircraft
trajectory optimization may be deeoupled into vertical profile optimization and horizontal
route optimization. The second assumption is that the airspace is relatively sparsely
occupied. This leads to the third simplification, the hypothesis that a sequential
optimization and deconfliction approach could produce feasible near-optimum solutions.
Air-traffic control by means of a sequential optimization approach is shown to be a
problem that can be solved in polynomial time. This means that as the number of aircraft
increases, the amount of time required to solve the problem may be expressed as a finite

polynomial function of the number of aircraft rather than as an exponential function.

2.5.1 Horizontal/Vertical Optimization Decoupling

The optimization of vertical profiles (airspeed and altitude schedules) for commercial
jet transport aircraft has received considerable attention over the past 40 years [25-34].
The essence of this problem is to balance the time and fuel costs to travel between a
specified origin and destination. Fuel use is a function of airspeed and ambient pressure
and temperature. These latter two quantities may be expressed as functions of altitude for
an assumed standard atmosphere.

The basic vertical optimization problem is to minimize the direct operating cost

(DOC) expressed in dollars:

_cIslolawmltel, ol sz
Jooc = c,.{lb}f' o(j(V, h){hr}+ Cl{ h })dt (2.10)

where Jp,c is a measure of the total cost for a given aircraft trajectory from the specified

initial time, ¢, to the free final time, t;. The cost of fuel, expressed in dollars per pound, is



2.5. Analysis and Simplifying Assumptions 26

given by C;, and the fuel-flow rate for the particular aircraft/engine combination is given
as a function of airspeed and altitude by AV, k), expressed in pounds per hour. The Cost
Index, CI, represents the cost of time relative to the cost of fuel. Calculus of variations
techniques have been successfully applied to this problem for a fixed range and free final
time in a standard atmosphere using an energy-state formulation of the problem [25, 26].
In the energy-state formulation, the integral cost function of equation (2.10) is converted
into an equivalent form by defining an energy state as the sum of kinetic and potential
energy of the aircraft and integrating over that variable instead of over time. One of the
benefits of converting to the energy state formulation is that the free final-time problem is
converted to a problem with a fixed terminal condition. These methods were extended to
the computation of optimal vertical profiles for problems with fixed final time. In this
case, the cost index is varied iteratively until the desired final time is achieved [27, 28].
The effects of winds on optimum vertical profiles has also been examined, with practical
constraints on commercial aircraft flights being considered [29-33]. Research has also
been conducted on the use of soft dynamic programming approaches to minimizing

equation (2.10) when there are multiple time constraints [34].

The main conclusion of vertical-profile optimization for long-range commercial jet
aircraft is that optimal profiles consist of short climb and descent segments and a long

cruise-climb segment with a shallow climb angle (fig. 2.7). The shallow climb segment
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Figure 2.7. Optimal cruise-climb and step-climb profiles.

results because the optimal altitude slowly increases as the aircraft burns off fuel. In the

current constrained air-traffic control environment where aircraft must operate at flight
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levels that are separated by 4,000 ft, the optimal cruise climb segments have been shown
to consist of a stair-step segments that are about 500 n. mi. long [32]. This may be
considered as a constant altitude for the purpose of determining optimum horizontal

routes.

Since the winds vary in a nonlinear fashion, the optimization problem with wind may
have many local minima, and is more difficult to solve. Fortunately, the range of efficient
altitudes for contemporary commercial jet aircraft is narrow, so that a practical approach is
to examine one or two altitudes near the optimal no-wind altitude and then to choose the
one that gives the minimum cost. This trial and error search method is reasonably efficient

and is what is used today by airlines and commercial flight planning services.

There will ordinarily be some coupling between the optimal vertical profile and the
optimal horizontal route owing to variations in the winds. If an optimal vertical profile is
computed for a great-circle route using the procedure outlined above, it may be possible
that shifting the horizontal route to take advantage of horizontal wind shear might take the
aircraft to a region of airspace where a different altitude would be more efficient. In
mathematical terms, the rate of change in the wind vector with altitude is also a function of
horizontal position. Empirical evidence suggests that, except near the boundaries of a jet
stream, the coupling of vertical and horizontal wind shear is weak. The practical approach
to finding a feasible optimum solution is again to perform a local iterative search of
altitudes and routes nearby the optimum no-wind solution. The iterative procedure would

be as follows:
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1. Compute optimum altitude and airspeed profile assuming zero winds

2. Compute the cost of flying at the nearest legal altitudes above and below the zero-

wind optimum altitude and choose the one with minimum cost

3. Fix the altitude and airspeed and compute the optimum horizontal route for the
given wind conditions
4. Fix the horizontal route and search the nearest legal altitudes above and below the

altitude chosen in step 2; choose the one with minimum cost

5. Iterate until desired convergence is achieved

The vertical-profile optimization and horizontal-route optimization may therefore be
precomputed in parallel by aircraft operators. This is a significant simplification in the
aircraft trajectory optimization problem, because it decouples the fairly straightforward
vertical-profile optimization from the much more challenging horizontal-route
optimization problem. Efficient algorithms for computing the optimum horizontal route

are still required; this problem is addressed in chapter 3.

2.5.2  Sparse Airspace Assumption

A review of recent ATC research literature suggests that en route air-traffic congestion
is a severe problem. In the vicinity of a busy commercial hub airport, one might be able to
count a steady stream of arrival and departure aircraft, but these aircraft would occupy
linear regions of airspace, and they would still be separated by more than 5 n. mi. Except
for the choke points created by air-traffic-control route restrictions, the en route airspace is
actually sparsely occupied and will continue to be so until many more airports are built.
This has important implications for the computation of approximate optimal air-traffic-

control solutions.

A recent study examined the properties of air-traffic conflicts for both structured
routing and great-circle routing [1]. Flight plan data were taken from the Enhanced Traffic
Management System (ETMS) for a 24-hr period in March 2000. The Future Air Traffic
Management Concepts Evaluation Tool (FACET) [44] was used to simulate aircraft flying
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either along the filed flight plans or along great-circle routes between the scheduled origin
and destination airports within Class A airspace (above FL180). At each 15-sec
integration time-step, the number of active conflicts in the airspace was recorded, as was

the total number of aircraft in the airspace at that time.

These conflict data may be used to evaluate the aircraft density of the airspace
environment. A high number of conflicts and a steep rate of growth of conflicts would
suggest that the airspace was nearing saturation. Conversely, a low number of conflicts
and a shallow growth rate would suggest that the airspace still had plenty of extra

maneuvering volume remaining.

The plot of the number of instantaneous conflicts versus the number of aircraft flying
shows that for both structured routing and great-circle routing, the number of conflicts is
quite low, and the growth rate is still shallow (fig. 2.8) (Note: The study [1] referred to
great-circle routing as “free routing,” but as shown in chapter 4, optimal routes may be
quite different than great-circle routes). Without assuming any prior knowledge of aircraft
paths, it is equally likely that one aircraft will be in conflict with any other aircraft. This
suggests that the number of conflicts, X, for any aircraft may be modeled as a binomial

random variable such that the probability mass function is given by

n <p<l
P(X:x)=(x)p"(l-p)"" {21”:1 ) @.11)

where n=(N-1), N is the number of aircraft flying, and

§ h n 2.12
x=>'lc005ex=>m ( )

With this model, the expected number of conflicts for a single aircraft in a field of N

aircraft is given by

E[Xyl = (N-1)p (2.13)
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Figure 2.8. Conflict counts for structured and great-circle routes.
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and the expected sum total number of conflicts (divided in half so that conflicts are not

counted twice) is given by

N
_y EIX] _ N(N-1)p
v=y 24 M

i=1

2.149)

By choosing the aircraft-to-aircraft conflict probability, p, to fit the data in a least

square error sense, the following probabilities and expected values are computied for

structured or great-circle routing (table 2.1):

Table 2.1. Conflict statistics from binomial random variable model.

Statistic Description Flight plan | Great circle
p Probability of aircraft i conflicting withany | gy107° 7x10'6
other aircraft j
E[X;09,] | Expected number of conflicts per aircraft in | 0.027 0.021
Class A airspace with 3,000 aircraft
000 Expected sum total number of conflicts in 40.5 31.5
z [X] | Class A airspace with 3,000 aircraft
; 2
E[X30000] | Expected number of conflicts per aircraftin | 0.27 0.21
Class A airspace with 30,000 aircraft
(extrapolated)
30000 Expected sum total number of conflicts in 4050 3150
Z E[X] | Class A airspace with 30,000 aircraft
< 2 (extrapolated)

These probabilities and expected numbers of conflicts are exceedingly low. In a field

of 3,000 aircraft, only about 1% of the aircraft are ever expected to experience a conflict.

Conflict probabilities are somewhat lower for great-circle routing than for flight plan

routing because aircraft are able to utilize a greater amount of airspace.
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For a free routing system, the airspace at current levels of operation appears to be quite
sparsely occupied, with plenty of airspace available for additional aircraft operations. But
what about in the future? How many more aircraft can operate in the airspace before
conflict probabilities increase to an unmanageable level? An interesting way to examine
these questions is to estimate the average number of aircraft that can be expected in the

airspace if all current airports are operating at maximum arrival and departure rates.

The same study [1] showed that there are approximately 40,000 daily flights and that
at any instant in time there are 3,000 or fewer aircraft in Class A airspace. Further
examination of the data shows that there are only about 200 airports serving Class A
airspace on a regular basis. The average number of active runways for these 200 airports is
difficult to compute precisely, but two active runways per airport is a reasonable

assumption.

The maximum arrival rate per runway, R, may be estimated by landing aircraft at 5

n.mi. separation at a typical landing speed of about 160 knots:

R - 1 air.craft 160 nmi _ 32 aircraft 2.15)
5 nmi-rwy hr hr-rwy

so that the average acceptance rate per airport at full capacity is approximately 65 aircraft

per hour.

Analysis of daily air traffic operating at flight levels 330 and 350 (approximately
33,000 ft and 35,000 ft MSL, respectively) shows that the average flight time is about 2.4
hr. By computing the number of aircraft that would be in the airspace after operating for
2.4 hr at the maximum average acceptance rate, R, the maximum number of en route

aircraft, N may be approximated as

max ?
N .« = 200 airports - 65 ac/hr-airport - 2.4 hr = 30000 aircraft (2.16)

This is a factor of 10 greater than the number of aircraft operating today. By equations
(2.13) and (2.14), this means that one would expect 10 times the number of conflicts for
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each aircraft, and 100 times the sum total number of conflicts (table 2.1). This would be a
significant increase over current operations, but the conflict probabilities would still be

low.

The implication is that even if all the current airports ran continuously at full capacity,
the airspace would still be relatively sparsely occupied. For this to occur, many more
aircraft would need to be manufactured as well. This means that a sparse airspace
assumption is not only valid for current traffic levels, but will continue to be valid for
many years to come until more airports and runways are built, or until other existing

airports are utilized for high-altitude air traffic.

2.6 Sequential Trajectory Optimization

The sparse airspace assumption tums out to be one of the keys to achieving fast and
efficient solutions to the air-traffic control optimization problem. Because of this
assumption, the use of an iterative trial-and-error approach to finding conflict-free routes
is possible. The importance of this must not be underestimated. By the sparse airspace
assumption, one only need know that there is a conflict. It is not important with which
constraint the conflict is taking place, or even the particular geometry of the conflict.
Without this assumption, one must compute precise conflict-resolution maneuvers using
information about all aircraft involved in each specific conflict situation. The
computational overhead required can overwhelm even the computations required for route

optimization.

The sparse airspace assumption implies that the cost function in equation (2.5) is flat
near the optimum solution. This means that of the many conflicts that might arise, one
would obtain nearly the same total cost no matter how the conflicts were resolved as long
as the initial trajectories were nearly optimal. Many researchers have examined
approaches to conflict resolution (for small numbers of aircraft) that are in some way
optimal. These approaches are discussed in greater detail in chapter 5. When extended to
the case of many aircraft, the attempt to find optimal resolution maneuvers contributes to

the explosion in complexity. This happens because each conflict-resolution maneuver
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changes the constraints faced by every other aircraft. To reduce the complexity from NP to
polynomial-time, the problem solution must be constrained. A reasonable place to start is
with the optimal trajectories for each aircraft independent of any conflicts that might
occur. The computation complexity for this task, using the optimization algorithm
described in chapter 4, is just N, where N is the number of aircraft. The next step is to
detect any conflicts and to make adjustments in the aircraft trajectories to resolve those
conflicts. It is already known that if all possible resolution maneuvers are examined, the
problem complexity is probably NP-hard, so a much smaller subset of resolution

maneuvers needs to be selected for examination.

One approach to limiting the number of possible conflict-resolution maneuvers is to
allow only heading maneuvers to one side or the other until all conflicts for that aircraft
have been resolved. Similar approximations have been suggested in previous research,
also for the purpose of reducing the complexity of the problem [45]. If this procedure is
followed in a sequential manner, with trajectories of previously planned aircraft being
held fixed, then the worst-case situation would occur if each aircraft had a conflict with
each previously planned aircraft. For a set of N aircraft, the maximum number of

resolution maneuvers would be

N
Nyg= 3 G-1) = —(N—Z‘ﬁ @.17)

This problem may be solved in polynomial-time, even in the worst case.

There are potentially many different ways to compute feasible trajectory solutions that
meet all the separation constraints, but to explore each of these would be well beyond the
scope of this dissertation. Instead, only this sequential optimization approach is
developed. No claims are made regarding whether the sequential optimization approach is
the best possible, only that solutions may be computed in polynomial time. This
approximate approach will be used to justify several other algorithm choices. The guiding
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principle is to keep the computations as simple as possible so that near-optimum

performance can be achieved in real-time.

2.7 A Practical Bound on the Optimum Solution

Although it is not currently possible to compute the true optimum conflict-free
solution in a reasonable amount of time, a conservative bound on the minimum cost can be
computed by summing the optimum costs for all aircraft while ignoring any conflicts or

other constraints that might arise.

Aircraft trajectory optimization is usually only concerned with minimizing direct
operating costs. If vertical-profile optimization is decoupled from horizontal-route
optimization, then the optimal aircraft speed and altitude profiles are fixed. This turns the
horizontal-route optimization problem into a minimum-time problem for fixed aircraft

airspeed.

The minimum flight time for aircraft i, without regard to separation constraints, is
denoted by J*;. This is computed by minimizing equation (2.1) with the Lagrangian
function set to unity so that the cost function is simply the total flight time, and by
constraining the aircraft to fly at a specified altitude and airspeed profile. The
minimization is subject to the initial and final state, and the dynamic constraints of
equation (2.2) through (2.4). The essence of this optimization problem is to compute the
heading commands that will cause the aircraft to travel between the initial and final-state

constraints in the minimum time.

The total minimum time for a set of N aircraft is given by

rr= Y0 (2.18)
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In any situation where additional constraints may be placed upon the aircraft, the
actual total flight time for a set of N aircraft is given by

=Y 2.19)

The efficiency of any particular solution to the air-traffic control optimization problem
is now defined as
J*
Natc = (2.20)
T
By definition, the actual cost must always be greater than or equal to the minimum
cost. At least one feasible solution to the air-traffic control optimization problem can
always be shown to exist (e.g., all aircraft fly their routes sequentially, with only one
aircraft being allowed in the air at any given time) so that the actual cost is finite. This

leads to the following bounds on the efficiency parameter:

0<Muarcs1 (2.21)

This efficiency parameter is relatively easy to compute, so it provides a practical
means of evaluating optimization performance. The efficiency parameter also provides an
excellent means of evaluating the sparse airspace assumption. If feasible solutions to the
air-traffic control optimization problem have low efficiencies, it would suggest that the
sparse airspace assumption is invalid. Conversely, if feasible solutions with high
efficiencies are commonly found by using simple algorithms, the sparse airspace

assumption would then be strongly substantiated.

2.8 Summary

This chapter introduced the en route air-traffic control optimization problem,
including a high-level description of how the air-traffic control system handles en route

traffic today. The problem was posed as one of minimizing the sum of N cost functions
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subject to up to N((N — 1)/2) inter-aircraft separation constraints. These constraints were
identified as the reason why this problem is considered to be NP-hard, and therefore

intractable. Prior solution approaches and their limitations were then presented.

Analysis of the aircraft trajectory optimization problem was used to justify decoupling
the vertical-profile and horizontal-route optimization functions, which greatly simplifies
the trajectory optimization problem. A probabilistic model of the expected number of
aircraft conflicts was derived and fitted to empirical data to support the assumption that en
route airspace at present traffic levels is sparsely occupied. Further analysis was used to

show that the airspace will continue to be sparsely occupied well into the future.

The sparse airspace assumption led to the choice of a sequential optimization
algorithm using an optimal wind-routing algorithm with a guided trial-and-error approach
to conflict resolution. A simple optimization performance metric was derived to enable the
real-time monitoring of optimization performance for the sequential optimization

algorithm.

The next chapter defines the detailed system concept. After presenting the high-level
concept, the component algorithms are identified for further description in the following
chapters. Among these component algorithms are an optimal wind-routing algorithm, a
conflict-detection algorithm, and a conflict-resolution algorithm. A computational

analysis of the sequential optimization algorithm is also presented.
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Chapter 3
System Concept

3.1 Introduction

The need to compute feasible sets of conflict-free trajectories for all aircraft in real
time has been identified as a major challenge to the implementation of 4-dimensional (4-
D) time-based air-traffic control in the National Airspace System (NAS). This problem is
compounded by the fact that aircraft operators (primarily commercial airlines) will not
accept merely feasible routes, they require efficient (optimal) routes. In the current tactical
system, airlines file flight plans along routes that are predicted to be wind-optimal within
the constraints of the NAS, but these flight plans are not checked for predicted conflicts.
Instead, aircraft routes are significantly constrained so that tactical conflict-resolution
maneuvers may safely be used. Tactical conflict-resolution maneuvers degrade the
performance of aircraft routes, and a system that relies on tactical conflict-resolution
cannot be proven to be safe. In an automated 4-D time-based system where flight plans
must be guaranteed to be conflict-free, some form of strategic trajectory optimization that

satisfies the separation constraints is required.

The air-traffic control optimization problem introduced in chapter 2 has been
categorized as NP-hard [5]. Analysis of the practical problem led to a few key simplifying
assumptions so that feasible solutions might be achieved without greatly sacrificing
optimality. In summary, these simplifying assumptions and their implications are as

follows:

39
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1. Horizontal- and vertical-trajectory optimization are loosely coupled: The
implication is that horizontal- and vertical-trajectory optimization may be
computed independently. This greatly simplifies the task of trajectory
optimization.

2. The airspace is relatively sparsely occupied, and will continue to be so: The sparse
airspace assumption implies that the air-traffic control cost function is flat near the
optimum solution. This suggests that sequential trajectory optimization by means

of a trial and error approach should lead to feasible near-optimum solutions.

The simplifications and approximations used to solve the optimal air-traffic control
problem are necessary to enable real-time computation because of the prohibitive
complexity of the original problem. Throughout the development of this approach, an
appeal is made to the two key simplifying assumptions listed above. The sequential
optimization approach introduced in this chapter is shown to produce near optimum

solutions in polynomial time.

3.2  Sequential Optimization Algorithm

A high-level flowchart for the sequential optimization algorithm is presented in figure
3.1. The algorithm begins by putting all scheduled aircraft into an ordered list called the
Active Aircraft List (AAL), which is to be described in more detail. The optimal vertical
profiles for each aircraft are assumed to have been chosen, and they are inputs to the
horizontal-route optimization algorithm. This was enabled by the decoupling of horizontal
and vertical trajectory optimization. The optimal horizontal route for the first aircraft on
the AAL is computed and checked for conflicts. Note that there will be no conflicts with
other aircraft for the first aircraft on the AAL, but conflicts with regions of bad weather or
with special-use airspace may occur. If any conflicts are found, the trajectory is iteratively
modified until a conflict-free trajectory results. The algorithm proceeds through all aircraft
on the AAL until all have optimal conflict-free trajectories. At this point, the trajectories
may be communicated to the aircraft as clearances, and the optimization procedure may be

restarted as often as required. In between recomputation cycles, it may be advantageous or
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Figure 3.1. Sequential route optimization algorithm flowchart.

even necessary for aircraft to use active control to follow their assigned 4-D trajectories to
ensure conflict-free operations. The main component blocks depicted in the flowchart are

now introduced, but detailed discussion is deferred to later chapters.

3.2.1 The Active Aircraft List

The Active Aircraft List (AAL) is defined as all aircraft currently in flight in the
airspace domain of interest, plus all aircraft scheduled to enter the domain within the next
ATy time period. Most aircraft entering the domain will enter after departing from their
respective airports, but aircraft may also enter through any arbitrarily chosen airspace
boundaries. For example, if Class A airspace over the continental United States is the
domain of interest, then arriving international flights will enter the domain at points not

associated with any particular airport.
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The purpose of ATp is to provide for the computational latency for a complete pass
through the AAL. If the latency were not accounted for, then new aircraft would enter the
airspace domain before conflict-free trajectories had been computed for them. This would
be unacceptable. Therefore, AT, must be set according to the expected maximum time to
complete a pass through the AAL. Some additional time should be allotted in practice to
provide ample time to address any potential optimization or conflict-resolution difficulties
before aircraft enter the airspace domain. The value of AT}, is left as a variable parameter
so that the processing speeds of different hardware systems may be evaluated in

simulation.

The ordering of the AAL still must be chosen. Many different factors might be used to
order the aircraft. Among these are the following:

* Random selection
o Market-driven (aircraft operators pay for the right to higher priority in trajectory
planning)

 First-scheduled-first-served

Without performing complete parametric studies on actual traffic patterns and
accurate models of system uncertainties, the first-scheduled-first-served (FSFS) option
makes intuitive sense and is used here. Studies have indicated that when uncertainty is
considered, there is an optimal look-ahead time for resolving conflicts because there is a
trade-off between solution efficiency and the probability that a conflict will actually occur
[46]. For a given level of uncertainty, there is a theoretical optimum time to perform
conflict-resolution, and this suggests that conflicts should be resolved in chronological
order; this makes intuitive sense because, on average, aircraft that have entered the
airspace domain earlier will have less time remaining on their trajectories, and therefore
any conflict-resolution maneuvers will increase costs more than resolution maneuvers for

aircraft with more of their trajectories remaining. A simple example shows why this is the

casc.

For an aircraft traveling from point A to point B, imagine that there is a conflict that
will occur somewhere along the trajectory at point C (fig. 3.2). The resolution of the

conflict requires that the aircraft deviate from the straight-line path to point E before
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Figure 3.2. Resolving conflicts earlier in a deterministic system is more efficient.

resuming course to point B. If the conflict is resolved from point A, the total additional

flight distance for this first resolution case is given by

dy = dyp+dgp G.D

The total additional flight distance for a second resolution case where the aircraft waits

until a later point, D, to begin the resolution maneuver is given by

The additional distance for the second resolution is always greater than for the first
resolution maneuver. One caveat here is that the assumption has been made that
minimizing distance is more efficient. In the absence of wind gradients, this is true, but
when wind gradients are present, the shortest distance between two points is not always

the most efficient option for minimizing either flight time or fuel use.

The vertical profiles of each aircraft are assumed to have been provided as inputs to
this optimization algorithm. Presumably, aircraft operators would compute optimal
airspeeds and flight levels at which to operate their aircraft for the chosen flight route, but
other profiles may be used, such as a fastest-speed profile. Many practical constraints may
also be considered when choosing a vertical profile, such as regions of bad weather or
turbulence. The important point is that the chosen airspeed and flight level for each

aircraft are to be given as an input to the sequential optimization algorithm.
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3.2.2 Optimal Wind Routing

The optimal wind routing function must take the desired vertical profile (speeds and
altitudes) for each aircraft as inputs, and must return a complete 4-D trajectory. At this
stage, the trajectory has not yet been checked for conflicts or for the satisfaction of other
constraints. The accuracy and resolution of the output trajectory must be such that it can
be adequately compared against other trajectories or airspace constraints. Approximate
straight-line segments with assumed average speeds will not suffice. The quantitative
computational requirements are derived in more detail later in this chapter, but it is already
clear that the route-optimization function must be efficient because it is called on each
pass through the loop. The computation of optimal routes is addressed in much more detail

in chapter 4.

3.23 Conflict Detection

The conflict-detection function must accept a complete 4-D trajectory for the current
aircraft and must determine whether or not the given trajectory is in conflict with any
previously planned trajectories. A generalization of the conflict-detection function is to
consider the satisfaction of additional constraints such as air-traffic control sector loading
limits, special use airspace definitions, or regions of bad weather. Depending upon what
kind of conflict-resolution function is used, the conflict-detection algorithm must return
more or less information about conflicts. If a precise pairwise optimal conflict-resolution
function is to be used, then the conflict-detection function must return detailed
information about the location and geometry of each conflict, including information about
the other aircraft or constraints that are involved. Multi-aircraft conflict-resolution
schemes would require even more detailed information. Another approach is to just
determine that a conflict is predicted without considering any of the specific details. This
approach has the benefit of greatly simplifying the conflict-detection task and is the basic
approach taken in this dissertation. The details are presented in chapter S.
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3.24 Conflict Resolution

The conflict-resolution function may be a sophisticated optimal-resolution algorithm,
or a simple random-perturbation algorithm. A sophisticated algorithm might be able to
resolve detected conflicts while minimizing added path length, or flight time, but these
algorithms would require a significant amount of computational resources. A simpler
approach is to request that the 4-D trajectory be randomly perturbed away from the
potential conflict. This is justified based on the sparse-airspace assumption because one
would expect to find many conflict-free routes near the optimum solution. A modified
version of this approach is explored in this dissertation. Instead of making a completely
random resolution perturbation, a perturbation is made in the general vicinity of the
conflict such that the perturbed trajectory resolves the conflict while retaining wind
optimality. This increases the chances of finding an efficient conflict-free resolution in a

small number of iterations. More details are presented in chapter 5.

3.25 4-D Control

Once a conflict-free trajectory has been computed for an aircraft, a 4-D clearance may
be sent to the aircraft. Depending on the recomputation rate of 4-D trajectories, it may be
advantageous or even necessary for the aircraft to use closed-loop 4-D trajectory control
(fig. 2.6) to mitigate the effects of small disturbances in between recomputation cycles.
Many techniques have been explored for 4-D control and may be adapted for this purpose
[30, 47-61]. However, 4-D control should be used only to the extent required to maintain
conflict-free trajectories, because unnecessary use of 4-D control increases fuel use. This
is intuitive since an aircraft flying at an optimal airspeed that uses airspeed perturbations
to overcome disturbances can only increase its costs over the optimum. An analysis of the
costs of 4-D control is now undertaken to quantify the additional cost of 4-D control. The
goal is to show that 4-D control should be used as sparingly as possible. The following
analysis leads to a relationship between the longitudinal position error variance of an

aircraft using closed-loop 4-D control, and the increased fuel cost over the optimum result.
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The longitudinal perturbation dynamic model of an aircraft traveling through a wind

field with stochastic errors is given by

Ax| |-k 1] Ax + 0
. - w
[Auw] [0 “w] [A"w] ["w] Iw~N(O, 1) (3.3)

where Ax is the longitudinal-position perturbation from the optimum position (from

flying at the optimum airspeed), Au,, is the perturbation in longitudinal winds from the
predicted winds, & is a feedback gain parameter that may be adjusted to either tighten or
loosen the 4-D control loop, a,, is the time constant of the wind-error model, and w is
zero-mean Gaussian white noise that drives the wind-error model. The value of a,, based
on analyses of Rapid Update Cycle (RUC) wind-model errors is approximately

a,, = (1/300) sec!. This corresponds to a time constant of 5 min., which is the
approximate correlation constant of RUC wind model errors [62]. Because this time
constant is so much longer than the speed control dynamics of the aircraft, the speed

control dynamics for the aircraft can be safely neglected in this analysis.
For the system in equation (3.3), the state-error covariance matrix is given by

P=FP+PFT+LWLT (3.9

where W is the error variance of the wind-model error. Substituting in the matrix values

from equation (3.3) leads to the following expressions for the variance of the position
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error, the covariance of the position error with the wind model error, and the wind-model

error variance:

)
= 2 = ——
_ __w (3.5)

Py, = E[(Au,)?] = W?

The fuel cost of an aircraft is simply the integral of the fuel flow rate, either specified
as a function of time or of path distance:

_ frof,, _ rof

where df/dt is the time rate of change of fuel weight, and df/ds is the equivalent path-
distance rate of change of fuel weight. The path-distance expression is used in the

remaining discussion.

