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Abstract

Real-time centimeter-level navigation has countless potential applications in land vehicles,

including precise topographic field mapping, runway snowplowing in bad weather, and

land mine detection and avoidance. Perhaps the most obvious and immediate need for

accurate, robust land vehicle sensing is in the guidance and control of agricultural vehicles.

Accurate guidance and automatic control of farm vehicles offers many potential

advantages; however, previous attempts to automate these vehicles have been

unsuccessful due to sensor limitations. With the recent development of real-time carrier-

phase differential GPS (CDGPS), a single inexpensive GPS receiver can measure a

vehicle's position to within a few centimeters and orientation to fractions of a degree. This

ability to provide accurate real-time measurements of multiple vehicle states makes

CDGPS ideal for automatic control of vehicles.

This work describes the theoretical and experimental work behind the first successfully

demonstrated automatic control system for land vehicles based on CDGPS. An extension

of pseudolite-based CDGPS initialization methods was explored for land vehicles and

demonstrated experimentally. Original land vehicle dynamic models were developed and

identified using this innovative sensor. After initial automatic control testing using a
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Yamaha Fleetmaster golf cart, a centimeter-level, fully autonomous row guidance

capability was demonstrated on a John Deere 7800 farm tractor.
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Chapter 1

Introduction

In recent years, a profound change has occurred in the field of vehicle navigation. The

driving force behind this change is the recent emergence of the Global Position System

(GPS). Initially developed by the United States government for military use, this satellite

navigation system is now used by millions of civil users in countless applications on land,

over water, in the air, and in space.

With the ever-increasing consumer demand for GPS-based products, commercial receiver

prices are rapidly falling while accuracy and reliability continue to improve. These

factors, combined with recent advances in GPS technology, make satellite receivers an

affordable, extremely accurate sensor for navigation, guidance, system identification, and

automatic vehicle control. This thesis explores the use of emerging high-performance GPS

technologies for the automatic control of land vehicles.

1.1 The Global Positioning System

Many references describing the details of GPS are available1,2,3,4. This section outlines

the three basic levels of GPS available to civil users: (1) stand-alone GPS, (2) code-phase
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differential GPS (DGPS), and (3) carrier-phase differential GPS (CDGPS). This third

method, CDGPS, is the positioning method used for the research in this work.

1.1.1 Stand-Alone GPS Navigation

The conventional method for computing a stand-alone GPS position fix requires a user to

measure and apply “pseudoranges” from satellites. Each GPS satellite transmits a

different, known pseudo-random “noise” bit sequence (PRN code) on an L-band carrier.

The pseudorange (ρ ) is based on the time required for the PRN code to travel from the

satellite to the user (See Figure 1). The simple pseudorange equation for a single satellite

j  is:

( )ρj AU j TS jc t t= −, , (1.1)

where c  is the speed of light in a vacuum, tAU j,  is the true time of signal arrival at the user,

and tTS j,  is the true time of signal transmission from the satellite.

Unfortunately, time of transmission and time of arrival measurements are never known

exactly, and atmospheric effects can cause significant signal delays. A pseudorange

equation that takes these effects into account is:

Time

PRN Signal
At Satellite

PRN Signal
At User

tTS tAU

Figure 1 - Pseudorange Measurement
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( ) ( )ρ
τ εj

A j T j j j j jc
t t B I T= + − + + + +, , (1.2)

where tA j,  is the measured time of signal arrival at the user, τ  is the user clock bias, tT j,  is

the expected time of signal transmission from satellite j , Bj  is the satellite clock bias

(intentional and unintentional), I j  and Tj  are the signal delays due to ionosphere and

troposphere respectively, and ε j  is a term encompassing all other error sources including

internal receiver noise, spacecraft ephemeris errors, and external signal reflections known

as multipath.

Due to the use of inexpensive clocks in user receivers, the user clock bias (τ ) is usually

large and varies rapidly, so it must be computed explicitly by the user. For this reason,

four (not three) GPS satellites are needed to solve for the user’s position. Four

pseudorange measurement equations are needed to solve for the four unknowns at each

time period – three degrees of freedom in position, and one user clock bias.

In contrast to most user clocks, highly accurate atomic clocks in GPS satellites could

provide a very small satellite clock bias (Bj ); however, the Department of Defense

intentionally adds a random, slowly varying error to the time of transmission of the

civilian signal. This intentional signal degradation, referred to as Selective Availability

(SA), strongly dominates the navigation error for a stand-alone GPS user, producing 1-σ

errors on the order of 30 meters.

Many people believe that economics and common sense shall soon prevail, and Selective

Availability will be turned off by the U.S. government5. When this occurs, there will be a

dramatic improvement in the accuracy attainable by stand-alone GPS users. The primary

error source from Equation 1.2 will change from the satellite clock error (Bj ) to the

ionosphere error (I j ) and receiver noise (ε j ). Since civil users have access to the PRN

code on only one frequency transmitted by GPS satellites, they cannot easily measure the
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effects of the ionosphere. The basic horizontal accuracy available to a stand-alone user

without SA would be approximately 10 meters1.

1.1.2 Code-Phase Differential GPS

One method employed by civil users to improve upon GPS navigation accuracy is code-

phase differential GPS. The theory behind this technique is that a receiver in a fixed,

known location (i.e. a reference station) may take pseudorange measurements for each

satellite in view, subtract the measured pseudorange from the expected pseudorange, and

transmit the pseudorange corrections. Nearby users may then apply these corrections to

their own computations, significantly reducing the effects of satellite clock bias (including

SA), spacecraft ephemeris errors, and atmospheric errors.

In practice, the accuracy available using a DGPS system is, at best, around one to two

meters. Special techniques such as carrier smoothing6 and narrow correlator design7 help

reduce this error, but fundamental limits exist in a receiver’s ability to track the PRN

code. These limits are due to receiver noise (especially multipath), spatial decorrelation of

the atmosphere, and temporal decorrelation of SA.

One disadvantage of DGPS systems is the complexity and cost associated with

maintaining a reference station. In the United States and other nations, governments are

providing some DGPS coverage at no cost to civil users; however, this coverage is not

geographically complete. The U.S. Federal Aviation Administration is currently

developing a Wide-Area DGPS (WADGPS) system which is similar to DGPS but is

based on more advanced PRN code processing8. This WADGPS system is expected to

cover the entire continental United States, providing 1-2 meter horizontal accuracy by the

year 20019.
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1.1.3 Carrier-Phase Differential GPS

The highest level of accuracy currently possible using GPS is carrier-phase differential

GPS. While there are several varieties of CDGPS positioning algorithms, they are all

fundamentally very similar. Instead of positioning with pseudorange measurements,

CDGPS systems use the raw GPS L-band carrier signals for positioning. Unlike PRN

code measurements, which are only accurate to the meter level, carrier-phase

measurements are accurate to fractions of a centimeter once the integer number of

wavelengths between the vehicle and reference station has been determined.

Figure 2 illustrates a differential carrier-phase measurement for one satellite. The equation

describing this measurement for satellite i  at epoch k  is:

δφ δ τ ν
ik ik

T
k k i ik

e N= − + + +x (1.3)

where δφ
ik  is the fractional differential carrier-phase measurement, eik

T

 is the line-of-sight

unit vector to satellite i , δx
k  is the position of the vehicle relative to the reference

Vehicle

Reference
Station

Ni

Satellite i
Line-of-Sight

δφik

Figure 2 - Differential Carrier-Phase Measurement
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station, τ k  is the clock bias difference between the vehicle and reference station, Ni  is the

whole number of carrier-phase wavelengths between the reference station and user, and

ν
ik  is the carrier-phase measurement random noise. Upon initialization of a CDGPS

system, the number of integer carrier cycles (Ni ) cannot be immediately determined.

Reliable resolution of this integer cycle ambiguity is the biggest difficulty in using

CDGPS.

1.1.4 Basic CDGPS Initialization Techniques

The first basic CDGPS integer cycle ambiguity resolution technique developed for survey

applications is still widely used today. A reference antenna is held at a fixed, known

location while a second antenna is held at a fixed, unknown location. Collecting data while

satellites move slowly overhead provides the observability needed to resolve the integer

cycle ambiguities. The location of the second antenna can then be found to the sub-

centimeter level. The mathematics required to perform a survey are often done in post-

processing. This integer cycle ambiguity resolution method provides an accurate and

extremely reliable solution after approximately 15 to 90 minutes of data collection.

The second basic technique for CDGPS initialization is often referred to as On-The-Fly

(OTF) Kinematic processing10. This method takes advantage of the fact that the cycle

ambiguity for each satellite is an integer value. A variety of integer candidates are

substituted into the carrier equations for a single epoch. The solution providing the lowest

mean-squared measurement residual is often, but not always, the correct solution. One

variation of this technique uses the military L2 carrier signal and “wide-laning” methods

to reduce the number of integer possibilities. Another variation tracks a set of low-

residual integer possibilities for multiple epochs allowing satellite motion to sort out the

correct solution. In general, this integer cycle ambiguity resolution method can work very

quickly (within a few minutes), but the underlying principle behind guessing integer values

based on measurement residuals is prone to false solutions. Also, since a measurement
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residual is needed to compare solutions, a minimum of 5 satellites is needed to initialize a

CDGPS system using this type of algorithm.

A third CDGPS initialization technique combines the reliability of the survey method

with real-time operation and resolution speeds comparable to integer search methods.

Changing geometry between the vehicle and a fixed GPS pseudo-satellite transmitter

(pseudolite) provides near-survey quality solutions in a matter of seconds11. A more

detailed description of this method is found in Chapter 4. This method shows great

promise because it resolves integer cycles quickly and extremely reliably.

1.1.5 Summary of GPS Techniques

A summary of the civil user accuracy, integrity, coverage range, and approximate cost for

real-time GPS-based navigation techniques are shown in Table 1. Please note that all

values and costs are approximate, based on 1997 technology. While accuracies are not

expected to change much, costs will continue to fall across the board. As a result, the key

issues for most users will become accuracy and integrity.

Table 1 - Comparison of GPS Techniques

Horizonta
l
Accuracy
(1-σ)

Relative
Integrity
Level

Range of
Coverage

Ground
System
Cost

Cost per
Vehicle

Relative
Complexity
to User

Stand-Alone
GPS

20-30m Med. worldwide - <$1k Low

Stand-Alone
GPS, no SA

8-12m Med. worldwide - <$1k Low

WADGPS 1-2m High continental - $3k Med.

DGPS 1-2m Med. 100-500 km $5k $3k High

OTF
CDGPS

2-4 cm Low 10-15 km $10k $10k-20k High

Pseudolite
CDGPS

2-4 cm High 10-15 km $10k $10k-20k High



8

1.2 GPS for Vehicle Automatic Control

The combination of low-cost, high-accuracy GPS technology with modern inexpensive

and powerful processors will provide unprecedented capabilities. The most exciting of

these capabilities lies in the potential for sophisticated control systems for autonomous

vehicles.

1.2.1 Previous Demonstrations of GPS for Vehicle Control

GPS has previously been demonstrated for the automatic control of various vehicles.

Most of these have used CDGPS technology, including the automatic landing of a Boeing

73712, the completely automatic flight of a small, unpiloted airplane13, a fully

autonomous small, unpiloted helicopter14, an indoor simulated space station15, and a free

flying robot16.

1.2.2 Previous Land Vehicle Control Work

Automatic control of land vehicles is not a new idea, but previous attempts have been

limited by high cost and complexity17,18 or dependence on vision systems19,20. DGPS

techniques have been used for driver-assisted guidance21 as well as automatic control of a

land vehicle22, but as expected, only meter-level performance was attainable.

1.2.3 The Future of CDGPS for Vehicle Control

The first widespread use of CDGPS for vehicle automatic control is likely to occur in

farm equipment. Agricultural fields typically have good sky visibility, making them

highly suitable for GPS. Also, the rewards to be gained through precision farming are

enormous23. Today, a large market for GPS data collection systems in land vehicles is the

farming industry. Meter-level DGPS techniques are used for field mapping and yield
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monitoring24,25, and the use of CDGPS for field topographic mapping has been

explored26.

Real-time centimeter-level positioning using CDGPS has countless applications in other

land vehicles as well. Automobiles, snowplows on airport taxiways, and construction

equipment are just a few of the other vehicles that could benefit from a reliable, accurate

sensor producing high-bandwidth position measurements for automatic control. Robot

vehicles using this technology may someday be used to clear minefields, clean up toxic

waste, apply hazardous pesticides, tirelessly harvest crops, and transport disabled

persons.

1.3 Motivation for Centimeter-Level Farm Vehicle Guidance

Since the advent of the plow, farming has been a driving force in our civilization. By

historical standards, modernized farms are incredibly efficient. Most of this improved

efficiency can be directly attributed to the invention and refinement of the tractor, which

was “more fundamentally revolutionary than any machine that preceded it” in farming27.

While the number of American farm workers has fluctuated between 1 and 10 million in

that past two centuries, the percentage of the labor force in this country employed by

agriculture has continually declined – from 80% in 1810 to 1.8% in 198028. Geographical

regions today which have not made the transition to modern farming techniques occupy

up to 70% of their labor force in agriculture.29

Despite today’s relatively heightened farming efficiency, there are many areas where

improvements are possible even today. One invention that could bring about such

improvements is a robotic farm vehicle. Farmers are not likely to embrace such a system

without financial motivation. A GPS guided farm vehicle could save time, effort, and

money for farmers by improving vehicle capabilities, reducing overall waste, and

simplifying vehicle design.
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1.3.1 Improved Vehicle Capabilities

The most obvious benefit of automatic farm vehicle steering is driver workload reduction.

This capability will improve driver morale and reduce fatigue, allowing an operator to

work longer hours without sacrificing performance or safety. Taking the concept one step

further, a fully robotic farm vehicle would require even less human attention, and possibly

allow one person to operate multiple vehicles simultaneously.

Other capabilities added through CDGPS-based navigation, guidance, and control include

flawless operation during darkness, dust, and heavy fog, as well as prolonged operations

at high speeds without losing accuracy. An photo of dust obstruction on a field in the

Southwestern United States is shown in Figure 3. During time-critical periods such as

planting and harvesting, these improvements in vehicle efficiency translate directly into

higher profits for farmers.
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Two more farming techniques that would be enabled through a CDGPS-based guidance

system are tape irrigation and “Zamboni” row skip patterns. Tape irrigation is a process

providing water, fertilizer, and chemicals directly to the roots of row crops through

plastic underground tubes. While this method greatly improves the quality of crops and

reduces water usage, without centimeter level navigation, planting seeds over the

subterranean tapes without frequently damaging them with the vehicle implement is very

difficult.

Zamboni row skip patterns are a new concept designed to minimize the time required to

turn a farm vehicle around at the end of a row. By skipping rows between consecutive

passes, a vehicle may never need to back up or even slow down to acquire the next row.

This can be accomplished by repeating the row pattern shown in Figure 4. Clearly an

Figure 3 - Dust Visual Interference
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accurate navigation system is required to follow such a complicated path with sufficient

accuracy to eliminate overlap between rows.

1.3.2 Reduced Waste

Even without taking advantage of the special capabilities enabled by accurate farm vehicle

guidance, significant savings are possible. Research shows that during normal daytime

operation, drivers following straight rows overlap previous rows by 8% to 10% of

implement width23 (See Figure 5). This directly corresponds to 8-10% waste in materials

such as seed, fertilizer, and herbicides, as well as an equivalent increase in operator effort.

In addition, field areas which fall in the overlap regions may produce less crop as a result

of double chemical application. For large implements, which may exceed 20 meters in

width, vehicle guidance to the centimeter level could reduce the overlap by two orders of

magnitude. One study showed that, since farmers tend to work on such small financial

Figure 4 - “Zamboni” Row Skip Pattern



13

margins, a typical Canadian wheat farmer with 2000 acres could increase profits by over

50% if skips and overlaps between rows could be eliminated23.

Wasted water and chemicals mean more than increased cost. In the heavily farmed regions

of the Southwestern United States, the majority of the water used for irrigation comes

from underground aquifers. Some sources believe the source of this water is not

replenishable, and care must be taken for this water supply to last30. In addition to

Figure 5 - Farm Vehicle Row Overlap
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wasted water, the overuse of herbicides and pesticides increases driver exposure to these

hazardous chemicals and has harmful environmental side effects.

1.3.3 Simplified Vehicle Design

The use of GPS for farm vehicle guidance will obviate some of the equipment used on

farm vehicles today. One standard piece of hardware is a doppler radar which is used to

measure true ground speed. This information is used with a wheel speed sensor to

compute the longitudinal wheel slip of the rear tires. CDGPS offers the potential to

eliminate this radar while providing even more accurate ground speed measurements.

A piece of equipment that often accompanies wide tractor implements is a set of row

marker arms. These devices hydraulically extend half the width of the implement to mark

Marker
Arm

Previously
Marked Row

Figure 6 - Row Marker Arm Concept



15

a line in the soil for the farmer to follow on his or her next pass over the field (See Figure

6). The motivation for such hardware is that an operator can drive more accurately when

following a line ahead of the vehicle instead of one several meters to the side. Due to their

length, these arms tend to be very fragile and quite expensive (up to $5000 each). CDGPS

guidance would replace these marker arms, thus eliminating this cost.

In the long term, as fully autonomous farm vehicles become available, these vehicles could

be produced at much lower cost. Much of the cost in producing a large modern farm

vehicle goes toward human factors. Cabs with large windows, air conditioning, radios, and

seats with complex suspension systems are standard equipment – all designed to make a

human driver more comfortable during long hours in the field. A huge cost advantage

would be to eliminate the need for these amenities. The chassis, engine, and transmission

of an autonomous farm vehicle could be completely redesigned to lower the center of

gravity and allow operation on steeper terrain. Also, without the need for operator

visibility, an implement could be added to the front of farm vehicles, allowing them to

perform two tasks at once.

1.4 Objectives

The objective of this work is to study the feasibility of applying a new technology

(CDGPS) to the automatic control of land vehicles. This study was designed with two

primary goals in mind: (1) To develop a general, flexible framework for a land vehicle

navigation, guidance, and automatic control system; and (2) to provide and demonstrate a

potentially cost-effective solution for a specific class of commercial land vehicles.

The first goal was met through a general approach to CDGPS initialization, land vehicle

dynamic modeling, and automatic control system design. The second goal was

accomplished by experimentally demonstrating a successful navigation, guidance, and

automatic control system on a large farm tractor.
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1.5 Synopsis and Organization

This thesis is comprised of nine chapters beginning with this introduction as Chapter 1.

Chapter 2 describes the Automatic Farming System concept in detail. Some key technical

issues are discussed, along with an outline for possible product development over the next

few years.

The following five chapters describe the work culminating in the first demonstration of an

automatic farm tractor steering system using carrier-phase differential GPS. Chapter 3

describes the navigation and control system hardware used for the land vehicle

experiments in this work. The theory and application of CDGPS initialization using a

single pseudolite is detailed in Chapter 4. Chapter 5 describes a set of land vehicle models

that are feasible for automatic control purposes, and Chapter 6 discusses the selection and

identification of the most appropriate model. Chapter 7 shows experimental results from

closed-loop automatic control of a golf cart and a large farm tractor, comparing the latter

results to those obtained by an expert human driver on the same tractor.

The final two chapters establish possible future experimentation on the tractor. Chapter 8

describes a set of computer simulations based on various untested sensor combinations.

The accuracies shown in these simulations suggest possible variations in the experimental

setup described in Chapter 3. Conclusions are drawn in Chapter 9, along with

recommendations for future work in this area.

1.6 Contributions

The fundamental new achievement of this research is the first ever design, fabrication,

demonstration, and evaluation of a system to automatically control a farm vehicle to

accuracies better than a human driver. In the course of achieving this goal, the following

research contributions were made:
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•  Land vehicle CDGPS initialization using a single pseudolite was designed, simulated,

and experimentally demonstrated for the first time31.

•  An original set of state-space models were developed for automatic control of land

vehicles that accurately characterized vehicle motion and enabled control synthesis.

•  An experimental method was developed and implemented for the linearization of

highly nonlinear steering sensors and actuators.

•  A relatively general technique to experimentally characterize the lateral dynamics of a

farm tractor using optimal parameter identification was developed and demonstrated.

•  Critical land vehicle automatic control issues were discovered through golf cart

experimentation, including the need for a real-time antenna lever-arm correction and

nonlinear control regimes32. These general issues and solutions apply to many classes

of land vehicles

•  Created and demonstrated accurate control algorithms for the general case of a

maneuvering land vehicle. These included automatic line acquisition, U-turns, and

centimeter-level line following33.

•  Using GPS instrumentation, the tractor driving accuracy of an expert human operator

was experimentally measured as a benchmark for this and future automatic control

system experiments.

•  Simulations were performed to explore the use of new sensor combinations for land

vehicle automatic control.
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Chapter 2

Automatic Farming System Concept

Prior to beginning development of a novel system, careful consideration is needed to

identify the most relevant unsolved technical research issues. In the case of a potential

commercial product, the prioritization of these research issues will depend on the most

likely course of product development. While the primary goal of this thesis is to

demonstrate the technical feasibility of automatic land vehicle control using GPS, this

chapter serves to outline the likely steps leading to the development of an Automatic

Farming System.

The introduction of CDGPS-based farm vehicle equipment into the commercial

marketplace will be an evolving process. Like current DGPS farming systems, initial

CDGPS products will simply provide the user with navigation information. As farmers

and farm equipment manufacturers gain experience and trust in CDGPS technology,

products based on this technology will perform increasingly advanced functions. The

evolution of CDGPS in farm vehicles will probably take place in four basic steps:

•  Navigation Data Collection - The collection of high precision navigation data 
for use in real-time or post-processing
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•  Driver-Assisted Guidance - Enhanced real-time vehicle operation using a 
graphical video display

•  Automatic Row Guidance - Automatic vehicle steering along straight rows
with manual turns

•  Automatic Farming - Fully automated field operations with one 
person supervising multiple vehicles

2.1 Navigation Data Collection

The first step toward an automatic farm vehicle controller is the introduction of a basic,

highly accurate navigation unit. This first-generation CDGPS system will provide vehicle

position and orientation data in real-time at unprecedented accuracies. This information

could be used by the vehicle operator to vary the application of materials to the field. The

navigation data could also be combined with vehicle status information and sent to a fixed

location, such as a farmer’s office, as part of a Farm Productivity Monitoring System.

2.1.1 Hardware Description

The basic Navigation Data Collection hardware consists of a vehicle navigation unit and a

ground reference station connected by a two-way radio link (see Figure 7). Pseudolites

may optionally be used to assist system initialization and provide additional GPS-like

ranging signals. The vehicle navigation unit will be a single piece of hardware which may

be mounted to new or existing farm vehicles. This pre-fabricated unit will contain GPS

equipment, radio link transceivers, and processing hardware, with a general real-time

input-output capability. The reference station will be comprised of GPS equipment, radio

link hardware, an inexpensive processor, and an optional Farm Productivity Monitoring

System software package .
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In practice, each participating vehicle will need a separate navigation unit, while a single

ground reference station will be sufficient to track and provide corrections for multiple

vehicles in a 100 square-mile area. One vision for the complete Navigation Data Collection

system is shown in Figure 8. GPS signals are received at the ground reference station and

at each participating vehicle (dark solid arrows). A radio link transfers information

between the vehicles and the reference station (dashed arrows). Pseudolites may

optionally be used to improve CDGPS integrity (robustness) and availability (the

percentage of time in which GPS coverage is sufficient for positioning). Signals from the

pseudolites will be received by participating vehicles (thin solid arrows) and, prior to the

refinement of synchrolites11, by the reference station as well (dotted arrows). The

development of synchrolites, which are an autonomous form of pseudolites, will

completely eliminate the need for a connection between the pseudolite and the reference

station. Synchrolites may even eliminate the need for a reference station altogether11.

The biggest question surrounding this navigation system concept is the need for

pseudolites. Each additional unit adds to the cost of the navigation system; however,

these devices may be used to reliably initialize CDGPS positioning (see Chapter 4) and

provide additional ranging sources to augment the GPS satellites in view. The availability

of CDGPS in land vehicles is terrain dependent. Cliffs and trees may block satellites,

while steep slopes orient the vehicle’s GPS antennas away from portions of the sky.

Because farms are so varied, no specific configuration will work in all cases. The final

Navigation Data Collection unit must be versatile enough to operate with zero or multiple

pseudolites. Fortunately, this does not present any unsolved technical constraints on the

existing pseudolite-based CDGPS system.

2.1.2 Benefits

The primary advantage to developing a Navigation Data Collection unit lies in its

potential as a foundation for future guidance and control systems; however, use of the
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navigation unit alone does provide benefits for both the farm equipment manufacturer and

the farmer.

The first farm vehicle manufacturer to provide a fully supported CDGPS navigation

system will receive the following benefits:

•  Begin to familiarize customers with CDGPS technology and its potential for
high reliability with high accuracy

•  Establish itself as a leader in high-tech agriculture

•  Help assess the need for pseudolites in realistic farm settings

•  Generate volumes of real-world sensor data for development of future
CDGPS-based navigation and guidance systems

•  Allow refinement of CDGPS products based on customer feedback

For farmers, a CDGPS navigation sensor complete with a Farm Productivity Monitoring

System will give the following advantages over current code-based meter-level DGPS

systems:

•  More accurate monitoring of crop yield, soil moisture content, and weeds

•  Topographic field maps accurate to the centimeter level

•  Accurate tracking of vehicle and driver performance in real-time, including
speed and row overlap

•  Quick recognition and response to vehicles that break down in the field

•  The ability to manage vehicle and implement resources from a central location
based on up-to-date information about their location and progress.

2.1.3 Cost

Farmers are involved in a highly competitive and efficient industry. Before purchasing a

piece of farm equipment, most farmers must be convinced that the product will pay for

itself within 18 months. The cost of the basic Navigation Data Collection unit will be
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relatively high, especially considering the research and development costs of the

navigation unit. This high initial cost may prevent the data collection unit from becoming

immediately profitable as a stand-alone production system.

If this navigation system were in production today, the unit retail cost would be about

$10,000 for a reference station with one pseudolite and a reliable RF data communication

system, and about $10,000 for each navigation unit. For comparison, the price of a

medium size tractor is around $100,000. The cost of the GPS system will continue to fall

in the future due to the declining cost of solid-state components and the widespread

commercialization of GPS.

2.2 Driver-Assisted Guidance

The most immediate follow-on to high precision Navigation Data Collection is to allow

the real-time navigation system to feed a Driver-Assisted Guidance display. Such a

display will have three basic capabilities: (1) provide “at a glance” situational awareness

to the user, including vehicle status, field boundaries, above-ground obstacles, and known

underground objects such as irrigation tapes; (2) visually display a reference path for the

driver to follow, eliminating the need for devices such as marker arms; and (3) generate a

low-level steering reference for the driver to follow for improved accuracy.

When using the display, the driver will have the option to operate as usual, occasionally

checking the display to monitor status, or to use the display as the sole source of

guidance in the case of fog, dust, darkness, and high-accuracy applications such as tape

irrigation. The user interface must display vehicle status (especially a “use / don’t use”

navigation system integrity indicator), along with sensor information such as position,

heading, wheel angle, and implement angle. Much research has been performed to generate

a useful graphical display for general aviation aircraft pilots34, but more research and

testing is needed to create a display that is useful for land vehicles. The difficult challenge
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is to create a display that provides useful information and is still simple enough for

anyone to use.

2.2.1 Hardware Description

The additional hardware needed to provide video display capability consists of video

interface electronics (e.g. an inexpensive VGA computer card), a cable, and a flat, sunlight-

readable display. The image could be generated by the same processor used inside the

Data Collection Unit with some software modifications.

2.2.2 Additional Benefits

The jump from centimeter-level data collection to driver-in-the-loop guidance will provide

tremendous advantages for farmers. The two most dramatic effects of the system will be a

significant reduction in implement overlap without the need for marker arms, and the

ability to plant and harvest during low visibility. These effects will translate directly into

increased profits for farmers. In addition, tape irrigation, which has been pursued by

farmers for years, will finally become a financially viable farming method. “Zamboni” row

skip patterns will become feasible, and in row crop operations, flag markers will no longer

be needed to line up straight rows.

The widespread use of this guidance system will deepen farmers’ trust in CDGPS

technology while supplying the farm equipment manufacturer with the abundance of real-

world data needed to develop automatic guidance products.

2.2.3 Additional System Cost

The Driver-Assisted Guidance system is identical to the Navigation Data Collection unit

with some new software and an improved user interface. The retail cost of these additions

in a production system would be approximately $3000 today, and this figure is sure to

decline with the heated research currently underway in the flat panel display industry. In
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farming, a system that will pay for itself in 18 months or less is considered commercially

viable. This centimeter-level Driver-Assisted Guidance display will easily fulfill this

requirement. Once a few farmers use the display to recoup much of the system cost in

one rainy or nighttime session that would have otherwise been impossible to perform, all

farmers will want this system.

2.3 Automatic Row Guidance

The next step in product development after Driver-Assisted Guidance will be to automate

the tedious task of vehicle steering along straight rows. In the proposed Automatic Row

Guidance system, the driver will have the option to manually operate the farm vehicle,

using the graphical display for awareness and guidance, or to flip a switch and supervise

as the vehicle automatically steers to the end of the current row.

2.3.1 Hardware Description

The hardware requirement for Automatic Row Guidance capability will be identical to the

Driver-Assisted Guidance system with an added steering actuator, steering sensor, and

automatic steering switch. The difficult challenge in creating this system is to design easy-

to-use software which can perform the automatic control task safely, reliably, accurately,

and in a wide range of circumstances.

2.3.2 Additional Benefits

The semi-autonomous Automatic Row Guidance system carries with it the same benefits

as the Driver-Assisted Guidance system with some added features. For one, an automatic

steering system will follow rows more accurately, at higher speeds, and for longer periods

of time than a human driver is capable of doing. Also, stringent tasks such as row crop

operations in low visibility will be performed with significantly less effort on the part of

the driver. Without the tedious task of fine steering, drivers will be able to pay more
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attention to the surroundings, watching for obstacles and noting factors such as crop

yield, crop damage, and weed growth in different areas.

2.3.3 Additional Cost

The additional cost for Automatic Row Guidance is very small relative to advantages

gained. Steering sensors and actuators are currently available as off-the-shelf parts which

would add approximately $2000 to the retail system cost, including installation. Liability

protection and the added one-time costs of software development, political acceptance,

and government certification may be significant, but the rewards will make up for these

drawbacks. Interviews with farmers clearly indicate that the value of an Automatic Row

Guidance system will far outweigh the projected cost35,36,37.

2.4 Automatic Farming

The far-reaching goal of these product development steps will be an Automatic Farming

system, in which several fully-autonomous farm vehicles are maintained and managed

remotely by a handful of centralized operators. The safety and liability issues

surrounding such a system are daunting, but the potential rewards are enormous.

2.4.1 Hardware Description

The jump from semi-autonomous Automatic Row Guidance to Automatic Farming will

require minimal hardware changes. The critical tasks of commanding the transmission gear,

engine speed, and implement hydraulics are electronically straightforward in most modern

farm vehicles. The primary hardware additions will probably involve robustness and

safety. Without the presence of a human operator, an autonomous vehicle will need new

external sensing devices to ensure the safety of the vehicle and anything within its

vicinity. Some devices which may be necessary include touch sensitive bumper devices

and a forward-looking sonar or radar type of device.
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2.4.2 Additional Benefits

The are many advantages to farm operation with an Automatic Farming system. The

most obvious benefit is the possible reduction of manpower required to operate a farm.

Not only does this reduce the cost of farm operation and the level of tedious labor, but it

also removes humans from dangers such as pesticide exposure and farm vehicle accidents.

Agriculture is a relatively hazardous occupation, with 6.7 work fatalities per 100,000

employees in 198938. The effects of vibration, noise, dust, and stress on farm equipment

operators can also be health threatening.

The removal of drivers from farm vehicle operations will allow improvements in vehicle

design. By eliminating the amenities such as air conditioning, radio, and possibly even the

cab, vehicle cost could be greatly reduced. Also, with human ride comfort and vision

requirements eliminated, the entire engine and chassis of farm vehicle could be redesigned

with a lower center of gravity for better efficiency.

Finally, with successful autonomous farm vehicle control, high level robotic functions

such as field path planning with curved paths and contours would become possible.

2.4.3 Additional Cost

The additional cost to develop an Automatic Farming system will be dominated by the

requirements for safety equipment, certification, and liability protection. The additional

retail system cost will probably be around $5000.

2.5 System Summary

Table 2 summarizes the benefits and costs associated with each step toward Automatic

Farming.



28

Table 2 - Summary of Automatic Farming System Development

Navigation
Data

Collection

Driver-
Assisted
Guidance

Automatic
Row

Guidance

Automatic
Farming

Approximate System
Cost Today

$10K $13K $15K $20K

Better Management of
Seed, Fertilizer, Pesticide

Yes Yes Yes Yes

Farm Productivity
Monitoring System

Yes Yes Yes Yes

Reduced Overlap
Between Rows

No Yes Yes Yes

Eliminate Delays Due to
Visibility

No Yes Yes Yes

Allow Precision
Applications

No Some Yes Yes

Alleviate Farmer
Workload

No No Yes Yes

Allow Farmer Multi-
Tasking

No No No Yes

Human Removed From
Pesticide Application

No No No Yes

Vehicle Design to Reduce
Cost

No No No Yes

Design for Improved
Vehicle Efficiency

No No No Yes
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 Chapter 3

Vehicle Navigation Hardware

The first major challenge in demonstrating a useful land vehicle automatic control system

is to generate an accurate, reliable navigation signal at a reasonable cost. This chapter

describes the prototype navigation system used on the land vehicles described in this

work. Figure 9 shows the basic hardware configuration of the CDGPS reference station

and Figure 10 diagrams the vehicle navigation system hardware.

Initial land vehicle testing was performed on the Yamaha Fleetmaster golf cart shown in

Figure 11. The remainder of the experimental research described in this thesis was

9-Channel
TANS

GPS Recvr.

“Bent-Pipe”
Computer

GPS Antenna

Radio
Modem

Reference
Computer

Figure 9 - CDGPS Reference Station Diagram
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performed on the John Deere 7800 farm tractor shown in Figure 12.
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3.1 Navigation Electronics

The heart of the land vehicle testing system used for this research was the Integrity

Beacon Landing System (IBLS). This pseudolite-based CDGPS system has been the

subject of much research over the past several years, including three engineering doctoral

dissertations39,40,41. This system was invented by Clark Cohen and associates at Stanford

University, and is currently under product development at IntegriNautics Corporation.

The system used for land vehicle experimentation was comprised of a CDGPS ground

reference station, vehicle navigation electronics, and a basic user interface.

3.1.1 CDGPS Reference Station

A CDGPS reference station provides participating vehicles with raw, synchronous

carrier-phase measurements taken from a GPS antenna at a known fixed location. Such a

Figure 12 - Experimental Farm Tractor
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reference station requires a GPS antenna, a GPS receiver, a radio modem transmitter, and a

power source. These are all solid-state, off-the-shelf components which could easily be

packaged together to form a small, inexpensive, low-power unit.

The ground reference station used for experimentation in this work included a Trimble

survey-quality GPS antenna and a 9-channel Trimble TANS GPS receiver. An Intel-based

computer was used to initialize the receiver and serially transmit raw carrier-phase

measurements through a Pacific Crest RFM96 radio modem at 4800 bits per second. The

system was powered using a marine deep cycle 12 volt battery with a 110 volt power

inverter. A Trimble 4000SSi receiver and TrimTalk radio modem were also included in the

reference station for use as a secondary CDGPS reference, however, this additional

hardware was not utilized by the vehicle navigation and control system. A photo of the

reference station hardware situated in its environmentally robust housing is shown in

Figure 13.

Figure 13 - CDGPS Reference Station
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3.1.2 Vehicle Electronics

A CDGPS navigation system computes vehicle position by comparing carrier-phase

measurements taken on the vehicle with measurements taken at the ground reference

station. The vehicle navigation system requires a GPS antenna, a GPS receiver, a radio

link receiver, a processing computer, and a power source. In addition, if the point of

control interest on the vehicle is not the location of the positioning antenna, a sensor is

needed to provide vehicle attitude measurements to account for the lever-arm correction.

These are all solid state, off the shelf components which could be easily packaged

together to form a small, low power, low cost unit.

Each vehicle positioning system used for experimentation in this work contained four

Trimble TANS GPS antennas, a Trimble TANS 9-channel GPS receiver, a 6-channel

Trimble TANS Vector attitude receiver, an Intel 90 MHz Pentium-based Industrial

Computer Source computer, a Pacific Crest RDDR96 Radio Modem, and a 110 volt

power inverter utilizing the vehicle electrical source A Trimble 7400MSi receiver and

Figure 14 - Vehicle Positioning System Photo
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TrimTalk radio modem were also included on the vehicle navigation system rack for use

as a secondary CDGPS reference, however, this additional hardware was not utilized by

the vehicle navigation and control system. A photo of the vehicle navigation system inside

the tractor is shown in Figure 14.

3.1.3 Navigation System User Interface

For control system applications, navigation data must be collected in a synchronous

manner with minimal latency. For this reason, the LYNX real-time operating system was

chosen for the vehicle computer. Separate applications were written to process attitude

measurements, generate position fixes, and execute control system logic. The user was

able to track program status using a sunlight-readable monochrome monitor.

3.2 Non-GPS Sensor Hardware

The golf cart and tractor navigation systems both included steering measurements from a

simple potentiometer. This was the only sensor signal used by the vehicle controller that

was not provided by satellite navigation. The steering sensing and actuation is described

in detail in Chapter 6. The navigation system and its relationship to the automatic control

hardware is diagrammed in Figure 10.

Measurements of hitch load, rear wheel speed, and velocity were also available on the

tractor through existing hardware. The hitch load and rear wheel speed were sampled and

recorded by the controls computer, but were not utilized by the controller. The doppler

radar velocity measurement was not read by the controls computer.