The fuel-flow rate of an aircraft is a function of atmospheric parameters and aircraft
speed, but for an analysis of perturbations near the optimum fuel flow rate for a given
altitude and set of atmospheric conditions, the fuel-flow rate may be adequately modeled
as a quadratic function of airspeed. The following is an approximate model for the Boeing
767 aircraft operating at optimum cruising altitude:

by = 4140( Ib/(n.mi./sec)?)/sec
f,=bouZ+ byu, + b, b, = -995.8(Ib/(n.mi./sec))/sec G.7)
b, = 78.27 Ib/sec

where u, is the airspeed of the aircraft in nautical miles per second, and f; is the rate of

change of fuel weight with path distance [30].
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By taking the derivative of equation (3.7) with respect to u,, setting to zero, and
solving for the airspeed that gives minimum fuel-flow rate, the following result is
obtained:

-b,

uopt = —b; (3-8)

N

The additional fuel-flow rate caused by flying at a non-optimum airspeed may be

written as

Af;‘ = -f;'_fsm (3.9)
= bolugy + Auy)? + by (ugy + Au,) + by — [bouZy + byt + b3 ]

This expression simplifies to

Af, = byAu,? + 2bgu,Au, + b Au, (3.10)

opt

The airspeed difference, Au,, is simply the feedback perturbation of the airspeed as

shown in equation (3.3) to be given by

Au, = —kAx (3.11)

This is a stochastic perturbation that is driven by the white noise in the wind-error
model, also shown in equation (3.3), so the mathematical expectation must now be used to
determine the expected additional cost. Introducing the expectation operator, substituting

equation (3.11) into equation (3.10), and simplifying leads to

E[Af,] = ~2bgku o E[AX] + bok? E[Ax?] — b kE[Ax] (3.12)

This expression is simplified further by noting that the average position error is zero,

so that the expected additional fuel flow rate is given by

bok
(k+a,)

E[Af,] = byk?P,, = (3.13)
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Figure 3.3. Plot of additional fuel use vs. regulated position error.

By solving equation (3.5) for k in terms of P,, and substituting into equation (3.13),
the following expression for the expected additional fuel-flow rate as a function of the

position error variance is obtained:

2 -
Jal + 4(W2/P,,) aw:| G.14)

E[Af,]] = b VVZ[
° Jai +4(W2/P,,) +a,

This relationship has been plotted for a,, = (1/300) sec™! and three different values of
W, the RMS wind-model error (fig. 3.3).

Two qualitative trends are apparent from the plot. The first is that reducing wind
modeling errors, or other equivalent longitudinal position errors such as navigation and
flight technical errors, will directly reduce costs. The second is that 4-D control clearly

induces increased fuel costs.

Although the magnitude of the fuel cost increase is modest (of the order of a few

tenths of a percent), even this is important to commercial aircraft operations where
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notoriously tight profit margins cause airlines to increase efficiency wherever possible. In
this case, where no additional computational effort is required on the part of the sequential
optimization system to achieve 4-D control on the aircraft, and where the aircraft would be
using some form of 4-D control anyway, it would make sense to use as efficient 4-D

control as possible.

3.3  Computational Requirements of the Sequential Optimization Algorithm

The computational requirements of the sequential optimization algorithm are derived
here. The resuits of this analysis establish the need for a more efficient optimal wind-

routing algorithm.

Even without trajectory prediction uncertainty, the number of conflicts that may arise
during the computations is not known a priori so that a probabilistic approach must be
taken. This difficulty arises because of the NP-hard nature of the problem. As is to be
shown, deterministic bounds for this problem are unrealistically conservative and not of
much practical use. By following a probabilistic approach, one gives up the elegance of a
deterministic solution or bound, but one gains a much more practical computation bound
in the process. The probabilistic approach leads to a parametric expression for the
expected number of computations. The parameters of the resulting expression may be
adjusted to match observed data for any problem of interest. In addition to the
computational estimate, a useful feature of the derived expression for the expected number

of computations is that it also provides an estimate of the maximum airspace capacity.

In the discussion that follows, the term “computations” represents consistent units for
expressing computational effort, such as floating point operations or computer clock

cycles. These units are all interchangeable through proportionality constants.

The expected number of computations to arrive at a minimum-time sequential

optimization solution for the i th aircraft, is given by

E[E;] = E[R;- (Eyo + &cq)] (3-15)
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where E[ ] is the expectation operator, &; is the total number of computations for aircraft
i, R; is the number of conflict-resolution iterations for aircraft i, &, is the number of

computations required to compute a single wind-optimal route, and € ; is the number of
computations required to check a single route for conflicts. Since the number of conflicts
that may arise is independent of the computations required to compute optimal routes or to

detect conflicts, equation (3.15) becomes

E[E;] = E[R;]-(E[&y,] + E[Ec4]) (3.16)

Similarly, the expected total number of computations over all N aircraft is given by

N N
E[Z é-] = [Z E[R,']J - (E[E, ] + E[E4]) G.17)

i=1 i=1

As seen in equation (3.17), the expected numbers of computations to compute optimal
routes or to detect conflicts are both multiplied by the total number of conflict-resolution
iterations. At least one iteration is required for all aircraft, so that the total number of

conflict-resolution iterations is greater than or equal to the number of aircraft:

N
Y ER]2N (3.18)

i=1

One may theorize that the actual number of iterations will depend upon the following
quantitative and qualitative parameters:

Size of the airspace

Structure of allowable aircraft routes

Number and distribution of aircraft

Specific restricted airspace owing to statutory regulations or bad weather
Conflict-resolution algorithm details
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Figure 3.4. Conflict probability is hypothesized to be memoryless.

These parameters do not easily lead to a closed-form theoretical expression for the
expected number of conflict-resolution iterations. Therefore a parametric model is derived

which can be fitted to empirical data for different conditions.

33.1 Conflict Iteration and Capacity Model

The goal here is to derive a practical model to predict the computations required to
obtain conflict-free trajectories for some given number of aircraft. The hypothesis is that
for a sequential conflict-resolution strategy, it is equally likely at each iteration that
another conflict may be encountered (fig. 3.4). This may be described as a memoryless
property, and suggests the use of the geometric random variable (GRV) for the conflict

iteration model, because the GRYV is the only discrete random variable with the

memoryless property.

If R; is modeled as a GRV representing the number of iterations required to resolve all

conflicts for the i th aircraft, where each resolution iteration is considered to be an
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independent Bernoulli trial with probability P; of being conflict-free, then the probability
mass function (pmf) for R; is given by

i=12,..,N

3.19
k=12,.. G-19)

Pi = Pi(1 ‘Pi)(k-l){
where p,, is the probability of resolving a conflict in k iterations for the i th aircraft.
Typical values of P; are close to unity so that the probability of finding a conflict-free
solution during the first iteration is high, and the probability that a conflict-free trajectory

will not be found until a later iteration decreases rapidly.

The expected value of the GRV, R, is

E[R] = (3.20)

1
P;
As an extension to the standard GRV model, P; is modeled as a function of the aircraft
number. The reason for doing so is that the probability that a particular aircraft trajectory
will be conflict-free decreases as the number of aircraft increases. The first aircraft will
have a conflict-free trajectory with probability 1, while later aircraft will have increasing

conflict probabilities.

In the interest of developing a simple model with a small number of parameters, a
linear form for P; is chosen as
(Co + 1) _ 1

i=—¢ ¢ (3.21)

where C, and C, are parameters that are to be determined to best fit observed data. The

form for the coefficients of P; was chosen to simplify the final results.
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Substituting equation (3.21) into equation (3.20) leads to

¢
EIR] = =y (322)
As a practical model, equation (3.22) is not yet convenient. To generate enough data to
curve-fit equation (3.22), one would have to perform multiple simulations or experiments
to generate many data points at each value of i/ so that the expected number of resolution
iterations could be determined to some degree of statistical significance. A curve-fit of

these expected values as a function of i could then be used to determine C and C, ina

least square error sense.

A better approach is to derive an expression for the sum of equation (3.22). By doing
so, only one simulation need be run while maintaining a running total of the number of
conflict iterations. Each element of the sum is an independent measurement so that many
independent measurements contribute to the sum as a function of the number of aircraft. A

curve-fit of the summation function may then be used to obtain values for C;, and C, .

The summation of equation (3.22) leads to the following analytical expression:

N
Yy= z E[R;]
i=1 (3.23)
C

N
N
= X =i - (@ g )

"~ Cy(Cy—N)
where ¥ (x) is the digamma function, defined as

¥(x) E%m(r(x)) (3.24)
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and the gamma function, I'(x) , is defined as

)= _[0 txr-De~tdy (3.29)

Although equation (3.23) is quite compact, it would be inconvenient to leave the
expression in this form. Routines for computing the digamma function are becoming more
common, but the digamma function is not particularly well-known. In the region of
interest for this problem, the digamma function is asymptotically close to the natural
logarithm, In(x). This leads to the following approximate form of equation (3.23):

_ MmN
Yy=Y'y = Cl(ln(Co)—ln(Co N) A N)) (3.26)

P il
T T Go-N) T Cy(Cy-N)
A discussion of the physical nature of equation (3.26) is now presented, during which

the second term will be shown to be negligible in the region of interest so that the expected

total number of conflict iterations for a given number of aircraft is well approximated by

A Co

By examining equation (3.21), one can determine some properties of the conflict-
iteration model parameters. The first aircraft will only require one resolution iteration
(ignoring special-use airspace and weather cells for the moment), with probability 1,

leading to the following relation:

Ch+1
P1=(0 )_

1
— = 28
C, C, l (3.28)
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so one would expect

Co=C, (3.29)

When curve-fitting actual data, the fits obtained using two parameters are much better
than single-parameter curve-fits because the data are not absolutely random; as a result,
both parameters are retained. However, the analysis above shows that one might expect
the values for C, and C, to be numerically close. In real air-traffic data, there are often
concentrations of aircraft traveling along the more popular city-pair routes at peak travel
times so that the air traffic is not randomly distributed as presupposed by the GRV model
assumption. Because of these unmodeled properties in the real air-traffic data, the GRV
model is not a perfect fit, but it is close and leads to a practical method for estimating

computation requirements for conflict resolution.

Restricting attention to optimization in the horizontal plane, for free-routed air traffic
at the busiest flight levels over the continental United States (flight levels 330 and 350),
C, and C, are both around 1,200 (e.g., fig. 6.8, chapter 6). The maximum number of
aircraft found at these flight levels is about 500. For these parameter values, the two terms

in equation (3.26) are given by

CO
1200
C.In = IZOOIn(———) — 646.8
‘ (Co—N) 1200 - 500

(3.30)
CN  1200-500

CoCa=N) ~ 1200(1200—500) - 7!

The second term is negligible when compared to the first, and is always less than
0.015% of the expected total number of conflict iterations up to the discontinuity at
N = C, = 1,200 . The magnitude of the difference between the logarithm approximation
(eq. (3.27)) and the exact version (eq. (3.23)) is less than 0.12% up to N = 1,000 , and is
always less than 4.1% up to the discontinuity (fig. 3.5).
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Figure 3.5. Expected No. of conflict iterations and approximation errors.

An important property of the derived conflict-iteration model is that there is a
discontinuity when C,, equals N. This discontinuity occurs in the same place in each of
the various approximations of the model and is related to a physical result: it is not merely
an abstract mathematical anomaly. It is instructive to consider the underlying reason for

this discontinuity.

For a given situation, including the traffic patterns, the weather situation, and the
chosen conflict-resolution algorithm, there is a theoretical maximum number of aircraft
that can fit in the allotted airspace. Without any empirical data, one might try to determine
a bound for the maximum number of aircraft by simply dividing the airspace area by the
legally required area per aircraft. This is what has typically been done in the past. In en

route airspace, aircraft must always maintain at least a 5-n.mi separation between
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themselves and all other aircraft, so a reasonable approximation is to allow one aircraft per
25 square nautical miles. The continental United States covers approximately 3.8 million

square nautical miles, so this simple bound would predict that 150,000 aircraft could fit at
each flight level. To remain conflict-free, this would necessarily have to correspond to the
situation where all aircraft were traveling in exactly the same direction at exactly the same

speed (fig. 3.6). This is clearly not of much use in practice.
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Figure 3.6. Two illustrations of airspace capacity limits.

When used to model a particular air-traffic system, the value of C, that is determined
by curve-fitting actual data is a prediction of the maximum airspace capacity. This is an
important result, because it provides, for the first time, a practical means of evaluating
different conflict-resolution algorithms for their effect on airspace capacity. Much use of

this capacity metric is made in this dissertation.

3.3.2  Extrapolating 2-D Solutions to the Full 3-D Problem

The complexity of the en route air-traffic-control optimization problem lies primarily
in the area of horizontal route optimization and conflict resolution. Even though the
vertical and speed profiles are computed separately in this concept, conflicts need to be
checked over all altitudes. This adds a greater volume of airspace and a greater number of

aircraft, but no inherent increase in solution complexity. Although possible on higher-end
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current-day computer hardware, solving the air-traffic-control optimization problem for
all of Class A airspace exceeds the amount of RAM available on the computer that has
been used for algorithm development and simulation (256 MByte). This is largely because
of the method used to achieve efficient conflict detection. Also, since MATLAB is used
for algorithm development, simulation, and presentation of results, the processing speed is
not as fast as would be the case in a compiled-code version of the algorithm. This is
because MATLAB is partially an interpreted computer language. Because of the reduced
processing speed, the solution for the typical numbers of aircraft in all of Class A airspace
(3,000 - 5,000) would result in excessive simulation times. For these reasons, it is
desirable during the algorithm development stage to address the reduced-scope problem of
optimization in a horizontal plane and to relate the results of the reduced-scope problem to

the solution of the full Class A problem.

As discussed in chapter 2, optimal vertical profiles consist of essentially constant
altitude cruise segments at constant airspeed (fig. 2.7). This implies that most of the
conflicts that can be expected will be between aircraft at the same altitude. Therefore, it is
hypothesized that solution properties for all aircraft at a single flight level will scale

linearly with the number of flight levels in Class A airspace.
The number of conflict iterations for the full Class A problem (3-D) is given by
- Co
Yip = Cy ln(__——) (3.31)
Co-Nsp

where N, is a variable representing the number of aircraft for the 3-D Class A airspace
problem. Both C and C; are model parameters for the 3-D problem that are to be

determined through simulation.
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If the assumption is made that there are relatively few conflicts in en route airspace
between climbing/descending aircraft and aircraft in level flight, the expected number of

conflict iterations at any one flight level out of N, flight levels is then given by
and the number of aircraft at any one flight level is given by

Substituting equations (3.32) and (3.33) into equation (3.31) and solving for Y, leads

to the following expression for the expected number of conflicts at any one flight level:

C
Y,p = C m( 0 ) 3.34
= GINETy (3.34)
where
Co=Co/Ng, (3.35)
and
C,=C/Ng, (3.36)

Equation (3.34) has exactly the same form as equation (3.31) so that under the given
assumptions, the number of aircraft at a single flight level is expected to follow the same
functional form as for the full Class A airspace problem. The model parameters C, ana

C, are simply scaled by the number of flight levels.

This leads to a dramatic reduction in the effort required to obtain results that apply to
the full Class A problem. In the common flight altitudes of Class A airspace (FL180
through FL390), there are 17 distinct flight levels at which up to 3,000 aircraft may be
found at any instant in time (chapter 2). Instead of running simulations of 3,000 or more

aircraft to determine the model parameters of equation (3.31), one may run much simpler
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simulations of about 175 aircraft (3000/17) at constant altitude. Air traffic is not evenly
distributed among the flight levels (fig. 2.2) because it is more efficient for most large jet
aircraft to operate at about 35,000 ft. Therefore, constant-altitude simulations must use a
few more aircraft than prescribed by equation (3.33) (about 400 is the maximum number
of aircraft found at FL330 or FL350 at any instant in time). Simulating several times this
value is easily achieved on the development platform, an IBM ThinkPad 750-MHz laptop
with 256 MB RAM, running MATLAB. The values of C;, and C, may be determined by
curve-fitting the simulation data, and then equations (3.35) and (3.36) may be used to
determine the equivalent values for the full Class A problem (e.g. fig. 6.8 & fig. 6.10,

chapter 6). This is a significant reduction in the effort required to estimate these values.

34 Summary

Equation (3.17) showed that both the wind-optimal routing calculations and the
conflict-detection calculations are computational primitives for this system concept. Both
of these quantities are multiplied by the expected number of conflict iterations, which may
be a large number. This requires that both the optimization and conflict-detection

functions be made as efficient as possible so that the algorithm may be run in real-time.

A parametric model of the expected number of conflict iterations as a function of the
number of aircraft has been derived based on a geometric random variable conflict model.
The model has been derived for the general 3-D problem for all of Class A airspace, and
then a similar model for the equivalent 2-D case was then derived. The equivalent 2-D
model allows much simpler simulations to be conducted to obtain computational resuits
for the full 3-D problem. This simplification is required to make algorithm development
and simulation possible on a typical 750-MHz laptop computer.
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Chapter 4
Optimal Wind Routing

4.1 Introduction

This chapter introduces the concept of computing minimum-time routes through wind
fields, and a new solution technique called Neighboring Optimal Wind Routing (NOWR).
Optimal wind-routing is a core function of the sequential optimization algorithm, and
therefore must be computationally efficient (fig. 3.1, chap. 3). The NOWR technique is
shown to have excellent optimization performance characteristics, and is computationally
efficient when compared to existing algorithms. This makes NOWR ideally suited for
computing conflict-free optimal routing solutions in real-time with the sequential

optimization technique.

The reason that NOWR is so efficient is that it is a linear feedback algorithm.
Perturbations in the winds along the entire nominal trajectory are fed back to perturb the
aircraft heading such that the resulting trajectories are optimal to second order. Although
this is mathematically no different than any other formulation of time-varying linear state
feedback, NOWR is unusual because of the feedback of perturbations in the future wind
states. The NOWR algorithm anticipates the winds that will be experienced at later stages
in the flight and modifies the aircraft heading accordingly. This is made apparent through

several illustrative examples in this chapter.

As noted in chapter 2, vertical-profile optimization and horizontal-route optimization

are often decoupled. Although some optimization performance may be lost, the

63
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computational simplification achieved is a significant benefit. The solution to the vertical-
profile optimization problem with the goal of minimizing direct operating cost (DOC)
yields a schedule of altitudes and airspeeds for a particular aircraft and particular route.
The optimal vertical profiles for typical commercial jet aircraft are accurately
characterized as constant-altitude or piecewise constant-altitude segments at constant or
piecewise constant airspeed (fig. 2.7). The corresponding horizontal-route optimization
problem becomes a minimum-time problem since the speed of the aircraft is fixed. In the
absence of winds, or in a constant wind field, the optimum solution is a straight line
between the origin and destination (a great-circle route on a spherical surface). In varying
winds, the horizontal-route optimization problem is essentially that of finding minimum
time routes through a varying wind field. This is referred to as an optimal wind-routing

problem.

In regions of strong winds and horizontal wind shear, optimal wind-routes save an
average of about 1.6% of flight time (or fuel burn) over the corresponding great-circle
routes on long-distance flights (500 n.mi. or greater). An even greater savings, nearly
4.5%, can be achieved over the corresponding constrained flight-plan routes in use today.
This is a reduction of about 500 hr per day in flight time, which translates to nearly $1
million per day ($360 million annually). Large savings on the order of 12% have been
observed during strong wind conditions typical of the winter months. More is said about
these statistics later in this chapter. In addition to direct cost savings, the air-traffic density
would be reduced for a given number of aircraft by spreading aircraft over a greater
volume of airspace than is possible in a structured routing system. This may enhance
safety by lessening the chance for collisions. Because of the clear economic advantage and
potential system benefits offered by optimal wind routes, it is not surprising that airlines
attempt to operate aircraft along optimal wind routes as nearly as possible within the
constraints of the current air-traffic control system. Airlines will continue to fly optimal
wind routes as the air-traffic control system transitions to a more flexible system based on

Free Flight concepts [21].
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Although airlines currently compute approximate optimal wind routes for their
aircraft, the techniques they use are not well-suited to real-time operation in the
computation of conflict-free optimal wind paths for a large number of aircraft. As shown
in chapter 3 (equation (3.17)), when computing conflict free optimal routes for a large
number of aircraft with a sequential optimization approach, the wind-optimal

computations must be efficient because they are repeated many times.

This chapter continues with a general discussion of the potential benefits of optimal
wind routes. Next, a discussion of the computation of minimum-time paths for aircraft
traveling at a constant speed and altitude through a wind field is presented. After
introducing this problem and the prior art applied to its solution, the neighboring optimal
control solution is presented. The neighboring optimal control solution is derived for the
general case of an aircraft flying through a generally-varying wind field in spherical
coordinates. The resulting algorithm is called Neighboring Optimal Wind Routing
(NOWR).

A simulation study is conducted to evaluate the performance of NOWR. A discrete
dynamic programming (DP) algorithm is used to compute true optimal routes to a fairly
high degree of certainty. As with any directed graph optimization algorithm, there is a
trade-off between optimization performance and computational speed. A comparison of
NOWR and DP solutions is conducted to evaluate the performance/computation speed

trade-off, and the results are presented.

One of the most important attributes of the NOWR algorithm developed in this
dissertation is that it eliminates the difficulty of computing the nominal optimal
trajectories that usually must be computed for neighboring optimal control. Because of
this contribution, NOWR is an O(N) algorithm, meaning that the computational effort
required increases at a rate proportional to the length of the trajectory being computed.
Actually, the normalized implementation of the NOWR algorithm has made it an O(k)
algorithm, where k is a constant. Since the trajectories are normalized, the amount of

computation required to compute a neighboring optimal route between any two points is
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independent of the trajectory length. All previous optimal wind-routing algorithms exhibit
computational complexity of O(NlogN) or higher.

4.2 Motivation: The Potential Benefits of Optimal Wind-Routing

The potential benefits of optimal wind-routing may be estimated by comparing flight
times for optimal wind-routes with the corresponding times for filed flight-plan routes and
great-circle routes. Obtaining complete data sets including winds, convective weather and
turbulence, and aircraft schedule and track information is challenging because it requires
vast amounts of computer memory and patience while awaiting the fulfillment of requests
for data from various sources. Blending data from disparate sources is also a challenge. A
comprehensive data analysis spanning over at least 1 year would be ideal, but this level of
effort is beyond the scope of this dissertation. Instead, a limited analysis is conducted
across a set of representative days so that the magnitude of potential benefits may be

estimated. This demonstrates how more detailed data analyses might be conducted.

4.2.1 Optimal Wind Routes versus Great-circle Routes

A representative selection of 42 common long-range routes across the United States is
examined for this study (fig. 4.1). The flight time along each of these routes is computed
by integrating each trajectory through six different measured wind fields taken from RUC
data (table 4.1) [63]. The RUC Gridded Binary (GRIB) files are processed using the
WGRIB utility, version 1.7, the source code of which has been made freely available at
several sites on the internet. The file names shown in the table are in a format found on the
National Center for Environmental Prediction (NCEP) internet site (http://
WWW.Nnco.ncep.noaa.gov/pmb/products/ruc2/). The file names describe the RUC
model version (e.g. “ruc2”), the model analysis time in hours Universal Coordinated Time
(UTC, or “Zulu™: e.g. “T21Z”), the GRIB format (e.g. “grb2”), and the forecast time in
hours (e.g. “f02”). The wind data (# and v components) at the 225-mbar level are
extracted and written out as new GRIB files. These files are then converted to an ASCII
format suitable for MATLAB analysis. The 225-mbar level corresponds to approximately
36,000 ft MSL. More information about the RUC wind model may be found in appendix
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2. Both the great-circle routes and the optimal wind-routes are computed. The optimal
wind-routes are computed using the NOWR algorithm presented in more detail in this

chapter.

The results are that, on average, optimal-route total flight times are about 1.6% less
than those for the corresponding great-circle routes. The optimal wind-routes are
geometrically quite different from the corresponding great-circle routes. In terms of airline
cost savings, this seemingly small improvement of 1.6% is significant and demonstrates

why airlines do not typically fly great-circle routes even today.

4.2.2 Optimal Wind Routes versus Filed Flight Plan

The comparison of optimal routes versus great-circle routes shows the benefit of
minimizing flight time in winds over minimizing path distance. Another important result
to determine is how much time would be saved by flying optimal wind-routes versus
flying along the routes permitted in the NAS today. This demonstrates the benefit to be
achieved by allowing aircraft to fly unconstrained optimal routes rather than the jet routes

they are constrained to in the current air-traffic control system. When performing this
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Figure 4.1. A representative set of long-range routes.
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Table 4.1. RUC data files used in optimization performance analysis.
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Date
UTC)

Filename

Description

2/14/2001 | ruc2.T2 1Z.grb2102

e RUC version 2 file

« Vertical Coordinate: pressure level, millibars

* GRIB Spec: Grid 211
(80 km & 25 mbar resolution)

* Analysis time: 2100 universal coordinated time
(UTC)

* Altitude: Constant at 225 mbar pressure level
(approximately 36,000 ft MSL))

2/11/2002 | ruc2.T19Z.grb2102

* Analysis time: 1900 UTC
(other parameters same as previous)

2/12/2002 | ruc2.T19Z.grb2f02

(same as previous)

2/13/2002 | ruc2.TO7Z.grb2f02

o Analysis time: 0700 UTC
(other parameters same as previous)

2/14/2002 | ruc2.T19Z.grb2f02

* Analysis time: 1900 UTC
(other parameters same as previous)

2/20/2002 | ruc2.T21Z.grb2f02

* Analysis time: 2100 UTC
(other parameters same as previous)

analysis, it is important to compare optimal wind-routes using the same wind data used by

the airlines when they selected the flight plans.

For this study, the Future ATM Concepts Evaluation Tool (FACET) [44] is used to
compute the flight times for a day’s worth of real en route air traffic. The data are taken

from archived Enhanced Traffic Management System (ETMS) files that span the period

from midnight UTC on 12 February 2000 to midnight UTC on 13 February 2000. All

flights at FL330 and FL350 are selected. This amounts to just over 4,000 aircraft for the

chosen data set. The origin and destination airports, the filed airspeed, and the filed flight
route are parsed from the ETMS data files and input into FACET for simulation. The

corresponding RUC data files are obtained for use in the simulations as well. The FACET

tool is used to integrate the trajectories of each aircraft along its respective flight plan and

to compute the flight time of each aircraft and the sum total flight time for all aircraft. The
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same data are used to drive a simulation in which each aircraft instead follows an optimal

wind-route computed using the NOWR algorithm.

The total flight time savings over all aircraft is about 243 hr for the optimal wind-
routes versus the filed flight-plan routes. This is a time savings of 4.5%. The cost to
operate a commercial aircraft is of the order of $30/min. Using this figure, the financial
savings at these two flight levels would be about $437,000 per day. This corresponds to
just over $100 per flight, which is roughly the cost of one revenue-paying passenger per

aircraft.

These results indicate the financial benefit to be gained by permitting aircraft to fly
along optimal wind-routes. The airline industry and air-traffic control research community
have been aware of the potential benefits of optimal wind routes for some time now; as a
result there has been a great deal of research regarding their accurate and efficient
computation. Some of the key innovations and prior art in the field of optimal wind

routing will now be discussed.

4.3  Prior Art: Optimal Aircraft Trajectories in Winds

Ernst Zermelo (1871 - 1953), a German mathematician, made important contributions
to the calculus of variations, statistical mechanics, and later to set theory. [n 1931, he
studied the problem of determining minimum-time paths for an aircraft with constant
altitude and airspeed traveling through a region of varying winds. This has become known
as the Zermelo problem, or as Zermelo's problem (fig. 4.2) [36, 37]. Note that this is
identical to the problem of determining minimum-time paths for a ship traveling through a

region of varying currents [39].
The equations of motion for Zermelo’s problem are given by
x = VcosO +u,(x,y) 4.1)

y = Vsin@ +v (x,y) 4.2)
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Figure 4.2. Zermelo’s problem: minimum-time paths through varying winds.

where x and y are Cartesian position coordinates, and V is the airplane velocity relative
to the air mass (the airspeed). The x -component of the wind velocity is u (x, y) , and the
y -component is v (x, y). The heading angle, 0, is the control available for achieving the
minimum-time objective, with the airspeed usually being considered fixed. Some of the

past approaches to solving this problem are now described.

4.3.1 Graphical Optimization

An interesting discussion of the early history of optimal ship routing, long before the
aircraft had been invented, can be found in the introduction of reference [35]. Early
attempts at computing optimal ship routes were manual methods based on the
computation of time fronts, which are analogous to the wave fronts of geometrical optics.

The first computer methods for optimal ship routing were then based on automating the
manual methods.

4.3.2 Calculus of Variations

The calculus of variations was applied to the solution of the aircraft optimal wind
routing problem by Zermelo in 1931 [36,37]. Zermelo derived a first-order differential

equation describing the time rate-of-change of the optimal heading angle. The practical
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computation of optimal trajectories would have to wait a few decades for the digital
computer because the solution still required the numerical integration of three first-order
nonlinear differential equations. The first two are the dynamic system equations (eqs. 4.1
& 4.2); the third equation to determine the optimal heading angle is given by

9= v, sin?0 + (u, — v,)cos8sin® — uycoszﬁ (4.3)

where the subscripts x and y denote partial differentiation of the wind components with
respect to the x and y coordinates. One common solution approach is to guess initial
values of 0 and then to iterate until the integrated solution trajectory passes through the

desired final point. Families of solutions may be generated in this way.

Bryson and Ho [39] derived an implicit analytical solution for the case where the x-

direction wind speed varies linearly in the y -direction (fig. 4.3). For u (x,y) = -V.y

Figure 4.3. Zermelo’s problem with linear wind shear in the cross-track direction.
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and v (x, y) = 0, the heading, 0, at the point {x, y}, in order to go to the origin in

minimum time, is computed implicitly from the following equations:

y = VL( sec — secf)) (4.4)

ws

x = 2“,’ - [asinh(tan8,) - asinh(tan®) + (4.5)

ws

tane(secef— sec) — secef(tanef— tan0)]

where V,__ is the constant wind shear parameter and Of is the optimal heading angle at the

final position. The time-to-go is given by

T = (—1—)(tan9f— tan®) 4.6)
VWS
In addition to the inclusion of the V/V,  terms in these expressions, several minor

typographical errors in reference [39] have been corrected in equations (4.4) through (4.6).