3.3 Pseudolite Hardware

The pseudolite used for experimentation in this work transmitted a steady GPS-like signal

at 1575.42 MHz (the standard L1 GPS carrier frequency). Since it is currently not part of



37

the GPS constellation, PRN code 32 was chosen for the pseudolite. A standard Trimble

patch antenna with no pre-amplifier was used to transmit the pseudolite signal.
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Chapter 4

Pseudolite Use in Land Vehicles

Most CDGPS systems currently available are initialized using integer search techniques,

which have fundamental integrity limitations. A second technique created for ultra-reliable

precision aircraft landing uses two or more GPS pseudolites for CDGPS initialization. In

an effort to reduce the cost and complexity of the complete land vehicle navigation

system, a single pseudolite may be sufficient to reliably initialize the CDGPS position of

a land vehicle. As part of this research, the use of a single pseudolite for CDGPS

initialization was explored in simulation and demonstrated experimentally on a farm

tractor.

Three aspects of this problem were explored: the relationship between vehicle path

geometry and navigation system accuracy, the mathematics of incorporating a ground

constraint into the carrier-phase equations, and the benefits and difficulties of using a

dipole antenna to transmit the GPS signal to standard patch antennas.
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4.1 Motivation for Pseudolites

Ground-based GPS pseudolite transmitters are a useful tool for vehicle navigation. By

providing additional ranging signals, pseudolites are able to improve GPS system

availability and integrity39,42. This is especially important when obstructions or excessive

vehicle attitude motion may result in the loss of GPS satellite signals.

As an added benefit, pseudolites can be used for reliable initialization of CDGPS

positioning systems. The biggest difficulty in achieving centimeter-level GPS position

accuracy is the initialization procedure. During initialization, the integer number of carrier

cycles between a vehicle and reference station are resolved or estimated for all commonly

visible satellites. Most CDGPS systems on the market use a search technique for

initialization. These systems require at least five GPS signals in view, and they often rely

on the noisy L2 signal which carries an encrypted PRN code that is unreadable by civilian

users.

4.2 Pseudolite Theory

Integer search techniques typically use measurement residuals to find the correct integers,

a technique prone to false solutions. The resulting loss of system integrity could be costly

or even dangerous in many high accuracy GPS applications. These initialization problems

can be solved by taking advantage of a quickly changing line-of-sight vector between a

moving vehicle and a pseudolite. Pseudolites were first used for this purpose by Cohen

and associates in the Integrity Beacon Landing System (IBLS)11. By flying between two

or more pseudolites, this aircraft navigation system is able to explicitly solve for (without

guessing) an estimate of vehicle position and the expected 3-dimensional covariance of

this estimate.

The nonlinear equation for a differential carrier-phase measurement of pseudolite j  at

epoch k  is39:
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φ τ ν
jk j k k j jk

p x N= − + + +  , (4.1)

where φjk  is the raw single difference carrier-phase measurement, pj  is the position of

pseudolite j , xk  is the vehicle antenna position, τ k  is the clock bias between receiver and

reference station, Nj  is the cycle ambiguity for pseudolite j , and ν jk  is the measurement

noise (assumed Gaussian with standard deviation σ φ ).

This equation may be linearized about an estimate of vehicle position and combined with

the satellite differential carrier-phase equations. If we begin with an estimate of vehicle

position (xk ), we can use Equation 4.1 to generate an expected value for the differential

carrier-phase measurement (φjk ). Defining δx x x
k k k

≡ −  and δφ φ φ
k k k

≡ − , the linearized

carrier-phase measurement equations for m  satellites and n  pseudolites at epoch k  may

be written as follows39:

δφ δ τ ν
1 1 1k k

T
k k k

e x= − + ′ +  , (4.2)

δφ δ τ ν
ik ik

T
k k i ik

e x N i m= − + ′ + ′ + = 2...  , (4.3)

δφ δ τ ν
jk jk

T
k k j jk

e x N j n= − + ′ + ′ + =$ ...1  , (4.4)

where eik  is the line-of-sight unit vector to satellite i , $ejk  is the estimated line-of-sight

unit vector to pseudolite j , ′τ
k  is the differential clock bias plus the cycle ambiguity for

satellite 1, and ′Ni  is the difference in cycle ambiguity between satellite i  and satellite 1.

For a single epoch, there are more equations (m n+ ) than unknowns (m n+ +3 ), so there

is no explicit solution for this set of equations. If a wide range of integer cycle ambiguity

candidates are substituted into these equations, the set producing the lowest mean-square

residual is often but not always the correct integer solution.
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As additional epochs of data are collected, the integer cycle ambiguities do not change.

Each new epoch of data produces m n+  more equations and only four more unknowns

(δxk  and ′τ
k ). It first appears that if the number of combined pseudolites and satellites in

view exceeds four, the vehicle trajectory and integer cycle ambiguities can be explicitly

solved (not guessed) in three epochs or less.

In practice, the accuracy of the solution depends upon the accuracy of the differential

carrier-phase measurements and the satellite and pseudolite line-of-sight motion relative

to the vehicle. While most modern receivers provide relatively low levels of random

carrier-phase measurement noise, small bias errors, especially due to multipath, may lead

to a large bias in the final position estimate. Since multipath errors are a function of

instantaneous satellite geometry and the location of nearby signal reflecting objects, the

effect of this class of errors may be significantly mitigated through vehicle motion during a

pseudolite pass.

Even in the case of relatively small, zero-mean carrier-phase measurement noise, if there is

little change in the line-of-sight unit vectors during data collection, the solution is only

weakly observable and the resulting position and integer estimate covariances will be

large. This problem can be overcome by moving the vehicle in the vicinity of one or more

Pseudolite 1 Pseudolite 2

Aircraft Trajectory

Figure 15 - Along Track View of Straight Aircraft Trajectory
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pseudolites, causing rapid changes in the line-of-sight unit vectors to these transmitters.

With adequate pseudolite pass geometry, a batch process may be used to produce a

solution with very small position and integer estimate covariances.

For a straight vehicle trajectory, it can be shown from Equation 4.1 that each pseudolite

provides an accurate measurement of along-track and radial position, but no information

about cross-track position39. In the IBLS system, this problem is solved by placing two

pseudolites on opposite sides of the approach path. These pseudolites complement each

other to produce a highly accurate and robust 3-D navigation solution (Figure 15).

Because an aircraft on final approach must fly straight for safety reasons, a minimum of

two pseudolites are needed in aircraft landing system applications.

Unlike airplanes on final approach, most land vehicles using GPS have the freedom to

execute a curved trajectory near a pseudolite. The theory and experiments presented

below were founded on the idea that, with an appropriate ground trajectory, it is possible

to initialize a CDGPS system using a single pseudolite that is outside the plane of motion

of the vehicle positioning antenna.

4.3 Mathematical Ground Constraint

A second navigation advantage land vehicles have over aircraft is two-dimensional motion.

Since land vehicles are constrained to move on the ground, this information could be used

to improve the accuracy, integrity, and nonlinear convergence properties of the pseudolite

solution.

4.3.1 Accuracy Improvement

Some noise is created on the vertical motion of a land vehicle due to ground disturbances

such as tire compression, bumps, and vehicle roll and pitch motion. For this reason, it is

usually not realistic to impose a hard equality constraint on the vehicle position in
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Equations 4.2 - 4.4. If the ground near the pseudolite is fairly well modeled as a planar

surface, the noise may be modeled as Gaussian white noise. The following equation for a

soft ground constraint can then be added at each epoch, improving the accuracy of the

final position solution:

z e x
ground
T

k k
= − +µ (4.5)

where z is the ground plane distance from the reference antenna, eground  is the ground unit

normal vector (pointing up), and µ k  is the ground noise with assumed Gaussian standard

deviation σ z .

In practice, z, eground  and σ z  can be found empirically by driving in the vicinity of the

pseudolite while collecting accurate position fixes. If the ground measurement standard

deviation (σ z ) is very small compared to the carrier standard deviation (σ φ ), the solution

obtained using Equation 4.5 in the batch process mathematically approaches the solution

obtained using a hard equality ground constraint.

4.3.2 Integrity Improvement
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By applying symmetry to Equation 4.1, it can be shown that two identical linear

trajectories equidistant above and below a pair of pseudolites will yield the same carrier-

phase measurements (Figure 15). It can also be shown mathematically that two identical

planar trajectories an equal distance above and below a single pseudolite will yield

identical pseudolite carrier-phase measurements (Figure 16). The false “mirror” solution

represents a second minimum for the nonlinear convergence of the batch algorithm.

Even when the trajectory is not perfectly planar, a false local minimum often exists in the

nonlinear convergence equations. A ground constraint or some other logic must be added

to ensure that the algorithm converges on the correct solution. For example, if the

pseudolite is on a pole and the vehicle is on the ground, the vertical position of the vehicle

may be mathematically constrained to lie below the pseudolite.

Pseudolite

True Ground
Trajectory

False “Mirror”
Trajectory

Figure 16 - Mirror Solution for Planar Trajectory
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4.4 Simulation

To verify the feasibility of CDGPS initialization in a land vehicle using a single

pseudolite, simulations were run for three possible bubble pass trajectories: (1) full 360°

motion around the pseudolite, (2) 270° motion around the pseudolite, and (3) 180°

motion around the pseudolite (Figure 17). These paths were chosen to be fairly simple

while still including large line-of-sight geometry changes to the pseudolite. The minimum

approach distance to the pseudolite was 4 meters, and the altitude of the pseudolite was

2.25 meters.

The limits on motion around the pseudolite reflect possible real-world constraints such as

physical obstructions or directional antenna patterns. For example, a pseudolite placed

over the corner of a building would limit vehicle motion to 270°, while a patch antenna

angled to face the ground would limit pseudolite reception to one side of the pseudolite.

Monte-carlo simulations were performed to determine the CDGPS position accuracy

after a pseudolite pass. For each trajectory, 500 passes were performed. The ground

constraint equation (4.5) was not used, and each pass incorporated a new satellite

geometry based on a recent satellite almanac and a 10° elevation mask. The simulations

used Gaussian white carrier-phase measurement noise with a 1 centimeter standard

deviation. The statistics of the results are shown in Table 3. The convergence properties
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Figure 17 - Simulated Pseudolite Pass Trajectories
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of the nonlinear algorithm were not explored in these simulations.

The simulations show that centimeter-level accuracies are achievable by following these

simple trajectories. As expected, the best performance is achieved by the 360° path.

Constraining vehicle motion to 270° slightly degrades the vertical accuracy of the final

solution but has little effect on the horizontal accuracy. The 180° path suffers an added

degradation in horizontal performance, but the total horizontal error is still better that an

inch (2.16 centimeters 1-σ).

These accuracies can be improved even further by incorporating the ground constraint

equation (4.5) into the algorithm. Figure 18 shows the simulated error standard deviation

for the 180° path as a function of ground noise. As expected, when the ground noise

approaches zero, the vertical error of the solution also approaches zero. An interesting

result is that improving the vertical solution also improves the horizontal solution. As the

ground noise approaches zero, the East and North errors are reduced by approximately

30%.

Table 3 - Monte-Carlo Simulation Results for Pseudolite Solution Accuracy

360° Path 270° Path 180° Path

East (1-σ) 0.84 cm 0.86 cm 1.24 cm

North (1-σ) 1.12 cm 1.14 cm 1.77 cm

Up (1-σ) 2.49 cm 3.30 cm 3.47 cm
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4.5 Experimental Setup

For hardware compatibility reasons, a standard patch antenna with no pre-amplifier was

used as the pseudolite transmit antenna in these experiments. The pseudolite antenna was

located atop a tall aluminum pole and had line-of-sight to the reference station and test

field. The antenna location was surveyed using a pair of Trimble 4000SSE receivers. After

surveying, the antenna was angled 45 degrees toward the ground so the pseudolite signal

could be received by the tractor. Early attempts to survey the pseudolite position with

the antenna angled toward the ground were unsuccessful. It is believed the problems were

caused by ground multipath.
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4.6 Real-Time Testing

The primary goal of vehicle testing was to demonstrate the real-time accuracy and

convergence capability of the pseudolite algorithm with just one pseudolite. For the

simplicity of early experimentation, the ground constraint equation was not implemented

in the real-time system during these tests.

Since the pseudolite used a patch antenna, a slight modification to the 180° pass described

above was used during testing. Figure 19 sketches the basic trajectory. The minimum and

maximum ranges, often referred to as the near and far pseudolite bubbles, result from the

pseudolite power level received by the vehicle. When the vehicle is within the near

bubble, the pseudolite signal is so strong that it overpowers the GPS signals from

satellites, effectively jamming the receiver. When the vehicle is outside the far bubble, the

range causes the pseudolite signal to fall below the level required for carrier tracking. A

Vehicle
Trajectory

Max. Pseudolite
Range

Min. Pseudolite
Range

Figure 19 - Experimental Pseudolite Pass – Top View
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solution to this “near-far” problem using a pulsing pseudolite has been demonstrated

experimentally at Stanford University41.

Of the 30 initial experiments, only twelve resulted in a successful mathematical solution

in real-time. An important fact to note is that all eighteen unsuccessful trials recognized

the false solution or the inability to reach a solution, so there was no breach in system

integrity. It is expected that all eighteen failures were caused by receiver jamming

(traveling within the near bubble), insufficient bubble pass geometry (due to leaving the

far bubble prematurely), or converging to the mirror solution (since no ground constraint

logic was used). These hypotheses could be confirmed by repeating these tests with a

logical ground constraint and a pulsing pseudolite.

After each successful pseudolite pass, the tractor was manually driven over a repeatable

ground track after leaving the pseudolite signal area to verify the solution accuracy. The

results from twelve successful pseudolite passes are shown in Figure 20. A sharp

improvement in position accuracy is clearly seen as the tractor leaves the pseudolite

signal region and the batch algorithm is executed. The high precision and repeatability are

evident from the low noise around the repeated track. On the repeated track, the overall

horizontal noise, including driver error and path deviations, had better than a five

centimeter standard deviation.

The ground constraint equation (4.5) and mirror solution logic were not implemented in

the real-time software during testing. As a result, it was found in post-processing that the

algorithm converged on the incorrect mirror solution for five pseudolite passes. When the

unsuccessful passes were processed while constraining the vehicle position below the

pseudolite, all converged to the correct solution.

Experimentally, it was found that vehicle motion during a bubble pass was not perfectly

planar. Therefore, the mirror solution represents a local minimum in the vehicle position

solution space, not a global minimum. Even if a ground constraint is not used, it may be
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possible to identify a mirror solution by its larger than expected integrity-check residual.

For all five cases examined in post-processing, the residual for the correct solution was

better than the residual for the mirror solution.

4.7 Pseudolite Antenna Considerations

According to simulations presented earlier in this work, a transmit antenna which could be

received on the ground in all directions would allow 270° and 360° pseudolite passes,

which would greatly improve the accuracy and integrity of this system. A simple dipole
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or half-dipole antenna would meet this requirement at low cost and reduced complexity.

The vertical polarization of a dipole or half-dipole antenna would also serve to reduce

ground multipath of the pseudolite signal43.

Two major potential problems exist when using a simple pseudolite antenna, both of

which are due to the fundamental differences in phase characteristics between a patch and

a dipole.

4.7.1 Dipole Survey Issues

The first problem arises in surveying the location of the pseudolite. Data processing in

existing survey equipment assumes two circularly polarized antennas are used in the

survey. If a vertically polarized antenna was surveyed relative to a patch antenna, phase

corrections would have to be applied within the survey software.

A basic method of examining circular electromagnetic polarization corrections for CDGPS

has been developed and tested44. Applying these methods to a vertically polarized

antenna receiving a circularly polarized wave is straightforward. It can be shown that GPS

satellite rotation about its boresight increases the carrier-phase measured at a patch and a

dipole antenna equally. It can also be shown that satellite elevation motion has no phase

effect for either receive antenna, so long as the elevation does not perfectly coincide with

the null of the dipole at 90°. A phase difference between the antennas is seen, however,

when the GPS satellite moves in azimuth. By symmetry, a vertically polarized antenna

will see no phase difference with satellite azimuth motion, however, a patch antenna will

see a phase angle difference equal to the azimuth angle change (Figure 21).

One solution to this problem is to modify the standard survey software to make this

phase correction. This would be a straightforward change since the azimuth angle to a

GPS satellite is well known after receiver initialization. A second solution would be to

perform a pseudolite pass with the vehicle position already known to high accuracy. By
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rewriting Equation 4.1 and combining with Equations 4.2 and 4.3, the pseudolite pass

algorithm may be easily modified to solve for the position of the pseudolite. Instead of

Equation 4.4, the following linearized equation would be used:

δφ δ τ ν
jk jk

T
j k j jk

e p N j n= + + ′ + ′ + =$ ...1 (4.6)

where δpj  is the linearized deviation in position for pseudolite j .

4.7.2 Dipole Transmission Issues

The second potential problem with using a dipole pseudolite antenna arises when

receiving the vertically polarized signal through a patch antenna. It can be shown that

rotating a vehicle receive antenna about its boresight has the same phase effect whether

the pseudolite signal is of circular or linear polarization. It can also be shown that moving

SV Motion

Patch Antenna

Azimuth
Change

E-Field Phasor
Change

Figure 21 - Patch Phase Difference Due to Satellite Azimuth Motion
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the receive antenna radially away from the pseudolite will have the same effect regardless

of which transmit antenna is used. However, moving the receive antenna tangentially

around a pseudolite with a dipole antenna will produce an increase in phase that is not

present with a pseudolite using a patch antenna (Figure 22). This difference is equal to the

change in azimuth angle around the pseudolite.

This second problem is readily solved by adding a phase correction term to Equations 4.1

and 4.4 which increases as the vehicle moves around the pseudolite. The pseudolite

carrier-phase measurement equation becomes

φ τ β ν
jk j k k jk j jk

p x N= − + + + + (4.7)

Dipole Antenna
E-Field

Patch Antenna
E-Field

Pseudolite
(Top View)

Figure 22 - Instantaneous Horizontal E-Field Below a Pseudolite
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where β jk  is defined as the azimuth angle from the pseudolite to the vehicle. This angle is

tracked in the vehicle positioning software, and continues to increase in increments of 2π

as the vehicle moves in circles around the pseudolite.
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Chapter 5

Land Vehicle Dynamics

Before land vehicle automatic control is possible, a simple yet accurate mathematical

model of vehicle dynamics is required. Unfortunately most of the land vehicle models

found in the literature were established for manufacturing design, driving simulations, or

ride handling studies and are too complex for controller design45,46. For control system

experiments, previously published models by Wong47 and Ellis48 are often used, but these

make very specific assumptions about land vehicle dynamics, and in particular about

lateral tire slip. This chapter serves to introduce a new set of land vehicle lateral dynamic

models for use in the automatic control of land vehicles.

While a complex mathematical model that is applicable for any land vehicle is desirable, a

model identification process which could potentially be automated for post-processing or

possibly even real-time operation is also a goal. As models become more complicated, the

procedures to identify model parameters from experimental data becomes less effective. A

set of models is desired which vary in complexity to facilitate this engineering trade-off.
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The procedure for model selection and identification using experimental data is described

in Chapter 6.

5.1 Land Vehicle Model Assumptions

Countless mathematical models can be used to describe the motion of a land vehicle. Each

of these models is based on a certain set of assumptions. The engineering challenge in

designing a control system is to choose the simplest model whose assumptions are

sufficiently valid to allow accurate, robust, and/or adaptive control system design.

5.1.1 Linear Assumption

No physical system is truly linear; however, most control systems are designed about a

fixed operating point and are based on linear assumptions. While nonlinear modeling and

automatic control offer the potential for elegant solutions and more accurate control over a

wider range of conditions, these models are difficult to experimentally characterize and are

often highly susceptible to modeling errors. Also, since linearization is often perfectly

sufficient to provide satisfactory performance in the range of interest, the linear

assumption is often made in control system design.

5.1.2 Time Invariance Assumption

A second common assumption in system modeling for automatic control system design is

the assumption of time invariance. Even though the dynamics of most physical systems

change with time, this change often occurs very slowly and the details of this variation are

usually not known in advance. As a result, most control systems assume a time invariant

plant.

Land vehicle dynamics are subject to relatively rapid change due to variations in load,

driving surface, tire inflation, and other parameters. Unless the variation in these

parameters is known in advance, a time-invariant form for the plant model can be
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assumed. With an appropriate model in place, one way to account for time variation of

parameters is to identify these parameters in real-time and adjust the control system

accordingly.

5.1.3 Bicycle Model Assumption

Figure 23 shows some of the definitions, sign conventions, and nomenclature used

throughout this work. The wheelbase (L ), front wheel angles (δ L  and δR ), heading (Ψ ),

and lateral position (y ) are shown. Note that the center of the rear axle is defined as the

vehicle reference point for consistency between various land vehicles, even in the

presence of added vehicle components such as a towed trailer or hitched implement. A

Right Wheel
Angle

δR

Heading
Ψ

Desired
Path

Lateral
Position

y

L

Left Wheel
Angle

δL

Figure 23 - Land Vehicle State Definitions
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lever-arm correction is needed within the automatic control system when the point of

control interest is located at a position other than the reference point.

During turns, the two front wheels of most land vehicles create different angles relative to

the vehicle body. The first simplifying assumption often made for land vehicles is the

“bicycle model” assumption47. This simplification combines the effects of the two front

wheels and treats them as a single wheel with an “effective” wheel angle (δ ). The

definition of this effective wheel angle is somewhat arbitrary, though it will be shown that

carefully defining this variable can simplify the control design process. The bicycle model

also combines the two rear wheels and treats them as a single wheel. In most land vehicle

control applications, a linear and time invariant (LTI) model based on these assumptions

is used.

5.2 LTI Bicycle Model Special Cases

Most previous work in the automatic control of land vehicles has assumed a simple model

derived by Ellis22,49 or a parameterized force based model described by Wong50,51,52,53.

These models are described below.

5.2.1 Ellis Bicycle Model

The simplest vehicle model adequate to describe land vehicle lateral dynamics with a

commanded wheel angle rate is based on the bicycle model assumptions, as well as the

assumption of no lateral tire slip, no steering actuator dynamics, and constant rear wheel

forward velocity (Vx ). These approximations tend to hold well for vehicles driving on

hard, flat surfaces at slow speeds, but they break down for fast-moving vehicles or

vehicles on a loose or slippery surface.

Since zero lateral tire slip is assumed, the perpendicular component of front wheels

velocity (Vyf ) is found by the following equation (see Figure 24):
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V V
yf x= tan( )δ  . (5.1)

Since the rear wheel is laterally constrained as well, the heading rate may be found by

dividing this velocity by the wheel base length (L ),

& tan( )Ψ = =
V

L

V

L
yf x δ  . (5.2)

In an earth-fixed coordinate frame, the motion of the reference point, which is located at

the center of the rear axle, may be found by the following non-linear equations:

& cos( )x Vx= Ψ  , (5.3)

& sin( )y Vx= Ψ  , (5.4)

where x  is the along-path position of the vehicle, and y  is the lateral position deviation

of the vehicle. Note that the position variables x  and y  are defined in earth-fixed

coordinates, while the velocity Vx  is defined in the body frame.

If we assume the vehicle is following a nominal straight line, Ψ  and δ  are small, and

higher order terms are negligible, Equations 5.2 - 5.4 can be decoupled, linearized, and

formulated in the standard state-space form. If we also assume the input command to the

system is a front wheel angle rate, the noise-free lateral equations of motion become:

L

δ

VX

VX VX tan(δ)

Figure 24 - Simple Vehicle Model Derivation
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There are three roots to the characteristic equation of this model, all of which lie at the

origin in the s-plane. The open-loop transfer function from the control input to the lateral

position output is simply a triple integrator with no zeros:

( )Y s

U s s

V
L
x

( )

( )
=

2

3  . (5.6)

5.2.2 Wong Bicycle Model

The Wong model is the method typically used to account for the effects of lateral tire slip

in land vehicles. A generic free body diagram showing velocities and forces on a bicycle

land vehicle model are shown in Figure 25. Because Vx  and Vy  are defined in the rotating

vehicle coordinate frame, care must be taken to generate the following equations of motion

for the system:

( )m V V F F Fx y z xr xf yf
& cos sin− = + −Ω δ δ  , (5.7)

δ

l1l2

FXf
FYf

FXrFYr

VX

VY

ΩZ

Figure 25 - Bicycle Model Free Body Diagram
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( )m V V F F Fy x z yr xf yf
& sin cos+ = + +Ω δ δ  , (5.8)

I l F l F l Fz z yr xf yf
& sin cosΩ = − + +2 1 1δ δ  . (5.9)

Note that the reference point for this new set of equations is the vehicle center of mass,

not the center of the rear axle.

The difficulty in reducing these equations further lies in computing the lateral forces on

the tires. It is proposed by Wong that, for small side slip angles (α ), the lateral force on a

tire is proportional to this side slip angle47 (See Figure 26). The following equations

F C
yf f f

= 2 α α  , (5.10)

F Cyr r r= 2 α α  , (5.11)

may then be substituted into Equations 5.7-5.9. Linearizing by making small angle

assumptions, assuming a constant Vx , and neglecting higher order terms, the lateral

equations again decouple from the longitudinal equations to form the following state-

space model:
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This model performs significantly better than the Ellis no-slip model for describing land

vehicles operating at high speeds. The biggest drawback to this approach is the added

complexity. Finding vehicle properties such as mass, moments of inertia, and center of

mass location can be difficult – especially for large vehicles. Also, the tire lateral force

“constants” (C fα , C rα ) actually vary significantly with tire pressure, tire tread, surface

conditions, and forward speed, making them difficult to determine47. In fact, when the tire

is laterally constrained by friction, these values become infinite.

System identification (on- or off-line) is a reasonable approach to specify a model of this

form; however, the state transition matrix is nonlinear in the relevant parameters. The

potential exists for a numerically intensive method for parameter identification which may

be prone to diverge with poor initial parameter estimates or wide eigenvalue spreads. To

eliminate the need for a nonlinear identification algorithm, it is possible to parameterize

each unknown element of the state-space matrices individually (e.g. p
C C

mV
r f

x1 11

2= = − +
A

( )α α

),

but this does not solve the possible divergence due to poor eigenvalues.

For an automobile under normal driving conditions, forward speeds may reach

approximately 30 meters per second. The mass of a typical automobile is approximately

1500 kilograms, and characteristic lengths are on the order of 1 to 2 meters. Typical
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Figure 26 - Wong Tire Slip Model
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values for the lateral slip coefficients in a car are 3000 Newtons per radian at a forward

speed of 13.9 meters per second53.

For a farm vehicle, forward speeds generally lie in the range of 2 to 10 meters per second.

The mass of a medium sized-farm vehicle is approximately 7,500 kilograms, and the

characteristic lengths are on the order of 1 to 2 meters. To the best knowledge of the

author, typical lateral slip coefficient values for a tractor have not previously been

published. In fact, it will be shown later in this work that these values are extremely

difficult to determine, even when high-bandwidth, high-accuracy measurements of vehicle

position, attitude, and front wheel angle are available for system identification.

5.2.3 Wong Model With Hitched Implement

The Wong model, as presented above, makes no provision for a hitch mounted vehicle

implement, but this extension can be easily made. Assuming the implement is located a

distance l3 behind the rear axle (see Figure 27), and the forces on the implement are

described by the Wong lateral slip model (see Equations 5.10 and 5.11) with coefficient

C
hα , the complete Wong model with hitched implement looks almost identical to the

original model,
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where l l l4 2 3≡ + .
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5.2.4 Simplified Wong Model - No Rear Tire Slip

The Ellis and Wong models described above have been used successfully in specific

control system applications, but each has significant drawbacks limiting them from use in

all circumstances. It is desirable to have models which are more sophisticated than the

Ellis model, yet have fewer or more easily identifiable parameters than the Wong model.

One approach to developing these theoretical models is to make reasonable assumptions

about the system in order to simplify the more complicated Wong model.

One simplification to the complete Wong model is to assume a non-holonomic constraint

on the rear tire (i.e. zero rear lateral tire slip) using the previous assumption for the front

tire and hitch lateral slip. This is equivalent to taking the limit as C rα  goes to infinity. This

assumption is potentially valid for land vehicles with a rear differential which works to

eliminate lateral tire slip. The assumption may also hold true for vehicles with large rear

tires, vehicles moving at relatively slow speeds over level terrain, or with vehicles with

significant vertical loading on the rear tires. A large farm tractor on a flat field fits all of

these descriptions, and experience shows that lateral rear tire slip for these vehicles on flat

terrain can be very minor, even when pulling a hitched implement.

Summing the moments about the center of the rear axle, the rotation equation of motion is

( ) ( )( )I ml l l F F l Fz z xf yf yh+ = + + −2
2

1 2 3
& sin cosΩ δ δ  . (5.14)
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Figure 27 - Free Body Diagram with Hitched Implement
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Note that the value for Fyh  is zero in the absence of a hitched implement.

Substituting Equation 5.10, the linearized version of Equation 5.14 becomes
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In this new model, the lateral velocity of the vehicle center of mass (Vy ) is directly

dependent on the vehicle rotation rate by

V ly z= 2Ω  . (5.16)

Therefore, the state element Vy  may be eliminated, and the state-space equations of

motion become
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where y  now describes the lateral deviation of a reference point below the center of the

rear axle (recall Figure 23).

A block diagram of this state-space model is shown in Figure 28. In addition to three

levels of integration and a constant, velocity-dependent gain, this model exhibits a simple

first-order lag response between front wheel angle and vehicle heading rate. This time lag

is consistent with visual observation of a farm tractor driving on flat terrain. One

interesting note is that in the absence of a hitched implement (C hα = 0 ), the steady state

relationship between heading rate and wheel angle is identical to the Ellis model (Equation

5.2, where L l l= +1 2 ).
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5.2.5 Simplified Wong Model - Small Rear Tire Slip

In the case of zero lateral rear tire slip, four states are sufficient to describe land vehicle

lateral dynamics; however, if the coefficient C rα  is finite, the Wong model shows that five

states may be needed to adequately describe vehicle dynamics in the frequency range of

interest. To determine the need to model a fifth vehicle state, the eigenvalues of the

continuous state transition matrix may be examined to see if any lie outside the desired

control system bandwidth or significantly beyond the Nyquist frequency of the discrete

control system. It is easy to show that three open-loop eigenvalues are zero, just as in the

Ellis model, but the expressions for the remaining two pole locations are algebraically

complicated. One solution to this problem is to substitute exact parameter values into the

equations to find an exact solution. If the exact values are not know, however, some

simplifications may be made based on reasonable expressions for these values to arrive at

general conclusions.
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Figure 28 - Simplified Wong Model Block Diagram
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Based on visual observations of farm vehicles, one realistic assumption is that the rear tire

lateral slip coefficient is finite, but very large compared to the front tire and hitch lateral

slip coefficients. A second simplifying assumption is that the velocity component of the

A12  term in Equation 5.13 is negligible compared to the component involving lateral slip

coefficients. If, for example, we assume a rear tire lateral slip coefficient of 150,000, a

characteristic length of 1 meter, a vehicle mass of 7500 kilograms, and a forward velocity

of 2 meters per second, we find the assumption is reasonable:

2 22 4 1 2 20
( )C l C l C l

mV
C l
mV x

r h f

x

r

x
Vα α α α+ − ≈ = >>  , (5.18)

If we also reasonably assume that the three characteristic lengths are approximately equal,

and these lengths are approximately equal to the vehicle radius of gyration about the

vertical axis, the system eigenvalues and eigenvectors may be approximated algebraically.

Based on the following assumptions,
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and canceling out second order terms in epsilon, the approximate eigenvalues and

eigenvectors are:
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Note that for sufficiently large values of C rα , the system pole at λ 1  may exceed the

frequency range of interest while λ 2  remains unaffected. For the numerical values used in

Equation 5.18, λ 1  is approximately -40 radians per second. For a 5 hertz discrete control

system, this lies beyond the sampling frequency (31.4 radians per second), and therefore

significantly beyond any feasible control system bandwidth.

The mode associated with λ 1  corresponds to how quickly the ratio between Vy  and Ωz

reaches its steady-state value, while the mode associated with λ 2  corresponds to the

response of Vy  and Ωz  to wheel angle inputs. A large value for λ 1  indicates that the

steady-state value for Vy  may be substituted directly into the equations of motion and,

due to its direct dependence on Ωz , this state may be eliminated.

In the limit as C rα  approaches infinity, λ 1  also approaches infinity, and Equations 5.16

and 5.17 exactly describe the steady state Vy  to Ωz  ratio and the dynamic equations of

motion. For large finite values of λ 1 , the dynamics associated with this mode may still be

neglected, but the steady-state ratio of Vy to Ωz  will change slightly. As a result, the center

of vehicle rotation on turns will no longer lie at the center of the rear axle. This will cause

a slight change in the lateral dynamic equations of motion, which may now be

approximated as:
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where c  denotes how far back the center of vehicle rotation is relative to the center of the

rear axle. This parameter can take on negative or positive values depending on the

properties of the tires and the vehicle.
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It is worth noting that, if we return to the Wong model and assume that the lateral tire slip

coefficients for the front and rear tires are significantly large and that the hitch coefficient

is relatively small, it can be shown that the Wong model is well approximated by the

three-state Ellis model.

5.3 Bicycle Model Enhancements

The Ellis, Wong, and Wong-based equations described above provide a set of models

describing land vehicle lateral dynamics. Several enhancements can be made to these

models so they may more accurately reflect a specific land vehicle configuration.

5.3.1 Steering Dynamics

One assumption made in the models described above is a direct front wheel angle rate

command. In truth, the response between the computer generated command and the

physical wheel angle rate may include significant dynamics. The causes for these

dynamics, as well as the methods for identifying them, are discussed in Chapter 6.

One assumption that can be made to simplify the linear steering identification process is

one-way coupling between the vehicle states describing steering and other lateral dynamic

states. Since vehicle heading and position are unlikely to have a significant effect on

vehicle steering, this is almost always a valid assumption. Therefore, the steering system

may be described as a system with a single input (wheel angle rate command) and a single

output (wheel angle).

A SISO system that is second-order or higher may be described by an infinite number of

state-vector definitions. To enforce a unique solution, a special canonical form is often

used. Often the observability canonical form is used because the states in this form have

physical meaning. The most general observability canonical equation for a third-order

system is54
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This equation defines a third-order transfer function with three poles and two zeros with

an arbitrary steady-state gain:
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For purposes of model simplification, the number of parameters in Equation 5.25 may be

reduced in several ways. For one, if it is known that there is one physical integration

between input and output, one root of the characteristic equation must be zero, resulting

in a3 0= . Also, if the steering system is calibrated correctly, the steady-state gain from

input to output rate will be unity, reducing one degree-of-freedom in the system. Other

assumptions which will reduce the number of parameters are to assume only one system

zero (resulting in β1 0= ) or none (resulting in β2 0= ). Of course, using a second-order

system model will also serve to reduce the number of free parameters that must be

specified to mathematically describe the system.

5.3.2 Sensor Bias States

A simple and powerful change that can be added to any of the above vehicle models is the

addition of observable sensor biases. The biases on the heading(Ψ ) and wheel angle (δ )

sensors are both observable when the lateral vehicle position is measured. The states Ψbias

and δ bias may be appended to the state vector, producing the following changes in the

state-space equations:

x
x

a =
















Ψbias

biasδ
 , (5.27)
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0 1
 . (5.30)

One interesting note is that, while the sensor bias states are observable, they are not

controllable, so care must be taken in control law design when these bias states are

included.

5.3.3 Integral States

A powerful tool for control system design is integral control. By augmenting the standard

vehicle state with an integral state, it is possible to zero out the effect of any residual

system biases on the control system output. In most land vehicle lateral control

applications, it is desirable to zero the vehicle lateral position (y ). This integral state may

be appended in the following manner:

x
xa

y
=











integral

 , (5.31)
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H 0 Ha =  . (5.34)



73

In contrast to the sensor bias states, the integral state is controllable, but is not

observable. Care must be taken in estimator design when an integral state is used.

5.4 Final Selected Model

The model selection process is described in detail in Chapter 6. There it will be shown

that the final model selected for automatic land vehicle control is a combination of the

simplified Wong model with small rear tire slip (4 states), a first-order lag in steering

actuator response (1 state), and two sensor biases (2 states), and no integral states, for a

combined seven-state model.
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Chapter 6

Land Vehicle System Identification

Carrier-phase differential GPS offers very accurate, high bandwidth measurements of

vehicle position and attitude. This ability to sense multiple states with an inexpensive,

solid-state sensor makes CDGPS ideal for experimental identification of dynamic systems.

System identification typically involves a trade-off between model complexity and speed

of parameter convergence. For a well known, time invariant plant, a controller based on an

accurate complex model will usually perform equal to or better than a simpler controller.

When the plant model is not known exactly or has time varying parameters, the generality

offered by using a simple model may outweigh small performance gains offered by

increased complexity.

The system identification methods described in this chapter were selected with the

expectation that they will be used in a real-world setting. The goal of this chapter is to

pursue a general approach to accurately identify a land vehicle model using CDGPS which

will fit into a real-time system identification scheme.



76

This chapter outlines the general steps required to experimentally characterize a generic

land vehicle using CDGPS. These steps include nonlinear steering calibration, positioning

antenna lever-arm calibration and correction, disturbance modeling, linear system

identification, and mathematical model selection. The validity of this identification

method is demonstrated by applying it to the specific case of a John Deere 7800 tractor.

6.1 Steering System Calibration

The first major system identification step for most controls applications is the

linearization of inherently nonlinear components. In the case of a land vehicle, the

nonlinear components are typically associated with the steering sub-system.

There are three basic general approaches to steering linearization. The most direct method,

and the method described in this section, is a lengthy procedure to calibrate the steering

sensor and steering valve by post-processing experimental data. This passive nonlinear

identification technique involves determining the nonlinear functions that describe the

potentiometer and actuator off-line, and using fixed look-up tables to linearize the

components. A second method of linearization would use active identification techniques

to specify the nonlinear lookup tables in real-time, continuously updating this

information in the control system. This method would not require a lengthy calibration

process, and may perform at least as well as the first method. An even better method

would use linear techniques (such as model reference adaptive control) or nonlinear

techniques (such as sliding-mode control) to close the inner steering loop, causing it to

behave as a consistent linear system. The steering system would then behave as a black

box with known behavior from the perspective of the outer-loop control system.