43.3  Heuristic Dynamic Programming

Dynamic Programming (DP) is a directed graph optimization technique that is a
straightforward approach to solving practical optimal routing problems (fig. 4.4) [39, 64].
In the basic DP approach, a discretized grid is overlaid on the domain of interest. The grid
need not be uniform. The direction of travel is usually constrained to always flow from
origin toward destination so that self-intersecting paths are eliminated from consideration.
The flight time along each segment of the graph must be computed, which is what results
in the O(n?) performance of the algorithm. The selection of the minimum-time (or
minimum-cost) route may either be computed backward from the final point to the initial
point, or forward from the initial point to the final point. The backward method results in a
family of solutions from each grid point in the graph to the final point, while the forward
method results in a family of solutions from the initial point to each grid point in the graph
(including the final point). The winds may significantly vary over the time of an aircraft
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Figure 4.4. Discrete Dynamic Programming.

flight, so the forward method must be used for aircraft route optimization. This results
from the fact that one must know the time at which the aircraft will be at each segment so

that the proper winds may be selected from forecast data.

Although DP suffers from O(n2) complexity, it is well suited to aircraft trajectory-
optimization problems because constraints that are difficult to quantify may be easily
incorporated into the solution. The DP technique is well understood, but practical
implementation details of DP for aircraft route optimization are often proprietary so that
documentation is not readily available. Practical route-optimization software systems
were developed in the late 1960s and early 1970s by R. Dixon Speas of R. Dixon Speas
Associates, and by a group at Lockheed headed by Reinkins [43]. The group at Lockheed

was later sold and became a part of Jeppesen Dataplan.

The Lockheed group found that straight DP was too computationally intensive for
then-available computer hardware (IBM 360) so that heuristics were needed to reduce
computational effort to manageable levels. The adopted procedure was to optimize the
horizontal route over a discrete grid within a reduced elliptical domain around the great-

circle route. Analysis showed that this approach was 99.9% accurate in locating the
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optimum route while greatly reducing computational effort. After the horizontal route was
determined, a constrained optimum vertical/speed profile was determined by searching
over a few candidate cruise altitudes. Climbs were only permitted over navaids to further
reduce the search space. It was found that higher altitudes were nearly always more

efficient for commercial jet traffic, regardless of the vertical wind shear conditions.

The implementation of Lockheed’s optimization system used digitized aircraft
performance data and tabular atmospheric data from the National Weather Service. The
atmospheric data were in Aeronautical Radio, Inc. (ARINC) format, were updated twice
daily, and were presented in 6-hr increments up to a 30-hr forecast. Analysis of their
system demonstrated that aircraft range could be greatly extended through route-
optimization. One interesting application of the route-optimization algorithms was to aid

in-flight refueling operations during the Falkland Islands crisis in 1982.

The Lockheed system has evolved into a number of commercial products and services
offered by Jeppesen Dataplan [41], and similar proprietary systems are in use by a number
of different airlines and large corporate fleet operators. These systems have been manually
tuned to work within the constraints of the NAS to produce near-optimum flight plans,
even considering such constraints as the fees incurred by crossing into different
international airspace domains. The computation speed is difficult to assess and to
compare with other computational approaches to optimization because the details are
proprietary, but the fact is that any DP system will exhibit O(nlogn) or O(n?)
computational behavior. This can be improved through heuristics, but there will always be

a trade-off between computational efficiency and optimization performance.

A DP-like system called the Worldwide Aeronautical Route Planner (WARP), based
on a search algorithm called Multi-Pass A*, was reported to have relatively good
computational and optimization properties, though detailed quantitative results were not
made available [42]. It was reported that the WARP system produced optimal routes with
fuel savings of the order of 1% to 8% compared to great-circle routes, and that these routes

took approximately 30 sec to compute. This is many orders of magnitude slower than what
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is required for a system that must compute conflict-free optimal routes for thousands of

aircraft in less than a minute or so.

Later in this chapter, a computational and performance comparison of a particular DP
algorithm and the neighboring optimal wind-routing algorithm is presented. The analysis
suggests that DP requires approximately an order of magnitude more computational effort
than the neighboring optimal scheme to achieve the same performance. An additional
drawback of DP solutions is that they are not easy to perturb in order to find nearby

trajectories when trajectory conflicts must be resolved.

4.3.4  Genetic Algorithms

Genetic Algorithms (GAs) and other randomized search techniques have been the
subject of much research over the past decade for their potential to obtain feasible near-
optimum solutions to NP-hard problems. The essence of GAs is to randomly perturb
trajectory parameters, to evaluate each solution for constraint satisfaction and
optimization performance, and then to select a subset of the random solutions at each
iteration with the best performance. Heuristics are used to occasionally select solutions

that are different from the current best solutions to avoid locally optimal solutions.

In reference [9], a GA approach is used to determine single-aircraft paths that
minimize some specified index. The algorithm depends on ATC first computing and
communicating all regions of unavailable airspace. Using sparse structured airspace, real-
time performance was achieved from the perspective of the needs of a single aircraft, but
the results were considerably sub-optimal. Using what was referred to as a time-slice
approach, much better optimal paths were achieved, but not in real-time. Conflicts among
aircraft do not appear to be directly accounted for in the optimization, other than if
potential conflicts are identified by a centralized air-traffic control system and provided to

the GA system. Winds were modeled as constant.

Other applications of GAs to air-traffic-control optimization have concentrated

primarily on the conflict resolution function and have not directly included variable winds



4.3. Prior Art: Optimal Aircraft Trajectories in Winds 76

[45, 65, 8]. In principle, the inclusion of variable winds should not greatly affect the
performance of GAs.

Genetic Algorithms still suffer from the same O(n2) type of performance as DP, but
the proportionality constants are potentially much lower for GA so that near-optimum
results may be obtained quickly. Among the problems with GAs is that there are no
guarantees on the optimality of the solution, and that the solutions are so coarse that once
a solution is found, a more detailed optimum result still must be computed, usually using a

gradient optimization algorithm.

4.3.5 Effect of Winds on Optimal Vertical Profiles

The effect of winds on optimal vertical and speed profiles has received considerable
attention because winds can have considerable effect on optimal trajectory solutions [30,
31, 32]. In this case, the goal is to find the optimum combinations of speed and altitude to
minimize the direct operating cost, which is a combination of fuel and time costs (eq.
(2.10)). This is in contrast to the horizontal-plane optimization problem where speed is

considered fixed.

The studies that have been conducted examine the general effects of winds on the
optimal trajectory solutions. Winds are shown to have a measurable effect on optimal-
speed profiles, indicating that it is important to account for the changing nature of the
winds. Since wind forecasting is an inexact science, the implication is that one should
recompute optimal speed and altitude profiles regularly as wind forecasts change. This is
one of the primary reasons why optimal conflict-free trajectories must be recomputed

often, to allow flexibility as wind conditions change.

4.3.6 Effect of Constant Winds on Constrained Horizontal Routes

Minimum-time solutions to the horizontal-trajectory optimization problem in zero
winds with hard state constraints have been shown to consist of straight-line segments

connected by minimum radius turns [38]. The optimum zero-wind solutions are
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characterized as bang-singular-bang solutions, and have typically been derived based on

the minimum principle.

A parameterization technique was applied to the trajectory optimization in the
horizontal plane in the presence of winds with fixed airspeed [66]. Even a constant wind
field prevents the derivation of a closed-form solution to the problem. Results are specific
to each wind scenario and to each set of initial- and final-state constraints, so that
generalizations cannot be made. The main conclusion is that optimum trajectories in the
horizontal plane in the presence of winds are qualitatively different from the zero-wind

solutions, and sometimes dramatically so.

43.7 Neighboring Optimal Control: A Brief Introduction

Neighboring optimal control (NOC) is a time-varying linear feedback control
algorithm that minimizes a performance index to second order by regulating small
perturbations around a nominal optimal trajectory. NOC has been successfully applied to
the solution of a simple case of the Zermelo problem where the winds are modeled as

varying linearly in the cross-track direction only.

The NOC regulator is closely related to the better known Linear Quadratic (LQ)
regulator. In LQ design, the control engineer adjusts terms in the cost-function (J)
weighting matrices (Q, R, and N) to achieve good regulator performance:

T -

Adjusting these weighting matrices achieves a balance among the state perturbations
and the control perturbations used to eliminate them. The weighting matrices may be
constants or may be time-varying as required by the particular system being regulated.
Constant weighting matrices are used in most cases for aircraft control. A time-varying

gain gives better results than the constant gain LQ regulator solution.
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The difference between NOC and LQ is that in NOC, the weighting matrices are

elements of the Hessian matrix of an optimizing cost-function as follows:

H () H, ()| |A%
A = [ [asT agd] | =" T d 4.8)
f)( [as7 aaT] [Hux(:) HW(:)] [AaD t (

where H is the Hamiltonian of the dynamic system being optimized. The subscripts x and
u denote partial differentiation with respect to the states and controls, respectively. In this
case, the weighting matrices are time-varying (shown explicitly in eq. (4.8)), so the
resulting optimal feedback gains are also time-varying. These feedback gains may be
tabulated as functions of time-to-go, and the perturbation in the final time may be

estimated so that an NOC regulator can be used to achieve minimum-time solutions.

The details of computing gains for NOC are presented in references [39] and [64].
More details on the computation of NOC are also presented later in this chapter. The
important result with NOC is that it is a time-varying linear feedback algorithm where the
perturbation controller has the following form:

Su(T) = —K,(T)8x(T). (4.9)

Here, du(T) is the perturbation from the nominal control vector, 8x(7) is the
perturbation from the nominal state vector, K, (T) is the neighboring optimal feedback
gain matrix, and T is the time-to-go on the nominal optimal path. The appropriate nominal
states, controls, and feedback gains are selected based on finding the same time-to-go on
the actual path and the nominal path by using the following NOC feedback relation to
update the optimal final time, Iy

dt; = —K,(T)8x(T) (4.10)

Neighboring optimal controls are generated by feed-forward of the nominal optimal
controls and linear feedback of perturbations from the nominal optimal state trajectory.

This should not be mistaken for simply regulating a system to follow a nominal trajectory.
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Use of the NOC gains will minimize the original cost function to second order. For most
problems, nominal optimal solutions and NOC feedback gains must be computed

numerically because complexity precludes analytical solutions.

4.3.8 NOC Solution to the Zermelo Problem for Constant Wind Shear

The NOC solution for the Zermelo problem with a constant cross-track wind shear has
been computed analytically [39, 40]. A numerical solution to this problem has also been
derived and compared with the analytical solution [40]. This solution is for the general

case of perturbations about any nominal trajectory.

The perturbation feedback laws for 8 and Of are given by

% 2
I:SGJ _ |9x 9y [8;1 @.11)
60 ‘a_efﬁf 8y

0x dy

where the perturbation of any variable, A, is defined by 6(A)=(A-A . ;.)>and the
partial derivatives of 8 and Gf are determined by inverting equation (4.11):

98 98 dy _ox

ox dy| _ 1 08, 08, 4.12)
30,90 ox dy _ox | 5

& 35736 36 361-2 &

3x 3y| 99 98 98, 98755 3o |
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The partial derivatives of x and y with respect to 8 and Gf are computed from the
implicit analytical solution for 0 in equations (4.4) through (4.6) and are given by

ox V[Zsecze(secef- secB) + secO — [secO|]

36 3V (4.13)
¥y _V
36~ 7 secOtan® (4.14)
x _ 1
3, = 2 [Zsecej(taneftane—seczef)-i—secef |sec8]] (4.15)
and
D = _ VY eco an6 (4.16)
o, Vv, 7

The reference point is determined by the point with the same time-to-go as the point

on the nominal path. Differential changes in T are given by

dT = 55+ 95y 4.17)
dx dy

(aT 30  aT aef)ax +(6T 30 , T aesty

36 3x ' 08, x 36 3y 38, 3y

where

oT sec0

LR . (4.18)
¢ Vs

or  sec?®

5 = —V—f (4.19)
f ws

When given the current coordinates, {x, y}, the appropriate value of T is found by

solving equation (4.17) for dT = 0. By doing so, the location on the actual path with the
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same time-to-go as the corresponding point on the nominal path is determined. With this
value of T, the appropriate values of the feedback gains and nominal controls are obtained
from lookup tables. The optimal heading is computed as the sum of the nominal optimal
heading and the neighboring optimal perturbation:

8 = 6D o + 2ODx ~ (1) + 2DV ~ Yoo(T) 420)
x y

This NOC solution to the Zermelo problem is intended to be used to regulate smail
position perturbations away from a nominal optimal route for some fixed value of cross-
track wind shear, V.. The solution procedure is to set V., compute the nominal optimal
route, and then use the NOC regulator to find neighboring solutions when the aircraft
position deviates from the nominal route. This is a computationally efficient method for
computing neighboring optimal solutions. The NOC approach works well when the wind
shear really is constant as modeled, but when the wind shear changes, one must recompute
a new nominal optimal trajectory or else severely sub-optimal performance may result.
For this reason, a more flexible solution technique is required. In addition to accounting
for perturbations in the wind shear, it would be desirable to allow more general wind
models than just a simple linear wind shear. A more realistic wind model is needed. These
shortcomings led to the development of a more general NOC solution in this dissertation
called Neighboring Optimal Wind Routing (NOWR). In NOWR, the wind field is
modeled by piecewise-linearly-varying functions of position, and the dynamic system
equations are augmented with new states for the various wind terms. The solution to the

augmented problem produces feedback terms for perturbations in the winds.

44  Neighboring Optimal Wind Routing

The NOWR algorithm is an application of NOC to the problem of optimizing aircraft
trajectories in a general wind field. It includes the required coordinate rotations,
normalizations, and other augmentations required for application to real aircraft trajectory
optimization problems. An important extension over prior applications of NOC to the

optimal wind-routing problem is the modeling of the wind field by piecewise-linear
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functions. The system dynamic model is augmented with bias states for the wind-model
parameter values at a set of measurement points. This allows the winds to be nominally set
to zero so that the nominal optimal solution is simply a straight line (or great circle on the
sphere) between origin and destination. From the NOC solution, perturbations in the
winds along the route are fed back to modify the aircraft heading to produce near-optimal
trajectories. This leads to a practical and efficient means of computing near-optimal routes

in general wind fields using linear feedback.

The NOWR algorithm is a time-varying linear perturbation feedback algorithm, but
some nonlinear elements such as coordinate rotations to spherical-Earth coordinates must
be included for practical use. NOWR is similar to other perturbation feedback schemes in
which nominal controls are input to the dynamic system being controlled, and then
perturbations from the nominal state, including wind perturbations, are multiplied by
neighboring optimal feedback gains to modify the nominal aircraft heading (fig. 4.5). The

) (Heading angle command for great-circle route)
opt
Optmal |* Ax SN
gglttllrtrilon | 2R NOC o Dynamic| %
Gains System

Figure 4.5. The NOC perturbation feedback algorithm.

difference between NOWR and other perturbation feedback schemes is that the use of the

NOC gains results in a near minimum-time path for the given wind conditions.

The following sections present the derivation of the NOWR algorithm, including
dynamic modeling, coordinate transformations, wind modeling, and solution for the
neighboring optimal control feedback gains. This is followed by a short discussion of the
benefits and possible enhancements of NOWR. The outline of the derivations is as

follows:
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* Dynamic Modeling: Definition of the point-mass kinematic model of an aircraft in
spherical-Earth coordinates
» Coordinate Rotation: Rotation of coordinates to one in which linearization is

possible

» Wind Vector Rotation: Rotation of a vector from one spherical-Earth coordinate
system to another

* Nondimensionalization of Equations of Motion

* General Wind Field Modeling: Modeling the wind field with piecewise-linear
functions

* Analytical Neighboring Optimal Control Solution

44.1 Dynamic Modeling

A mathematical model of the real system (an aircraft in a wind field in this case) is
presented. Although the model exhibits enough fidelity and complexity for accurate

trajectory optimization, it is not any more complex than required.

A nonlinear kinematic model of the motion of an aircraft at a constant airspeed and

altitude in a spherical-earth latitude and longitude coordinate system is given by

dv _ Vcos8+u,(1,A)
dr RcosA

(4.21)

dh _ Vsin® + v (T, A)

&= 42
dt R (422)

where 7 is the longitude, A is the latitude, V is the constant airspeed, R is the distance
from the center of Earth to the current aircraft position, and {u,,v,} are the wind vector

components in the east and north directions, respectively.

The dynamic model is nonlinear through the cosA term in the denominator of
equation (4.21) and also through the potentially nonlinear variation of the winds with
position. The next step is to perform a coordinate rotation that eliminates the cosA term.
The normalization can be achieved so that ultimately a single solution can be applied to
many different optimal-routing problems. Development of the mathematical model of the

winds is deferred until after linearization and normalization of the equations of motion.
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4.4.2 Coordinate Rotation

The equations of motion, (4.21) and (4.22), are nonlinearly coupled by the cos(A)
term in the denominator of the longitude rate equation. By judicious choice of coordinates,
this term can be neglected for small perturbations from a nominal route so that the
equations of motion may be linearized and decoupled from one another. This is achieved
through a coordinate rotation that places any desired great-circle route along the equator

of a rotated coordinate system (fig. 4.6). Along with the linearization, a normalization of

Standard Longitude Latitude Rotated Longitude Latitude
(SLL) (RLL)

Figure 4.6. Coordinate rotation from SLL to RLL coordinates.

coordinates may be performed which leads to a great simplification in the application

NOC for optimal wind routing. More is said on this later.

The spherical-Earth latitude and longitude coordinates in common use, with the
equatorial plane normal to Earth’s rotation axis and the prime meridian passing through
Greenwich, are referred to here as Standard Longitude and Latitude (SLL) coordinates.
The rotated coordinates are referred to as Rotated Longitude and Latitude (RLL)

coordinates.
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The derivation of the following rotations is achieved by equating sets of Euler angle
rotations in both coordinate systems. Other relations or simplifications of these

expressions may be possible, but these have been demonstrated to work well.

The rotation from one set of latitude/longitude coordinates to another is achieved as

follows:

1. Compute &, an intermediate rotation angle:

€ = atan2(—[cosA,sinAg— sinA, cosAgcos(T, — Tg)], —[sin(T, — Tg)cosAg]) (4.23)

where {t,, A, } are the longitude and latitude coordinates of the final point of travel
in SLL coordinates, and {tg, Az} are the longitude and latitude of the initial point of

travel in SLL coordinates (fig. 4.6).

2. Calculate additional intermediate variables:

¢, =sin(T4 — Tp)cosAp

¢, = cosA sinAp - sind,cos(T, —Tp)coSAp
Xpy =—(¢,cosa + §,sinar) (4.24)
Ypa =—(—0,sina + ¢, cosa)

zpy =—(sink sinAp + cosA cos(T, — Tp)cosAp)

where {tp, Ap} are the longitude and latitude in SLL coordinates of the point for

which RLL coordinates are being computed.

3. Compute the RLL longitude and latitude coordinates from the intermediate

variables:

Ag = asin(-yp,) 4.25)
IR = ataHZ(XPA, _'ZPA)
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With this rotation, and with the assumption that perturbations from the nominal great-
circle path will be small, the equations of motion, (4.21) and (4.22), become

4, Vcos
_— = COS© + uw’, x.=R1T
dt [ r R (4.26)
dy, - y,=RA,
rri Vsin@+v,
The rotated wind vector components, {«,,, v,,,} , must be obtained by rotating the

wind vector from the SLL system to the RLL system, the derivation of which is now

presented.

44.3 Wind Vector Rotation

The wind components are typically resolved along the SLL east and north directions,
respectively, so they must be rotated to be along the x, and y, directions in the RLL
system. This rotation is nontrivial since the rotation angle is a function of latitude and

longitude.

The goal of the following derivation is to rotate an angle, Y, ; , which is known at the
point {tp, Ap} in the SLL system, to the equivalent angle, Vg, , , in the RLL system. In
this case, the angle to be rotated is given by

Vsrp = atan2(v,, u,,) (4.27)
where u,, and v, are the wind-vector components in the SLL coordinate system.

The first step is to convert the coordinates of the base of the wind vector from SLL to
RLL coordinates. This is exactly the same conversion as given by equations (4.23)

through (4.25), and the same variable definitions are used here.
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A direction cosine matrix (DCM) has been derived from a series of Euler angle
rotations to perform the rest of the desired angle conversion. The DCM is given by

—Zpsay —Xps COS(AgR)Sin(Tor~Tp) | [~ 2pas —Xpaa;
C =

J1-y3, J1-¥34 (4.28)
asy1=Ypa +Ypads a7l =¥ha +Ypaty
where
a, = cos(A,)cos(Ap) + sin(A,)cos(T, — Tp)
a, = cos(a)cos(T, — Tp) + sin(a)sin(A,)sin(Ty — Tp)
a, = sin(A,)cos(Ap) — cos(A ) cos(t, — Tp)sin(Ap)
a, = cos(o)sin(T, — Tp)sin(Ap) - sin(a)a,
a. = sin(o)cos(T, —Tp) — cos(at)sin(A,)
5 ATtP . A (4.29)
a, _*pa% —2zpscos(Ay)sin(T, - 1p)
N1 ~¥3a
a, = sin(a)sin(t, — Tp)sin(Ap) + cos(a)a,
_XPA%4 —2pad3
ag= ——————
NIES7 N
The rotated angle in the RLL coordinate system is then given by
Wrey = atan2(z,z))
where
(4.30)

= ¢ sinyg, ,
z, cosWYg;
In the final step, the rotated wind-vector components in the RLL system are given by

Uyr = cOS(WRLL)'J (uw)2 + (vw)z “4.31)
wr = sin(\vRLL).\/(uw)z + (Vw)2

<
l



4.4. Neighboring Optimal Wind Routing 88

444 Nondimensionalization of Equations of Motion

By introducing a new unit of time and making a few algebraic manipulations, the
equations of motion may now be nondimensionalized and put into a form that is common
to flights between any two points at any airspeed. The nondimensionalization converts the
linearized equations of motion in RLL coordinates to a set of normalized coordinates,

referred to as NLL coordinates (fig. 4.7). This allows one NOC solution to be applied to a

Rotated Longitude Latitude Normalized Longitude Latitude
(RLL) (NLL)

Figure 4.7. Transformation from RLL to NLL coordinates.

wide range of different problems. The utility of having to compute only one NOC solution
is that the NOC solution is difficult to compute. If it can be computed once and stored for
use, this is clearly a benefit. Similarly, memory is conserved by only requiring that one set

of feedback gains be stored.
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Nondimensional time is related to standard time by the ratio of the airspeed, V, and
the nominal flight distance, L, and is defined by

rs({): (4.32)

The derivative of any variable, A, with respect to standard time is then related to the
derivative with respect to nondimensional time, T, by the following equation:

dA _dA dT _ (Y);‘é (4.33)
dt dT dt L)dT
Substituting for the time derivatives in equation (4.26) and dividing through by V

leads to the following equations of motion:

dx

o7 = cosf + u(x, y) (4.34)
dy _ ..

7= sin@ + v(x, y) (4.35)

where the following nondimensional variables have been introduced:

x=(/L)  y=G/L)
uE(uwr/V) vE(vwr/V)

(4.36)

445 General Wind Field Modeling

Prior NOC solutions to the optimal wind-routing problem modeled the along-track
winds as constant in the along-track direction and as linearly varying in the cross-track
direction. This allowed analytical solutions which provided useful insight into the nature
of optimal wind routes, but it was not accurate enough for the real problem of optimal
aircraft routing. A more general wind model is needed, one that can model general

changes in the winds.
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It must be emphasized that, in the spirit of dynamic modeling for control systems, the
chosen wind model is just a convenient mathematical description of the dynamical system
for the purposes of NOC feedback gain computation only. In practice, once the NOC
feedback gains have been computed, a more accurate description of the wind field may be
used when computing optimal routes. In fact, if the NOC solution is used for real-time
feedback control, then the exact wind field is encountered as an aircraft travels along its
trajectory. As in all linear feedback control, if the linear model is reasonably accurate, then
the results obtained with the linearized NOC controller will be adequate given the real,

nonlinear, system.

Many different forms are possible for modeling the winds as functions of position.
Linear or piecewise-linear functions are chosen for this application because they can be
made to match the real winds arbitrarily closely by increasing the resolution of the
modeling grid [67]. Another reason for using piecewise-linear models is that the NOC
technique effectively linearizes the equations of motion so that if more general wind

models are used, only linear terms remain after linearization.

The nominal winds are set to zero for the computation of the nominal optimal
trajectory, which is simply a straight line from the initial position to the final position,
with 0<x, . <1 and y, ., = 0. Since x,, varies across a range of values, the winds
are modeled as piecewise-linear functions of x. Since y, . is a constant (zero in this
case), the winds need only be a linear function of y instead of piecewise linear. This is
because only the variation in the winds near the nominal trajectory affects the neighboring
optimal gain solution. This suggests the following form for the piecewise-linear wind

model:
ux,y) =y-u,+u, 4.37)

V(x,y) =y v+, (4.38)
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where the shear terms are piecewise linear in x and are defined as

u, = Lutx,y) (4.39)
y =" yeo
_ad
v, = 5=V v(x, y) (4.40)
a =0
y_.

The bias wind terms are also piecewise-linear functions of x and are defined as

u, = u(x,0) (4.41)

v, = v(x,0) 4.42)

When the optimal solution to the Zermelo problem is linearized for small
perturbations in the wind parameters, it is easily shown that only the u, and v, terms

remain (appendix 1). The complete wind model therefore simplifies to:

u(x,y) = y-u, (4.43)
vx,y) = v, 4.44)

[f the nominal winds are nonzero, then a more detailed wind model is required. Once
gains have been computed, more detailed wind models should be used when applying the

NOC gains to compute neighboring-optimal trajectories.

The wind parameters, u, and v, , are modeled as piecewise-linear functions of x, the
normalized along-track position. These functions take on specified values at each of N,
grid points along the x axis, and vary linearly in between grid points (fig. 4.8). Given x, it
is straightforward to find x; and x; , |, and therefore i . Between any two points, x; and

x;, 1 » the value of a piecewise-linear function, z, is simply

2(x) = z,-+—-_"—x_)(z,.+l-z,.) (4.45)



4.4. Neighboring Optimal Wind Routing 92

(x;=0) X; X Xie (xy =1)

Figure 4.8. A graphical depiction of a piecewise-linear function of x.

4.4.6 Analytical Neighboring Optimal Control Solution

Neighboring optimal control solutions usually must be obtained via numerical
methods. In the present case, the fact that the NOC solution is to be computed for the case
of nominally zero winds enables the derivation of an analytical solution. The analytical
solution is a significant improvement over numerical solutions because it eliminates the
need to employ table look-up to find the gains during implementation of the neighboring
optimal control law. The analytical solution has been obtained for the general case where
the winds are modeled as piecewise linear on a grid of N,, points. Solutions when N,,
becomes large (greater than about 15) are not even possible via numerical methods

because of computational difficulties.

The derivation of the analytical solution is straightforward, but tedious because of the
piecewise-linear wind models. Therefore, the solution is presented here, with the

derivation being deferred to appendix 1. The derivation of the numerical solution via the
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backward sweep method is also presented in appendix 1 for comparison, and to show how
NOC gains might be computed for more complicated systems.

The equations of motion for the neighboring optimal wind routing problem are given
by

X = cos®+y-u, (4.46)
y = sin@+v, 4.47)

The parameters u, and v, are piecewise-linear functions of x as shown in fig. 4.8,
and are specified at N,, grid points along the x -axis. Note that the value of x at any grid
point, i is given by

x; = A;w-_ll (4.48)
The initial conditions are:
x(0) =1 (4.49)
y0) =0 (4.50)
and the final conditions are:
x(t) =0 (4.51)
) =0 (4.52)

The nominal optimal heading is obtained for the case of zero winds, and is given by
=n (4.53)

The situation is depicted graphically in fig. 4.9.
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Figure 4.9. Graphical depiction of the neighboring optimal wind routing problem.
The neighboring optimal feedback law is given by

N
_ .90 "(89 a .98 ) 4
0 = 1t+.3; y+ Yy u, uy,+av“ Vi (4.54)

i=1

where the partial derivatives of 8 with respect to each of the state variables are the NOC

gains, which are now defined.