Figure 29 shows the automatic control scheme based on lookup tables for a land vehicle

steering control system. The steering actuator is assumed to have some memoryless

nonlinearity (deadband shown) and some dynamics associated with the solenoids or

hydraulics driving the actuator. The front wheel angle (δ ) sensor is also assumed to have
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some memoryless nonlinearity due to sensor imperfections or mounting geometry. The

Guidance Navigation and Control (GNC) computer attempts to cancel the effects of the

two memoryless nonlinearities using lookup tables. With the ideal lookup tables in place,

ignoring disturbance and sensor noise, the nonlinear steering system can be described by

the following linear equations:

δ( )
( )

( )s
K s

s
U s

cmd
=  , (6.1)

δ δmeas=  . (6.2)

The calibration of these lookup tables is not trivial. The three steps toward this process

are: (1) the direct characterization of steady-state, nonlinear effects in the steering sensor,

(2) nonlinear calibration of the actuator, and (3) the identification of an accurate dynamic

model to describe the steering system.

Steering
Sensor

K(s)
1
-s

ucmd δδδδ δδδδu

δδδδmeas

GNC Computer Land Vehicle

Control
Law

Other Measurements

(b)

(a)

Actuator
Deadband

Actuator
Dynamics

Lookup
Tables

Figure 29 - Tractor Steering System
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6.1.1 Steering Sensor Linearization

There are a variety of front wheel angle sensors available for land vehicles. Measurements

from these sensors are typically not linear for several reasons. For one, the sensor is

usually attached to one wheel. In almost all land vehicles, each wheel turns at a different

rate, and it is the “effective” wheel angle that is desired. Another source of nonlinearity

comes from the geometry of the sensor connection to the vehicle. Finally, the likelihood

exists for a sensor imperfection causing an output that is not perfectly proportional to

angular or linear displacement input.

Figure 30 - Golf Cart Steering Sensor
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Both experimental vehicles in this work had wheel angle sensors with nonlinear behavior.

The golf cart used a rotating potentiometer attached between the frame and one tie rod to

measure front wheel angle (Figure 30). This sensor was manufactured for use in a Navico

WP5000 ship autopilot and a custom mount was built for attachment to the cart. The

tractor used a piston potentiometer between the frame and front wheel to sense the front

wheel angle (Figure 31). The tractor potentiometer was part of an Orthman row guidance

system specifically designed for this line of tractors. Both wheel angle sensors exhibited

nonlinear behavior.

The first challenge in specifying the wheel angle sensor lookup table is to define the

effective front wheel angle. This value may be arbitrarily chosen as the arithmetic or

geometric mean of the left and right wheel angles, but other definitions make more

physical sense. In the nonlinear derivations of the Ellis and Wong-based models described

in Chapter 5, the steady-state heading rate is directly proportional to the tangent of the

effective front wheel angle for a given forward speed. Recall Equation 5.2 from the simple

no-slip model,

Figure 31 - Tractor Steering Sensor
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& tan( )Ψ = =
V

L

V

L
yf x δ  . (5.2)

Using this relationship, the nonlinear lookup table (a) from Figure 29 may be constructed

to define the effective front wheel angle based on steady-state measurements of raw wheel

angle and heading rate.

To experimentally determine the values within this lookup table, a properly instrumented

land vehicle may be driven in slow steady circles with a constant front wheel angle while

collecting high-bandwidth, precise GPS-based heading data. An example of one such data

collection pass taken with the tractor is shown in Figure 32. The effective wheel angle is

found by rewriting Equation 5.2:

δ = −tan 1 ΨSS

x

L

V
 . (6.3)

The aggregate data collected on the tractor and the interpolated lookup table for the

tractor effective front wheel angle are shown in Figure 33.
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6.1.2 Steering Actuator Linearization
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Steering actuators also come in a variety of forms. They may be based on linear or angular

actuation, and may be powered by mechanics, electricity, hydraulics, or some

combination. Despite their differences, most off-the-shelf land vehicle steering actuators

exhibit similar nonlinear behaviors.

In an effort to reduce cost, inexpensive actuators are desirable for production systems.

These inexpensive actuators usually have deadband regions and nonlinear active regions,

as well as hysteresis or sticktion. While the latter two can usually be negated through

effective use of a dither signal, large deadbands and non-proportional active regions

require some form of compensation. As was the case with the steering sensor

nonlinearity, the nonlinearity in the steering actuator may be corrected through off-line

calibration, real-time identification, or inner-loop adaptive or nonlinear control.

Figure 34 - Golf Cart Actuator



83

The front wheels of the golf cart were driven by a Navico ship autopilot motor attached

to the steering wheel through a rubber drive belt (Figure 34). The motor was supplied by

the manufacturer with a high-impedance, pulse-width modulated motor controller

providing a wheel angle rate proportional to an input voltage. The front wheels of the

tractor, however, were actuated by sending high current through solenoids in an

inexpensive, off-the-shelf electro-hydraulic valve (Figure 35). The valve, manufactured by

Parker for use in the Orthman row guidance system, exhibited a large deadband region and

a nonlinear active region. The tractor steering valve also required pulse-width modulation

to minimize transistor heat dissipation, and a large dither signal to provide a memoryless

response (i.e. without hysteresis or “sticktion”).

Calibration of the steering actuator is straightforward once the steering sensor is

calibrated. The front wheels may be commanded to sweep a large angle with a fixed rate

command. The steady-state wheel angle rate (once transients have died out) is then

Figure 35 - Tractor Actuator
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recorded. This is repeated for many commanded rates and the results are used to create

the nonlinear lookup table (b) shown in Figure 29.

One open-loop trial taken on the tractor is shown in Figure 36. Alternating actuator

commands were sent at 50% of the maximum left and right turn rates. The mean resulting

steady-state wheel angle rates were computed from this data. It is interesting to note that

the transients for this actuator were relatively short, so the linear dynamics associated

with the steering system is expected to have a fast response. Also, the right and left turn

rates were significantly different, illustrating a nonlinearity in the tractor actuator. The

results from many actuator calibration tests were combined, and the points were

interpolated using spline methods to generate the table shown in Figure 37. This table is

directly inverted to generate the steering actuator lookup table.
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6.1.3 Characterization of Linear Steering Dynamics

Once the steady-state characteristics of a land vehicle steering sensor and actuator are

calibrated, the next step is to identify any linear dynamics associated with the steering

system. A good, general method for doing this is to make appropriate assumptions about

steering dynamics, generate a viable set of models as described in Chapter 5, identify the

parameters within these models using empirical data, and select the appropriate model for

automatic control. With a strong steering actuator, land vehicle steering dynamics are not

generally affected by the non-steering vehicle states associated with heading and position

Therefore, the assumption of one way coupling between the steering system and the

vehicle dynamics is often appropriate.

Many methods exist for parameter identification using experimental data. One such

method is described later in this chapter. The best criteria for model selection varies with
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application. If the identified model will be used in a fixed-gain controller, the model

exhibiting the maximum robustness or optimal performance properties is desired. If an

adaptive control scheme is utilized, the goal may be to minimize the number of free

parameters used without a significant sacrifice in performance. In both cases, the

“performance” may be measured by running experimental data through a causal estimator

and computing the steering state measurement residual.

Several basic assumptions were made regarding the tractor steering system. Since the

electro-hydraulic steering actuator was very strong and resistant to external forces,

steering one-way coupling was assumed. Also, it was known that the transfer function

from input (commanded wheel angle rate) to output (wheel angle) included one

integration.
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The data from 48 open-loop steering trials were used in post processing to determine the

best tractor steering model. A description of these trials is found below and shown in

Figure 42. A close-up view of this data shows an apparent steering lag, suggesting that a

simple integrator might be inadequate to model the steering system (Figure 38). Based on

physical knowledge of the system, the steering actuator is expected to experience a pure

time delay from computer processing and serial communications, as well as a dynamic lag

caused by the solenoid inductance and the hydraulics. The tractor steering data shows

that these effects are significant.

The parameters for seven different steering models were found using each open-loop

steering trial independently. The “true” parameters for each model were defined as the

mean result from the 48 trials. An estimator gain (L ) was established for each “true”

model using Linear Quadratic Estimation techniques55, and the experimental data was run

through these estimators to compare steering models.

The seven models explored were:

1. A Simple integrator
2. A Simple integrator with a pure one-sample time delay
3. A Second order type-I system with no zeros, unity steady-state gain
4. A Second order type-I system with no zeros
5. A Second order type-I system with one zero
6. A Third order type-I system with one zero
7. A Third-order type-I system with two zeros

Attempts to identify the parameters of a third-order system with no zeros caused the

parameter identification algorithm to diverge.

The resulting estimation measurement residual (δ δmeas est− ) standard deviations for each

model are shown in Table 4.

The three second order models performed significantly better than the simple integrator

models, and surprisingly performed slightly better that the third order models. While the

higher order model performed better with the case-specific parameters in each individual



88

case, the third order model with mean parameters performed worse than the simpler

second order model with mean parameters. The obvious steering model choice for use in

the tractor was model 3, which performed almost identically to more sophisticated

models with only one free parameter to identify.

6.2 Positioning Antenna Lever-Arm Correction

Since GPS satellites travel overhead, and L-band signals do not travel well through metal,

GPS antennas are typically located on the top side of vehicles. Unfortunately, the goal of

most land vehicle control systems is to guide the wheels or an implement that is

connected to the ground. Also, the land vehicle dynamic models derived in Chapter 5

describe the land vehicle contact with the ground, not the roof. If a land vehicle

experiences significant attitude motion, large errors can occur between the positioning

sensor and the point requiring accurate positioning (see Figure 39).

This non-collocated sensing problem is easily solved if the vehicle body may be assumed

rigid and three-dimensional attitude measurements are available. By pre-computing the

lever-arm from the positioning antenna to the vehicle reference point, a lever-arm

correction can be made to create an artificial sensor at the point of interest. The lever-arm

correction as described does not take vehicle flexibility into account. While observations

Table 4 - Experimental Results for Steering Model Selection

Model No. Model Description Free Parameters Mean Measurement
Residual (rad)

1 Integrator 0 0.0480
2 Integrator w/Delay 0 0.0408
3 2nd Order, No Zeros, Unity Gain 1 0.0267
4 2nd Order, No Zeros 2 0.0266
5 2nd Order, One Zero 3 0.0265
6 3rd Order, One Zero 4 0.0280
7 3rd Order, Two Zeros 5 0.0323
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suggest that vehicle flexibility is not significant, validating or invalidating this assumption

may be an interesting topic for future research.

6.2.1 Lever-Arm Definition

The TANS Vector receiver conveys 3-D attitude measurements in the conventional 3-2-1

Euler Angle format used for aircraft and spacecraft. Defining 
v
r  as the lever-arm vector

from the vehicle reference point to the positioning antenna in body axes, the location of

the control point in local coordinates can be found by
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Φ Θ Ψ  , (6.4)

where ΦΦΦΦ ΘΘΘΘ ΨΨΨΨ, , and  are the standard orthonormal Euler Angle roll, pitch and yaw matrices

respectively. The reference point position and antenna position are expressed in a North-

East-Down frame, and rx , ry , and rz  are components of the lever-arm vector r  in the body

frame.
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For a land vehicle on relatively flat terrain (small roll and pitch angles), the equations may

be linearized for faster computation:

N N r r r rREF ANT x z y z= − + + −( ) cos ( )sinθ ψ φ ψ  , (6.5)

E E r r r rREF ANT x z y z= − + − −( )sin ( )cosθ ψ φ ψ  , (6.6)

D D r r rREF ANT x y z= + − −θ φ  . (6.7)

For the 7800 tractor, the vehicle reference point was defined as the point on the ground

directly below center of rear axle. This point was chosen to allow coordinate system

consistency between controllers used for different implement configurations.

6.2.2 Lever-Arm Calibration

The most obvious method for calibration of the positioning antenna lever-arm is direct

measurement. For the 7800 tractor, all 3 dimensions of the lever-arm were first found

True
Position

GPS
Measured
Position

yerror

Figure 39 - Attitude Induced Lever-Arm Error
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using a tape measure. The horizontal lever-arm components rx  and ry  were later improved

using the four-antenna static baseline survey performed by the TANS Vector attitude

receiver. Since two GPS antennas were aligned with high accuracy along the longitudinal

axis of the vehicle, the longitudinal and lateral position of the primary positioning antenna

could be found very accurately using this survey.

It is proposed that, when all three axes of attitude and position measurements are taken

concurrently, it may be possible to find components of the positioning antenna lever-arm

in post-processing or in real-time using experimental data. For a vehicle traveling in a

nearly straight line, Equation 6.6 may be reduced to give the vehicle antenna lateral

position yANT  as a function of the vehicle reference point lateral position yREF , the antenna

lever-arm, and the vehicle attitude. If we assume small heading deviations from the desired

line, and neglect second order terms,

y y r r rANT REF y x z= + + −ψ φ  . (6.8)

An arbitrary error term may be defined as

ε ψ φ= − − −y r r wANT y x  , (6.9)

where in this case, w  is simply a scalar constant whose significance will be seen shortly.

Substituting Equation 6.8, this error term may be rewritten as

ε φ= − +y r wREF z( )  . (6.10)

If we square this equation and take the expected value of both sides, Equation 6.10

becomes

E E y r w E y r w EREF z REF zε φ φ2 2 2 22= − + + +( ) ( )  . (6.11)
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If the land vehicle is traveling over terrain which is on average flat, the expected value of

yREFφ should be zero. From this, it can be shown that the value of w  which minimizes the

expected value of the square of the defined error term is w rz= − .

Given that the error in Equation 6.9 is a function of known constants and measurements,

methods exist to compute the w  that minimizes E ε 2
 in post-processing (e.g. the

Wiener-Hopf Solution56), or converges to the optimal w  in real-time (e.g. the LMS

algorithm57).

Real-time sequential estimation of the vertical lever-arm component is straightforward

using the LMS algorithm. Figure 40 shows a schematic of how the error term may be

computed in real-time and fed back at each epoch to update the estimate of w . Skipping

the derivation, the LMS algorithm is

v v v
w w x

k k k k+ = +
1

2µε  , (6.12)

where for our example, 
v
x
k  is simply the scalar measurement of φk , and 

v
w

k  is a scalar. The

w

-

+

LMS

yANT-ry-rxΨΨΨΨ

φ

ε

wφ

Figure 40 - LMS Algorithm for Vertical Lever-Arm Estimation
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value µ  is a design parameter which must be chosen carefully. Small values of µ  will

cause the estimate of w  to converge very slowly to the correct value, while large values of

µ  will result in large estimation errors (misadjustment) or, worse yet, may cause the

algorithm to diverge. A typical value selected for µ  is

[ ]( )µ =
01.

trace E Tv v
x x

 . (6.13)

To guarantee convergence stability, the numerator of Equation 6.13 must lie between zero

and one.

Figure 41 shows the performance of the LMS algorithm applied to experimental data

taken on the 7800 tractor. The measurements from approximately 20 line-following trials

were stacked together to create over 30 minutes of data for post-processing. The Wiener

method was used to determine the “true” value for the vertical lever-arm component. It is

interesting to note that the solution obtained using the Wiener method differed from the

value determined using the tape measure by only a few centimeters. The LMS algorithm

was applied to the same data sequentially to determine how a real-time system would

have performed. Three trials were run with a constant value for µ , and one was run with

a µ  value that decreased over time.

It can be seen from the plots that for large convergence parameters, the lever-arm estimate

converges quickly, but the noise on this estimate is very large. For smaller µ  values, the

estimate is less noisy but it converges extremely slowly. The lower-right plot attempts to

vary the value of µ , taking advantage of the fast convergence of a high µ  when the

estimate is poor, and reducing the value of this parameter when the solution is more

accurate.
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While these analyses were performed in post-processing, they demonstrate the

possibility of performing the lever-arm calibration in real-time. The algorithm suggested

here only attempts to solve for the vertical component of the lever-arm, which is

typically the largest and most difficult to measure. It may be possible to estimate all three

components of the vehicle antenna lever-arm in real-time given all three dimensions of

position and attitude measurements. The generalization of the algorithm described here is

an interesting topic for future research.

6.2.3 Lever Arm Errors
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Additional errors creep into the vehicle lateral position measurements as a result of the

real-time lever-arm correction. If we assume uncorrelated attitude and position

measurements, we can quantify the effect of noisy attitude measurements and inexact

lever-arm calibration on lateral position measurement.

The linearized error equations yield the following measurement equation:

y y r r r rmeas pos z z x y= + + + + +ν ν δ φ ν δφ ψ  . (6.14)

Table 5 shows the typical or expected values of these quantities for the tractor used in

these experiments. Note that vehicle lever-arm motion causes approximately a 30%

increase in the lateral position measurement standard deviation (from 1.0 to 1.3

centimeters) when the lever-arm is correctly taken into account. If the lever-arm is not

taken into account, the lateral error standard deviation reaches approximately 6

centimeters. If this additional error is not taken into account during control system design,

the resulting controller is likely to go unstable.

Table 5 - Approximate Lever Arm Values for 7800 Tractor Configuration

Quantity (units) Typical or Expected
Value (1-σ)

Error Contribution
With Correction

Error Contribution
Without Correction

ν pos (cm) 1.0 1.0 1.0
φ (rad) 0.017
rz (cm) 350 5.95
ν φ (rad) 0.0017
rz (cm) 350 0.6
φ (rad) 0.017
δrz (cm) 2.0 0.03
ν ψ (rad) 0.0017
rx (cm) 68 0.1
δry (cm) 0.5 0.5

RMS Total 1.3 cm 6.0 cm
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6.3 Linear System Identification

After characterizing the necessary nonlinear vehicle components and calibrating the rigid

body lever-arm, a land vehicle can be well approximated as a linear dynamic system about

fixed operating points. The procedure for designing the vehicle automatic control system

begins with the process of linear system identification.

For the purpose of designing a controller using standard linear techniques, either a transfer

function or state-space representation of the land vehicle is desired. Many methods exit

to identify a transfer function for continuous (s-plane) and discrete (z-plane) “single-

input single-output” (SISO) systems58; however, transfer function descriptions are not

well suited to describe the general case of vehicles with multiple sensor outputs (SIMO),

multiple actuator inputs (MISO), or both (MIMO). State-space techniques, on the other

hand, offer a simple way to describe SIMO, MISO, and MIMO systems while enabling

powerful optimal and robust control system design tools. The current drawback to state-

space techniques is the general lack of methods for system identification (on-line or off-

line) for state-space models.

6.3.1 Comparison of Basic System Identification Techniques

There are two basic approaches to state-space system identification. These approaches

can be simply labeled as (1) “black-box” or general system identification, which assumes

no prior knowledge about system dynamics, and (2) parameter identification, which aims

to identify parameters in a pre-specified dynamic model.

General system identification techniques are extremely flexible. They can be used for any

system with measurable inputs and outputs. A single “black-box” identification algorithm

is able to identify the dynamics of a tractor, an airplane, or an electrical circuit without

modifying the algorithm, making it simple for an unsophisticated operator to use. Also,
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general techniques are not prone to modeling errors or false assumptions which can arise

when a specialized model is assumed.

Parameter identification techniques require some assumptions about the dynamic system,

but they have several advantages over general system identification. When a good model is

used, a parameter identification algorithm has fewer degrees of freedom available, making

it potentially faster and more accurate then the more general algorithms. Also, by defining

physically meaningful states and identifying physically meaningful parameters, it

becomes possible to extrapolate the dynamics of an identified system to predict

performance in regimes where data has never been collected. For example, the results from

two data runs collected on a vehicle driving 1 meter per second and 1.5 meters per second

may be extrapolated to generate a model for a vehicle driving at 2.0 meters per second, or

possibly even driving backwards at 0.5 meters per second. This is not true for more

generic algorithms. For these reasons, a parameter identification algorithm was chosen for

use in this work.

6.3.2 Off-Line Identification Through Optimal Smoothing

The method selected for parameter identification in this work was based on a method

recently presented in a Ph.D. dissertation by Idan59, which was built upon earlier work

by Cox and Bryson60. Assuming a discretized plant with zero-mean disturbance and

sensor noise and no control effort feed-through to measurements, the equations of motion

describing plant dynamics may be written as:

( ) ( ) ( )x p x p u p wk k k w k+ = + +1 Φ Γ Γ  , (6.15)

( )z H p x vk k k= +  , (6.16)
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where xk , u k , and zk  are the vehicle state, control, and measurement vectors at epoch k ,

ΦΦΦΦ ΓΓΓΓ ΓΓΓΓ, , ,w andH  are the state-space model matrices, p  is the parameter vector, and

w v
k k

and  are the disturbance and measurement noise vectors.

For identification purposes, a performance measure is defined in the standard way with

an additional term for an initial estimate of the parameters (p0 )

J ≡ ( ) ( ) ( ) ( )1
2 0 0 0

1
2 0 0 00 0p p P p p x x X x x− − + − −

T T[ ] [ ]

[ ]+ +−
+

−
+

=

−

∑1
2

1
1

1
1

0

1

w Q w v R vk
T

k k
T

k
k

N

 , (6.17)

where the weighting matrices P X Q R0 0, , , and  are design parameters which ideally

represent uncertainties in the initial state and parameter estimates and noise variances.

Following the standard approach to dynamic optimization61, the constraint Equation 6.15

is adjoined to the cost function of Equation 6.17 using Lagrange multipliers to form

( ) ( ) ( )[ ]J J k
T

k k w k k
k

N

= + + + −+ +
=

−

∑ λ 1 1
0

1

Φ Γ Γp x p u p w x  . (6.18)

Minimizing J  is equivalent to minimizing J  subject to the dynamic constraints. The first

variation of J  relative to the unknowns in the problem is given by

δ ∂
∂

δ ∂
∂

δ ∂
∂

δJ
J J J
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k

k
k

k
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k
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= + +
=
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0

1

0
 . (6.19)

The method for finding the minimum J  is an iterative process. First, the parameter

estimate is held fixed while x w
k k

and  are found by solving the standard Linear Two

Point Boundary Value Problem (LTPBVP). Once this smoothing process is complete,

∂
∂

∂
∂

J J

k kx w
= = 0  , (6.20)
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and Equation 6.19 becomes

δ ∂
∂

δJ
J=
p

p  , (6.21)

The gradient of J  with respect to the parameters may be found as a function of xk , w k ,

and the partial derivatives of the state-space dynamic matrices with respect to the

parameters.

Unfortunately, the value of p  to minimize J  cannot be found immediately, because as p

is updated, the form of the dynamic model changes, requiring new estimate of the optimal

x w
k k

and . The actual smoothing algorithm uses a sophisticated method to take a small

step towards the optimal solution for p , then begins the next iteration by re-solving the

LTPBVP. This iterative process continues until the estimate of p  converges and the

gradient is driven to zero.

The biggest difficulty in this process is the computation of the derivatives of the state-

space matrices with respect to the parameters. Since continuous differential equations

may be written to match physics more closely than discrete difference equations, most

vehicle models, including the ones used in this work, are presented and parameterized in

continuous form. It is desirable to keep and identify the continuous model so that a

control system of any sample rate may be designed based on the same model without

identifying a separate system model.

A solution to the matrix differentiation problem is found in a Ph.D. dissertation by

Keller62. This solution allows easy computation of the partial derivatives of discrete

state-space matrices when the associated continuous state-space matrices are linear in the

parameters p . The algorithm is able to make the following conversion:

A(p), B(p), p, , ,
p

,
p

Ts → Φ Γ Φ Γ∂
∂

∂
∂  , (6.22)
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where Ts  is the sample time for the discrete controller.

6.3.3 Real-Time Parameter Identification

The previous section describes a method for identifying vehicle parameters in one long

post-processing batch. It may be desirable for some land vehicles to continuously update

the estimate of these parameters in real-time.

The operating conditions of some land vehicles change unpredictably over time. These

parameter variations may be accounted for in two ways when designing an automatic

controller. A fixed-gain, fixed model controller may be used which is robust to a known

range of plant variations, or an adaptive controller may be used which continuously

updates vehicle parameter estimates and adjusts the automatic control algorithm

accordingly. While the robust control design tends to result in a simpler control law with

fewer computations, a well designed adaptive controller has the potential for much better

performance.

It is believed that significant parameter variations are likely to occur in the specific case of

farm vehicles. Changing soil conditions, forward speeds, implement types, and terrain

slope will all cause difficulties for a fixed gain controller. An adaptive controller that

accounts for these effects may simply gain schedule on forward velocity and other

measurements, or it may use more sophisticated means such as Extended Kalman Filter63

estimation with real-time LQR control law generation. The area of adaptive control of

land vehicles has substantial potential for future research.

6.4 Land Vehicle Model Selection and Validation

In addition to finding optimal parameters for a singe state-space model, experimental data

may be used to assess and compare the validity of multiple land vehicle models. Model

selection involves an engineering trade-off between model complexity and modeling
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accuracy. A very simple model allows easy real-time state and parameter estimation, but

is unlikely to accurately model a true system. More complicated systems may be more

accurate, but the increased number of parameters make these systems more difficult to

mathematically identify.

A good procedure is to choose a set of viable dynamic models, collect open-loop data

with strong control signal inputs to excite all system dynamic modes, approximate

disturbance and sensor noise values from this data, and optimally identify parameters

within each model. By processing the experimental data through causal estimators based

on each model, the measurement residuals may be compared as an indication of the

relative model accuracies.

6.5 Tractor Parameter Identification

The parameter identification technique described in Section 6.3 was combined with the

general model selection method of Section 6.4 and applied to the John Deere 7800 tractor

to arrive at an appropriate mathematical model for automatic control. The specific

processes of data collection, noise modeling, parameter identification, and final model

selection are described below.

6.5.1 Data Collection
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The data collected for the identification of the tractor steering system (shown in Figure

42) was also used to identify the full tractor system dynamics. A strong pseudo-random

control input u  was used for “persistent excitation”58 in an effort to excite all modes of

the system for accurate identification. The commands were entered manually by a human

driver while approximately following a straight line. The lateral position and heading

measurements shown in the figure are linearized about the best-fit line through the data. A

total of 49 trials were run with various implements and at varying forward velocities.

6.5.2 Noise Modeling

Recall the general linearized, discrete equations of motion describing vehicle motion found
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in Equations 6.15 and 6.16.

( ) ( ) ( )x p x p u p wk k k w k+ = + +1 Φ Γ Γ  , (6.15)

( )z H p x vk k k= +  , (6.16)

The optimal parameter identification techniques described above require specific

knowledge and assumptions regarding the statistical properties of the sensor noise (vk)

and vehicle disturbances (wk) in order to accurately model the plant using collected data.

It is usual to assume the noise vectors are zero mean, independent of each other,

independent between samples, and follow a Gaussian random distribution with a fixed

and known covariance ( E k k
w w WT = , E k k

v v VT =  ). Arriving at numerical values for

the covariance matrices usually requires some combination of experimental data, analysis,

and engineering judgment. Since information about measurement and disturbance cross-

correlation is normally unavailable, W and V are often selected as diagonal matrices.64

The sensor covariance values are almost always easier to determine than the plant

disturbances. The three sensor measurements utilized on the tractor for automatic control

were front wheel angle (δ ), heading (Ψ ), and lateral position (y ). The analog front wheel

angle sensor measurement was encoded by the interface microprocessor as an 8-bit value

for processing by the controls computer. Observations revealed that the primary error on

this sensor was due to quantization. Based on the wheel angle look-up table described

above, the mean quantization level (q ) for the sensor was found, and since the steering

measurement generally changed quickly during these tests, the sensor error was modeled

as a uniform distribution with a variance of 
q2

12  as described by Franklin, Powell, and

Workman.64

The heading and lateral position sensor noise variances were found by taking GPS

measurements with the tractor in a stationary position and computing the standard
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deviation based on the data. Since tractor dynamics are relatively slow compared to the

carrier-phase tracking loops in the GPS receivers, these noise values were assumed valid

for a moving tractor. The final measurement noise covariance matrix used for parameter

identification and estimator design was:

V =
















σ
σ

σ
ψ

δ

Vy

V

V

2

2

2

0 0

0 0

0 0
(6.23)

where the standard deviation values σ Vy , σ VΨ , and σ δV  are found in Table 6.

Vehicle disturbance characterization is significantly more challenging than sensor error

modeling. The difficulty is that the vehicle model identification process is driven by the

covariance estimate W, but W is partially a result of the vehicle modeling process. Often

in estimator design, a rough approximation of a diagonal W is initially used and the values

are later tweaked as design parameters64; however, it is desirable to arrive at the best noise

model possible for the best estimator and system identification performance59. With a

wealth of open-loop experimental data available for the tractor, a method was desired to

estimate W based on data from these experiments. Figure 43 shows one possible iterative

identification process which finds vehicle model parameters based on an assumed W, then

updates W based on the new vehicle model. While this method seems practical, analysis

has shown this process is unreliable and often diverges.

To arrive at a fairly conservative but realistic approximation of W, the Ellis model was

used with an accurate model of V. Defining ΓΓΓΓw  of Equation 6.15 and H  of Equation 6.16

as 3-by-3 identity matrices, Equation 6.16 can be rewritten

x z v
k k k

= −  . (6.24)
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This relation may then be substituted in Equation 6.15 to become

( )z v z v u wk k k k k k+ +− = − + +1 1 Φ Γ  . (6.25)

Collecting known terms on the left side and random terms on the right, the equation

becomes

z z u v v w
k k k k k k+ +− − = − +

1 1
ΦΦΦΦ ΓΓΓΓ ΦΦΦΦ  . (6.26)

Squaring both sides and taking the expected value, the noise terms may be separated by

assuming E k k
v vT

+ =
1

0 , E k k
v w T = 0 , and E k k

v w T
+ =

1
0 , giving

( )( )[ ]E k k k k k kz z u z z u V V W
T T

+ +− − − − = + +1 1Φ Γ Φ Γ Φ Φ  . (6.27)

Since the left side of Equation 6.27 can be found empirically, and V is known, we can

solve for W explicitly from experimental data. Using experimental data, the resulting W

matrix was found to be:

New Disturbance
Covariance Estimate (W)

New Vehicle Model
Parameter Estimate (p)

Parameter Identification
Based on Smoothing

Disturbance Level
Computation

Figure 43 - Iterative Process of Parameter and Disturbance Identification
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The normalized eigenvectors of this matrix are:
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Since these eigenvectors show that the cross correlation terms in the disturbance matrix

are relatively small, and since the goal of this exercise is to arrive at a rough approximation

of the disturbance noise values using a vehicle dynamic model that is known to be false,

we may simplify the estimate of W by eliminating the cross terms. The experimentally

determined standard deviation values σWy , σ ψW , and σ δW  are found in Table 6. When

higher order models were examined, these same three noise values were used with a

modified ΓΓΓΓw  matrix.

It is expected that the value for W will vary for different vehicles, implements, fields,

forward speeds, and operating conditions. The values shown here are conservative values

for a relatively rough field at fairly slow speeds. Modifications may be required when

designing controllers for use in different conditions.

Table 6 - Tractor Sensor and Disturbance Noise Values

Sensor Noise
(1-σσσσ)

Disturbance Noise
(1-σσσσ, 5 Hz)

y 0.5 cm. 2.33 cm.
ΨΨΨΨ 0.0014 rad. 0.0087 rad.

δδδδ 0.0023 rad. 0.0467 rad.
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6.5.3 Off-Line Parameter Identification and Model Selection

The optimal parameters for four continuous state-space land vehicle models were found

by processing open-loop tractor data using the optimal smoothing technique described

above. Each of the following models was identified with heading and wheel angle sensor

bias states.

•  Ellis Model with no steering dynamics (Section 5.2.2)
•  Ellis Model with single steering lag state (see Table 4, model 3)
•  Simplified Wong model with zero lateral rear tire slip (Section 5.2.4)
•  Simplified Wong model with small lateral rear tire slip (Section 5.2.5)

The resulting measurement residuals from the four identified models are shown in Table 7,

and described in detail in Appendix A.

Surprisingly, parameter identification attempts using the direct Wong model diverged for

all data sets. A closer examination of the post-processing results showed that the

eigenvalue associated with the relationship between Vy  and Ωz  (λ 1  of Equation 5.22) grew

without bound as the cost function of Equation 6.17 declined, leading to the conclusion

that the dynamics associated with this eigenvalue was not identifiable using the available

collection of data points. The successful convergence of the algorithm for all other models

supports this suspicion.

Table 7 - Model Identification Aggregate Measurement Residual Results

Vehicle Model y (cm) Ψ (deg) δ (deg)

Ellis 2.34 0.36 2.73

Ellis with Steering Lag State 2.34 0.36 1.43

Simplified Wong - No Rear Lateral Tire Slip 2.33 0.31 1.42

Simplified Wong - Small Rear Lateral Tire Slip 2.26 0.31 1.42
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The simplified Wong model with small lateral tire slip was chosen for automatic control

system design. With appended sensor bias states, this seven-state model has the general

form of Equations 6.29 and 6.30, where the parameters p1  to p5  have a non-linear

dependence on vehicle tire slip parameters, forward velocity, characteristic lengths, and

inertia parameters as described in Chapter 5 (see Appendix A).
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Based on this model, the optimal parameter estimates from all 48 trials were compared to

assess the relationship between the parameters and the vehicle forward velocity and hitch

load. The plots from these trials are shown in Appendix A. Only parameters p1  and p4

showed a strong dependence on forward vehicle velocity, and in both cases the

dependence was approximately linear. Surprisingly, none of the parameters exhibited a

strong correlation with hitch load. The time constants associated with the steering lag and

the heading lag were both on the order of 0.2 seconds, which agrees with visual inspection

of the data and experience driving the tractor.



109

While the relatively low measurement residuals from this model suggested that it may be

appropriate for automatic control over a variety of conditions, automatic control system

results based on this model are needed to provide the ultimate validation.
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Chapter 7

Land Vehicle Control Design

After characterizing the nonlinear land vehicle components, modeling the disturbances,

and selecting and identifying the general linear state-space model, a wide range of design

techniques may be used to generate a viable vehicle controller. In this chapter, a detailed

analysis of the three-state simple Ellis model (Equation 5.5) and the 7800 tractor five-

state model (Equation 6.29, excluding bias states) are explored, and experimental results

from the golf cart and tractor are presented.

7.1 Linear Three-State Land Vehicle Model

Before exploring the intricacies of MIMO control for a large dynamic system with many

states, much can be learned about a complex system by looking at simple special cases.

The simplest model may provide some fundamental properties of the system, even if the

model itself is not entirely realistic. Also, the limiting case may sometimes be used as a

sanity check to verify the need for a more sophisticated model in a specific application.
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7.1.1 Classical SISO Analysis

Recall from Chapter 5 (Equation 5.5) that the continuous form of linearized equations of

motion for the simple three-state vehicle model are
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The desired output for most land vehicle automatic control applications is the lateral

position of the vehicle. If we take this value, y , as the plant output and u  as the plant

input, we may find the single-input single output (SISO) continuous transfer function in

the following manner

Y s

U s
s

s

V
L

x( )

( )
( )= − =−C I A B1

3

2

 . (7.2)

The basic form of the equation is a triple integrator with no zeros.

Without the use of an estimator, Bode analysis shows that a compensator with at least

two zeros is required to provide the positive phase margin needed for a stable SISO

controller. In other words, over some range of frequencies, two differentiations of the

lateral position would be required for successful automatic control. These differentiations

could be performed by a SISO double lead controller, but this would amplify the noise on

the lateral position sensor in the region of lead compensation.

A second possibility is to effectively supply the compensator zeros by utilizing the

measurements of additional vehicle states. This would better reject the noise on the lateral

position measurement, and both mathematics and common sense dictate that extra

measurements should be used when they are available.
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For the implementation described in this chapter, MIMO control system design tools

were used with a full-state estimator and full-state feedback control law. All appropriate

and available measurements were used by the estimator.

7.1.2 MIMO Control Design

Because of its real-world robustness properties and its implementation simplicity, a

Linear Quadratic Regulator (LQR) was used as the baseline MIMO linear controller in

this work55. The LQR technique computes the full-state feedback control algorithm that

minimizes the cost function

J t t t t dtT T

t

= +
=

∞

∫[ ( ) ( ) ( ) ( )]x Qx u Ru
0

 , (7.3)

subject to the dynamic constraints of the continuous state-space equations of motion. It

turns out that for a linear, time-invariant, controllable plant, the control law minimizing

this quadratic cost function is always a linear combinations of the state vector elements:

u K xopt optt t( ) ( )= −  . (7.4)

In the case of the Ellis land vehicle model, when all three states are measured or somehow

estimated from measurements, a stabilizing controller with good performance may be

obtained without explicit differentiation of the lateral position.

One way to view this form of control is as a series of successive loop closures. The

equations for the transfer function between command input and vehicle states Ψ  and δ

are shown below:

Ψ( )

( )
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s

U s
s

s
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x

= − =−C I A B1
2  , (7.5)

δ( )

( )
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U s
s

s
= − =−C I A B1

1
 . (7.6)
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Using root-locus analysis, it can be shown that by successively closing the steering,

heading, and lateral position loops, constant feedback gains are sufficient to force the

system poles arbitrarily far into the stable left half of the s-plane.

7.1.3 Forward Velocity Compensation

The linear state-space equations of motion for the Ellis three-state model (7.1) exhibit a

strong dependence on the vehicle forward velocity. This shows that, as expected, the

dynamic behavior of even the simplest land vehicle is highly dependent on the vehicle’s

forward speed. The LQR techniques described above may be used to arrive at a controller

for a fixed speed, but it is desirable to implement a controller which will work well at any

achievable forward velocity.