The neighboring optimal perturbation in heading for perturbations in cross-track

position is
Pl gexst (455)

Note that this linearized feedback gain approaches infinity as the aircraft nears x = 0. In
practice, a mode switch to a heading regulator is used to avoid this singularity. Another
option is to use the optimal nonlinear feedback rule for perturbations in y as x approaches

zero, which is

A9, = tan-l(x) (4.56)

X

Note that equation (4.56) reduces to equation (4.55) for small perturbationsin y .
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Because of the piecewise-linear nature of the wind model, the NOC gains related to
the wind parameters must be expressed as piecewise-continuous functions of x. The NOC

gain for perturbations in the along-track shear at the first grid point, i = 1, is given by

a0
= (4.57)
duy,
[
1 1 1
_ <x<l1
6(N,—1)2 x (N,-1)
< 1 1 L
—_—— = [1=(1=x-(N,-1))?(2x- (N, ,-1)+1 O<x<
6N -1 x [1-<( (N, -1))*2x - (N, - 1) + 1)] -1
10 limx—>0
All other NOC gains for perturbations in the along-track shear over the range
2<i<N, are given by
a0
— = (4.58)
duy;
[ (-1 1
(IST—I%; {x;,1<x=s1}
6(i—1)-(i-x-(N,—1))?-(2x- (N, - 1) +i) {x;<x<x;,}
6x-(N,—1)?
<
[3i-4-3((i-1)2-x2(N,- 1)) +(i-1-x-(N,-1))*2x- (N, - 1) +i-1)]
) —1)2
6x- (N~ 1) {x;_<x=<x;}
0 {0<x<x;_,}
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The NOC gain for perturbations in the cross-track bias wind at i = 1 is given by

2(1\/1“71)'l (N1 Tk
—1) x -
%® _ ) ¥ (4.59)
Wy | W=D
2 SRS

All other NOC gains for perturbations in the cross-track bias wind over the range

2<i<N, are given by

1 1
(N _1)'; Xl+l<XS1
w
2-(i-x- (N, —1))2
00 2x-(N fl) x1<xsxi+l
aTb.= 9 w (460)
i
i-2-x-(N,-1))2
G P x(N( '”'l) ) x;_1 <x<x;
w
o 0<x=<x;_;

The NOC gains for perturbations in y, u,,, and v,; have been plotted for the specific

yi?
case of N, = 13 toillustrate their qualitative nature (fig. 4.10).

In prior NOC solutions to the Zermelo problem, NOC gains were tabulated as
functions of time-to-go (t—1).In addition to the neighboring optimal heading
perturbation equations, a set of neighboring optimal perturbations in the optimal final time
were derived and used to determine the point on the nominal path with the same time-to-
go as on the neighboring optimal path. Using time-to-go as the independent variable rather
than time ensures that the NOC gains do not run out if the final time on the neighboring

optimal path happens to be greater than the nominal final time.

In the present application, the use of a nominal path which is a straight line enables the
gains to be expressed as a function of x, which is the distance-to-go along the nominal

path. The same benefit of not having the NOC gains run out along the trajectory is
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Figure 4.10. Normalized neighboring optimal feedback gains.

achieved with this method. The analytical solution for the NOC gains has eliminated the
table look-up procedure, which simplifies the application of NOC. Since the winds are
modeled as a function of x, the resulting neighboring-optimal solutions have better
performance than if the NOC gains are obtained as a function of time-to-go. This is
because the effect of winds along the route on the optimal trajectory is a function of x

only.
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Although it is straightforward to compute NOC gains for any value of N, with the
analytical solution, N,, should not be made any larger than required for the accurate
modeling of the wind field. Each new wind measurement point adds another 2N,
feedback gains to the problem, which can slow down the implementation. Winds across
the United States are adequately modeled for the purpose of trajectory optimization using
points spaced by about 200 nmi. Increasing grid spacing too far can result in inaccurate
weather models by under-sampling the winds, possibly resulting in aliasing. Decreasing
the grid spacing may lead to excessive computation without any significant gain in
optimization performance. Using this as a guideline, N, = 13 was determined to be
adequate for the longest routes in the continental United States which are about 2500

nautical miles.

Careful examination of the normalized feedback gains in fig. 4.10 demonstrates how
wind perturbations affect the optimal heading along the route. In particular, note how
feedback gains associated with perturbations in the winds at distant locations affects the
current optimal heading. Also note that as an aircraft passes a point, i, the effect of the

feedback gain associated with the point i + 1 drops to zero as one would expect.

4.5  Application of Neighboring Optimal Wind Routing

Optimal wind-routes may be computed in real-time by using the feedback law of
equation (4.54) to guide the aircraft, or they may be computed using a fast-time simulation
so that the entire route may be precomputed and given as a clearance to the aircraft. The

best option depends on the particular application; both are now presented.

4.5.1 Real-Time Neighboring Optimal Wind Routing

The application of the NOWR feedback gains to the computation of the neighboring-
optimal heading perturbation is performed in the nondimensional rotated (NLL)
coordinate frame. Additional computations are required to convert the resulting solutions

back to the SLL coordinate frame (fig. 4.11). These steps are as follows:
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Figure 4.11. Block diagram of the NOWR algorithm.

1. Rotate Aircraft Coordinates from SLL to RLL: Apply the rotation algorithm in
equations (4.23) through (4.25) to the current aircraft coordinates.

2. Normalize to obtain NLL Coordinates: Apply the normalization as shown in
equation (4.26) and equation (4.36) to obtain the current aircraft coordinates in NLL

coordinates, {x_, y.}.

3. Compute Wind Perturbations: The wind data are usually obtained by interpolating
from a gridded model in SLL coordinates. Several options are available for obtaining the
SLL coordinates. If the nominal great-circle route is already known in SLL coordinates,
one may simply divide the SLL great-circle route into N,, — 1 equally spaced sections and
then look up the u,; and v,; terms at the N,, connecting points. Another option is to begin
with the NLL coordinates where the nominal path is a straight line from the point {1, 0}
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to {0,0}. The N,, sets of coordinates are obtained from equation (4.48) and then rotated
to their equivalent SLL coordinates for interpolation of the «,, and v,, data.

Once the u,, and v, data have been interpolated, they are rotated to RLL coordinates
by means of equation (4.31). The v,; values may be computed directly from v, as

follows:

_ (V“!R)i

Voi = —g—  i=L2..N (4.61)

The shear terms, Uy;s still must be computed from the (u,, R); values. There are many

possible methods for computing the shear terms, two of which are described here.

The first method for computing the shear terms is to choose a value of ty_ at which to

compute u,, ;. The shear vector is then computed by the following formula:

_ herOpY) e ¥

uy; = oy . (4.62)

The second method is to choose a range of cross-track values (—y, <y <y, ). The shear
is then obtained by computing the slope of the line that best fits the wind data over that

range of y in a least-square error sense, or in some other optimized sense.

Either of these methods may be modified by iterating on the choices of y; and then
computing the optimal wind trajectory by means of fast-time simulation (described
below). After computing the optimal flight time, y_ is varied until the value is found that
leads to the minimum predicted flight time. This would typically be done as an analysis
study, and the best average value would then become a fixed parameter for application of

the NOWR algorithm. As shown later in this chapter, the best value is y, = 0.08.
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4. Compute Neighboring Optimal Heading: After the wind terms have been
computed, the optimal heading in the RLL system is computed from equation (4.54).

To rotate 8 to the SLL system, one must implement the inverse rotation given in
equation (4.23) through equation (4.25) and equation (4.28) through equation (4.30).
When rotating from the SLL system to the RLL system, the coordinates of {14, A4} and
{75 Ag}, which were the coordinates of the final point of travel and the initial point of
travel in the SLL system, were required. The equivalent of these coordinates in the RLL

system is now needed.

To accomplish the reverse rotation, one must first convert the origin of the SLL
coordinate system (the intersection of the equator with the prime meridian, {0, 0} ) into
the RLL system. A second point along the SLL equator is also needed in the RLL system
for the reverse rotation algorithm. Any point along the SLL equator will do: for example,
one may use the point {0, 45°} . These rotations produce the following two sets of

coordinates:

{0, O}ISLL = {Top )'OR}IRLL
and (4.63)

{0, lequator}|SLL = {tOeR’ )"OeR}IRLL

One may now use the rotation algorithm in equation (4.23) through (4.25) and
equation (4.28) through (4.30) by making the following substitutions:
T,=T A=A
A= ‘or A= MoR (4.64)
Tp=Toer hp=Ao.r
In these reverse rotations, the point {Tp, Ap} now represents the location of the
aircraft in the RLL coordinates. After completing these rotations, the total neighboring

optimal heading command in SLL coordinates is obtained:

Or1L = 05, (4.65)
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For the real-time system, this heading command must be updated continuously to
guide the aircraft along the neighboring optimal trajectory.

4.5.2  Fast-Time Simulation for Neighboring Optimal Wind Routing

In this mode, neighboring optimal wind routes are precomputed by means of fast-time
simulation using a computer to integrate the equations of motion for the aircraft. This
produces an entire flight trajectory, which is then given to the aircraft to follow. The
trajectory may be updated whenever desired (when new wind data become available, for

example). The steps are as follows.

1. Rotate from SLL coordinates to NLL coordinates and Compute Wind Parameters:
The rotation formula to go from SLL coordinates to NLL coordinates is exactly the same
as was outlined in equation (4.23) through (4.25) and equation (4.27) through (4.36). The

wind parameters are also computed just as in the real-time algorithm.

2. Integrate Equations of Motion: The equations of motion to be integrated in the
NLL system are slightly different from those used for the neighboring optimal gain
computations. This is because now the equations of motion are being integrated to obtain
an accurate trajectory so that the decoupling simplification necessary for gain computation

is not required. The equations of motion are now given by

- cos8 + u(x, y)
cos(y - Tge) (4.66)

sin® + v(x, y)

y
where 1T is the initial longitude in RLL coordinates (recall that T, = y - Tpq). Notice
that the spherical-earth equations are used, as are the actual wind values. The piecewise-
linear form of the winds is not needed during this step. One may choose to use more

detailed equations of motion if more accuracy is required.

3. Compute Neighboring Optimal Heading: The neighboring optimal heading only
needs to be computed in the RLL system according to equation (4.54). The rotation of the
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heading command to the SLL system is not required in this case since the equations of
motion are integrated in the RLL system and the resulting trajectory is converted from
RLL to SLL coordinates.

4. Convert Resulting Trajectory from RLL to SLL Coordinates: The reverse
conversion of RLL latitude and longitude to SLL latitude and longitude is achieved using
equation (4.23) through (4.25) along with the substitutions shown in equations (4.63) and
(4.64). This leads to the desired neighboring optimal trajectory in SLL coordinates.

4.6 NOWR Examples

Several examples are now presented to demonstrate the NOWR algorithm. The first
set of examples are devised to illustrate how linear feedback operates on perturbations in
the winds to achieve neighboring optimal trajectories. These examples are generated for
the case of N, = 3 so that one may more easily follow the effects of the feedback gains
on the neighboring optimal solution. For these cases, the actual winds are also piecewise
linear as modeled for the computation of the NOWR gains. A second set of examples is
presented to demonstrate the NOWR algorithm in a more realistic application. The
NOWR algorithm has been installed in the Future ATM Concept Evaluation Tool
(FACET) so that neighboring optimal wind-routes may be computed within a spherical-
Earth model using RUC atmospheric data.

4.6.1 Illustrative Examples

In these examples, normalized coordinates are used. Dimensionalizing the results to
any desired range and airspeed may be achieved via equation (4.32) and (4.36). The
aircraft begins at the initial point, {x = 1,y = 0}, and proceeds at unit velocity to the
final point, {x = 0,y = 0}. The number of wind grid points is N, = 3, and winds are
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modeled as piecewise linear in between grid points. The feedback gains for these
examples are listed in table 4.2 and are presented graphically in figure 4.12.

Table 4.2. NOC feedback gains for 3 grid points.

NOC Gain 0<x< % Lexs<t
20/ dy 1/x 1/x
00/0u 2 1 1
yl &2 2 _
3T 24x
00/9u,, 2x2 (= 1+ 12x2-8x3)
3 12x
08/9u,; 0 (1-12x2+16x3)
24x
00/0v,, 1-x 1
4x
06/9v,, x (=1 +4x—2x2)
2x
00/dv,;, 0 (1-2x)2
4x

The winds for the first example are zero along the nominal route, but have a cross-

track shear in the along-track wind at the point x, = 0 (fig. 4.13) such that uy = -1,

Uy, = uy3 = 0. The goal of this example is to demonstrate how perturbations in the

winds at a distant location have a measurable effect on the optimal heading. In this case,

the winds are zero throughout the first half of the trajectory, but the optimal heading angle

perturbation is clearly nonzero in this region. Both the neighboring optimal solution and

the exact optimal solution have been computed for these wind conditions, and are nearly

identical to one another (fig. 4.14). The aircraft symbols depicted on the trajectory plot are

shown at approximately the correct heading angle, but note that the angles are distorted

because of the different scales on the x and y axes. Also note that the heading angle is

relative to the air mass, and is therefore different than the course angle in nonzero winds.



4.6. NOWR Examples 105

Figure 4.12. NOC feedback gains for the case of three grid points.

The only discernible difference in the neighboring-optimal and exact-optimal solutions is
the small perturbation in the neighboring optimal heading as the aircraft nears the final
position. This is due to a mode switch to a heading capture command near the final point
to avoid the singularity in the NOC solution as discussed earlier in this chapter. The
minimum flight time in this example is only about 0.22% less than the nominal flight time.
If this example were scaled to a nominal range of 2500 n.mi. and an airspeed of 480 kn,
then the nominal flight time would be 312.5 min, and the optimal flight time would be
about 1 minute less. For these dimensions, the shearat x = 0 is u,; = 0.192 kn/n.mi.
and the maximum trajectory deviation is about 66 n.mi. This is not a particularly severe

wind shear, as much higher values may be encountered in the real atmosphere.
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Figure 4.13. [llustrative example-1 wind parameters.

In the second example, the cross-track shear in the along-track direction is modeled as
a linearly varying function of x (fig. 4.15). In this case, u,; = -0.1, 4, = 0,and
uy3 = 0.1. The resulting trajectory (fig. 4.16) hints at the rich structure that may be
achieved in neighboring optimal trajectories when the winds are modeled as functions of
x . Again, the neighboring-optimal and exact-optimal solutions are nearly identical. In this

second example, the minimum time is about 0.23% of the nominal flight time.

The goal of the third example is to demonstrate the effect of the cross-track winds on
the optimal trajectory, and to again show how winds along the entire route affect the
optimal heading. In this example, the along-track winds are zero and the cross-track winds
are modeled as a linear function of x. In this case, v,; = -0.1,v,, = 0,and vy; = 0.1

(fig. 4.17). The interesting feature in this example is that the contributions of the
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Figure 4.14. Illustrative example-1 trajectory plot and plot of optimal heading vs. x.

perturbations in y and in the two cross-track wind terms exactly cancel along the entire
trajectory for these particular perturbations so that the aircraft maintains a constant
heading relative to the air (fig. 4.18). The NOC solution accounts for the fact that the
cross-track winds will change sign. The optimal strategy is to maintain a constant heading
relative to the air because ultimately the aircraft will drift back to the correct final position.
The optimal flight time with the perturbed cross winds is identical to the nominal flight
time in zero winds even though the flight distance is increased. This is possible because
the ground speed increases from V, = 1 to V, = J1+_11,§ . The reader is encouraged to
examine this case in greater detail by computing the individual contributions of the y,
vy » and v,, terms to the neighboring optimal heading perturbation to see that they do

indeed cancel.
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Figure 4.15. Illustrative example-2 wind parameters.

4.6.2 FACET Simulation Examples

The NOWR algorithm has been coded into the Future ATM Concept Evaluation Tool
(FACET) to examine neighboring optimal wind routes in a real air-traffic control
environment. FACET integrates the aircraft kinematic equations over the spherical Earth
and utilizes detailed wind data from the Rapid Update Cycle (RUC) [63]. It is emphasized
that in these examples, the aircraft trajectory is integrated through a real wind field along
spherical-earth coordinates even though the NOC feedback law was derived using simpler
linearized models. The NOWR gains are implemented in FACET using 13 grid points so
that N, = 13 (fig. 4.10).
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Figure 4.16. Illustrative example-2 trajectory plot and plot of optimal heading vs. x.

The first FACET example (fig. 4.19) shows a flight from New York (JFK) to San
Francisco (SFO) using RUC wind data from 14 February 2001 at approximately 36,000 ft
MSL. The great-circle flight distance is L = 2242 n.mi. , and the airspeed is
V = 450 kn . The cross-track shear in the along-track winds on this day was large because
of the presence of a strong south-westerly jet stream, which is typical in the winter
months. The time saved over the corresponding great-circle route was about 20 min, and

the maximum deviation from the great-circle route was more than 300 n.mi.

The second FACET example (fig. 4.20) shows a flight from Miami, Florida (MIA) to
Seattle, Washington (SEA) through the same wind field as in the first example. The great-
circle flight distance is L = 2365 n.mi., and the airspeed is again V = 450 kn. The time

saved over the great-circle is only about 7 minutes because the shear is less than for the
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Figure 4.17. Illustrative example-3 wind parameters.

JFK to SFO route. The important feature of this second example is that the neighboring
optimal wind route was computed using exactly the same normalized feedback gains as in
the first example. The difference in trajectories is a result of the different coordinate

rotations, dimensional scaling, and the different winds along each route.

4.7 NOWR Performance Analysis

How close to optimal are the NOWR solutions, and under what conditions can the
performance be bounded? How computationally efficient is the NOWR algorithm when
compared to a DP algorithm? These questions are examined by comparing optimal routes
computed with NOWR to those computed by a representative DP algorithm. The

computational effort and optimization performance of each is evaluated.



4.7. NOWR Performance Analysis 111

0 0.2 0.4 . 0.6 0.8 1

10 .................. o

(8-m) . . J
. . NOWR

A0k . S S Exact  eseese |

0 0.2 04 0.6 0.8 1

Figure 4.18. [llustrative example-3 trajectory plot and plot of optimal heading vs. x.

A generally varying wind field is not easily modeled as a deterministic analytical
function. At the scale of importance to aircraft trajectory optimization, the wind field may
contain significant areas of nonlinearity such as jet streams and circulation zones. While
improbable, it is possible that the linearizing assumptions underlying the NOWR
algorithm might produce trajectories that are completely out of phase with the real
nonlinear wind field. These worst-case trajectories could have significant performance
deficits when compared to the tru€ optimal solution which takes into account the real
system dynamics. These differences in performance for the worst-case scenarios could be
so large that they would not be useful as practical bounds. This suggests that an empirical
approach might be the best way to compute practical bounds on NOWR performance. To
compute empirical bounds on NOWR performance requires that both the NOWR solution
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Figure 4.19. FACET example-1: NOWR route from JFK to SFO (2/14/2001).

and some close approximation to the true optimum solution be computed for a statistically
significant set of wind conditions and flight paths. A comprehensive analysis might lead to
NOWR optimization performance results that could be reported as a function of different
parameters such as time-of-day, time-of-year, altitude, and region. The goal here is to

show how such a comprehensive analysis might be achieved by demonstrating the concept

for a small subset of wind conditions and routes.

4.7.1 Heuristic Dynamic Programming Algorithm

The optimal solution is to be computed with a discrete Dynamic Programming (DP)
algorithm, the basics of which were described in section 4.3. Discrete DP is essentially an

exhaustive search technique whereby the flight times along each segment of the DP grid
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Figure 4.20. FACET example-2: NOWR route from Miami to Seattle (2/14/2001).

are computed and the minimum-time path selected. A DP algorithm offers the advantage
of producing the true optimal solution for a given grid network. Other techniques either
suffer from the tendency to become stuck at a local minimum solution or, in the case of
randomized search techniques, they cannot guarantee that the global optimum solution has
been found. To find the approximate optimal solution, the resolution of the DP grid is
increased until the computation time and computer memory limits are reached. The
optimization performance at several different grid resolutions may be examined to verify
that the minimum time solution is converging. This value is then taken as an

approximation of the globally optimal route.

Since the computational effort of the DP algorithm will be compared with that of the

NOWR algorithm, an effort was made to use reasonable heuristics to limit the search
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space of the DP algorithm. However, since there are practically an infinite number of
ways to implement a heuristic DP algorithm, no claim can be made regarding the
fundamental and absolute comparison of NOWR and DP. For that, a more rigorous
abstract computational analysis would be required, which is beyond the scope of what is

attempted here.

To simplify and speed up the DP computations, the same coordinate system rotations
were used as for the NOWR computations (figs. 4.6 and 4.7). A simple Cartesian grid was
then defined, with the departure angle from each point to the next point and the distance

between along-track stations being variable parameters (fig. 4.21). For a given resolution,

CMA R

>

Cross-track direction

Axpp

173 _ 2/3 !
Along-track direction

Figure 4.21. [llustration of the Dynamic Programming grid.

values for 8p and Axpp are chosen, the optimal route is computed, and then the
resulting route is dimensionalized and rotated back to SLL coordinates for output. The
range of the grid was limited such that departure angles from the initial point were less
than or equal to 45°, and the maximum cross-track deviation allowed was 25% of the
great-circle path distance. An example grid and optimal route solution are shown in figure
4.22.
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Figure 4.22. A Dynamic Programming solution.

One simplification that greatly speeds up the computations is to use simple rules for
integrating the flight time along each segment of the DP grid. When the grid segments are

fairly short, the winds along that segment are approximately constant. Therefore, the

segment ground speed is computed at the midpoint of each segment. The great-circle

distance for each segment is computed and divided by the average ground speed to obtain

the approximate segment flight time. Once the route with the minimum time is selected in

this way, a more accurate integration is carried out by causing the aircraft to fly great-

circle routes between each segment point along the selected minimum-time route. The

details of this simplified DP method are now presented.
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For each segment consisting of initial SLL coordinates {7, Ay} and final SLL
coordinates {7, A/}, the great-circle distance on a spherical Earth is given by

Ag—A To—1T
L, =2R J sinz(—‘oéz—f) + cosh, cos)\.fsinz(o—zf) (4.67)
Other more compact formulas may be used, but the one in equation (4.67) is less

susceptible to rounding errors than others.

The average longitude and latitude along the segment are computed as simple

averages:
1, = (T +T)/2 (4.68)
Ap=(Ag+10/2 (4.69)

The winds are interpolated from the provided RUC data at the {1,, A,,} coordinates.
The ground speed at this point must be computed accounting for the crab angle required to
maintain a great-circle course from {1, A, } to the final point, {1, A} . The great-circle

ground speed at this point is given by

) V. .
Vem = V- cos(sm“(—‘/—; sm(xw-xg))) +V,, - cos(X,, —X,) (4.70)

where V is the airspeed, V,, is the wind magnitude, and the wind vector angle, ¥, , and

aircraft course angle, x, , are defined as
X, = atan2(u,, v,.) 4.71)

Ag = atan2[sin(T,~- tm)coskﬁ sinlfcoskm cos(Tp— )] 4.72)

and u,, and v, are the east and north wind vector components in the SLL coordinate

system.
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The approximate segment flight time is then computed as

HN

t,, = 4.73)

seg

NS

m

Once the flight time along each segment has been computed, the algorithm determines
the minimum-time route to each node in the graph from the initial point to the final point.
After the minimum-time route has been selected using the approximate segment times, a
more accurate trajectory is numerically integrated assuming great-circle routes in between
grid points. This final trajectory is of the same level of fidelity as those computed using
the NOWR algorithm. Note that beeause of this final numerical integration, the DP
algorithm will always take at least as long as the NOWR algorithm because the NOWR
algorithm is essentially just a numerical integration of the trajectory.

The advantage of going through this approximation scheme is that it eliminates the
need to perform computationally expensive numerical integration along each segment.
The time saved is dramatic, and when segment sizes are small, there is no difference in the

resulting solutions.

472 Empirical Study Data Set: Winds and Routes

High-wind-shear days were chosen for this analysis because high-wind-shear
conditions have the highest potential for NOWR performance difficulties. Since the
highest shear conditions tend to happen in the winter months, the data for this empirical
study were chosen from several days in February 2002, and from one additional high-
wind-shear day in February 2001. The wind data and data processing used for this study
are the same as those presented earlier in this chapter for the comparison of great-circle
routes to optimal wind routes. The specific data files used for this study are listed in table
4.1. The same set of long-distance routes is used for this study as for the comparison of

optimal wind routes with great-circle routes (fig. 4.1).
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An initial analysis of these data was performed to determine the value of Yy, that gave
the best average performance for the NOWR algorithm. The best value was determined to
be

Vsl = 0.08 (4.74)

This best value of y, has been used to compute all of the NOWR results in this chapter,
and in the rest of the dissertation.

473 NOWR versus DP Comparison Results

The comparisons have been computed in MATLAB on a Sun Ultra 450-MHz work
station. Using the DP algorithm defined in this chapter, the grid resolution is varied and
the DP optimal routes are computed for each of the 42 routes for each of the different
weather files for a total of 252 different routes at each DP resolution. The DP resolution is

varied according to the values shown in table 4.3. The along-track grid resolution, Axpp,

Table 4.3. Combinations of DP grid resolution.

Arpp0p | 2deg | 3deg | 4deg | 5 deg | 10deg | 20 deg | 45 deg
5% X X
10% x | x X X X X
25% X | x [ x [ x X X X
33% X X
50% X X

is expressed as a percentage of the total great-circle-route length, and the angular
resolution, 8, is expressed in degrees. Not every combination of these two parameters
has been tested, either because the combined grid resolution clearly became too coarse to
achieve meaningful results, or because the combined resolution became so high that the

computation would take an exceedingly long time or would exceed memory capacity on

the computer hardware.
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The highest combined resolution achieved with the best average optimization
performance is at Axpp = 0.10 and 6, = 2°. At this resolution, the total computation
time for the 252 optimal-route computations exceeded 15 hr. The lower resolution
simulations all took correspondingly less time, and the NOWR simulations required two

orders of magnitude less time to complete.

The computational effort was measured in terms of floating point operations, or
FLOPS, using MATLAB’s built-in FLOP estimation function. This is not an exact
measurement of the total number of operations required, but is a good approximation. For

more detaiis, one may refer to the MATLAB User’s Guide or on-line help [68].

The optimization performance is measured relative to the DP solution with the highest
grid resolution (Axpp, = 0.10, 8pp = 2°), which is referred to as the benchmark DP
solution. The results were evaluated in terms of the percentage of additional total flight

time required over all 252 routes relative to the benchmark DP solution.

The additional total flight time over 252 routes normalized by the benchmark DP

solution is given by

J-J
AT = ——benchmark (4.75)
J, benchmark

The cost function, J, is defined as

Ng
J= Y (1), (4.76)
i=1
where (tf),. is the flight time for route i, and Ny is the total number of routes (252 in this

case).

This value is plotted as a percent versus the DP grid departure angle, 8, for a family
of different values of Axpp in the upper plot of figure 4.23. For comparison, the NOWR

and great-circle solutions are shown on the same plot. The total additional flight time of
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Figure 4.23. Performance analysis of NOWR and DP.

the NOWR solution over all 252 routes is shown to be just 0.25% above the benchmark
DP solution. The great-circle solution is more than 1.6% above the benchmark. All of the
various DP solutions computed according to table 4.3 exhibit the expected behavior as a
function of both Axjp, and 6. Note that as the along-track grid resolution is increased,
the solutions appear to asymptotically approach a common value. This is most clearly
noticed when examining the small difference between the solution curve for

Axpp = 0.10 and Axpp = 0.05. This suggests that the benchmark DP solution is near

the true optimum solution.

The lower plot in figure 4.23 shows the total floating point operations, or FLOPS,

versus 0, , and again for a family of values of Axpp. The FLOPS have been normalized
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by FLOPSygwg » the number of FLOPS required for the NOWR solutions. Therefore, the
NOWR solution is at unity on the vertical axis. The great-circle FLOPS are nearly
identical to the NOWR FLOPS.

Each of the values of Axj,p corresponds to a value that divides the nominal route into
an integer number of segments: 2 (Axpp = 0.5),3 (Axpp = 0.33),4 (Axpp = 0.25),10
(Axpp = 0.1),0r 20 (Axpp = 0.05). The two plots may be used to determine the grid
resolution that achieves the same optimization performance (on the upper plot in figure
4.23) for the lowest computational effort. The most efficient DP grid resolution that
achieved the same average performance as NOWR is Axp, = 0.25 and 6,, = 6°,
which is the same resolution shown in fig. 4.22. The additional computational effort for
this solution is more than 5 times greater than that required for the NOWR or for great-
circle solutions. All other grid resolutions with the same performance as NOWR required

even greater computational effort.

Qualitatively, these results show that even fairly coarse DP grids can achieve good
optimization performance. This suggests that the minimum time cost function is flat near
the optimum solution. Coarse solutions are good because they require less computational
effort, but on the other hand, they still require more than 5 times the computational effort
of the NOWR algorithm. Another problem is that it is not easy to perturb the solutions to
achieve nearby optimum solutions. This is a significant drawback because the trajectories

will need to be slightly perturbed during conflict resolution, as will be shown in chapter 5.

4.7.4 Limitations of NOWR

Analysis showed that, on average, NOWR exhibits excellent optimization
performance and is computationally efficient. Part of the credit for this good performance
goes to the mesoscale wind field, which is smoothly varying most of the time. Under some
conditions, however, a strong jet stream or localized region of strong circulation can push
the NOWR algorithm beyond the linearizing assumptions and lead to substantially

suboptimal performance. The good average performance suggests that such cases are rare.
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Among the routes used in the NOWR versus DP comparisons, one such situation was
noticed. On 14 February 2001, there was a strong southwesterly jet stream flowing across
the United States with winds exceeding 170 kn. The NOWR solution for a route from New
York (JFK) to San Francisco (SFO) at FL350 showed a rather large deviation from the
great-circle route to achieve more than 20 min in flight-time savings. This is good, but the
DP solution was able to save more than 50 min by making an even larger deviation.
Examining the plot of these routes and the associated wind field shows how this occurred

(fig. 4.24). Near JFK, the jet stream straddled the great-circle route symmetrically so that

Winds at FL350 on 14 February 2001 1700 UTC
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Figure 4.24. An example of highly nonlinear wind conditions.

the local change in wind speed with cross-track deviation was nearly zero in that area.
Therefore, the NOWR algorithm didn’t “see” any advantage in deviating in that region.
The DP search algorithm was not limited in this way and found that a large immediate
deviation to the north could get around the jet stream entirely. Toward the latter half of the
trajectory when the cross-track wind shear became apparent to the NOWR algorithm, the
DP and NOWR solutions began to match up closely.
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On that particular day (i.e., 14 Feb. 2001), the JFK-SFO route was one of the only
routes that exhibited this type of behavior. If the initial trajectory point was moved just
slightly to the North, the NOWR algorithm could begin to see the significant cross-track

shear so the DP and NOWR solutions matched much more closely.

This kind of behavior is to be expected since the assumptions underlying the NOWR
algorithm are only valid for small perturbations from a locally optimum solution. But in
practice, large deviations are usually handled gracefully by the NOWR algorithm. Even in
the case shown above, the penalty was that the NOWR algorithm only saved 20 minutes
instead of the possible 50 min. To account for such occurrences in practice, one might
occasionally compute DP solutions between common city pairs to determine when these
nonlinear conditions are prevalent. In these cases, it may be advantageous to use some
form of perturbation guidance other than NOWR. One might modify the NOWR
algorithm to control around perturbations from an arbitrarily specified route. This is left as

a subject for future research.

A simple metric has been defined to help identify when the NOWR route may have
exceeded the small perturbation assumption. While the NOWR route is being computed,
one may record the maximum cross-track deviation, y_,. . This value may be compared to
the cross-track deviation used to compute the discrete wind shear as given by y in

equation (4.62). This maximum perturbation metric, |, is defined as

= Lo @.77)
Ys
If u, is much greater than 1, then it is possible the NOWR route has gone outside of
the small perturbation limit. Conversely, if \_ is much less than 1, the value of y_ should
be adjusted lower. On average, y, = 0.08 has been shown to be a good value.
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4.8 Benefits and Enhancements of NOWR Over Prior Art

48.1 Modeling for Perturbations in Along-Track Wind Shear

Referring to Bryson & Ho [39], the Zermelo problem was previously solved using
neighboring optimal control by fixing the value of the wind shear parameter (rate of
change of along-track wind in the cross-track direction) and then solving for the nominal
optimal path for the fixed conditions. NOC feedback gains were computed only for
perturbations in position, but not for perturbations in the wind shear. If the wind shear
changed from the modeled value, then the nominal optimization computations had to be

redone or substantially sub-optimal performance would result.

The nominal optimal solution is for zero winds in the current formulation, and is
therefore trivial. This, in addition to the nondimensionalization of the solution, is what
allows a single nondimensional solution to be applied to flights between any two points
and at any flight speed. This is a significant improvement over the prior art because it

produces good performance using linear feedback.

48.2 Incorporating Varying Along-Track Wind Shear

Prior work in neighboring optimal control for the Zermelo problem has treated the
wind shear as constant in the along-track direction. Modeling the shear parameter as
linearly varying between chosen grid points has allowed neighboring optimal control
gains to be computed for perturbations in the wind shear parameters. This is another

significant improvement over the prior art.

4.8.3 Incorporating Perturbations in Cross-Track Winds

Prior work on the Zermelo problem did not incorporate cross-track winds. The cross-
track winds do affect the optimal solution and are therefore important to include in the
neighboring optimal control formulation. This is easily understood by imagining a case
where the cross-track winds are positive during the first half of the flight, and equal in
magnitude but negative during the second half of the flight. By incorporating the cross-

track perturbation terms in the neighboring optimal control solution, the aircraft is allowed
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to drift in the cross-track direction during the first half of the flight because the solution
“knows” that the aircraft will drift back to the final point during the second half of the
flight. Without including the cross-track wind perturbations in the solution, the aircraft
would be directed to fight against the cross-track winds, resulting in a longer flight time.

4.8.4  Analytical Selution for the NOC Gains

The derivation of the analytical solution for the NOC gains for the general case of
piecewise-linear winds modeled at NV, grid points constitutes a significant advance over
prior art. The analytical solution eliminates the need for tedious and computationally
difficult numerical solutions. When implementing the NOC feedback law, the analytical
solution eliminates the need for tabulating the NOC feedback gains and using table look-
up. This reduces any memory burden that would have been required to store a table of

gains, and eliminates the computational effort required to interpolate gains from the table.

48.5 3D with Performance Optimization

The neighboring optimal wind routing algorithm can be extended to include variations
in the winds in the vertical coordinate. The difficulty with including the vertical
coordinate is that commercial jet aircraft performance is also coupled with altitude.
Although the goal of neighboring optimal wind routing is to find minimum-time paths, the
overriding goal is to find minimum-fuel paths. The fuel minimization is assumed to have
been performed by choosing the appropriate flight altitude and airspeed. By then
performing time-minimization for fixed altitude and airspeed, the total fuel use is further

reduced.

The simplest extension would be to include commanded altitude as a new control and
to use a 3-dimensional wind model. The resulting vertical profile would need to be
evaluated for its practicality and efficiency for the given aircraft and engine performance,

and for any ATC constraints.
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The next level of complexity would be to include state models of the fuel flow rate for
the aircraft as a function of airspeed and altitude when computing the neighboring optimal

control gains.

49 A Few Words on Optimal Routes

Through limited simulation analysis, optimal routes have been shown to be different
from great-circle routes. Because of the interesting variations in the winds, a similarly
interesting variation in the shapes of optimal routes is exhibited. Some optimal routes just
deviate to one side or the other of the corresponding great-circle routes; others may cross
the great-circle route several times along the trajectory. The shape of any particular

optimal route depends on the wind conditions at the time.

Observing optimal wind routes during different wind conditions can be fascinating as
new patterns and subtleties emerge. A complete analysis of the atmosphere and related
optimal wind-routes would make an interesting study. A few qualitative observations on

the nature of optimal routes follow.

4.9.1 Slower Aircraft Benefit More from Optimal Wind Routing

Greater time savings are possible for slower aircraft, simply because the nominal flight
times of the aircraft are longer. The nominal flight time, ¢, on a route of length L at
ground speed V, is given by

tnom

=L (4.78)
Vg

The perturbed flight time on the same route at a ground speed increased by AV, is
given by

L
o — 4.79
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The magnitude of the time difference between these two flight times as a fraction of

the nominal flight time is simply
At ltp_ ~ tnoml IAVSI__
= = (4.80)
tnom tnom IVg + AVSI

This expression shows that a flight that reduces its ground speed will experience a
greater time savings as a percentage of its nominal flight time than will a flight which
increases its ground speed by the same magnitude. Therefore, an aircraft flying at a slower
ground speed will experience a greater percentage of time savings than will a faster

aircraft.

4.9.2 Greater Time Savings in Head Winds (East-to-West Routes)

This is a corollary of the previous observation. Over the United States, and in the
Northern Hemisphere in general, prevailing winds are from west to east so that aircraft
traveling in the opposite direction will usually encounter head winds. This means that
east-to-west traffic can expect to benefit more from optimal wind routing than west-to-

east traffic.

49.3  Similarity Scaling of Optimal Wind Routing

Aircraft that tend to fly at higher altitudes are generally faster than aircraft that fly at
lower altitudes. On average, winds increase linearly with altitude up through the
troposphere so that the ratio of average aircraft airspeed to average wind speed has a small
range, or may even be considered constant. This suggests that the optimal routing problem
is scaled such that flight time savings as a percentage of the great-circle time should be
similar for jet traffic at 35,000 ft or for a single-engine propeller-driven plane at 5,000 ft.
The scaled distance perturbations from the great-circle route would also be expected to be

similar.
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494 Horizontal Stratification of Optimal Routes Between City Pairs

When conducting simulation analyses of free-flight concepts, nearly all researchers
have used great-circle routes to approximate free-flight routes. As has become clear in this
chapter, this is simply not the case. The difference is often large in magnitude and must be

accounted for if simulation results are to be applicable to the real world.

One interesting implication of the difference between great-circle routes and optimal
wind-routes is that aircraft traveling between city pairs in different directions tend to be
naturally separated when aircraft follow optimal wind routes. If it is optimal for an aircraft
traveling from New York to San Francisco to deviate to the north to minimize the head
wind, then it is optimal for an aircraft traveling from San Francisco to New York to
deviate to the south to maximize tail wind. If great-circle routes are assumed, then clearly
there will be many conflicts developing among aircraft traveling between any given city

pair, but this will generally not happen if the aircraft travel along optimal wind routes.

This implies that in a future free-flight system in which aircraft are permitted to fly
along optimal wind-routes, the current flight-level restrictions on eastbound and
westbound traffic may be relaxed or eliminated because these two traffic flows will tend

to be naturally separated.

4.9.5 Significant Variation in Optimal Wind Routes with Time

As a final observation, optimal wind-routes may vary significantly on time scales of
hours. During the day, a jet stream may meander across a significant distance so that the
shapes of optimal wind-routes may change dramatically. This reinforces the notion that
optimal wind-routes must take into account both the time-varying nature of the winds and
the need to frequently recompute the optimal wind-routes as new wind predictions

become available.

On one of the days for which wind data were used for the NOWR versus DP
comparisons, a significant time-variation in the optimal route from New York (JFK) to

San Francisco (SFO) was noticed (fig. 4.25). The time savings for the optimal route at
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0000 UTC (the most southerly route) was just over 17 min. The optimal route at 1600
UTC (the most northerly route) saved about 17 min over the corresponding great-circle
route. The maximum distance between these two routes is about 6.5° of latitude, or nearly

400 n.mi.

4.10 Summary

This chapter has introduced the notion of optimal wind-routing and gave some
background on many of the prior approaches to solving this problem. In the context of
computing optimal wind-routes for many aircraft in real-time, it was shown that an
algorithm for optimal wind-routing must be fast while retaining good average
optimization performance. To this end, the Neighboring Optimal Wind Routing (NOWR)
algorithm was developed. The derivation of the NOWR algorithm from calculus of
variations principles was presented, along with the derivation of additional details
required to compute optimal wind routes in practice. The derivation of an analytical
solution for the NOC feedback gains for a piecewise-linear wind model was identified as a

significant advancement over prior art.
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The performance and computational properties of the NOWR algorithm were
compared to solutions obtained from a Dynamic Programming (DP) algorithm, and
NOWR was shown to exhibit superior computational performance with excellent
optimization performance. Some cases were identified for which NOWR performed
suboptimally, but those cases are thought to occur infrequently. Techniques to identify

such situations were suggested for future research.

The chapter concluded with a qualitative discussion on the nature of optimal wind

routing, and many interesting properties of optimal wind-routes were identified.



Chapter 5
Strategic Conflict Detection and
Resolution

51 Introduction

Strategic conflict-detection and resolution (CD&R) algorithms for air-traffic control
automation have been under development since the mid-1990’s. The term strategic means
that conflict-detection and resolution are to be performed with a significant look-ahead
time considering the effects on the entire trajectory. This is in contrast with tactical
conflict-detection and resolution, which would be performed on a shorter time scale and
would only consider the immediate effects of the conflict-resolution maneuver. The
boundary between tactical and strategic concepts is usually considered to be at about 20
min. Algorithms for both strategic conflict detection and strategic conflict resolution are
presented in this chapter that are much more efficient than their predecessors. These

functions are both identified in the high-level block diagram (fig. 3.1).

Ground-based ATC automation was the first application to require large-scale CD&R
algorithms. As free-flight concepts emerged, airborne-automation tool developers also
needed algorithms to efficiently detect and resolve conflicts over a fairly large airspace
domain. Conflict detection is usually more computationally demanding than conflict
resolution, especially since each trial conflict-resolution maneuver initiates a new round of
conflict detection. This can be avoided by using conflict-resolution algorithms that locally

resolve conflicts while leaving the rest of the trajectories unchanged, but this is not always
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possible or desirable. If localized resolution algorithms are not used, then resolving a local
conflict may induce one or more conflicts along the rest of the trajectory. This has been
referred to as the “domino-effect” [1]. Another issue is that most conflict-resolution
algorithms have been tactical in scope, and have not taken into account trajectory
optimization on a global scale. A technique will be introduced in this chapter to address
these problems. By modifying the neighboring optimal wind-routing (NOWR) algorithm,
it is possible to achieve efficient eonflict resolutions that are close to being globally

optimal.

In most prior work, conflict-detection and resolution functions are distinctly separate
operations, whereas here they are intimately coupled. The approach is to detect and
resolve conflicts as the trajectories are computed rather than first computing a set of
trajectories and then trying to detect and resolve them simultaneously. This is the essence
of performing sequential trajectory optimization while enforcing separation constraints,
which has the benefit of greatly reducing the number of computations required to obtain a
conflict-free solution. The resulting solution will generally not be the global optimal
solution, but it will be a feasible near-optimum solution. Analysis results are presented in

chapter 6 to support this claim.

One of the important implications of the sparse-airspace assumption for the air-traffic
control problem is that many feasible solutions near the globally optimum solution will
have nearly the same cost. This means that the computation of any kind of optimal
conflict-resolution maneuvers may not be worth the effort. It is instructive to examine a

simple conflict-resolution example to see why this is the case.

For this simple example, the effects of winds, aircraft turn dynamics, and spherical
coordinates are not important to the results and are neglected. A kinematic model of an
aircraft flying along a straight line from origin to destination at a constant airspeed is
adopted. The total flight distance is set at 1,100 n.mi., which is the approximate average
flight distance for commercial aircraft flying at 35,000 f. Conflicts are to be resolved

solely by heading changes, and maneuvers are only to be made by one aircraft. The
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resolution maneuver model is for the aircraft to change heading at the point where the
conflict is detected and then to turn back at an equal angle after the conflict in order to

rejoin the original trajectory (fig. 5.1). A minimum separation of S n.mi. is required to

2d; over-resolution !

“optimal” resolution %
= 480 knots %_, /ﬁ T~ t 10 n.mi.
] - —== (
’% ? =L _{GC»
\/L L = 1100 ami.
L, ———b' R = d_;, (5 n.mi.)

vconflicting aircraft path

Figure 5.1. A simple conflict-resolution model.

resolve a conflict. Under normal circumstances, a conflict would be detected and a
resolution maneuver initiated at a minimum of about 5 min before its predicted
occurrence. At 480 knots, this corresponds to 40 n.mi., or 8 times the required separation

distance.

The optimal resolution maneuver in terms of minimizing additional path length (or,
equivalently, flight time or fuel use for this constant-speed case) is for the aircraft to turn
such that the minimum predicted separation is d,;, (5 n.mi. in this example). A second
suboptimal maneuver is made such that the minimum predicted separation is twice the
minimum amount, or 2d_;, (10 n.mi.). The additional path length for the optimal

resolution maneuver over the nominal path is given by

Lo = 2[JL2+d2, - L] (.1)
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which, for this example, is Lopt = 0.62 n.mi. . The additional path length for the

suboptimal maneuver with twice the required separation is given by

Ly =2[JL2+4d2,-L ] (52)

which, for this example, is L, dpy = 2.5 nmi..

Therefore, a maneuver to create twice the required separation results in nearly four
times the additional path distance of the optimal resolution maneuver. These kinds of
statistics are often cited to show the potential benefits of optimal conflict resolution. A
potential for a 400% reduction in additional path length might seem worth the effort, but
taking a broader view of the problem leads to a much different conclusion about the utility

of optimal resolution maneuvers.

The additional path length of the suboptimal maneuver over the optimal maneuver,

normalized by the total trajectory path length, is given by

AL _Logy ~Lopt _ J(L/dg)* +4= J(L/doy)* + 1 53)
L L - (L/2d,,,) ’

For typical en route trajectories, the denominator of equation (5.3) is large (in this
case: 1100/10 = 110). The additional path length of the suboptimal maneuver over the
optimal maneuver is just 1.84 n.mi. over a trajectory of 1100 n.mi., or 0.17%. The
corresponding additional flight time of the suboptimal maneuver over the optimal
maneuver at a speed of 480 knots is just under 14 sec for a nominal trajectory time of more
than 2 hr. This is negligible, especially when compared to the savings that result from the
optimization of the nominal trajectory in the first place, as described in detail in chapter 4,
where time savings of the order of several percent are common. Note that this is a rather
extreme example used to show that even an inefficient resolution maneuver does not result

in much of a penalty. In practice, even less of a penalty would be expected.
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The conclusion is that specific resolution maneuvers have almost no effect on the
optimality of a trajectory. Therefore, one should not worry too much about computing
optimal maneuvers if significant penalties in computational effort would be incurred. This
lesson is given considerable weight during the development of a fast trial-and error

approach to conflict resolution in this chapter.

Conflict-resolution algorithms have received considerable attention over the past
decade because of the interest in the free-flight concept [21]. Most research has focused on
optimal tactical conflict resolution between two aircraft, where the term factical implies a
time scale of about 20 min or less. Some research has examined the more strategic
problem of conflict resolution among a set of many aircraft trajectories. Many good
approaches have been developed, but none has yet achieved anything close to real-time
conflict-free solutions for hundreds or thousands of aircraft. Another drawback to state-of-
the-art conflict-resolution concepts is that almost none of them consider the effects of

winds, or of optimal wind-routing.

A serious issue with prior approaches to conflict resolution is that none can guarantee
that safe solutions are possible under all circumstances [69]. Even the work in verification
of conflict-resolution maneuvers by means of hybrid control techniques can only claim
that safe resolution maneuvers are possible for a small number of aircraft, and only under
simple air-traffic modeling assumptions [70, 23]. The problem of verification is a
fundamental challenge for automated conflict-resolution algorithms. The root of the
problem lies in the complexity of the air-traffic control system, and in the uncertainty
inherent in the system. It is simply not possible at this time to ensure that all possible
conflict scenarios can be safely handled; as a result an appeal must be made to
probabilistic verification techniques such as Monte Carlo simulation. No one can offer a

formal proof that any concept is fail-safe.

The current air-traffic control system suffers from the same problem. The only
guarantee of air-traffic control safety in the current system is that it has been demonstrated

to be safe empirically: en route mid-air collisions are exceedingly rare. The excellent
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safety record of the air-traffic control system has been achieved by heavily constraining
air traffic operations so that the conflict situations that arise are easily handled by air-
traffic controllers and pilots well in advance. The constraints in place effectively give
controllers and pilots plenty of time to resolve any conflicts that arise, and this suggests
that a prudent approach to automated conflict resolution should also operate strategically
rather than tactically. Even though tactical conflict-resolution algorithms can be simulated
and shown to “almost always” be safe, the fact that this cannot be verified will probably
preclude the implementation of any tactical conflict-resolution concepts. Instead, a
strategic approach must be adopted so that time is allowed in which to handle anomalous
situations when they occur. This is one of the guiding principles of the strategic approach
taken in this dissertation, where conflict free trajectories are computed on a strategic time

scale and then presented as flight plan clearances to aircraft.

A review of prior work on the conflict detection problem and the development of a
new and efficient approach to conflict detection called the Conflict Grid is presented
below. After that, some background on conflict resolution, and the development of a

strategic conflict-resolution algorithm based on NOWR are presented.

§.2  Conflict Detection Background

The task of conflict detection is to determine whether all aircraft within a specified
spatial and time domain will maintain adequate spatial separation. In general, this requires
that aircraft trajectories be discretized as a function of time so that the distances between
each aircraft can be computed at each discrete instant of time and compared to the
allowable separation distance. Mathematically, the number of point-to-point distance

comparisons is expressed as

Nae NEN3c-Nyc)
. AC AC
N comparisons = Nr: Z (Nyc-1i) = 2 (54)

i=1
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where Ny is the number of time-steps in the conflict-detection domain, and N, is the

number of aircraft in the domain. The separation comparisons may be expressed as

[%2 — 2| > d i (5.5)

where %; is the position vector of the i th aircraft, [|A%| is the 2-Norm of A%, and d,,;, is

the minimum separation distance.

For small numbers of aircraft, this is not a problem, but as N~ increases, the
computational burden grows quadratically. The quadratic growth rate of the brute-force

conflict search has led to a search for more efficient conflict-detection algorithms.

Some of the first attempts at developing efficient conflict-resolution algorithms began
with the development of the Center TRACON Automation System (CTAS) at the NASA
Ames Research Center [17]. Since CTAS was one of the first practical large-scale ATC
automation tools to be developed, it was the first to have a need for efficient conflict-

detection algorithms.

A paper by Issacson and Erzberger [71] describes a practical approach to conflict
detection for CTAS using heuristies such as altitude pruning and time-skipping to limit the
search space when looking for conflicts. Aircraft trajectories are first computed in time
and space using 10-sec time-steps before applying heuristics to limit the contlict search.
At 480 knots there are about 1.3 n.mi. between steps. Altitude pruning is the process of
eliminating potential conflict pairs that are never flying at the same altitude. The use of
altitude pruning typically removed 60-80% of all possible trajectory pairs from the
detailed conflict search. Time-skipping is used to limit the number of points that need to
be checked for conflicts. Time skipping uses the fact that if two aircraft are separated by a
large distance at some point in time; then there is no need to check every 10 sec for a
conflict because it would be physically impossible for a conflict to occur until the aircraft
could travel the current separation distance. A further reduction in computation is
achieved by only computing the sum of the squares of Ax and Ay when both of those

terms are individually less than the required separation.
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The computational performance of this algorithm still grows as O(n?), but the actual
number of computations is proportionally reduced through the applied heuristics so that
on a Sun Ultra workstation (340 MIPS), about 800 aircraft could be checked for conflicts
within 10 sec.

The paper by Sridhar and Chatterji [10] looks at aircraft conflict detection using
principles from computer science search and sort algorithms. A sorting-based algorithm
first partitions the airspace into a Cartesian grid. Aircraft are stored in the grid cells by
using a hashing function to convert the x- and y -coordinates into grid indices. The grid
matrix is then unwrapped into a single vector of bin numbers. The vector of bin numbers is
sorted using an efficient sorting algorithm (e.g., Heapsort, Quicksort) so that repeated bin
numbers may be easily located. From the repeated bin numbers, the corresponding grid
locations and the associated aircraft numbers are uniquely determined. This algorithm is

shown to be O(rlogn).

For the Quicksort method, the average number of computations, C, was shown to be

Cq = 8(M-n+1)log,(M - n) (5.6)

where M is the maximum number of bins occupied by any single aircraft trajectory and n
is the number of aircraft. In reference [10], an example is given where the average ground
speed is assumed to be 500 knots, and the conflict look-ahead time is 20 min so that the

maximum number of bins per aircraft for Sn.mi. by 5n.mi. grid cells is given by

M = "500 n.mi./hr - (?0/60) hr] =13333] = 34 (5.7)
S n.mi.
For n = 100 and M = 34, the proportionality factor in equation (5.6) is 2,708, while
the logarithm term is only 11.73 for a total number of computations equal to 31,765. Even
though this is an nlog,(r) algorithm, the proportionality constant in the area of interest

still makes this computationally intensive.
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The next algorithm considered in reference [10] is accumulator-based. The mapping of
aircraft location to bin number is the same as in the sorting algorithm, but in this case,
each time an aircraft is mapped into a bin, the number of aircraft in that bin is incremented
by one. The search for conflicts can then be limited to those bins with more than one
aircraft. Once the potential conflict bins have been located, the corresponding aircraft are
directly checked for conflict.

The average number of computations required by the accumulator algorithm was

shown to be

Co=M-n+U,;, + )0+ 1) (5.8)

where M and n are as previously defined, and /,,,, and J,,,, are the maximum number
of grid cells in the airspace domain of interest. In reference [10], an 800-n.mi. square
region is examined for a 20-min conflict look-ahead time so that M = 34 once again. In
this case, I,,,, and J,,,. are both 160 for 5-n.mi. grid cells. For 100 aircraft, this requires
29,321 computations, which is only marginally better than the sorting algorithm. The real
benefit of the accumulator algorithm is realized for greater numbers of aircraft since the

number of computations grows as O(n) instead of as O(nlogn) .

The approach taken in reference [72] is to use a geometric hashing algorithm to
identify clusters of aircraft that may be in conflict with one another. Once the clusters have
been identified, they are sent as inputs to the conflict-resolution algorithm, which then
uses brute-force conflict-search techniques to check potential resolution maneuvers for
conflicts. The geometric hashing algorithm used for identifying clusters is similar to the
accumulator method of reference [10], but with the additional discretization of the time
dimension to create a 4-D grid of the airspace. The grid cells are sized according to the
minimum separation requirement (5 n.mi.), and presumably the time-grid size is to be set
short enough that the fastest aircraft would not travel through more than the minimum
separation distance during one time interval (a value of 0.1 min was used in the example
given in the paper). Since conflicts might occur with aircraft in neighboring grid cells, of

which there are 27 in 3-D space or 81 in 4-D space (adding the time dimension to the three
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spatial dimensions), the neighboring cells are also checked. In addition to looking at the
immediately neighboring grid cells, certain other non-conflict aircraft are identified that
are sufficiently close to the cluster that should be treated as constraints during the conflict-
resolution phase. In reference [10] it is suggested that the cluster identification algorithm
tends to take time linear in the number of aircraft, but the conflict detection in the cluster

conflict-resolution phase is still O(n2), where n is the number of aircraft in a cluster.

Additional research has been conducted in the field of conflict-probability prediction
which is closely related to conflict detection [46]. Instead of making binary decisions on
whether a conflict will occur, a probability is assigned to each potential conflict so that
optimal decisions can be made regarding when to initiate conflict-resolution maneuvers.
The system design approach taken in this dissertation uses several forms of feedback to
mitigate the effects of disturbances on trajectory-prediction accuracy so that the effects of
trajectory-prediction uncertainties are greatly reduced. To account for remaining system
uncertainty, the principles of two-aircraft conflict-probability prediction are generalized to

the case of multiple aircraft conflicts, and conflicts with uncertain weather constraints.

5.3 Conflict Grid Method

An efficient conflict-detection algorithm called the Conflict Grid (CG) method is now
introduced. The CG method is similar to the algorithm presented in Ref. [72], though a
few key differences result in the CG method being essentially computationally free in the
context of sequential route optimization. The deterministic version of the CG is first

developed, followed by the introduction of a stochastic version of the CG.

53.1 Deterministic Conflict Grid

The basic idea behind the CG method is to store optimal aircraft trajectories in a 4-D
grid space (three spatial dimensions and time) as they are computed by setting the values
of the corresponding grid cells to one (binary “on,” or “true”) (fig. 5.2). After the
development of the deterministic CG algorithm, an extension to stochastic conflict
detection is presented where grid cell values represent the probability of an active

constraint in that cell and may take on any value between zero and one. The grid cell
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Figure 5.2. The Conflict Grid method of conflict detection.

dimensions are set according to the allowable aircraft separation limits. If a grid cell is
found to be already occupied, then it is immediately known that the current trajectory will
be in conflict, and conflict-resolution maneuvers are initiated. Note that regions of bad
weather and special-use airspace may easily be incorporated into the conflict grid by
setting the corresponding grid cell values to one for any of these areas of restricted
airspace. The computational benefit of the CG approach is that it completely eliminates

pairwise distance computations.

The airspace is first partitioned into a 4-D grid of space and time. The coordinates used
here are longitude, latitude, altitude, and time, but any convenient set of independent
coordinates may be used. The airspace is partitioned by creating a set of separate 3-D grids
(longitude, latitude, time) for each discrete flight level. If the flight level structure of the
current air transportation system is used, then each flight level extends vertically by 2,000
ft, but plans for the reduced vertical separation minimum (RVSM) will likely reduce the

size of each flight level to 1,000 ft. The spatial longitude and latitude grid dimensions are
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left as a variable parameter so that simulation studies can be made to determine such
things as optimization performance and airspace capacity as a function of the grid
dimensions. The time grid size, Az, is linked to the spatial grid size, Ax, such that an
aircraft flying at the fastest expected ground speed would not travel more than Ax distance
in At time. For example, if the fastest expected ground speed was 600 knots, and

Ax = 5 n.mi., then the time resolution would be set to Az <30 sec.