The optimal gain matrix K  may be found for individual values of forward speed; however,
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arriving at a closed-form solution for ( )K Vx  is impractical for dynamic models higher

than second order. A plot of the gains for specified Q  and R  values is shown in Figure

44. The closed-loop pole locations using these gains are shown in Figure 45.

On solution to the velocity scaling problem is to update the linear gains of the system in

real-time by gain-scheduling on forward velocity, which is a measurable vehicle state. This

could be done using a look-up table or by computing the LQR gains in real-time.

A second approach to this problem yields a simpler controller that scales linearly with

velocity. Taking the linearized equations of motion that form state-space Equation 7.1,

and dividing through on both sides by the forward velocity (
dx
dt ), the following equations

result:
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dy

dx
= Ψ  , (7.7)

d

dx L

Ψ = 1 δ  , (7.8)

d

dx V
u

x

δ = 1
 . (7.9)

The forward velocity term now only appears in one of the three equations of motion. By

defining a control law which scales linearly with velocity, we may eliminate this time

varying term altogether. A good choice for this controller is to find the LQR gain matrix K

for some nominal forward speed Vx,nom , and define the control law as

u
V

V
x

x

= −
,nom

Kx  . (7.10)

The resulting state-space equations become
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where the new control effort is defined as

~u
u

Vx

≡  . (7.12)

The control law may then be written

~ ~
u = −Kx  , (7.13)

where the new gain matrix is a constant defined by

~

,

K
K≡

Vx nom
 . (7.14)
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This spatial derivative form for the equations of motion is much more elegant than the

time derivative form of the equations. The trajectory followed by a land vehicle is

dependent only on the control effort ~u . With the controller gain matrix 
~
K  defined, the

vehicle will follow the same trajectory regardless of forward speed.

Despite its elegance, this controller suffers from a major drawback which limits its use in

any practical application. As the forward velocity of a vehicle increases, more control

effort is needed to achieve the same ~u . Unfortunately, physical actuators always have a

finite limit to their performance. Bryson’s Rule55 is typically used in LQR design to

directly apply the physical actuator limit into the design parameter R , and the maximum

desired state deviation into the design parameter Q . As a result, the maximum state
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deviation resulting in maximum control effort is fixed.

For the velocity scaled controller, the lateral displacement resulting in a maximum

commanded wheel angle rate will vary significantly with velocity. As shown in Figure 46,

less lateral deviation is tolerated at higher velocities for this controller. It can also be

shown that, at slower velocities, the response time for a velocity scaled controller is

significantly slower than it should be for optimal performance. For these reasons, the

control systems implemented in this work were designed for a specific vehicle forward

velocity.

7.1.4 Effects of Discretization

In most modern control systems, control signal generation is performed digitally, with

measurements taken and commands issued at discrete times. This discretization can have

a significant effect on control system performance, and must normally be accounted for in

control system design using one of the many methods available64.

The controllers in this work were directly designed in the discrete domain using a zero-

order hold equivalent for the plant model. The resulting equations of motion for the three-

state model are
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where Ts  is the sample period, and k is one sample epoch. The single-input single-output

discrete transfer function from control input to lateral position output is

Y z

U z
z

V T
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z z

z
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−
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The exact formulas for the discrete state-space matrices and transfer functions are shown

here. For more complicated dynamic models, such as the five-state model for the John

Deere 7800 tractor, these discrete system values may be found numerically from the

continuous system values using commercially available software tools such at MATLAB.

The lateral position transfer function shows two system zeros at − ±2 3  that were not

present in the continuous transfer function. These zeros do not provide lead to the

system. In fact, as expected, the net effect of the discretization is an increased lag at

higher frequencies64. For the discrete transfer function shown, the uncompensated

frequency response phase is always below -270°.

For the controllers in this work, a special form of the LQR algorithm was used to

minimize the continuous cost function of Equation 7.3 given the discrete constraint

Equation 7.15. This algorithm provides the discrete control system gains for full-state

feedback.

7.2 Linear Five-State Land Vehicle Model

In Chapter 6 (Table 7) it was determined that the best approach for land vehicle state

estimation used a five-state simplified Wong model with assumed small rear lateral tire

slip and two additional sensor bias states. This section explores the need for a more

sophisticated model from a control system perspective, and discusses the need for state

estimation.

7.2.1 Results of Poor Modeling

A very simple analysis shows that the three-state Ellis model is inadequate for control of

the John Deere 7800 tractor used in this work. Figure 47 shows the optimal closed-loop

pole locations for the three-state feedback controller applied to the nominal three-state

plant for varying levels of 
Q

R  at a forward speed of 2.5 meters per second. The closed-
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loop pole locations for the same controller applied to the identified five-state tractor

model are shown in Figure 48. Note that for non-aggressive control (small 
Q

R ), the two

are very similar. However, if the cost on control effort is reduced to produce a more

aggressive controller, performance is significantly degraded as a result of poor modeling,

and the closed-loop system may actually be driven to instability. The two figures show

the pole locations for the nominal 
Q

R  values used on the tractor. These poles in fact lie

outside the unit circle for the poorly modeled case.
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7.2.2 Estimator Design

With only three measurements available in these experiments, some form of processing

was required to provide estimates of all five states required for full-state LQR feedback.

The tool used to find the optimal state estimate based on sensor and disturbance noise

properties was the Linear Quadratic Estimator (LQE). Details regarding estimator design

are found in Section 7.3.1 (golf cart) and 7.4.2 (tractor).

7.3 Golf Cart Experimentation

The initial land vehicle closed-loop experiments in this project were performed using the

golf cart described above. The purpose of these tests was to demonstrate land vehicle

automatic control on a small, manageable platform. This section describes the control

design assumptions, simulation results, and experimental results from this vehicle.
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7.3.1 Golf Cart Controller Simulation

Initial open-loop golf cart experiments suggested that the Ellis three-state model was

adequate to describe the dynamics of this particular land vehicle driving at a speed of two

meters per second on a grass surface. Therefore, this model was used for the simulation

and control system work described here.

Based on the Ellis model, a straight line controller was simulated using LQR techniques.

The state cost matrices used to compute the regulator gains weighted only the vehicle

lateral position deviation and control effort using Bryson’s rule:

Q =
















1
2 0 0

0 0 0

0 0 0

ymax

 , (7.17)

R = 1
2umax . (7.18)

Where umax , the maximum control effort available using the Navico steering actuator, was

± 2 3. / sec.o

, and ymax , the desired maximum lateral deviation, was designed as 0.1 meters.

Table 8 - Golf Cart Sensor and Disturbance Noise Values

Sensor Noise
(1-σσσσ)

Disturbance Noise
(1-σσσσ, 4 Hz)

y 2.0 cm. 0.1 cm.
ΨΨΨΨ 0.3 deg. 0.06 deg.

δδδδ 0.3 deg. 0.3 deg.

ΨΨΨΨbias - 0.006 deg.

δδδδbias - 0.006 deg.
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The purpose of the simulation was to arrive at an anticipated value for control system

accuracy, and to assess the importance of vehicle state and sensor bias estimation. Two

cases were explored in the simulation. In one case, the control signal sent to the vehicle

was a linear combination of the measured vehicle states (“No Estimator” case). In the

second, the heading and front wheel angle sensor biases were appended to the vehicle

state, which was estimated in real-time using Linear Quadratic Estimation (“Estimator”

case). The measurement and disturbance values used to determine the Linear Quadratic

Estimator gains are shown in Table 8. The same regulator gains, sensor noise, and process

noise were used in both simulation cases.

Figure 49 shows the results from the first 200 meters of both simulation cases with an

initial lateral displacement of 0.3 meters, and with heading and wheel angle sensor biases

of 0 5. o
. This simulation was run for a 10 kilometer path to gather the statistical data

shown in Table 9.

Table 9 - Statistical Golf Cart Simulation Results

“Estimator”
( )mean±1σ

“No Estimator”
( )mean±1σ

y (cm) 0 0 3 2. .± − ±8 8 3 7. .

u (deg/s) 0 0 0. .47± 0 0 0 98. .±
Ψbias Estimate(deg) 0 0 0 07. .± N/A

δbias Estimate (deg) 0 0 0 04. .± N/A
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This simulation shows that the controller based on the optimal estimator had three major

advantages. For one, the control effort utilized by the controller with estimator was half

the level of the control without the estimator. Secondly, it was found that a relatively

small sensor bias error results in a significant lateral position bias when these errors are

not estimated in real-time. The simulated 0 5. o

 sensor biases produced almost a 9

centimeter offset in the vehicle line-tracking ability. Finally, the lateral position standard

deviation was reduced by over 10% when the estimator was used to optimally filter the

raw measurements.

Estimator   
No Estimator

0 50 100 150 200
−0.2

−0.1

0

0.1

0.2

0.3

0.4
Lateral Deviation Error (m)

0 50 100 150 200

−2

0

2

4

Control Effort (deg/s)

Physical Steering Limit

0 50 100 150 200
−0.2

0

0.2

0.4

Heading Bias Estimate (deg)

Along Track Position (m)
0 50 100 150 200

−0.2

0

0.2

0.4

Steering Bias Estimate (deg)

Along Track Position (m)

Figure 49 - Golf Cart Simulation results



125

7.3.2 Golf Cart Controller Testing

Golf cart experimentation took place on a large grass field at Stanford University known

as “The Oval”. Since a 10 kilometer data collection run was not possible on this field, two

control modes were designed for the cart – a straight line following mode and a u-turn

mode.

The technique used for golf cart straight line following control was the Linear Quadratic

Regulator and Estimator used in simulation. Sensing and control were both performed at 4

hertz. The measurement of the vehicle positioning antenna was used for feedback (i.e. no

lever-arm correction was implemented). Vehicle CDGPS position was initialized by

starting each test from a fixed, known location. While this method was not truly

repeatable, it was adequate for control system testing.

The u-turn controller was a modified version of the straight line controller with a nominal

feed-forward command designed to track the turn. The feed-forward path was designed to

require up to 75% of the actuator authority, leaving at least 25% for feedback about the

nominal trajectory. The path was numerically stored as a discrete set of nominal states

and feed-forward control commands, as shown in Figure 50.

Two basic tests were performed on the golf cart. For the first test, a number of trials were

Feed-Forward U-Turn Path

Discrete Nominal
Points

Figure 50 - Feed-Forward U-Turn Path
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performed in which the vehicle was commanded to follow a straight line 100 meters long.

Of fifteen trials, three were unable to acquire the line on initialization due to a poor initial

state when the controller was activated. Of the twelve trials that were able to acquire the

line, three more resulted in eventual system instability or saturated actuation producing a

widely varying vehicle path. The results from the nine successful passes are shown in

Figure 51. The lateral position error from these passes was zero mean with a 5.0

centimeter standard deviation. The control effort was also zero mean with a standard

deviation of 1.26 degrees per second. Due to higher than expected disturbances (see

Section 7.3.3), these numbers are significantly higher than the 3.2 centimeter lateral

position standard deviation and 0.47 degrees per second control effort standard deviation

predicted in simulation.
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It is reassuring to note that the ratio of lateral position error to control effort (
Q

R ) is

almost identical to the design value (see Equations 7.17 and 7.18). This suggests that

lowering this ratio by decreasing the cost on lateral position error (or, equivalently, by

increasing the cost on control effort) may prevent the actuator from hard-limiting and

provide better control system stability.

The purpose of the second test was to simulate parallel swath following. The goal was to

perform multiple line tracking trials with rows spaced 30 centimeters apart. After several

attempts, the trajectory shown in Figure 52 was achieved, however, instability on the

turns resulted in many unsuccessful initial trials. The failure to follow the path was

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

One foot

Nine Successful Golf Cart Automatic Control Trials

Along Track Measured Position (m)

C
ro

ss
 T

ra
ck

 M
ea

su
re

d 
P

os
iti

on
 (

m
)

Figure 51 - Golf Cart Line Following Experimental Results

420 440 460 480 500

140

150

160

170

180

190

200

210

East (m)

N
or

th
 (

m
)

Golf Cart Parallel Swathing

Figure 52 - Golf Cart Experimental Swathing



128

caused by the actuator’s inability to tightly track the feed-forward trajectory without

saturation.

7.3.3 Golf Cart Lessons Learned

Several important lessons were learned through implementation of the land vehicle

controller on the golf cart. These discoveries were the direct result of physical

experimentation, and would have been easily overlooked in a strictly computer-based

simulation.

Perhaps the most interesting outcome of the successful golf cart line following

experiments was the high level of noise correlation between trials, which is easily seen in

Figure 51. This path repeatability was not attributable to measurement errors, and the
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level of the recurring disturbances did not appear to be consistent with those expected on

the smooth grass field. Upon examination, it was found that the sharpest and most

repeatable disturbance took place when the golf cart hit the same sprinkler head on each

pass. A closer examination of the data about this point led to the understanding that,

because a lever-arm correction was not implemented, the roll motion of the golf cart was

causing the errors (See Figure 53).

This lever-arm induced lateral disturbance noise accounted for the higher than simulated

lateral position and control effort standard deviations during successful line following.

The three diverging passes were also an indirect result of this unaccounted lever-arm. For

these cases, the roll motion produced large enough errors to saturate the steering actuator,

creating nonlinear behavior that caused the controller to diverge.

Another major problem discovered during golf cart experimentation was the controller’s

poor robustness during line acquisition, u-turns, and large, unanticipated row-following

lateral errors. The vehicle was capable of tracking a straight line only when the vehicle

state was within tight limits, and u-turns were completely unreliable. The experiments

clearly showed that a hybrid controller was required to handle off-nominal and

initialization conditions.

Finally, many of the problems with the golf cart were the result of a very limited actuator.

The maximum front wheel angle rate using the golf cart steering actuator was

approximately 2.3°/second – requiring 25 seconds for a transition from a hard left turn to

a hard right turn. A stronger actuator was desired for further experimentation.

7.4 Tractor Experimentation

Based on the limited control system success demonstrated on the golf cart, work was

performed to implement an improved system on a more realistic platform – the John

Deere 7800 farm tractor. The automatic control of a genuine farm vehicle was the primary
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focus of this project, and these experiments mark the culmination of the research efforts

presented in this thesis.

7.4.1 Expert Human Driver Results

To measure the success and utility of an automatic tractor steering system, it is important

to understand the capabilities of human tractor operators. Even if a tractor controller is

not as fast or as accurate as a human driver, the control system offers certain advantages,

including reduced driver fatigue, low-visibility operation, and the elimination of some

costly farm vehicle accessories. If it is more accurate or faster than a human, greater

efficiency improvements due to reduced row overlap and cost-effective tape irrigation

become possible, and the potential to save money for farmers is dramatically improved.
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To test the potential capabilities of a human driver, Oscar, the best human tractor

operator available on one large farm in the southwestern United States, was chosen for

experimentation. The vehicle navigation system on the 7800 tractor was initialized, the

automatic control system was disengaged, and Oscar was instructed to maneuver the

tractor in a long, straight line with a 10-row bedder in the ground – a task considered

difficult by farmers. In accordance with his usual practices, Oscar used no flags or other

cumbersome field markers to define his row.

0 200 400 600 800 1000
−0.5

0

0.5
Lateral Deviation (m)

sigma = 13.34 cm.

0 200 400 600 800 1000
0

1

2

3

4

5

Position Along Path (m)

Forward Velocity (MPH)

0 200 400 600 800 1000

−0.2

−0.1

0

0.1

0.2

Front Wheel Angle (rad)

0 200 400 600 800 1000
−20

0

20

40

60

80

100
Hitch Load (kN)

Position Along Path (m)

Figure 54 - Expert Driver Results for Line 1



132

After several short “warm-up” passes, Oscar executed two long rows, both exceeding

1000 meters in length. The results from these passes are shown in Figure 54 and Figure

55. Both runs were driven at approximately the typical speed of 1.8 meters per second (4

miles per hour). The standard deviation errors from the best-fit straight line through these

paths were 13.34 centimeters for line 1 and 9.50 centimeters for line 2. Oscar was

assumed to have zero mean error.

It is interesting to note that, for line 2, the wind was blowing from behind the tractor at a

speed slightly higher than the tractor operating speed. As a result, dust from the bedder
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frequently obscured Oscars vision (See Figure 3), requiring him to stop the vehicle until

the resulting dust cloud had blown away from the tractor.

These forward speed and vehicle accuracy results define a major goal for tractor and

implement automatic control research and development. They may be viewed in the eye

of a farmer as the “pay-back point”. When these results can be surpassed by an automatic

farm vehicle controller, it will become easy to justify investing in a piece of hardware to

perform automatic control. The stage has been set for a friendly, yet highly important

competition: “Oscar vs. The Machine”.

7.4.2 Tractor Control Regimes

The tractor controller was designed after testing was completed on the golf cart.

Knowledge and lessons learned from golf cart experiments were used to redesign several

aspects of the land vehicle controller. In addition to adding the lever-arm correction, a

variety of control regimes were added to provide a cushion for any divergent controllers,

provide initialization on the first row, and provide robust, seamless transition between

lines, including u-turns. The resulting controller was a combination of linear and nonlinear

control laws designed to supply maximum accuracy, maximum speed, or maximum

robustness depending on the phase of operation. This complete controller included

automatic switching between control regimes.

The first new control law, rapid acquisition of Closed-Loop Heading, was designed as a

building block for higher-level control regimes. The goal of this controller was to achieve a

desired heading in minimum time. Since this controller was implemented only when

centimeter-level lateral deviation accuracy was not required, the simple 3-state Ellis model

was used for design. Sensor biases were not estimated in automatic control regimes based

on closed-loop heading.
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Using the three-state land vehicle model assumption, it can be shown that the minimum

time state trajectory to acquire a heading is the bang-bang solution. The possible Ψ -δ

trajectories for bang-bang control may be easily shown on a phase plane diagram for a

given control signal u . The bottom two elements of Equation 7.1, combined with the

relation

&& &
&

Ψ Ψ Ψ
Ψ

= d

d
 , (7.19)

may be reduced to

δ2 2= +Lu

V
C

x

Ψ  , (7.20)

where C  is a constant of integration defined by the initial conditions.
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The standard bang-bang control law with parabolic switching curve shown in Figure 56

reflects what a human driver would do on a wide turn. The front wheel is turned to its

maximum angle, and is straightened out just in time to arrive near the desired heading

when the wheel angle reaches zero. Note from the figure that a small linear control region

is included to eliminate chattering by the controller while zeroing out small errors near the

desired heading. This controller was used as a building block for Waypoint Following and

Line Acquisition (including u-turns).

A second controller mode, Waypoint Following, was also added as a high level control

mode. This controller utilized the Closed-Loop Heading controller, setting the desired

heading based on the vehicle position relative to a desired waypoint. This control law was

implemented to perform a mode transition when the vehicle entered a pre-defined
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waypoint radius. This mode switch would cause the vehicle to follow the next waypoint

or, after the final waypoint is reached, acquire a straight line. The waypoint transition

radius was set larger than the land vehicle turn radius to avoid the possibility of encircling

the waypoint indefinitely.