Clearly, a conflict grid cannot extend from the current time to infinity. This is solved
by creating the CG with a rolling time window. The window is chosen to span the
appropriate amount of conflict look-ahead time. The maximum flight time for an aircraft
across the continental United States is less than 7 hr, so this can be used as the maximum
bound on the range of the CG time-window. With these definitions, the CG may be
mathematically represented by a 3-D matrix for each flight level, FL,, as follows

’O <i< [(Tmm_ Tmin)—l
AT

CGpy, = CGG.ji k) {0 js[ (kma.rA; km,-n]

0<k< {(tmax_ tmin)-l
L At

. K,- Ax 5.9
~ cos(max(A))
AL=K, - Ax
At = (tmax - tmin)

Uxtmax— tmin) * Vg,m-’ + 1)
Ax

where T and A are longitude and latitude, respectively, ¢ is time, Ax is the spatial grid
dimension, K, is a unit conversion constant, ng is the maximum anticipated ground
speed, and [ a] is defined as the nearest integer to @ rounded up toward positive infinity.
The maximum and minimum grid dimensions are then chosen for the particular needs of

the problem being solved.
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The amount of memory required for the CG is now approximated. The Continental
United States extends approximately 2,500 n.mi. from east to west, and 1,500 n.mi. from
north to south. For a 7-hr conflict look-ahead time, a time grid resolution of 30 sec, and
grid spacing of 5 n.mi., the memory required for the Conflict Grid per flight level is given
by

- 2,500 n.mi. 1,500 n.mi. (7 hr-3600 sec/hr) 1byte _ ;575 pmp
- ‘ ' . = 15. 1
Hce S oL, 5 ol 30 sec 2 bits yte (5.10)

Therefore, the amount of memory required for the conflict grid at each flight level is
less than 16 megabytes, which is not particularly challenging for current-day technology.
Inexpensive computers are available with gigabytes of RAM.

The procedure for conflict detéction is now described (fig. 5.3). At the beginning of
the conflict-detection loop, the CG is cleared so that the value of each grid cell is set to
zero. The next step is to store any weather constraints or special-use airspace constraints in
the CG by setting the corresponding constrained airspace grid cell values to one. Next, the
Active Aircraft List (AAL) is passed through sequentially to compute a predicted
trajectory for each aircraft. The trajectory is generally computed and stored as a set of
vectors of three spatial coordinates versus time. These vectors are then interpolated to the
discrete time values of the conflict grid. As the values are interpolated, the corresponding
values of the conflict grid are checked. If the grid cell values are zero, then that means
there are no prior aircraft occupying that cell, and that the airspace of that cell is not
restricted by bad weather or other regulation. In that case, the value of that grid cell is set
to 1 to signify that it is occupied by the current aircraft. If any of the trajectory points for
the current aircraft are found to be in conflict at any of the grid cells, then the trajectory
must be modified and checked again. The process continues until all aircraft in the active
list have been given conflict free trajectories. At the conclusion of the AAL, the whole

process may be restarted.

The CG algorithm as discussed to this point has a subtle feature that must be

addressed. If just the occupied grid cells are marked as such, it may occur that aircraft in
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Figure 5.3. Flowchart of the sequential Conflict Grid algorithm.
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Figure 5.4. [llustration of a missed conflict at a grid cell boundary.
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Figure 5.5. Illustration of a missed conflict resulting from time discretization.

neighboring grid cells are in conflict with one another because the basic CG algorithm
does not include any space between neighboring grid cells (fig. 5.4). Another situation that
may occur is that the discretized time-steps of a trajectory may overstep a grid cell so that
a real conflict is not identified (fig. 5.5). These subtleties are not particularly difficult to
address.
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Figure 5.6. Grid-cell buffering to eliminate missed conflicts.

One of the simplest algorithmic solutions to these kinds of conflicts is to use a grid cell
buffering technique. With grid-cell buffering, the CG cells would be made half the desired
size, but then each time a trajectory point was stored in the grid, the neighboring cells
would also be marked as being ocecupied (fig. 5.6). By doing this in all 3 dimensions for
the single flight-level problem (x, y, ¢), the types of conflicts mentioned above would all
be detected. The cost of grid cell buffering is that the amount of memory required for the
CG for any given aircraft spacing would increase by a factor of 8 (23 ). For the example
given in equation (5.10), the amount of memory required would increase from 15.75
Mbytes to 126 Mbytes, which is still well within the memory capabilities of current-day
computers. There would also be some minor computational costs incurred by requiring
that additional grid cells be set for each trajectory point, but these costs would still be
negligible when compared with the other computational costs involved in trajectory

optimization.
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Another valid approach is to accept that these types of scenarios might occasionally
surface, and to resolve the conflicts tactically as they occur. Even though inter-aircraft
separation may be predicted to be less than the minimum allowable separation, the CG
method ensures that, on average, there is enough airspace available to support all of the

aircraft.

Finally, a stochastic extension would generalize the basic CG method and would also
eliminate many of the subtle types of missed conflict alerts addressed above without

having to resort to grid cell buffering. This stochastic extension is now presented.

53.2 Stochastic Conflict Grid

Aircraft trajectory prediction, atmospheric prediction, and many other facets of the
NAS are better characterized as stochastic systems than as deterministic systems. Errors in
wind models can lead to rather large errors in down-range trajectory predictions. Storm
forecast errors can either completely miss actual storms that develop, or may predict
storms that never materialize. This suggests that the air-traffic control optimization
problem should be treated as a stochastic optimization problem and that the probabilistic
nature of conflict detection should be considered. In a complete treatment, this would

involve recasting the cost function in equation (2.5) as an expected value function.

Instead of completely reformulating the optimization problem, it is possible to
consider the probabilistic nature of predicted conflicts with a fairly simple extension to the
deterministic CG algorithm. The extended algorithm is referred to as the Stochastic
Conlflict Grid (SCG). The basic idea is to store the probability that at least one active
constraint exists in any given grid cell rather than using a binary yes or no value. An active
constraint is any entity that requires exclusive use of the airspace, such as an aircraft, a
weather storm cell, special-use airspace, or even an aircraft trailing wake vortex. This
generalizes the CG technique by incorporating important conflict-probability concepts
from prior research on pairwise conflict-probability estimation [73, 46]. Some minor
increase in computational overhead is incurred for the CG method itself, but as with the

grid cell buffering technique, the overhead is negligible when compared with the other
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computational costs involved in conflict-free trajectory optimization. Apart from the
conflict-detection algorithm, computing and maintaining models of aircraft trajectory-
prediction accuracy might add significant overhead. The additional computational burden
may be reduced by using simple probability models for aircraft trajectory-prediction

uncertainty.

The probability that a constraint, c¢;, will be active in a particular grid cell may be
modeled as a Bernoulli trial so that the probability is given by

P, = p(constraint i is active) (5.11)

and the probability that the constraint will not be active is simply

p(constraint i is not active) = (1-P;) (5.12)

For a set of n possible constraints, an easy way to compute the probability that any
one of those constraints will be active is to compute the probability that no constraints will

be active and then to subtract this from one, as follows:

n
P = p(at least one active constraint) = 1 - 1‘[ (1-P) (5.13)

i=1
where IT is the serial product operator.

Rather than storing the individual probabilities for all of the potential constraints, it
may be desirable to maintain a running total probability that at least one constraint will be

active. This is easily shown to be given by

P;=1-(1-P)(1-P;_)) (5.14)

where P; is the running total probability that any constraint up to and including constraint
c; will be active, and P;_, is the running total probability that any constraint will be

active before considering the new constraint, c;.
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If trajectory-prediction errors are modeled as having Gaussian distributions, then the
case of a two-aircraft conflict using the SCG would be identical to the method developed
by Erzberger et al. [46, 73] for pairwise conflict-probability estimation. Following this
method, the choice of whether to make a conflict-resolution maneuver would be based on
the minimization of the expected cost of resolution. [n essence, low-probability conflicts
are ignored because the expected cost of resolving a conflict that may not occur is too
high. Over time, the probability increases to the point that delaying a conflict-resolution
maneuver would result in a higher expected cost because short-term conflict-resolution

maneuvers are less efficient than strategic resolution maneuvers.

By the use of the SCG, this same conflict-probability method is generalized to the case
of multiple aircraft and to the case of conflicts with any other type of constraint. Imagine a

case where two aircraft are predicted to converge at some instant an hour in the future (fig.
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Figure 5.7. Example of low predicted conflict probability for two aircraft.
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5.7). The probability that either aircraft will be in that particular grid cell (at that instant) is
then quite low because of the growth rate of trajectory-prediction error. In this case, it
would be more efficient to wait to see how the potential conflict develops. Now imagine
that many aircraft are predicted to converge at the same point (fig. 5.8). The probability
that any one aircraft will be in that grid cell now increases, possibly to the point that the

next aircraft predicted to be in that grid cell would have to make a conflict-resolution
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Figure 5.8. Example of higher conflict probability with multiple aircraft.

maneuver. In this way, the SCG method handles the case of predicted en route aircraft
congestion naturally. This generalizes the notion of traffic flow management to a concept

that covers all of the en route airspace, not just the terminal airspace near airports.

Weather storm cells are notoriously difficult to predict with any accuracy until they
have actually developed into storms, and even then their prediction beyond 30 min is not
accurate. Storm predictions are usually made such that a region of airspace can be
identified as having some heightened potential for storm development. This heightened
potential could be stored in the CG cells in a region (fig. 5.9). This would result in fewer
aircraft being permitted to pass through that region because of the elevated probability of
storm conflict. As the time of the storm prediction neared and the prediction became more
accurate, the conflict probabilities in the corresponding grid cells would increase to the
point where no aircraft would be permitted in those cells. This would be a gradual process
so that sudden drastic maneuvers around unpredictable storm cells would be greatly

reduced. The resolution thresholds could be modified empirically to obtain good

performance.
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Figure 5.9. Conflict probabilities between storm cells and aircraft.

The case of special-use airspace is even easier to consider. Once special-use airspace
is activated, it is known with certainty that a constraint is active in that region so the
probabilities of the corresponding grid cells would be set to 1. This would block those
cells from being occupied by any aircraft. The same principle applies to any regions of

blocked airspace, whether it be for security, noise abatement, or other purpose.

The SCG method has been introduced, but will not be demonstrated as part of this
dissertation. Although conceptually straightforward, the added software complexity for
implementation would go beyond the scope of this research. The added complexity does
not come from the SGC itself, but from the maintenance of trajectory-prediction
probabilities for all aircraft and for weather cells. Techniques for computing trajectory-
prediction probabilities are well known, but they require considerable additional software
implementation effort for simulation. Instead, the deterministic CG technique is used for
simulations and analysis to demonstrate how the CG method might work in practice, but it
is anticipated that the SGC method would be a superior choice for practical

implementation.

5.4  Conflict-Resolution Background

As discussed in the Introduction, many approaches to automated conflict resolution

are tactical methods for computing optimal resolution maneuvers between a pair of
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aircraft or a small number of aircraft [7, 11, 23, 46, 70, 74-76]. These optimal-resolution
algorithms vary in dynamic model complexity, optimization goals, and the controls
utilized for conflict resolution, but they are all intended for tactical conflict resolution in
free-flight systems and do not consider strategic trajectory optimization. Winds, and their
effects on optimal trajectories, are essentially neglected in all of these tactical conflict-
resolution methods. A good survey of much of this work up to 1997 is presented in

reference [69].

Any of these tactical conflict-resolution algorithms might be converted into strategic
algorithms by using them within a fast-time air-traffic simulation to generate sets of
conflict-free optimal routes which would be given to aircraft as trajectory clearances. If
such conflict-free sets of trajectoriés could be computed in real-time, and with a
significant amount of lead-time, then they might be useful in a practical air-traffic control
system. However, many of the most difficult issues such as trajectory optimization,

efficient conflict detection, and real-time computation would still have to be addressed.

Potential-field or force-field techniques adapted from robotic path planning have been
applied to aircraft conflict resolution [76, 77]. The essence of these techniques is to model
aircraft as potential sources which are repelled by other aircraft or blocked airspace. These
techniques have been used to compute basis resolution maneuvers for other conflict-
resolution or verification techniques [23]. One significant problem with potential field
methods is that they do not account for trajectory optimization in variable winds. Perhaps
the techniques could be extended to account for optimal wind-routing, but this has not yet
been attempted. Another problem is that cases may arise where non-realizable solutions

are obtained, so some form of post-processing would be required.

Various strategic conflict-resolution algorithms for the multi-aircraft problem have
also been examined. One approach to limiting the complexity of conflict-detection and
resolution is to apply the concept of clustering in order to identify smaller geographical
subsets of aircraft for detailed conflict resolution [6, 45, 72]. Each cluster is then examined

in more detail for specific aircraft conflicts. Without system uncertainty, this approach can
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greatly reduce the O(n?) performance of conflict-detection and resolution. As uncertainty
is introduced, the clusters tend to join together until ultimately the entire airspace must be

considered as one large cluster, and their computational benefit is significantly reduced.

Genetic Algorithms (GA) have been applied to conflict-detection and resolution in an
attempt to compute near-optimum solutions to the air-traffic control optimization problem
in real-time. The benefit of GAs is that they can quickly identify good candidate solutions
to the multi-aircraft conflict-resolution problem. The challenge is to increase the precision
of the search space without increasing the computation time to such an extent that real-
time solutions are not possible. Because of this trade-off with GAs, all past approaches
have greatly limited the scope of the problems that were solved. For example, conflict
look-ahead times have been set to 30 min or less, the airspace domains have been much
smaller than the continental United States, winds (and therefore optimal wind-routing)
have been neglected, dynamic models have been either simplified or neglected entirely by
using straight-line segment trajectories, and reduced traffic levels have been assumed.
Even with these simplifying assumptions, real-time performance has not been achieved

with GA.

Another approach to multi-aircraft conflict resolution has been proposed based on the
solution to an approximate convex semi-definite program [78]. In this approach, the air-
traffic control problem with separation constraints is posed as a nonconvex, quadratically
constrained quadratic optimization problem, and then approximated by a relaxed problem.
In the relaxed problem, instead of looking for a specific decision variable to minimize the
original nonconvex problem, a random decision variable is considered and the
optimization goal is modified such that the expected cost over the random decision
variable is minimized. The chief benefits of this approach are that it leads to computable
lower bounds on the solution to the original problem; it also provides direction for

searching for random feasible solutions near the optimal solution to the original problem.

The philosophy of the semi-definite programming approach is similar to that followed

in this dissertation: determine an optimal solution independent of the constraints, then
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look for feasible solutions near the unconstrained optimum. However, there are some
issues not addressed by the semi-definite programming approach. The most serious of
these is that the optimization of aircraft trajectories in winds has not been accounted for so
that straight-line trajectory solutions are assumed to be optimal and the optimization goal
is considered to be the minimization of deviations from requested speeds and headings.
This has the effect of greatly reducing the number of decision variables, but comes with
the price of excluding optimal wind-route solutions. Another drawback is that the
computational effort apparently still grows as O(n?) so that large numbers of aircraft
cannot be handled by this approach. The semi-definite programming approach appears to
be well suited to finding optimal resolution maneuvers for a relatively small number of
aircraft, but as already discussed, the optimization of short-term conflict-resolution

maneuvers is not relevant to the strategic optimization of trajectories.

Hybrid control techniques have been applied to the development and verification of
provably safe conflict-resolution maneuvers [23, 70]. The objective of these approaches is
to address the problem of guaranteeing that conflicts can safely be resolved in tactical
situations when uncertainties are present. Much progress has been made, but the
complexity of the air-traffic control problem has limited the application of hybrid
verification techniques to conflict scenarios involving only a few aircraft. The hybrid
automaton models have also been limited to simple kinematics and basic conflict-
resolution maneuvers. Hybrid techniques hold promise for providing a rigorous proof of
safety for free-flight concepts, but much work still remains for the practical application of

these ideas to air-traffic control.

A discussion of prior art in conflict resolution has been presented here to give a broad
perspective on some of the various approaches to solving this problem. The classification
of different solution approaches is difficult since many of them are combinations of
several different techniques. The main conclusion to be drawn from the results of prior
work in conflict-resolution techniques is that all are too computationally limited to
achieve real-time optimization for hundreds or thousands of aircraft over a domain as

large as the United States. Because of the computational limitations, each approach has
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made simplifying assumptions that neglect important aspects of the problem such as
optimal wind-routing.

The goal of this dissertation is to develop a real-time method for finding conflict-free
optimal-wind routes for all aircraft in the continental United States domain. This means
that a conflict-resolution method which can compute optimal wind-route resolution
maneuvers is required. The NOWR algorithm presented in chapter 4 has properties that
make it ideally suited to this purpose. By perturbing unconstrained NOWR solutions, it is
possible to find conflict-free solutions that are close to being wind-optimal. The NOWR
perturbation technique is now described in more detail.

5.5 Neighboring Optimal Wind-Routing Perturbation Conflict Resolution

In the approaches to conflict resolution discussed above, two main complications were
responsible for causing conflict resolution to be a computationally intensive function. The
first is that maneuvers are optimized by varying the trajectories of all aircraft involved.
The second is that conflict-resolution maneuvers are optimized for specific conflict
geometries. The first complication has already been avoided by taking a sequential
optimization approach so that previously planned aircraft trajectories remain fixed. This
greatly reduces the number of possible resolution maneuvers. A corollary to the fact that
the airspace is relatively sparse is that many trajectory perturbations will resolve a given
conflict and will have almost the same cost. This suggests that one need not take into
account the specific geometry of a eonflict situation in order to get close to the globally
optimal solution. Instead, one must only find a feasible solution nearby the unconstrained
optimal solution. This is a reasonable hypothesis that is confirmed later with simulation
results. Applying this knowledge, the approach to conflict resolution is to compute
perturbations to the optimal wind trajectory for a conflicting aircraft until one is found to
be conflict free.

Once a conflict has been detected by means of the CG method, possible conflict
resolutions may be computed in parallel if so desired. In the most basic version of the CG

method, when a conflict is detected, it is not known with which aircraft there is a conflict,
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nor is the particular geometry known. The approach is to perturb the current aircraft
trajectory in both of the possible horizontal directions until a resolution is found. If
resolutions in these two directions are computed in parallel, one may keep track of the
lowest cost maneuver that resolves the conflict so that it may be chosen as the solution. In
this dissertation, only heading changes in the horizontal plane have been examined, but it
is also possible to look for speed perturbations or altitude perturbations in parallel. The
primary use of horizontal conflict resolution at constant speed for en route aircraft is

justified based upon fuel efficiency and passenger comfort and considerations.

With the NOWR algorithm, there is a natural mechanism in place to generate smooth
perturbation trajectories that are close approximations to a wind-optimal resolution
maneuver. For reference, the relationship for computing the wind-optimal heading,

equation (4.54), is repeated here

N
__ .08 > (20 a0
i= -

where 36 is the heading perturbation, the various partial derivative terms are the
neighboring optimal feedback gains, the u,,; terms are the along-track wind shear in the
cross-track direction at each grid point, i, and the v,; are the normalized cross-track

winds at each grid point, i.

By introducing the concept of the pseudo-shear, a control is put in place to cause
perturbations in the computed heading command. The concept is simply to identify the
nearest along-track wind shear term (uy,-) to the conflict location and then to modify the
wind shear at that location by adding a pseudo-shear (fig. 5.10). If parallel processors are
used, then perturbations in both directions may be examined at the same time until a
resolution is found. If a resolution is found in both directions, the one with the lowest
flight time is selected. If parallel processing is not available, one may compute
perturbations in each direction sequentially until a solution is found. This is the approach

that has been taken here.
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Figure 5.10. Introducing pseudo-shears for conflict resolution.

The nearest wind control point is approximated by using the time at which the conflict
is detected by the CG. The time is divided by the total trajectory time to determine the
proportion of the trajectory that has already been travelled. Since the wind control points
are evenly spaced along the nominal trajectory, the closest wind control point can be
approximated using the trajectory time ratio. For N,, wind control points, the following
expression gives the index of the wind control point nearest to a conflict that is to occur at

teonflice 3lONE a trajectory that is predicted to take ¢,,,,; time

t .
i, =N, — round[(sz - 1)(MH (5.16)
tiotal
Other approximations may be used, but the one shown in equation (5.16) has been
demonstrated to work well. In practice, one may choose to limit the value of i, so that

wind shears are not introduced at either the first or the last wind control point. The reason
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for doing so is that the effect of shears at these points is not as strong as at other points and

may cause excessive iteration. In that case, the following value would be used

i, =1

Tw=di, 2<i,<(N,-1) (5.17)
(N,-1) i, =N,

N

Once the nearest wind control point is selected, the total shear at that location is given
by

where u_. is the pseudo-shear value.

ps

The value of Up 10 use while iterating to find a conflict free trajectory must be
determined. If too small of a value is chosen, then excessive iterations would result. If too
large of a value is chosen, then the first resolution maneuver that is found may be too
large, and would be inefficient. Because of the lack of a priori knowledge about conflicts,
it is not possible to determine an exact pseudo-shear value to use. [deally, each different
conflict situation would use a different amount of pseudo-shear during conflict-resolution
iterations. In order to determine a good average value to use, parametric studies may be
performed on real air-traffic data. This has been done, and the results are presented later in
chapter 6. One of the benefits of using a normalized problem formulation is that a single

average pseudo-shear value tends to work well over a wide range of problems.

5.6 Summary

Methods for real-time strategic conflict-detection and resolution were presented in this
chapter. The CG technique presented was shown to be virtually computationally free for
use in a sequential optimization algorithm. The SCG was introduced as an extension to the
basic CG technique to generalize the concept of conflict detection to constraints with

uncertainty.
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The optimization of tactical conflict-resolution maneuvers was shown to be a
negligible factor in the context of strategic trajectory optimization so that much simpler
resolution techniques may be used instead of computationally expensive optimal
techniques. This led to the development of a trial-and-error approach to conflict resolution
using the NOWR algorithm as the basis for conflict-free trajectory generation. The

performance of this approach is evaluated in chapter 6.
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Chapter 6
Simulation and Performance Evaluation

6.1 Introduction

This chapter presents the simulation system that has been developed to demonstrate
many of the algorithms in this dissertation, and to perform simulation analyses. After
describing the design and operation of the simulation system, some results of two
parametric studies will be given as examples of what can be done with the algorithms that
have been developed. The first study is an analysis of the effect of changing aircraft
separation limits on airspace capacity. The next study determines the required
computation rate to achieve real-time performance, also as a function of changing aircraft

separation limits.

The approach is to develop algorithms and perform simulation studies in MATLAB.
Then, by porting the core NOWR functions to the C-language, it is possible to determine
the compiled speed that could be achieved in a compiled version of the entire simulation.
This approach is possible because the NOWR functions form the core computational

effort required by the sequential optimization approach as shown in equation (3.17).

6.2  Simulation Design

The simulation is designed to be able to determine the computational requirements of
the complete optimization system, including optimal wind-routing and conflict-detection

and resolution. The simulation is all conducted in a horizontal plane to keep the amount of

161
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data and computation manageable for the development system running in MATLAB
either on an IBM ThinkPad T20 notebook computer (750 MHz, 256Mb RAM), oron a
SUN UltraSparc 60 workstation (450 MHz, 256Mb RAM). As discussed in chapter 3, the
2-D results can be extrapolated to assess the performance of a full 3-D system. Spherical-
Earth coordinates are used to ensure that any computations required to convert between
local normalized coordinates and the global spherical coordinates are taken into account.
Winds are modeled by importing data from the RUC (appendix 2). This ensures that the
same level of fidelity of wind data are used in simulation as are available for real air-
traffic control applications [67]. Because of the strong effect that weather storm cells and
special-use airspace (SUA) might have on system performance, the capability to model
these phenomena is included in the simulation. Finally, since uncertainty in weather
models and aircraft positions has a strong effect on optimization and computational

performance, these uncertainties can also be modeled within the simulation.

6.2.1 Empirical Air-Traffic Data

Input data for the simulation have been taken directly from recordings of aircraft
traffic by means of Enhanced Traffic Management System (ETMS) data files. Obtaining
complete sets of ETMS data for any particular day can be a challenging process because
of the difficulty in acquiring access to the data, the difficulty of storing a large amount of
data (hundreds of Megabytes per day), and the difficulty of processing the large data sets
for use in a particular simulation. For these reasons, primarily one complete data set has

been collected, processed, and used to run the simulation studies.

The ETMS data were collected in the form of what are called orig files. A custom
processing routine, written by NASA colleague Jim Murphy, was run on the orig files to
select the data fields and particular aircraft of interest. Murphy’s code examined the orig
files and pulled out the aircraft identification number, aircraft type, departure time,
origination airport, destination airport, filed altitude, and filed airspeed. Because of the
manner in which filed flight-plan messages are entered into the ETMS data stream, it may

take several hours from the start time of data collection before the filed flight plans for all
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active aircraft have been obtained. This is because aircraft already in-flight at the start of
data collection will have already filed flight plan messages prior to the start of the data

collection.

The collected data set began at 0000 UTC on 10 August, 2001 (2000 EDT on 9 August
2001) and continued through 2345 UTC on 10 August, 2001 (1900 EDT on 10 August
2001). The data included flights at all altitudes. The complete data set was filtered to
produce a file with only those aircraft filed to fly at FL350, and only those aircraft
traveling between U.S. origins and destinations. The international flights were filtered out
because they typically only reside in U.S. airspace only a short time after departure or
before arrival and would not affect the simulation results. A histogram of the number of
scheduled departures for those aircraft flying at FL350 is given in figure 6.1. The initial

ETMS Data at FL350, 10 Aug. 2001 - 11 Aug. 2001
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Figure 6.1. Histogram of the number of aircraft scheduled to depart for FL350.

ramp-up of departures is an artifact of the data processing mentioned earlier, but within a
few hours of the data collection start time, the data are representative of the scheduled
departures.
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6.2.2 Simulated Air Traffic

Simulated traffic can be randomly generated to match the statistical traffic profiles
between different city pairs found in the ETMS data set discussed above. Some
researchers have used randomly generated traffic based on uniform distributions or other
artificial distributions, but the unrealistic traffic patterns resulting from these data sets
would not be applicable to real-world air-traffic analysis. Real air-traffic patterns involve
local concentrations of aircraft at peak traffic times, and some city pairs are much more
congested than others. Because of these concentrations, real air-traffic pattems tend to be
more computationally challenging for conflict detection and resolution algorithms than
uniformly random traffic patterns. A histogram of origin/destination pairs may be
determined from the empirical ETMS data. A random route-generation function is easily

created to reproduce the same histogram as is now explained.

From the ETMS data, each flight is numbered consecutively from 1 to N, where N is
the number of unique flights during the given input hour. These numbers are then
normalized by dividing through by N. A uniform random number is then generated
between 0 and 1, and the nearest value in the flight list is selected. This technique
produces a random flight distribution that matches the empirical ETMS data (fig. 6.2).
Larger amounts of traffic could be simulated by increasing the number of flights between

city pairs at the same distribution as is found at the normal traffic levels.

6.2.3 Simulator Code

The simulator software was written in MATLAB m-functions and m-files to take
advantage of the rich set of high-level functions and overloaded operators in MATLAB,
especially those that perform vectorized operations. Since MATLAB is partly an
interpretive language, the computation time results for a MATLAB simulation can be
expected to be much slower than for an equivalent simulation run in a compiled version of
the code. For this reason, the measurement of computational effort was abstracted from
the particular machine and software implementation by using the FLOPS function to

estimate the floating point operations required for each run. The FLOPS estimates were
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Figure 6.2. Generating random routes based on empirical data.

broken down for each subsection of the simulation program so that results dependent on
random variables, such as the number of conflicts experienced during a simulation run,

could still be computed.

The following is a narrative of the simulation m-file. The narrative is given to explain
the process and hopefully not get lost in the details of variable initialization and other
trivialities.

1] Initialize Variables and Functions
« Set Buffer Time, Ty
« Set Conflict Look-ahead Time, T.nfict
e Initialize Wind File

2] Initialize Aircraft List

¢ Load Data Directly from ETMS File

+ or, Generate Random Aircraft Based on ETMS Histogram



6.2. Simulation Design 166

3]

4]

5]
6]
7]
8]
9]
101
11)
12]

13]

14]
15]
16]

17]

18]

19]

20]
21]

Pre-Generate Aircraft Trajectories [Some aircraft will have been
scheduled to be enrouce at the start of the simulation. These
aircraft are required to populate the airspace as it would be
populated in the real system when the optimization code would be
turned on.]

Initialize the Conflict Grid
+ Compute and Set the Conflict Grid Dimensions
e Initialize Memory
Initialize Simulated Weather Cells & Special-use Airspace
BEGIN REAL TIME LOOP
Clear Conflict Grid Memory
Update Positions of Wx Cells and SuUA
Store Wx Cells and SUA in the Conflict Grid
Clear Wx Cells and SUA that have Dissipated
BEGIN ACTIVE AIRCRAFT LOOP

Update Active Aircraft List (AAL) -- Add new aircraft
that are scheduled to depart within the next TBUFFER
time, and remove aircraft that have arrived at
destination.

Update Current Aircraft Positions with Simulated
Random Longitudinal Perturbations

Initialize Conflict Resolution Loop Variables
BEGIN CONFLICT RESOLUTION LOOP

Generate Neighboring Optimal Wind Route with
Requested Conflict Resolution Perturbation

Interpolate Trajectory onto Time-Grid
Coordinates ([only need to interpolate from
current time out to current time plus TCONFLICT,
the conflict look-ahead time]

Compute Conflict Grid Indices for Each
Trajectory Point [use simple hashing function to
compute grid indices as a function of position
and time coordinates])

Determine Conflict List [make a list of
trajectory points for which the conflict grid
has more aircraft than are allowed in each cell,
or is occupied by a Wx cell or SUA]

BEGIN CONFLICT LIST LOOP

Filter Conflict List [Ignore terminal area
conflicts. Mark certain conflicts as
unresolvable by horizontal means if the
resolution delay is larger than a chosen
threshold]
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22]

23]

24]

25]
26]

27]

167

Compute Nearest Wind Control Point [find
the nearest wind control point to the
conflict so that the trajectory may be
perturbed at that location]

Set Conflict Resolution Perturbation
[Note: The simulation software currently
runs in series, so it iterates between
starboard and port resolution maneuvers
until one is found that resolves the
conflict. With a parallel processor, both
starboard and port resolutions could be
computed at the same time. In a further
generalization, many other types of
resolution maneuvers could be computed in
parallel so that the minimum-cost
resolution could be selected.]

If a Conflict Has Been Detected, Break Out
of Conflict List Loop ==> GOTO Line 16 [If
a conflict has been detected, we don‘t
care to look for additional conflicts
along the same trajectory]

END CONFLICT LIST LOOP

Store Trajectory in Conflict Grid [Increment
values of corresponding Conflict Grid cells by

Increment Aircraft Counter

28] END CONFLICT RESOLUTION LOOP

291 Increment Simulation-Time
[The time is incremented such that it will take just under
Tﬁf&r time to run through the entire active aircraft list]

30] If at End of Simulation, Quit.

311 END REAL-TIME LOOP

6.2.4  Qualitative Simulation Description

The simulation proceeds through the provided set of aircraft data according to the

basic flowchart presented in chapter 3, which is repeated here for convenience (fig. 6.3).

There are some additional subtleties which must be addressed in order to maintain a

reference to simulation time.

The Ty, ., Parameter sets the amount of time in the future for which aircraft not yet

scheduled to depart will be included in the active aircraft list. This buffer is added to allow

for the time to run through the complete active aircraft list, which will be a finite amount
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Figure 6.3. High-level simulation flowchart.

of time in practice. If the aircraft scheduled to depart in this buffer time were not included
in the active list, then these aircraft would end up departing before being assigned a
trajectory. In all the simulation studies presented here, the buffer time has been set to
Tyusrer = 0.5 hr. The simulation is then set to run through the active aircraft list in just
under Ty q., SO that it runs as fast as possible, but does not take longer to run through the

active aircraft list than Tyuffer -

Once the simulation has run through a complete pass of the active aircraft list, which
has been set to take just under T} ¢, time, the active aircraft list is refreshed by adding all
aircraft that have now come within the T} g, time window, and by removing all aircraft
that have arrived at their respective destinations. The computation process through the
refreshed active aircraft list begins anew, and continues until the specified simulation end

has been reached. This means that during any given simulation, multiple passes are made



6.3. Analysis and Parametric Studies 169

through the active aircraft list, which is always changing as aircraft are added and

removed from the list. This process can be observed in the above pseudo-code listing.

6.3  Analysis and Parametric Studies

The simulation code has been designed to easily allow algorithm parameters to be
varied to study their effects on the optimization performance and computational efficiency
of the algorithm. Among the variable parameters are the following:

e Allowable minimum aircraft separation distance
e Number of aircraft (may be varied using random route generation function)
* Conflict time horizon (look-ahead time)

¢ Ground speed uncertainty (wind errors, 4-D control errors, etc.)

The following outputs are of interest in evaluating the sequential optimization

approach:

* Optimization performance: actual cost versus minimum cost

* Airspace capacity

¢ Computational effort: required safe recomputation rate

The results of a few analysis studies are presented here in order to demonstrate the
capabilities of the simulation system, and to present some new results obtained by
simulating the algorithms and coneepts developed in this dissertation. The purpose of the
first study is to determine the conflict-resolution perturbation parameter that best balances
computational efficiency and optimization performance. Once this basic algorithm
parameter has been set, two analysis studies are presented. The goal of the first study is to
show the effects of reducing legal separation limits on airspace capacity. The goal of the

second study is to analyze the computational performance of the entire optimization

system.

6.3.1  Adjustment of Conflict-Resolution Perturbation Parameters

The first simulation study has been performed to determine the best value of pseudo-

shear perturbation, u__, to use in the rest of the simulations (refer to sec. 5.5). The

ps’
procedure is to vary the amount of conflict-resolution perturbation used on each conflict

iteration and to evaluate the effects on computational effort, optimization performance,
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Figure 6.4. Optimization performance vs. perturbation parameter.

and predicted airspace capacity. [f the perturbation is too small, excessive iterations would
result; if the perturbation is too large, the efficiency of the resulting solutions would be
expected to suffer. The specific parameters and data used for this study are presented in
table 6.1. The first plot (fig. 6.4) is of the optimization performance versus u. The

performance is measured in terms of the efficiency parameter, defined as

T‘ATC = (61)

J*Nowr

where J is the total flight time over all aircraft in the simulation after conflict resolution
has been performed, and J*yowr i the sum total flight time of neighboring optimal wind
routes for all aircraft when conflicts are ignored. Notice that the values of the efficiency
parameter are greater than 1. This is because the value of J*yowr is computed from the
trajectories of each aircraft as the aireraft are first introduced in the simulation. Recall that
the NOWR trajectories are normalized, and a fixed number of wind control points are used

to compute the neighboring optimal solutions for any path distance. This results in higher-
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resolution wind data being used for shorter trajectories. Therefore, as an aircraft follows
the original NOWR trajectory, suceessively higher-resolution data are used when the
solutions are recomputed. On average, this results in better optimization performance
being achieved than is predicted from the initial NOWR solution computed for each
aircraft. In other words, the ultimate flight time recorded for an aircraft is typically less
than that predicted by the first NOWR solution; this is why the efficiency parameter may
be greater than 1.

Table 6.1. Simulation parameters for conflict perturbation analysis.

Parameter Description Value(s)
Ups Normalized pseudo-shear perturbation 0.1--2.0
T onflict Conflict look-ahead-time 6.5 hr
Touster Take-off time buffer. Aircraft scheduled to take | 0.5 hr
off within the next T} . time are included in
the Active Aircraft List to permit time for the
processing of the list
Ax iy Average size of conflict grid cell on a side 10 n.mi.
¥ Normalized shear computation distance 0.08
Wx File ruc2.T21Z.grb202 N/A
(RUC2, 2100 UTC, GRIB format, 2 hr forecast)
Date: 14-Feb-2001
u & v wind component data from 225mb
(225 mb is approximately 36,000 ft)
ETMS Data Enhanced Traffic Management System data. All | N/A

aircraft with flight plans filed at FL350 between
US origins and destinations were selected from
the data file. Data selected were origin, destina-
tion, filed airspeed, filed departure time.

Date: Friday, August 10, 2001
Total # of Aircraft: 1283
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The important trend in figure 6.4 is that the optimization performance degrades as the
resolution parameter increases. This is to be expected since larger trial perturbations may
over-resolve conflicts to some degree. The decline in optimization performance is
approximately linear with increasing u , but with perhaps a slight steepening of the slope
after a value of Ups = 05.

The number of onerous conflicts versus the perturbation parameter is a good measure

of the computational effort required for any given value of u (fig. 6.5). An onerous
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Figure 6.5. Number of onerous conflicts vs. conflict-resolution parameter.

conflict is one that has exceeded a threshold number of conflict iterations and has been
deemed to be impractical to resolve by horizontal maneuvers alone. In these cases, which
are few, other resolution means would be used, such as speed variations, altitude
variations, departure holds, or some combination of these. Simulating the details of these
different resolution maneuvers is not difficult, but falls outside the scope of this
dissertation. In this simulation study, when the perturbation parameter is set too low, the

number of onerous conflicts climbs rapidly because too many iterations are required to
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Figure 6.6. Flight-leve! capacity vs. conflict-resolution parameter.

resolve each conflict. The point where the number of onerous conflicts clearly begins to
rise is for values of Up<0.3. Most values above this range appear to be acceptable, but

there is a noticeable increase above s = 10.

Finally, the predicted capacity shows a rather steep increase as a function of Ups (fig.
6.6). This plot is another measure of the computational effort required to obtain a solution.
As the computational effort increases, the airspace capacity metric (see sec. 3.3) predicts
lower capacity limits. The steep drop in predicted capacity ends at values above
Uups = 0.7. Note that in this case, the capacity metric is not being used as a representation
of actual physical capacity, but instead is being used as a measure of computational effort.
The apparent drop in capacity as measured by the capacity metric occurs because the

number of conflict iterations increases when the perturbation parameter is too small.

Balancing optimization and computational performance leads to an acceptable range

of values for u,; between about 0.3 and 0.7. A value in the middle of this range of
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u,. = 0.5 has been set for use in the remaining simulation studies because it has a good

ps
blend of optimization performance and computational efficiency.

6.3.2  Airspace Capacity versus Separation Limits

An analysis study has been conducted to determine the potential airspace capacity as a
function of required aircraft separation. The conflict-grid dimensions are used as a means
of adjusting the aircraft separation limits since only one aircraft is permitted within each
conflict grid cell (sec. 5.3). The conflict-grid dimensions are varied, and then simulations
of the same ETMS data set discussed in the previous section are conducted. The airspace
capacity model can then be used to estimate the airspace capacity for any given conflict-

grid dimension.
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Figure 6.7. Varying average airspace sector density.

An equivalent interpretation of the results is to examine the effect of average airspace
sector loading on capacity (fig. 6.7). In the current air-traffic control system, each airspace
sector is permitted to handle a certain maximum number of aircraft because an air-traffic

controller is only expected to handle so many aircraft within a given airspace region. The
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threshold depends on a variety of factors, but is essentially an airspace density limit. This
interpretation of the results demonstrates how the simulation capability developed in this
dissertation may be applied to the benefit of the current air-traffic control system.

Table 6.2. Simulation parameters for airspace capacity analysis.

Parameter Description Value(s)

s Norme:lged pseudo-shear perturbation 0.5
T ponflict Conlflict look-ahead-time 6.5 hr
Tyutter Takeoff time buffer. Aircraft scheduled to take | 0.5 hr

off within the next T, ., time are included in

the Active Aircraft List to permit time for the

processing of the list.
Ax g Average size of conflict grid cell on a side 5-15 nmi
Y, Normalized shear computation distance 0.08
Wx File ruc2.T21Z.grb202 N/A

(RUC2, 2100 UTC, GRIB format, 2-hr forecast)
Date: 14-Feb-2001

u & v wind component data from 225 mb
(225 mb is approximately 36,000 ft)

ETMS Data Enhanced Traffic Management System data. All | N/A
aircraft with flight plans filed at FL350 between
U.S. origins and destinations were selected from
the data file. Data selected were origin, destina-
tion, filed airspeed, filed departure time.

Date: Friday, 10 August 2001
Total No. of Aircraft: 1,283

The parameter values and data sources used in this study are given in table 6.2. The
average conflict grid square dimensions are varied over the range
Snmi. < Axgﬁd < 15 n.mi.. This is referred to as an average grid dimension because the
actual conflict grid is set in terms of degrees of latitude or longitude, and the longitude

dimensions vary as a function of latitude.
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The capacity model was described in detail in sec. 3.3. The model describes the
expected total number of conflict-resolution iterations, 14 v as a function of the number of
aircraft, N. Two parameters, C, and C, , must be determined based on fitting the model

to empirical simulation data. The model is repeated here for convenience:

. Cy
Py=Cinl z—x (6.2)

As described, the parameters of the model in equation (6.2) are to be adjusted to fit
simulation data in a minimum least-square error sense. An example of a fit to empirical

data for a single pass through the active aircraft list is shown in fig. 6.8.
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Figure 6.8. Curve-fitting empirical conflict-iteration data.

As discussed previously, each simulation consists of multiple passes through the
active aircraft list as aircraft enter and leave the system. This produces multiple sets of
simulation data for adjusting the conflict-iteration model parameters. A plot of all passes
through the active aircraft list for the data set described in table 6.2 for the specific case of

Axgrig = 15 n.mi. shows how the capacity parameter, C,), is determined (fig. 6.9).
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OO

The capacity limits determined for each value of Ax,;q have been determined through
simulation and plotted together to determine the overall effects on airspace capacity of
varying aircraft density (fig. 6.10). The maximum number of aircraft found at any flight
level in the current air-traffic control system, including aircraft predicted to enter the
airspace within the next 30 min (to account for T 4. ), is about 650 and is shown in
figure 6.9. This corresponds to an average aircraft spacing for the optimized system of
about 15 n.mi. This means that the current traffic levels could be accommodated by the
optimization system, even if the inter-aircraft separation standard were increased.
Conversely, if the inter-aircraft separation standard remains at 5 n.mi. as in the current air-
traffic control system, an increase by a factor of 8 to nearly 4800 aircraft per flight level is

predicted.

As derived in chapter 3, the full 3-D Class A capacity results are related to the 2-D
results by simply scaling the 2-D results by the number of flight levels (eq. (3.35)). The
scaled results over the 17 flight levels from FL180 through FL390 are shown in figure
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Figure 6.10. Airspace capacity (per flight level) vs. average conflict-grid-cell size.

6.11. Note that these scaled results assume that traffic would be equally distributed across
all flight levels. Unless the airspace was truly at capacity, the distribution of traffic would
be weighted toward the higher altitude flight levels near FL330 and FL350 (fig. 2.2).

6.3.3  Real-Time Computational Analysis

The computational performance of the optimization system and algorithms developed
in this dissertation is of great interest. A simulation study and related analysis have been
conducted to determine the computational properties of the sequential optimization
approach. An effort has been made to generalize the computational results so that they
may be applicable to different computer hardware implementations with different

processing speeds.

The reason that real-time recomputation of optimal trajectories is required is to make
large-scale corrections for large disturbances, as discussed in chapter 3. If winds and

storms were predictable on the time-scale of a typical cross-country flight (about 6 hr), if
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Figure 6.11. Extrapolated 3-D capacity for 17 flight levels from FL180 to FL390.

aircraft could depart exactly on schedule, and if aircraft preferences did not change, then
one could compute an optimal set of trajectories, perhaps once per day, and then use
closed-loop 4-D guidance and control to mitigate the effects of small disturbances.
Although much progress has been made, winds and weather systems are notoriously
difficult to accurately predict. The only thing that is certain is that unpredictable errors
will occur, so recomputation of optimal trajectory solutions will always be required. Even
without the possibility of mismodeled storms, simple errors in the predicted winds
necessitate the occasional update of trajectory solutions so that aircraft are not forced to
fly for extended periods of time at inefficient airspeeds. At efficient flight altitudes,
commercial jet aircraft have a narrow airspeed flight envelope to work within; as a result,
wind errors can quickly lead to situations in which aircraft come up against physical flight
limitations, and 4-D trajectory recomputation would be required. Other sources of
uncertainty that would require occasional trajectory updates are aircraft flight technical

errors, navigation errors (probably not much of a problem with the advent of global
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navigation systems like the Wide Area Augmentation System, or WA AS), and changes in

aircraft flight preferences owing to internal airline scheduling changes.

These nominal uncertainties are the driving force behind required nominal
recomputation rates. The largest nominal uncertainty, by orders of magnitude, is that of
wind-modeling accuracy. The average performance of state-of-the-art continental-scale
wind models is between S and 7 knots rms wind vector error [62, 63, 79]. Assuming a
Gaussian distribution of wind-prediction errors, the variance in aircraft position error will
grow linearly at a rate of between S and 7 nautical miles each hour. A reasonable goal is to
maintain aircraft position errors within about 1 n.mi. To achieve this without requiring
modifications in airspeed suggests that trajectory recomputation is needed on the order of
every 10 to 12 min. Similarly, accurate storm predictions beyond about 30 min are not
currently available. This suggests that trajectory recomputation under nominal conditions
should be performed every 10 to 30 min. This will continue to be the case until the

accuracy of weather prediction is improved.

A different source of uncertainty that is important enough to address separately is that
of in-flight emergencies, including aircraft flight hardware problems, navigation or
communication systems outages, medical emergencies, and hijackings. These are referred
to as off-nominal system uncertainties. Any of these emergencies can occur at any time, so
their effects and demands on a trajectory optimization system must be considered. Dealing
with the detailed system engineering issues of severely off-nominal conditions like this is
far beyond the scope of this dissertation, but the issue will be addressed at a high level. A
brief analysis is now given to see how off-nominal system uncertainties may be used to

derive a required recomputation rate for system-wide optimization.

With the conflict-grid method, trajectory solutions are designed to maintain inter-
aircraft separation equal to the size of a conflict-grid cell. This leads to a means of
deriving a reasonable recomputation limit. By assuming that the optimal conflict-free

trajectories for all aircraft must be computed in the amount of time it takes a typical
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aircraft to transit a conflict-grid cell, the amount of time required for recomputation, T,
is simply given by
Ax

Tp = 72¢ (6.3)

max

where Axgﬁd is the conflict-grid dimension, and V. is the maximum expected aircraft

ground speed (fig. 6.12). The maximum ground speed can be computed by adding the

Figure 6.12. Estimating required recomputation rate from grid-cell transit time.

maximum typical airspeed for commercial jet aircraft to the maximum expected wind

speed. Values in the range of 600 to 650 knots are typical.

The expected time to compute optimal conflict-free trajectories for a set of N aircraft
may be determined based on equations (3.17), (3.23), and (3.27) by applying constants to
relate the number of computations to time. The time to optimize all trajectories, T, is

then given by

C
T, = C, ln( Co _ON)KNOWR 6.4)

where Kyowp is a hardware-dependent parameter to express the amount of time required

to compute a neighboring optimal wind route.
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In addition to the computation time, time must be provided for communicating
trajectories to all of the aircraft. Currently, no dedicated high-bandwidth trajectory
communications systems are in place; they would therefore have to be designed and
fielded for practical implementation of the ideas in this dissertation. For analysis purposes,
the communication time is left as a parameter so that requirements on the bandwidth of the
communication system can be developed. The communication time is defined as T so

that the total computation and communication time, T, is given by

C
Tr = C, ln(af—N)KNOWR + T, (6.5)

In order to meet the emergency recomputation time, an inequality between equation

(6.3) and equation (6.5) is formed to give

Co Axgrig

Solving equation (6.6) for Kyqowr leads to the following requirement on the time per

neighboring optimal wind route:

Ax.. Co -1
Knowr = —Vf:f(l - nc)[cl ln(Co _ON)] (6.7)

where 1, is the ratio of trajectory communication time to optimization time and is defined

as

TC
(6.8)

Me =1 TR = e Vows)

An equivalent requirement on the number of neighboring optimal routes that must be

computed per unit time may be derived by inverting equation (6.7) to give

omi[Epin] cnlly) e

max
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where

) (6.10)

PNOowR = ( Knows

The derived expressions, equations (6.7) and (6.9), may be applied to either the full 3-
D Class A problem or to the 2-D single-flight-level problem by appropriate scaling of the
C, and C, parameters. As before, 2-D simulation results will be used to determine C
and C, directly for the 2-D case, and these will be scaled to determine the 3-D

computation requirements.

An interesting aspect of this problem is that as Ax;, increases, the amount of time
available for computation increases because transit times across a grid cell are longer. But
when Ax;4 increases, so does the expected number of conflicts, because more airspace is

required per aircraft. This suggests that some optimum grid spacing exists from a

computational standpoint.
Table 6.3. Empirically-determined conflict iteration parameters.
Axgig Co C,
15 675 962
12 1038 1552
10 1597 2462
8 2483 3566
5 4865 6599

The same simulation results for the previous simulation study (table 6.2) may be used
to evaluate the computational requirements derived here. The values of C;; and C; from
those results are used here (table 6.3). The number of aircraft per flight level is set to 600,
which is nearly double the current-day traffic levels. A value of 600 knots is assumed for
Vinax - The plot of pygwr Vversus Axgrid for the 2-D case for three different values of 1,
shows that there is, indeed, a minimum required computation rate at about a 12 n.mi. grid
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Figure 6.13. Required computation rate vs. conflict grid spacing.

spacing (fig. 6.13). This result is related to the typical speeds involved in commercial

aircraft travel.

Porting the NOWR functions over to the C-language, compiling, and running a timing
analysis on just that function allows the simulation timing results from the MATLAB
system to be extrapolated to that which would be expected from a fully compiled version
of the simulator. On the same plot (fig. 6.13), the computation rate achievable on an
average Sun Ultra workstation (450 MHz, 256 Mb RAM) is shown for reference. The
compiled version runs at a rate of about 25 optimal routes per second, or 0.04 msec per

optimal route.
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The equivalent plot has been generated for the full 3-D case to show what is required
for solution of the complete Class A problem (fig. 6.14). For extrapolation of the results,
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Figure 6.14. 2-D results extrapolated to the 3-D case.

the parameters N, C,, and C, are multiplied by the number of flight levels in Class A
airspace, or 17. The absolute minimum optimal wind-route computation rate in the 3-D
case is still at a conflict grid size of 12 n.mi., and is about 310 optimal routes per second.
This is about a factor of 12 faster than has been measured with the compiled code on the
450-MHz UltraSparc work station. This is not a difficult gap to close, particularly since
off-the-shelf computers operating at 3 GHz (3,000 MHz) are now available for under
$5,000. This means that the computational gap is already down to about a factor of 2. With
attention paid to code optimization and with the regular improvements in computing
power, this computational gap should already be considered closed. The next step in this
work is to move from the 2-D development system to a full demonstration of the 3-D

system on faster hardware, but the basic demonstration of the method has been achieved.



6.4. Summary 186

64  Summary

The simulation system that has been developed to test the algorithms and concepts in
this dissertation has been presented. The results of several studies and analyses have also
been presented to demonstrate how the simulation system can be used to obtain such
results. The results obtained from the first study showed how airspace capacity might be
expected to increase if the conflict-free optimization algorithms are adopted. The second
study was a computational performance analysis that showed what is required of computer
hardware to achieve real-time performance. Real-time performance for a single flight
level has already been achieved on average off-the-shelf computer hardware, and, with
high-end hardware, optimization of the complete Class A airspace is probably already

possible too.



Chapter 7
Conclusion

The goal of this dissertation was to develop an approach and algorithms to enable the
real-time conflict-free optimization of all aircraft in the en route airspace over the
continental United States. Within the constraints and limitations of the computer and

software development platform used for this work, that goal has been achieved.

A sequential optimization approach with iterative trajectory conflict resolution was
adopted based on analysis showing that the en route airspace is, and will continue to be,
sparsely populated with aircraft. The sequential optimization approach was shown to be a
problem that could be solved in polynomial time. An analysis of the computational effort
required by the sequential optimization approach showed that the core functions of
optimal wind-routing and conflict detection were computational primitives and that they
would need to be efficient to enable real-time performance. New approaches to both
optimal wind-routing and conflict detection were developed to address this need for real-

time performance.

A simulation system was developed to test the sequential optimization approach and
associated algorithms. The simulation was developed for the 2-D problem, and analysis
was used to extrapolate the 2-D results to the full 3-D Class A airspace problem. The
simulation was used to perform several studies of the performance of the sequential
optimization approach, including a computational analysis. The requirement for real-time

recomputation of optimal conflict-free trajectories was related to the time required for an

187
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aircraft to travel the minimum inter-aircraft separation distance. For the 2-D problem, this
was shown to be equivalent to requiring optimal routes to be computed at a rate faster than
20 optimal routes per second. The equivalent 3-D requirement on optimal routes was
shown to be a rate faster than about 300 optimal routes per second. A rate of 25 optimal
routes per second was demonstrated on a Sun Ultra 450-MHz work station so that real-
time performance has been demonstrated for the 2-D problem. It was reasoned that a rate
of 300 optimal routes should be attainable with currently available computer hardware,

though this has not yet been demonstrated.

7.1 Contributions

7.1.1  Neighboring Optimal Wind Routing

A new approach to computing minimum-time wind-routes based on the technique of
neighboring optimal control (NOC) has been introduced. The NOC formulation produces
a time-varying linear feedback law for computing near-optimal aircraft heading
perturbations for given perturbations in the winds along a nominal route. Although this is
mathematically similar to other linear feedback implementations, the ability to adjust the
current aircraft heading as a function of perturbations in the winds at distant locations is

conceptually unique.

The winds are modeled as piecewise linear functions of the along-track coordinate,
specified at N, grid points. The analytical solution for the NOC feedback gains has been
determined as a function of N,,. The analytical solution for a general wind model enables
accurate NOC gains to be computed even for a large number of grid points, and eliminates

the need to tabulate feedback gains for look-up during implementation.

In addition to the NOC feedback law, normalization and transformation algorithms for
applying the NOC solutions to problems in spherical-Earth coordinates have been
developed. The combined NOC and transformation algorithms are called Neighboring
Optimal Wind Routing (NOWR). The NOWR algorithm achieves near-minimum-time
routes in an amount of time that is proportional to the length of the route (this is referred to

as “order n,” or O(n)). The NOWR algorithm has been demonstrated to produce optimal
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wind-routes in about 10° floating point operations, which corresponds to about 40
milliseconds on a 450-MHz UNIX work station. This is an order of magnitude faster than
existing optimization algorithms with similar optimization performance.

7.1.2  Strategic Conflict Detection and Resolution

Efficient approaches to strategic conflict-detection and resolution have been
introduced. The problem of conflict detection is to predict whether the distance between
any pair of aircraft will be less than the allowable legal separation (generally 5 n.mi. for
commercial aircraft), and the best existing conflict-detection algorithms have been shown
to be O(nlogn) . A new approach to conflict detection that is coupled with the conflict-
resolution process has been developed. The Conflict Grid (CG) method involves storing
aircraft trajectory data in a position versus time grid. A conflict is detected while storing
trajectory data whenever any particular grid cell is seen to already be occupied by another
aircraft or other airspace constraint (e.g., bad weather). The CG technique was shown to
require less than 102 floating point operations to test a trajectory for conflicts. This is less
than 0.1% additional computational effort over that required to compute an optimal wind-
route. The CG method achieves this efficient performance by eliminating the need for
pair-wise inter-aircraft distance computations. An extension to the CG method called the
Stochastic Conflict Grid (SCG) was proposed to account for uncertainty in aircraft
trajectory prediction and in the prediction of bad weather. [nstead of setting grid cell
values to binary 1 (occupied by a constraint) or 0 (no active constraint), the values in the
SCG concept may take on any value between 0 and 1 to represent the probability that at

least one constraint is active in that grid cell.

An enhancement to the NOWR algorithm was made to enable the efficient
computation of perturbed optimal wind-routes. An efficient conflict-detection and
resolution strategy was developed based on the perturbation NOWR algorithm for which
the expected number of computations is proportional to log(Cy/(C,— N)), where N is
the number of aircraft in the system, and C,, is a constant parameter used to fit the

computational model to empirical data. This is the first technique proposed to resolve
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conflicts while maintaining wind optimality for each aircraft route. All previous
approaches have either neglected winds entirely, or have assumed that some nominal
ground path was the desired objective so that conflict resolutions were computed to

minimize deviations from the nominal path.

The resulting conflict-free solutions are not claimed to be globally optimal, but have
been compared to a bound on the globally optimal solution and shown to exhibit
performance within 0.25% of the global optimum for the real air-traffic and wind data
used in the study.

7.1.3  Airspace Capacity Modeling

A model of airspace capacity was derived based on the total number of iterations
required to determine optimal conflict-free trajectories for a set of N aircraft. The derived

expression for the number of conflict-resolution iterations, Yy, is given by

. Cy

where C;, and C, are model parameters that are adjusted to fit empirical data. It was
reasoned that C; may be interpreted as a measure of predicted airspace capacity. The use
of this metric was demonstrated with simulation data. This is likely the first practical
method of approximating en route airspace capacity for systems with unconstrained

routing.

Using the capacity model, simulation studies were conducted to determine the
relationship between legal aircraft separation standards and airspace capacity. This
relationship may be used to estimate the potential benefits of reducing the minimum
separation standards for en route aircraft. Reductions in the separation standards may now
become possible with the advent of high-accuracy navigation and surveillance systems

like the Wide Area Augmentation System (WAAS) and Automatic Dependent



7.2. Recommendations for Future Work 191

Surveillance Mode-B (ADS-B). The proposed capacity model allows improvements in

navigational performance to be related directly to improvements in airspace capacity.

7.2 Recommendations for Future Work

7.21 Extend NOWR to 3-D

Extending the 2-D NOWR algorithm to 3-D would permit the same rapid computation
of 3-D routes as has been demonstrated with 2-D routes without having to decouple the
horizontal and vertical trajectory optimization functions. This would permit greater
flexibility in the sequential optimization system, and should lead to even better
optimization performance. The challenge is to make the extension to 3-D while retaining
the efficient properties of the 2-D NOWR algorithm. One of the great advantages of the
NOWR algorithm is that, through normalization, it may be applied to the computation of

optimal routes between any two points.

The vertical-profile optimization problem involves balancing engine fuel efficiency
and aircraft drag. Higher altitudes lead to reduced drag, but also reduced engine
performance. Airspeed also must be adjusted to achieve an optimal balance between drag
and engine performance. Extending NOWR to 3-D means that the dynamic model would
have to include a fuel-flow-rate model and an airframe-drag model. The variation in winds
with altitude would also have to be included. In the spirit of NOWR, it is possible that the
fuel flow rate could be modeled as a function of altitude (or temperature) with several
nominal parameters. The nominal parameters would be modeled as constants so that
perturbations in the parameters would be introduced into the neighboring optimal solution
in the same manner as wind perturbations were introduced. The nominal optimal en route
trajectory would be a normalized cruise-climb segment along a great circle. Perturbations
in winds along the nominal route would be fed back as before, but now with additional
perturbations in airspeed, engine performance model parameters, and airframe-drag model
parameters. The utility of this approach would depend on how well engine performance

and airframe drag could be modeled with linearized perturbations.
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7.2.2 Demonstrate Stochastic Conflict Grid

The stochastic version of the conflict-grid concept was introduced in this dissertation,
but not demonstrated. To do so would require the capability to compute position error
estimates for aircraft trajectories and weather systems. This is not conceptually difficult,
but would require a considerable amount of software-engineering effort to implement. It is
anticipated that the stochastic conflict-grid concept would achieve good optimization

performance in the uncertain national airspace system environment.