The third general control law added to the high level control system was a Line

Acquisition controller. This heuristic algorithm was also based on the Closed-Loop

Heading controller. Its purpose was to allow a general asymptotic approach to a desired

line regardless of the initial vehicle state. Such a Line Acquisition controller was useful for

acquiring the first row, as well as making end-of-row u-turns. The commanded heading

was related to lateral position deviation by the following relationship:

( )Ψcmd = − −tan 1 ky  . (7.21)

This equation was selected to command a heading perpendicular to the desired row for

very large lateral position deviations (y ), and parallel to the row for very small position

errors. The value of k  was chosen to allow the vehicle to smoothly but quickly transition

onto the line.

The original golf cart Tight Line Controller based on LQR techniques was used with some

minor changes: the lever-arm correction was included in the measurement output equation,

the five-state land vehicle model was implemented, and the maximum control effort was

set to 20 degrees per second to correspond with the tractor actuator. An LQE estimator

was implemented which estimated the five vehicle states along with two sensor bias

states. The disturbance values used in the estimator are shown in Table 6.

7.4.3 Tractor Closed-Loop Experimental Results
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To demonstrate automatic control of a farm tractor, a path was selected to display all

control system modes. Waypoints were set up to bring the vehicle to the beginning of the

initial row, the specialized control law was used for line acquisition, the LQR controller

was used to follow 4 rows, 50 meters long and 3 meters apart, and u-turns were

automatically performed between the rows.
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Fixed-gain controllers were used for three specific tractor operating conditions: first gear

(0.35 meters per second) with no implement, ninth gear (1.6 meters per second) with no

implement, and first gear with a three-shank sub-soiler in the ground during row

following. Figure 57 shows the GPS measured position for two fully automatic control

trials with the tractor in first gear with no implement.

From the scale of the plots in Figure 57, the lateral position error is not easily discernible.

The measurements along each row were transformed into path coordinates and plotted in

Figure 58. This figure shows a close-up view of all four rows for both trials. From the
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plots it can be seen that the lateral displacement error was within one inch for most of the

time. The numerical results for all three operating conditions is shows in Table 10. Two

trials were run for each operating condition with no implement. After the first trial with

the sub-soiler, this sturdy implement came in contact with an equally sturdy ancient

underground pipe, and the “immovable object” won. The sub-soiler was badly damaged,

and only one trial was ultimately performed with the implement.

Further experimentation performed in collaboration with other Stanford students have

corroborated the accuracies and control system integrity shown in Table 10, and have

extended the control system to a wider range of tractor operating regimes.

The figures and tables above show the CDGPS measurements used by the automatic

control system. Therefore, these plots and mathematical results represent the errors

induced by the control system, but do not reflect any navigation system errors. For

example, a constant bias in the navigation solution would not appear in these results since

a position measurement bias is not observable given the sensors available on the tractor.

To determine the total system accuracy of the control system, the true vehicle position is

required. The position measurements offered by CDGPS are so accurate that it is very

difficult to find a better sensor for comparison. A simple test was devised to find the

approximate total system accuracy along straight rows.

Table 10 - Automatic Control System Statistics

Error Statistics
(mean +/- 1σσσσ)

Row Following Controller
Reliability

First Gear
No Implement -0.4 +/- 1.9 cm. 8 out of 8

Ninth Gear
No Implement -0.7 +/- 4.4 cm. 8 out of 8

First Gear
Hitched Sub-Soiler -1.0 +/- 2.0 cm. 4 out of 4
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A 60 meter length of rope was tightly stretched over the field, and the two ends were

surveyed using the tractor CDGPS system. This navigation system was then reset and

reinitialized through satellite motion or by starting at a fixed, known location. A ten

centimeter wide wooden pointer was connected to the bottom of the tractor with

markings located one centimeter apart. A video camera was mounted to the tractor and

aimed at this pointer. The tractor control system was then commanded to drive with the

center of the pointer over the rope. Trials were run without an implement in first gear and

in ninth gear.

CDGPS position measurements were collected while video was taken. The video tape

was later examined on a second-by-second basis and the image of the pointer over the
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rope was used to arrive at a measurement of “truth”. The comparison of the video

measurements and CDGPS measurements for each forward speed are shown in Figure 59

and Figure 60.

The bias between the CDGPS and video measurements was less than a centimeter for

both trials, verifying that the CDGPS initialization was repeatable between trials and for

the rope survey. The plots show that CDGPS is significantly noisier than the video

measurements for both cases. The statistics verify that the standard deviation of the

CDPGS measurements was in fact higher than the true lateral position standard deviation

as measured by the pointer. This suggests that the total system error was smaller than the

CDGPS measured lateral position error due to the linear state estimation and the physical

filtering due to plant dynamics.



142

One possible criticism of this test method is that the CDGPS sensor was used to survey

the position of the rope. In practice, most land vehicle applications will require a survey

of the region of control interest prior to vehicle operations within this region. This survey

will often be performed using CDPGS. For example, a farmer will probably drive around

fields while taking CDGPS measurements to define their borders. While the rope test does

not demonstrate the absolute accuracy of the system, it does show repeatability of the

system, which is just as important.

The resolution of the video camera filming the rope was on the order of a few millimeters,

making it a good method to measure truth; however, a possible cause of error during rope
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tests was lateral deviations of the rope on the ground. Although the rope was stretched

tightly, slowly varying errors in the straightness of the rope could be on the order of a

centimeter or two. A better method for truth comparison would be the use of a laser.

7.4.4 Tractor Experimental Conclusions

In conclusion, centimeter-level control system accuracy and repeatable centimeter-level

total system accuracy were demonstrated on a John Deere 7800 farm tractor. Three

specific operating conditions were demonstrated with 1σ  control system lateral deviation

accuracies better than 5 centimeters in all cases. A robust controller was designed to

follow waypoints, begin rows, perform u-turns, and ensure stability in the case of larger

than expected disturbances.

More testing is clearly needed since these tests were performed in one field with either no

implement or one specific implement. Also, each test was established specifically for a

desired operating condition with no flexibility in the control system gains. Some testing

has been performed in conjunction with other Stanford students with more flexible

controllers, new implements, and new field conditions with promising results. These

results will be presented in future Doctoral dissertations.
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Chapter 8

Alternate Sensor Simulations

The previous chapters in this thesis describe a careful study of land vehicle dynamics and

the successful demonstration of an accurate steering control system using a fixed set of

highly accurate sensors. To design a commercial product for farm vehicle automatic

control, different sensor combinations must be explored in simulation and experimentally;

the set of sensors providing acceptable accuracy and robustness at minimal cost is

desired. This chapter serves as the first step in this process. The simulated lateral

position accuracy is computed for various sensor combinations, and the relative cost of

these combinations is compared.

8.1 Simulation Assumptions

Because this thesis is only concerned with high accuracy GPS control of land vehicles, the

simulations described below all assume centimeter-level CDGPS measurements of the

tractor main positioning antenna. The other four sensors simulated were a CDGPS

attitude receiver, a flux gate compass, a yaw rate gyroscope, and a front wheel angle
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potentiometer. A total of 16 simulation cases were run to explore each possible sensor

combination.

For the simulation truth model, the John Deere 7800 tractor five-state linearized model

was used with a forward speed of 1.0 meters per second and the disturbance properties

found experimentally on the tractor. Each sensor was modeled with a quickly varying

random noise component and a slowly changing bias. The bias was modeled as the output

of a pure integrator driven by Gaussian white noise (also known as a random walk

process).

The random noise values for the CDGPS attitude receiver and the steering potentiometer

were determined experimentally as described above, and were assumed to have negligible

sensor bias drift. The noise driving the slowly varying bias values for these two sensors

was assumed to be very small, since both sensors are expected to have a relatively fixed

bias. The noise and bias drift values used to describe the simulated compass and

gyroscope were taken from a Ph.D. dissertation by Eric Abbott65. All values are all

shown in Table 11.

A Linear Quadratic Regulator and Estimator were assumed in the simulation. The

regulator was designed based on a desired maximum lateral position deviation of 0.1

meters and a maximum wheel rate command identical to the John Deere 7800 tractor. The

estimator was designed using the five-state model with one additional state for each non-

Table 11 - Simulated Sensor Noise Characteristics

Sensor Sensor Random
Measurement Noise (1-σ)

Sensor Bias
Disturbance Noise (1-σ)

CDGPS with correction 1.3 cm. -
CDGPS without correction 6.0 cm. -
CDGPS Attitude Azimuth 1 7 10 3. × −

 rad 1 0 1010. × −
 rad

Compass Azimuth 3 10 2.4× −
 rad 7 8 10 4. × −

 rad
Gyro Azimuth Rate 4 7 10 4. × −

 rad/s 2 0 10 6. × −
 rad/s

Potentiometer Wheel Angle 2 6 10 3. × −
 rad 1 0 1010. × −

 rad
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positioning sensor bias. The “truth” disturbance and sensor noise covariances from Table

11 were assumed by the estimator. The lever-arm correction for the lateral position was

applied only when roll measurements were available using CDGPS attitude. The

simulated truth model and the simulated control system were both run at five hertz.

8.2 Simulation Results

For each sensor combination, a closed-loop linear simulation of straight line following was

run for 100,000 samples. The accuracy statistics based on the simulated “truth” values

are shown in Table 12, along with the approximate cost of each sensor combination. The

tabulated values represent the steady-state estimates and do not include the effects of

initial errors in vehicle state estimate. All sensor combinations resulted in a lateral

position bias error of less than one millimeter.

One quick method of sensor assessment involves comparing the effect each sensor has on

the total lateral position error when used independently. The use of a steering

potentiometer or a yaw rate gyro had the effect of reducing the true lateral positioning

Table 12 - Simulated Lateral Position Accuracy for Various Sensor
Combinations

Trial
No.

CDGPS
Attitude
($2000)

Compass
Yaw

($250)

Gyro
Yaw Rate

($100)

Pot
Steering

($50)

Added
Sensor
Cost

Lateral
Position
cm, 1-σ

Control
Effort

rad/s, 1-σ

1 No No No No $0 11.4 0.303
2 No No No Yes $50 4.2 0.090
3 No No Yes No $100 4.2 0.103
4 No No Yes Yes $150 3.8 0.084
5 No Yes No No $250 7.3 0.209
6 No Yes No Yes $300 3.9 0.086
7 No Yes Yes No $350 3.9 0.100
8 No Yes Yes Yes $400 3.7 0.083
9 Yes No No No $2000 3.3 0.109
10 Yes No No Yes $2050 2.7 0.076
11 Yes No Yes No $2100 2.9 0.093
12 Yes No Yes Yes $2150 2.6 0.076
13 Yes Yes No No $2250 3.3 0.108
14 Yes Yes No Yes $2300 2.7 0.077
15 Yes Yes Yes No $2350 2.9 0.093
16 Yes Yes Yes Yes $2400 2.6 0.076
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error from 11.4 centimeters to 4.2 centimeters. The compass was slightly less effective,

reducing the error to 7.3 centimeters. The error reductions provided by these three

sensors fundamentally resulted from the addition of lead information. The CDGPS

attitude receiver caused the lateral position error to plummet to 3.3 centimeters. This

improvement was caused by a combination of  the lead information provided by heading

measurements and the incorporation of the roll motion lever arm correction.

Further analysis shows that the CDGPS attitude system and compass acting together

(cases 13-16) produce the same lateral position accuracy as the CDGPS attitude system

without a compass (9-12). Also, all cases which included CDGPS attitude with no

compass (9-12), show much better accuracy than cases with the compass and no CDGPS

attitude (5-8). This effect is most likely due to lever-arm correction. In fact, the compass

does not improve the total system accuracy by more than 3 millimeters unless it is the

only sensor used beyond the basic CDGPS.
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A plot of approximate additional system cost (above the price of the CDGPS system)

versus simulated control system accuracy is shown in Figure 61. The points denoted with

asterisks show the best accuracy system within a given cost. It is important to note that a

minimal level of vehicle roll motion was assumed in all of these simulations. If the vehicle

roll motion were significantly larger due to hills or large bumps, the error would be

significantly worse for all trials without a CDGPS attitude sensor.

The control system effort required for a given set of sensors is almost as important as the

control system accuracy. If a control system generates relatively small control signals, the

Q  and R  matrices in the LQR algorithm may be changed to improve performance at the

cost of additional control effort. Table 12 shows that, in general, as the sensors allow

more accurate tracking of vehicle lateral position, the amount of control effort required is
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reduced. One interesting note is that the yaw rate gyroscope and steering potentiometer

have roughly the same effect on system accuracy; however, the control effort exerted with

the gyro is higher than with the potentiometer. This is due to the fact that a steering

sensor inherently provides more system lead information than a yaw rate sensor for the

five-state vehicle model used in this simulation.

It is extremely important to note that this basic study addresses control system accuracy

under nominal operation only. The issues of real-time system identification for adaptive

control and the possibility of sensor outages are not included in the simulation. It is also

important to note that these are simulation results only, and they have not been verified

experimentally. All of these issues merit further analysis, simulation, and

experimentation.
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Chapter 9

Conclusions and Recommendations

9.1 Conclusions

This thesis describes the theoretical and experimental research behind the first successful

demonstration of automatic land vehicle control using CDGPS. To accomplish this task, a

number of specific research contributions were made.

•  A single-pseudolite solution to the CDGPS initialization problem was studied and

experimentally demonstrated, with a resulting navigation system accuracy of better

than 5 centimeters.

•  An original and highly general set of land vehicle models was developed for use in

automatic control system applications.

•  A Yamaha Fleetmaster golf cart was automatically steered with a row-following lateral

position standard deviation of 5.0 centimeters using CDGPS.
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•  A general experimental method to linearize highly nonlinear land vehicle steering

components was proposed and experimentally demonstrated on a farm tractor.

•  A model for a John Deere 7800 farm tractor was selected and identified using a

relatively general optimal parameter identification techniques and experimental data.

•  A robust control system complete with waypoint following, line acquisition, row

following, and u-turn capabilities was demonstrated on the 7800 farm tractor with a

lateral position accuracy (mean plus two-sigma) over a rough field of 4.2 centimeters

in first gear with no implement, 9.5 centimeters in ninth gear with no implement, and

5.0 centimeters in first gear with a three-shank ripper. These CDGPS control system

accuracies were verified using quantitative video data collection techniques.

•  A highly talented expert human driver was evaluated using CDGPS and found to have

a best-case two-sigma driving accuracy of 19.0 centimeters over a smooth, prepared

field in ninth gear with a ten-row bedder.

•  A series of simulations were run to explore the use of various sensor combinations for

automatic control of the farm tractor. Through the use of CDGPS attitude, a yaw

compass, a yaw rate gyro, and/or a steering potentiometer, a tractor traveling at 1.0

meter per second over a fairly rough field can expect to improve control system

accuracy from 11.4 centimeters (1-σ) to as low as 2.6 centimeters.

The most obvious and most important conclusion that can be drawn from this thesis is

that centimeter-level automatic control of land vehicles using CDGPS is feasible – today.

The preceding chapters in this document show that the technical issues relating to land

vehicle control are not easy to solve; however, with continued university research and a

concerted development effort, this technology will soon find itself in real-world land

vehicle applications.
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9.2 Recommendations for Future Work

This thesis describes the first step toward a practical, intelligent automatic control system

for land vehicles based on carrier-phase differential GPS. While the system described in

this work already holds enormous potential to assist farmers after modest development,

this project also offers a wealth of opportunities for continued research at Stanford

University.

• GPS Navigation Research: Several issues relating to pseudolite usage should be

explored. In this work, a single pseudolite was used for a short period of time to initialize

land vehicle CDGPS navigation. Areas of future research may include the use of a single

pseudolite for extended periods at long range to augment the availability and integrity of

the GPS satellite constellation. Also, the use of a dipole pseudolite transmit antenna for

reduced cost and multipath reduction should be explored experimentally.

• “Low-Level” Automatic Control: This work also opens up countless opportunities

for research in the area of automatic control. At the sensor level, accuracy, availability,

and robustness properties of new sensor and actuator combinations could be explored and

implemented experimentally, including inclinometer sensors and roll and pitch

gyroscopes. In the user interface arena, the development and testing of a graphical display

for human-in-the-loop automatic control of land vehicles is desperately needed. On the

automatic controls side, new capabilities could be added to the current experimental

system by including the automatic control of a vehicle with a towed implement,

successful control on hilly terrain, or the ability to follow arcs, spirals, and other arbitrary

curved paths. A controller is also needed that is robust to real-time vehicle parameter

variations.

• “High-Level” Automatic Control: At a slightly more sophisticated level, a number of

high-level robotic functions may also be addressed for future research. Such topics include
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real-time path planning to reach a desired state, adaptive contour plowing, adaptive and

guaranteed row overlap, and possibly even path planning over an entire field.

9.3 Closing

The automatic control of land vehicles has been a goal for many years. With the recent

development of low-cost, high-precision satellite navigation technologies, automatic land

vehicle steering systems are finding their way into countless industries. One of the first

industries to take full advantage of this newfound navigation capability will almost surely

be agriculture. Most farms provide an environment highly suitable for satellite navigation,

and most farmers will quickly realize the financial benefits to be gained by utilizing this

technology. Within the next few years, automatic farming will dramatically affect the

entire farming industry, improving the quality of life on farms as well as the quality of

food production throughout the world.
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Appendix A

Parameter Identification Results

The resulting measurement residuals for the four land vehicle dynamic models described in

Chapter 6 are shown below. For each of the 24 trials plotted, the optimal parameters

were identified using the Idan method, and the data was processed through a causal

estimator based on these parameters. The resulting measurement residuals were then

compared for model selection purposes.

As expected, lateral position and heading estimates become significantly worse at higher

speeds for all models. An interesting note is that the Wong-based models, which allow for

front lateral tire slip, perform dramatically better in heading estimation than the Ellis-

based models at high speeds. The only noticeable improvement in lateral position residual

comes with the allowance for small amounts of rear tire lateral slip.

It can be seen that the addition of a steering dynamic lag term has a significant effect on

the performance of the estimator, reducing the steering measurement residual almost in

half. The overall wheel angle measurement residual is relatively consistent between high

and low speeds.
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The identified parameter estimates for the seven-state model, using all 48 open-loop trials

as described in Chapter 6, are shown in this appendix. Each parameter is plotted

independently as a function of vehicle forward speed and hitch load. The following

vehicle model was used
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Based in the theory described in Chapter 5, these parameters have the following expected

values:

p Vx1 ≈  , (A.2)

p c2 ≈  , (A.3)
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 , (A.5)

p
steering

5

1≈
τ  , (A.6)

where c  denotes the distance from the vehicle rear axle to the center of vehicle rotation.

Note that the relatively consistent value for the parameter p3  and the linear velocity

dependence of the parameter p4  suggest that the lateral tire slip coefficients are linearly

dependent on forward velocity.
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Figure 65 - Parameter 1 Versus Forward Velocity
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Figure 66 - Parameter 1 Versus Hitch Load
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Figure 67 - Parameter 2 Versus Forward Velocity
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Figure 68 - Parameter 2 Versus Hitch Load
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Figure 69 - Parameter 3 Versus Forward Velocity
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Figure 70 - Parameter 3 Versus Hitch Load
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Figure 71 - Parameter 4 Versus Forward Velocity
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Figure 72 - Parameter 4 Versus Hitch Load
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Figure 73 - Parameter 5 Versus Forward Velocity
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Figure 74 - Parameter 5 Versus Hitch Load
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