7.23  Demonstrate Solution to Complete 3-D Class A Airspace Problem

As with the stochastic conflict grid, the demonstration of the complete 3-D Class A
airspace problem is not conceptually difficult, but would require considerable software
engineering beyond what has been done in this dissertation for the 2-D simulation system.
A computer platform with greater than 3-GHz performance (currently available) should be
able to demonstrate complete 3-D solutions for over 10,000 aircraft in less than | min. In
addition to the faster computation speed, enough RAM or virtual memory would be
required to implement the conflict grid concept in 3-D. A conflict grid with 1 byte for each
5 n.mi. square grid cell spanning across the continental United States from FL180 up to
FL390, and extending for 7 hr would require approximately 2-Gbyte of memory. UNIX
work stations are already available with up to 8-Gbyte of RAM.

7.2.4  Develop a Perturbation Conflict-Resolution Algorithm for Arbitrary
Trajectories

A practical ATC system will have to accept requests for arbitrary trajectories in
addition to requests for optimal wind-routes. This will require a perturbation conflict-
resolution algorithm to be developed for arbitrary trajectories similar to the perturbation
NOWR algorithm developed here. Conceptually, this should not be difficult, but will

require some development effort.
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73  Concluding Remarks

If it were possible, the ultimate air-traffic control system would continuously compute
optimal controls for all aircraft and communicate those controls to aircraft in real-time.
This would permit the use of the most current system information and would allow the
system to adapt to real-time uncertainties and emergencies. The optimal solution would
unfold as new information became available. The system engineering and procedural
changes required to implement such a system would be considerable, but in principle, this

would be the ultimate air-traffic control system.

The computation of near-minimum-time conflict-free trajectories for the tens of
thousands of aircraft that operate daily in the United States has remained a distant
objective because of the extremely high problem complexity. Because the solution has
seemed so distant, system concepts have generally not considered the use of real-time

system-wide optimization.

The goal of this dissertation was to demonstrate the feasibility of a real-time system-
wide optimization concept. A solution approach has been developed and demonstrated in
simulation to bring real-time system-wide optimization into the realm of possibility. The
system engineering required to take the concepts of this dissertation into the real world
would be an immense undertaking. But now that the basic computational algorithms
supporting the system-wide optimization concept have been shown to be feasible,

implementation of the system-wide optimization concept in some form seems inevitable.



7.3. Concluding Remarks 194



Appendix 1
Solutions for the Neighboring Optimal
Wind Routing Gains

Al.1 Analytical Solution for NOC Feedback Gains

By examining small perturbations in the solution for minimum-time paths through
varying winds, an analytical neighboring optimal control solution has been derived. The
analytical solution is derived as a function of N,,, the number of grid points used to model
the winds as piecewise linear functions of x . This enables NOC feedback gains to be
computed for many different modeling situations much more quickly and precisely than

has been possible with numerical methods.

In the following sections, the model of the minimum-time aircraft problem in varying
winds is presented, followed by the derivation of the analytical neighboring optimal

control feedback gains for the case of piecewise linearly varying winds.

Al.l.1 Linearized System Model

For zero winds, the nominal optimal heading angle from {x = 1,y = 0} to the

originis 8_, . = & (fig. A1.1). With the intent of linearizing the equations of motion

nom

195
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b/

x =0 x=1

Figure A1.1. Nominal optimal trajectory in zero winds.

about this straight-line trajectory, the wind components, u(x, y), and v(x, y), are modeled

as the sum of bias and cross-track shear terms in the following way:

u= ub(x)+y-uy(x) (AlL.D)

<
)

v(x)+y- v_v(x) (Al.2)

When the linearization is performed, more general descriptions of the winds would
reduce to these linear components, so the wind model given in equations (A1.1) and
(A1.2) is as general as required for the derivation of NOC feedback gains. Further
simplification can be achieved because, as is shown in a moment, the u,, and v, terms are

eliminated from the problem during the linearization process.

The equations of motion, including the differential equation derived by Zermelo for
the minimum-time heading as a function of the wind perturbations [36, 37, 39], are given

in this case by
X = cos@+u,+y-u, (Al1.3)
y =sin@+v,+y-v, (Al4)

. 0 d
6 = 2. gin20 + —ub—v sinBcosO —u, - cos’O (A1.5)
dx Jox Y :
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Perturbations in each of the wind terms may be considered independently in order to
compute the corresponding perturbations in 8 . For small perturbations in any of the wind
terms, the corresponding perturbations in y and 6 — &t are also small. For such
perturbations, sin@ — —(0 - &), cos® — -1, and all remaining terms that are higher than
first order in perturbation quantities reduce to zero. Making these substitutions leads to the

following linearized equations of motion for minimum-time trajectories in winds:

x=1-t (Al.6)
2 = 0-m)-v, (ALT)
fig = u, (Al.8)

where the differential equations in y and 8 have been converted from ¢ to x using

equation (A1.6).

Al.1.2 Analytical NOC Feedback Gains for Piecewise Linear Winds

The terms «,, and v, are now modeled as piecewise linear functions of x (fig. A1.2)
and are specified by the parameters u ; and v,; at N, grid points along the x -axis. For

the linearized model, 8 may be written as

0 = fix, y, Uyps Uy, ooy Uy 3 Vpis Vs -oon vwa) (A1.9)

so that small perturbations in 0 are given by

a0 a0 a0
48 = é}-dx+—dy+ Z(a__d +__dv,,,.) (A1.10)

Note that the partial derivative terms represent the change of 8 with respect to the
particular parameter or state while holding all other parameters and states at their nominal

values. These are the neighboring optimal control feedback gains.
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Figure A1.2. Graphical depiction of a piecewise linear function of x.

By equation (A1.8), 30/dx = 0 when all the wind parameters are zero. The
perturbation in 8 with respect to y is easily computed from the linearized equations of

motion and is given by

(AL11)

R 1—

QJlQJ
< |D

Perturbing each of the wind parameters independently produces perturbations in both
y and 0 so that equation (A1.10) must be used to determine the contributions of just the
wind parameters to perturbations in 6. The partial derivative of 8 with respect to

perturbations in parameter u,; is given by

8 _d _#4 (Al12)

duy; - du,; dy du,,

Similarly, perturbations in v,; lead to

0 _d0 30 dy
—_— . Al.13
Ovy  dvy dy dvy, (A1)
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The partial derivative of 8 with respect to y is given by equation (A1.11), but the

other derivatives remain to be determined from the linearized equations and the piecewise

linear models of the winds.

Integrating equation (A1.8) over 6 and x, and taking the derivative with respect to u;

produces the following expression for the total derivative of @ with respect to u;:

de _ 49 du,
=Tt J‘;duﬁdx (Al.14)

yi vi

Similarly, setting v, = 0 and integrating equation (A1.7) over 8 and y leads to

du,. du..

yi yi

dy deo du,
=_ 1. (x- —XY dx |dx Al.15
(x = xo) +-[:0[Eodu , ( )

The corresponding expressions for the total derivatives of 8 and y with respectto v,

are derived in a similar manner, but now with u, = 0. The derivative terms are given by

0
4 _ %o (A1.16)
dvy;  dvy,
0 d
d _ %o -(x-xO)—f i . (A1.17)
dvpi  dvy; % dVy,;

The integrations in equations (A 1.14), (A1.15), and (A1.17) are now computed.
Because of the piecewise linear definitions of the winds, these integrals must be computed
in a piecewise fashion. In general, for a perturbation in any parameter u,,; or vy;, there are
up to four integration regions (fig. A1.3). Fewer integration regions are required both at
the first two and the last two grid points. Integrating the piecewise linear functions of x is
straightforward but tedious because one must be careful to carry through boundary

conditions to match the integral over each integration region. These solutions are now

presented.
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Since the initial condition is at x = xy , the integrals are carried out from x = xy to

x = x;. Asdepicted in fig. A1.3, the integration regions are defined as follows:

Region R, X1 SXSxy (A1.18)
Region R, X SXSXx;, (AL.19)
Region R, x;_ 1 Sx<x; (A1.20)
Region R,y X Sx<x;_, (AL.21)

Note that some of these regions do not exist for certain values of i. For instance,

Region R, does not exist for either i = N —1 or i = N,,. The integrations in each of

] 1
* Region | Region | Region | Region
R 'R ' Ry | R
u; v , . L
| 'll\\ ]
u (x
4 IR A
|' } \l
- I [ | I -x
x=0 ’ X;i_1 X; Xi+1 XN,
i=1

! I |
I [ |
R 'Ry ' Ry VR
vy L v L B

| 71N I

V) KA S
4 ) 3

| @ i g

I ! I | >
X = (1)/ Xi-1 X Xi+1 *N,
I =

Figure A1.3. Piecewise linear perturbations in the wind parameters at point i.
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these regions for the piecewise linear functions shown in fig. A1.3 are now presented, and

the applicable boundary conditions are identified.

Region R,

The integrals over du,/du,; in R, are given by

—dx de =0 (A1.22)

XN

d
J" [ Uy dx]dx =0 (A1.23)
wa xNWdu_Vi

so that equation (A1.14) becomes

R do
L R (A1.24)
du,,; duy,
and equation (A 1.15) becomes
de
dy | Em xX-x Al.25
au, T, (x—xp) ( )

Substituting these expressions along with equation (A1.11) into equation (A1.12) and
simplifying leads to the following expression for the NOC feedback gain for perturbations

in uy,:

d0

du,;

yi

R de X
r_ On, (i) (A1.26)

du x

vi
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with the value of @8y /du,,; remaining to be determined by the following boundary

condition:

(A1.27)

By a similar process, the NOC feedback gain for perturbations in v, is given by

a0 [k _ Bn, (’%) (A1.28)
with boundary condition
RI Rll
g% - g% (A1.29)
bix=xnl bix'-'xul
Region R,
The integrals over du,/du,; in R are given by
2
J. By g = [ TRy o ER] (A130)
x«¢lduyi xl’l(xi—xl-+l) Z(Xi—x,'+l)
du. X, —x)3
J‘ Bty elae = Fix1 70" (A1.31)
Liel xi+lduyi 6(xi+l _xl)
so that equation (A1.14) becomes
R, dO. x—-x;, 1)
do |Rn _ 9By (x-x,4) (A132)

" du,, 2(x;=x; 1)

du yi

vi
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and equation (A 1.15) becomes

R, dO. X —x)?3
dy Mo Tixl .(x-x,.,,l)«»-(L (A1.33)
du,; du,; 6(x; 41— X;)

Substituting these expressions along with equation (Al.11) into equation (A1.12) and
simplifying leads to the following expression for the NOC feedback gain for perturbations
in u,;:

%
auy,-

2
R, _ 49,-.,,1 .(xi+l)_ (Xi41=%) (2x+x;, ) (Al1.34)

d“yi X 6x-(x;,—x;)

with the value of d6; , | /du,; remaining to be determined by the following boundary

conditions:

aikll _ ae Rlll 2<l
auy,- - du,,; -
TEN s (A1.35)
RII
%} =0 i=1
M =x,

The separate boundary condition is required because there isno Ry, fori = 1.

By a similar process, the NOC feedback gain for perturbations in v,; is given by

%
vy,

Ry - do; ., .(xi+l)_ (x4 -%)? (A1.36)
dv,,; x ) 2x- (% - %) '
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with boundary conditions
R R
ée_ /4 _ 92— i 2 < i
v,; _ vy, _ -
’; = e (A1.37)
n
-3%— 1 i=1
21

Note that in this case, for i = 1, the boundary conditions are determined by applying
equation (A1.36) as a limiting case as x = 0. By doing so, it is determined that

d8,/dv, = 1/2.

Region R,

The integrals over du,/du,; in R, are given by

du (x;-x) (x; - x)?
Y dx = (1_—' )dx=— = X) + ——— Al138
J‘;duyi J‘:.- (x;=x;_1) t4=%) 2(x;=x;_1) ( )
J.r duy dr = (x,'"x)z(z(x,'—x,'_l)+(x—x,'_[)) (A139)
X; x,-duy,- 6(x;—x;_1) '
so that equation (A1.14) becomes
2
do [Rm _ B oy, Kim® 4
2;; = d_',(yi (xi X)+2(xi‘-x,'_1) (Al O)
and equation (A1.15) becomes
R . =x)2(2(x:-x: +{(x—x;
dy |Fm B ST OCE N )07 )) (A1.41)
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Substituting these expressions along with equation (A1.11) into equation (A1.12) and
simplifying leads to the following expression for the NOC feedback gain for perturbations
in Uy;:

d0

—_ (A1.42
auy,. )

Ru _ dO; (x,-)_(x,-z—xz) +(x,--—x)2(2x+xi)

du,; x 2x 6x-(x;—x;_1)

with the value of 48,/ duy; remaining to be determined by the following boundary

condition;

Rlll
g% =0 2<i
yi X = xx-l
(A1.43)
ae Rlll
5 = N/A i=1
ﬁx:n

The gain in R, is left undefined when i = 1 because there is no R, in that case.

By a similar process, the NOC feedback gain for perturbations in v,; is given by

LI i’e_i.(’ii)+——-——(x’x"-‘)2 (Al.44)
v, dvy; \xJ 2x-(x;—x;_y)
with boundary condition
RIII
% =0 2<i
vy, ex
- (A1.45)
ae Rlll
— = N/A i=1
vy,

X =Xioq
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Region R,y

In Region Ry, it is straightforward to show that

0 |fv_ g 3<i
auy,-
(A1.46)
8 " _ na i=1,2
auy,-
Ry
a8 ™ _ g 3<i
av,,,.
(A1.47)
20 [* _ n/a i=1,2
vy,

Al.1.3 Analytical NOC Solution Summary

Applying the boundary conditions determines the various constants in the gain

expressions. A summary of the analytical NOC feedback gains is now presented.

Perturbations in y

The neighboring optimal perturbation in heading for perturbations in cross-track

position is
0<xsl1 (A1.48)

Note that this linearized feedback gain approaches infinity as the aircraft nears x = 0.
In practice, a mode switch to a heading regulator is used to avoid this singularity. Another

option is to use the optimal nonlinear feedback rule for perturbations in y, which is

A8, = tan“e) (A1.49)

Note that equation (A 1.49) reduces to equation (A1.48) for small perturbations in y.
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which is precisely the linearized NOC feedback law for perturbations in y .

Perturbations in Uy;

The NOC gain for perturbations in the along-track shearat i = 1 is given by

U
<

= = (A1.50)
auyl

r

_l_l L <x<1

6(Nw—1)2 X (N,-1)
3 1 1

_— - [1-(1=x- (N, —-1)22x-(N,-D+1 0<x<

s % [ x (= D2x (M= D+ 1] T

10 limx—>0
where it is noted that

i-1
X, = —— (AL.51)

All other NOC gains for perturbations in the along-track shear over the range

2<i<N,, are given by

8 _

- (A1.52)

[ (i-1) 1

(N_w-_l—)z; {x;, 1 <x<1}

6(i-1)-(i-x-(N,-1))?-(2x- (N, - 1) +i) {x;<x<x;,,}

6x- (N, —1)2

<[3i-4—3((i—1)2—x2(Nw-1)2)+(i—l—x-(Nw—1))2(2x-(Nw—l)+i—1)]
6x- (N, - 1)? {x;_;<x<x}

[0 {0<x=<x;_,}
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Perturbations in v,;

The NOC gain for perturbations in the cross-track bias wind at i = 1 is given by

— 1 1 1
IN.-D x  (N,-D
(Nw—l) 1

: 0<x<
2" oD

<x<l1

QU
[« =

"
A

(A1.53)

Q|
<
T

1-

All other NOC gains for perturbations in the cross-track bias wind over the range

2<i<N, are given by

1 1
(N—l).; X1 <x<1
w
2—(i-x-(N,, - 1))?
20 ZX'(N :l) xi<xsxi+l
o= w (A1.54)
Yoo li-2-x- (N, - 1))
7 (N.—1) X;_1<xsx;
w
0 0<x=<x;_;

The NOC gains for perturbations in y, u,;, and v,; have been plotted for the specific

i
case of N, = 13 to illustrate their qualitative nature (fig. A1.4).

Finally, the neighboring optimal feedback law is determined from equation (A1.10)

and the nominal solution (8 = ) to be

9=1c+-a—e~y+ Z(ai--u_-+ai-vbi) (A1.55)
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Figure Al.4. Normalized neighboring optimal feedback gains.
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Al.2 Numerical Solution for NOC Feedback Gains

The numerical solution for the neighboring optimal control gains via the backward
sweep method [39] is presented in this section. Although the analytical solution for the
gains has been derived in this case, the numerical solution is useful because it
demonstrates how NOC gains may be computed for other systems with varying system
parameters when the analytical solution is not feasible. The technique is to model the
varying parameters as bias states of the system. By doing so, the NOC solution via the
backward sweep method produces NOC feedback gains for perturbations in the system

parameters.

Al1.2,1 Dynamic Model

The augmented state vector, s, is given by

T
= x1
S=[ X y uyl ces uyNw vbl e VbN;I e R» (A1.56)
The state equations of motion are presented in vector form as

-cose +a()T(y- Uy)—

5 = fls, 6] = | Sn8+a®V, (A1.57)
ON,,X 1

ON"'X 1

- -

where 0M* 1 s an N, x 1 vector of zeros, and the wind parameter vectors are defined as
U E[u u u ]T U, e RVx! (A1.58)
yi %y2 0 %yN, y :

- T N, x1
v,,=|:vbl Voy o v,,N;l V, € RN (A1.59)
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The elements of the piecewise linear vector function, a(x), are defined by the

following equations:
afx) = i—-x(N,-1) (A1.60)
a;, (®) = x(N,~1)-(i-1) (A1.61)
_ j= 1!2,"-7(i—1)
afx) = O{j = (i+2),(i+3), ... N, (A1.62)

The integer value of i is determined based on the position, x, from the following rule:

i = min[(1+|x- (N, ~ 1) ]), (N, = 1] (AL.63)

where min[c, d] is the minimum of ¢ and d, and | c ] is the floor of ¢, defined as the

largest integer smaller than c.

Note that none of the wind states are controllable. The model is augmented with these
states so that the effects of perturbations in the winds on the optimal aircraft heading can
be accounted for. The models for the wind parameters need not be constants. Other
dynamic models may be used. Instead of modeling the wind parameter as constants, one
might choose to model them by linear dynamic processes. For example, the following

dynamic model of U, might be used:

U_V
Uye = 0

—AS-U_V+BS-UYC (AL64)
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where A; and B, are the state transition and control matrices, and U, is a constant
command parameter vector. An exponential decay process would be modeled by choosing

the following form for A, and B, :

| ag 0 0 0 ]
0 ag, 0 0
A, =B, =| . 0 0 0 (A1.65)
0 a-"(Nw-l) 0
I 0 0 0 ay, )

This approach would allow predicted time variations in the winds to be modeled

explicitly.

Al1.2.2 The Optimal Control Problem

In this section, the optimal wind-routing problem is formally posed as an optimization
problem in the calculus of variations. The cost function, dynamic constraints, and initial
and final state constraints are defined. This is done so that the nominal optimal solution
may be explicitly identified before the neighboring optimal control solution is derived.
The notation and definitions here owe much to Refs. [39] and [64].

The goal is to choose the heading angle, 8(¢) , to minimize
where I is the free final time.

The dynamic constraints are given by equation (A1.57) with initial conditions

T
st)=so=[ 1 0 olxN oixN] (AL.67)



Al.2. Numerical Solution for NOC Feedback Gains 213

The final state constraint is that the aircraft must arrive at the origin, so the final state

W(s(t)) = [’j = [g] (AL68)
t=1,

The Hamiltonian for this problem is

constraints are given by

H = M0)fls, 6] (A1.69)

where A(?) is an n -row column vector of to-be-determined Lagrange multipliers defined

as

T
MO=[ A Ay My o A, At o Aoy (A1.70)

All of the Lagrange multipliers associated with the constant wind parameters vanish so

that the Hamiltonian simplifies to

H = A (cos® +a(x)T(y- U,)) +A,(sin® +a(x)TV,) (A1.71)

The function ® is defined here as

b=1+vTy (A1.72)

where v is a vector of constant Lagrange multipliers that adjoin the final state constraints

to the cost function, and is defined by

V= H (A1.73)
\Y

A=-H =-f, A (A1.74)
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where H| is the partial derivative of H with respect to the state vector. The partial

derivative of the dynamic constraint vector is given by

f. E%f. (ALT5)
S

which expands to

] ] ]
y-al(U,), +(U)T(a -yT+y-a,)

T, T
f, = @’ (Vy) + Vja € Rnxn (A1.76)
ON,,Xn

ON“'X" J

The derivative of a vector, B(x) € R™* !, with respect to s € R"* !, is defined as

3B, 3B, B,
B,=|3s 3, 3, (ALTT)

3B, OB, 9B,
o

Following this definition, the derivative of U with respect to the state vector is

Uy = [[ON,.xz] [oxn] [ONWXNWJJ (AL78)

where /m*™m e RMXM {g a square identity matrix.
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Similarly, (V,), is given by

), = [[grexd] [oren] [pren] (AL79)
The derivative of the piecewise varying function a(x) with respect to s is a piecewise
varying matrix given by

afi,1) = «(N,-1) (A1.80)
a(i+1),1) = (N,-1) (A1.81)

j=12..,0-1)
a(j,k) =04j = (i+2),(i+3),...,N, (A1.82)

k=12,...,n

where i is determined by equation (A1.63).

The necessary condition for a stationary solution is

0= HG =feTA. (A1.83)
where
fo = gie (A1.84)
which expands to
T
fo = [-sine cosO o"‘”»o‘*’*'w} (AL1.85)

Substituting into equation (A1.83) leads to

Hg = -\ sin8 + A,cos8 = 0 (A1.86)
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The final condition on Mtf) is given by

Mg = wi| _ v= [1 0] ~ H = H (A1.87)
r=ty 01 |[v, v,

The transversality condition that determines the optimal final time is

0=0Q = H(tf)+1 (A1.88)
= [A(cos® +a(x)7(y- U,)) +A,(sin® + a(x)TV,) + 1], _ Y

The nominal winds are set to zero so that the nominal optimal path is a straight line

from the initial point to the final pointat @ = = rad (fig. AL.5).

4 (T is normalized time)

(1-7)

s = 0 0 =T 9nom = mrad
nom ONw x1 nom

Nox1 0 %‘k
KUt 1.

1
A = 0 Viom = l:

nom ON‘" x 1

ON“'xl

Figure A1.5. Nominal optimal solution in normalized coordinates.

Al1.2.3 Computing NOC Gains via Backward Sweep Method

The neighboring optimal control gains are computed numerically using the Backward
Sweep method [39]. The gains are then tabulated for look-up during the application of the
neighboring optimal control law.
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The solution for the neighboring optimal perturbation in heading angle is given by

30(r) = -K 8s - K dy
where the neighboring optimal feedback gain vectors are defined as
K (1) = Hgj [H, + f§(S - RQ™'RT)]

K (0 =Hg}[ffRO™]

and Js is the state perturbation vector given by

3s =s5(t) — 5 om(®)

and dy is the perturbation in the desired final state, given by

dWEW_‘Vnom = “I’

The perturbation in the final time is computed from the following equation:

dt

e = -K,SSS-KN,J‘V

where the feedback gains are defined as

mlT gT= ,=
K=" -L0 'R
T
KIVE%Q‘l

(A1.89)

(A1.90)

(A1.91)

(A1.92)

(A1.93)

(A1.94)

(A1.95)

(A1.96)
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where §, R, and Q are defined as

s _ o mmT
§=5-= (A1.97)
_ T
R = R-'—"g- (A1.98)
— T
0 = Q-lg— (A1.99)

The terms S, R, @, m, q, and o are computed by integrating the following set of
nonlinear differential matrix equations, with specified initial conditions, from e

backwards to ¢:

S = -—SA-ATS+SBS-C
2

3 d)) 2 (A1.100)

a nxn
S(tf) = (gs—z = 5;3(‘;"" VT\V(tf)) =0

t=1t

R = —(AT-SB)R

R (aw)r L o0 o'*Mgixn] (A1.101)
1) = 1= =
7 ds t=1, 0 1 leN_, leNw

Q=RTBR, Q)= [0 0] (A1.102)
00

=—(AT-SB)m,  mt)= (@)T

aS r=1,
- 0 - (A1.103)
BQ)T _ . Ny = D)V = Vi) .
(-a_s r=t B Hs(tf) —fs l|t=r, - ON,xl
ON“'Xl
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g = RTBm, q(t) = (3—:" )r T [g] (A1.104)
&=mBm,  a@)= (Z_?) =1 (A1.105)
r=t

The variables A, B, and C are defined as

A=f, —fHs\H,, (A1.106)
B=f,H\T (AL.107)
CEHSS_HSOHEéHGS (A1.108)

where f, and f, are determined by equation (A1.76) and equation (A1.85) respectively.

The various derivatives of H are given by

Hgg = AT fyg = —cosB = 1 (A1.109)
Hg, = 01%n (AL110)
Hg = HE, (AL111)
H, =fT -\ (AL112)

where f_ is a 3-dimensional matrix defined as

J %))a Rrxnin (AL113)
ds\0s

o]

fis=(|2 if_n)]
ds\ds
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and the multiplication of f7, with A is defined as

" T,
fg..xsz( d B_f,-) .x,.]emxn (AL114)
i=1\[9s\ds
Note that f;_ is a piecewise varying function of x because of the piecewise varying

wind functions.

From these equations, it is straightforward (but perhaps tedious) to use numerical
integration routines (e.g. MATLAB function ode4s () [68]) to determine the time
histories of the §, R, and Q matrices to solve for the neighboring optimal feedback gains.

One final simplification is that the feedback gains associated with perturbations in
desired final state, dy, are not required. Optimal solutions for different final positions are
achieved through the normalization and rotation to different coordinate systems so that the

dy gains aren’t needed.

The feedback gains are then tabulated as a function of longitudinal distance-to-go. The
values must be spaced closely enough that when a particular interpolation method (e.g.

linear interpolation) is used to look up the gain values, the error is within tolerable limits.

The number of grid points, N, is only limited by the amount of computer memory
available to integrate the backward sweep equations and by numerical precision. The §
matrix in the matrix Riccati equation, equation (A1.100), is S € R"**"_If just 10 grid
points are used, then n = 2 + 2N, = 22. Since some of the sweep equations are coupled,
many more equations must be integrated concurrently. Some reduction in effort can be
made by taking advantage of symmetry. More simplification can be achieved by noting
that many elements of these matrices are identically zero for this specific problem, but
software for computing solutions to general problems cannot assume that any of the

elements are zero.



Appendix 2
The Rapid Update Cycle

The Rapid Update Cycle (RUC) is an operational atmospheric prediction
system comprised primarily of a numerical forecast model and an analysis
system to initialize that model. MAPS [Mesoscale Analysis and Prediction

System] is the research counterpart to the RUC. The RUC has been
developed to serve users needing short-range weather forecasts, including
those in the US aviation community. *

The RUC is essentially a computational fluid dynamics (CFD) model that provides
quasi-real-time atmospheric forecast data on a grid spanning the continental United States
from the ground level up to approximately 50,000 ft above mean sea level. The basic data
include horizontal wind-vector component magnitudes, temperature, and geopotential
height as a function of pressure, but often hundreds of additional atmospheric data
parameters are also provided. Forecasts are provided from the analysis initiation time
(called an analysis file) through a 12-hr forecast, in 1-hr increments. The data are
available in several different horizontal grid definitions of varying precision, and several
different vertical coordinate definitions. Typically, the RUC analysis is run every hour,
but the cycle takes a finite amount of time to run so that the results are not available for
some minutes or hours after the analysis time. For this reason, real-time users of the RUC

must use one of the forecast data files, or interpolate between forecast files, to obtain

current predicted atmospheric conditions.

* Introductory statement from the National Oceanic and Atmospheric Administration (NOAA)
Forecast Systems Laboratory (FSL) RUC/MAPS Information website:
http://maps. £sl.nocaa.gov
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The RUC data are provided in a format called Gridded Binary (GRIB), which is a
compressed format for storing large gridded data sets. The GRIB is the World
Meteorological Organization’s gridded data standard and is well-supported by several
organizations on various Intemnet sites [80]. Several sites include software source code and
utilities for reading and processing GRIB data files (e.g. WGRIB, found at:
http://wesley.wwb.noaa.gov/wgrib.html). Working with some of these software
products can be exasperating, but with patience, decoding and processing GRIB RUC files

becomes routine.

The National Centers for Environmental Prediction (NCEP), a part of NOAA, run the
operational RUC and currently (as of October 2002) provide the data at the following http
and ftp server sites:

http://www.nco.ncep.nocaa.gov/pmb/products/ruc2/
ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/ruc/prod

An excellent website to visit for information about the RUC is

http://ruc.£fsl.nocaa.gov
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