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ABSTRACT

This dissertation describes an onboard closed loop navigation and control
system capabie of executing extremely precise orbit maneuvers. In particular, a
system to adjust the orbit of the Gravity Probe B (GP-B) spacecraft is developed and
evaluated. This onboard system relies on the Global Positioning System (GPS) to
provide navigation information directly to the vehicle, thus alleviating the need for
extensive ground support.

GP-B is a NASA project designed to measure two relativistic effects on
orbiting g-yroscopes to an unprecedented accuracy. The exacting science goals of the
mission place extremely stringent requirements on the spacecraft orbit. The ideal
orbit is circular, polar, and contains the line of sight to a guide star which serves as a
distant inertial reference. However, once the experiment begins, the spacecraft will be
controlled by a drag compensation system; thus, the only opportunity to adjust the
orbit is prior to the start of science data éoliection. In this research, we specify the
target injection orbit based on orbit modeling over the entire 18 month mission, in
order to best satisfy the ideal conditions on average. The perturbing effects of the
geopotential, the Sun and the Moon gravity gradients, and other forces on the orbit are
considered. Simulations show that the target inclination must be achieved to an

accuracy on the order of 2 x 104 deg (25 m) to satisfy the experiment goals.
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The design of a GPS based navigation system and onboard orbit trim system is
presented. The role of the navigation system is to provide an estimate of the satellite
position and velocity state to the control system in a form that can be used to
determine the necessary orbit adjustments. This is accomplished by breaking the
state estimate into two parts, the target state and linearized deviations from the
target. The target state is propagated in closed form including the effects of the Earth
oblateness and other significant terms in the geopotential. An extended Kalman filter
propagates the linearized state estimate and incorporates information provided by
GPS. Two types of GPS receivers are considered: a high quality, dual frequency
receiver capable of elirhinating the effects of Selective Availability (SA), and a lower
accuracy variety which is subjected to SA level errors. Although the navigation
accuracy of the lower quality receiver is degraded, both types were found to perform
well in the closed loop orbit trim system.

The objective of the trim system is to achieve the target state in minimum time.
Actuation is provided by the onboard helium micro-thrusters with maximum specific
force of 0.2 pg in each axis. In the linearized dynamical equations, the in-plane and
out-of-plane motions are decoupled. The time optimal control calls for maximum
authority at all times with the direction determined by a switching curve. Orbit plane

maneuvers of 0.01 deg and eccentricity adjustments of 0.001 are demonstrated.
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CHAPTER 1. INTRODUCTION

1.1 Problem Statement

Advances in sensor technology and onboard processing capability have prompted a
shift in the control of many spacecraft functions from ground based commands to
onboard closed loop control. For example, autonomous attitude control is routinely
performed using sensors, actuators, and digital control logic. In fact, major spacecraft
slewing maneuvers, such as those performed during initial acquisition, are carried out
under onboard closed loop control. Orbit adjustment and major stationkeeping,
however, is still carried out by execution of a sequence of commands sent from the
ground. This has been driven by the requirement for ground tracking to determine the
spacecraft orbit. The advent of the Global Positioning System (GPS) eliminates this
constraint by providing position and velocity information of unprecedented accuracy
directly to the vehicle.

This dissertation describes an onboard closed-loop navigation and control system
capable of executing extremely precise orbit maneuvers. By utilizing GPS navigation
information and an onboard controller to perform a precise orbit trim, the system
circumvents the need for extensive ground support.

The particular application considered is an orbit trim system for NASA's Gravity
Probe B (GP-B) spacecraft; however, the same technique is adaptable to other
satellite missions. GP-B is a good example because it requires a circular, near Earth,
polar orbit which would be useful for other missions such as Earth observation. One
unusual aspect of GP-B is that the orbit control system will only be used at the start
of the mission to guide the satellite to its target orbit after separation from the launch

vehicle upper stage. After this final orbit trim, the spacecraft will follow a “drag-free”
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orbit, and no additional translational control may be applied. On a inoie conventional
mission, the closed loop system would be employed continuously or perhaps
periodically.

The first step in the design of such a system for any space vehicle is to select the
appropriate target orbit. For GP-B this involved modeling the orbit motions over the
course of the 18 month mission to first of all determine if certain stringent
requirements could be met, and second to find the optimal initial offsets from the
nominal orbit. The results of the orbit modeling studies indicate that a very precise
orbit injection must be achieved to meet the tight requirements of the GP-B science
mission. Based on this work, it was realized that the launch year would have a
significant effect on the orbit motion and on the type of disturbance modeling needed
for the science data reduction.

The design of a GPS based navigation system and onboard orbit trim system is
presented. The navigation system is required to provide estimates of the GP-B orbit
to the onboard controller and to the ground for verification purposes. The controller is
designed to adjust the spacecraft orbit to‘thé target in minimum time. The control
actuators are continuously operating helium thrusters with a maximum force capability
of only about 10 mN. The performance of the closed loop navigation and control
system is evaluated via computer simulation. The results demonstrate that the
expected range of Delta II injection errors can be corrected in approximately 10 days of
controller operation using the helium thrusters.

The following sections summarize the contributions of this work and provide
background information on the GP-B mission, the launch vehicle, and the Global

Positioning System.
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1.2 Contributions

The research described in this dissertation represents a significant development
for the GP-B program and serves as a starting point for the design of a similar system
for other applications. It has extended earlier work on modeling of the GP-B orbit, and
forms the basis for the baseline navigation system design and post launch orbit adjust.
The specific contributions may be summarized as follows:

1. Modeled long term orbit motions of the spacecraft orbit.

2. Identified average target orbit elements based on the mission start date and

determined the allowable injection errors.

3. Derived instantaneous target orbit elements to account for significant short

term gravitational effects.

4. Outlined the design of a GPS based onboard orbit determination system.

5. Developed a closed loop control algorithm for orbit trim (utilizing navigation

information from GPS) to issue commands to the onboard, low thrust helium

actuators.

This work representis the first use of GPS in a closed ioop spacecraft application.
It draws on past research from both the GP-B program development and the GPS
navigation field. It has specific applicability to GP-B and has a broad potential for

other spacecraft missions.

1.3 Gravity Probe B (GP-B)

GP-B it 2 NASA project primarily designed to test two aspects of Einstein's
theory of General Relativity. Based on General Relativity, L.I. Schiff predicted that a
gyroscope in orbit around the Earth will undergo two motions not predicted by

Newtonian analysis. These are known as the gecdetic and frame-dragging
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precessions. In a precisely polar orbit at an altitude of approximately 650 km, the two
effects would be orthogonal, with magnitudes of 6.6 arcsec/yr and 42 marcsec/yr,
respectively (Figure 1.1). The GP-B spacecraft, planned to be launched in 1997, will
carry extremely sensitive gyroscopes designed to measure these relativity effects to
an accuracy of three tenths of a milliarcsecond (0.3 marcsec) or better. The history of
the program development, which began about 1963, and the technology applied to
solving the problems associated with measuring the relativity effects are described in

references such as Everitt [1980].

A9 = 6.6 Sechyr
(GEODE?%’)

Figure 1.1 Geodetic and Frame-dragging Precessions

Every effort is taken to reduce disturbances which would cause Newtonian drifts of
the gyroscopes in order to achieve this unprecedented level of accuracy. The
experimental package has been carefully designed making use of cryogenics and
superconductivity to create a stable, disturbance-free environment. The relativity
gyros are quartz spheres coated with superconducting niobium, electrostatically
supported inside a quartz housing. The entire cryogenically cooled experimental

package is carried on a “drag-free” satellite which uses proportional helium thrusters
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to counteract all nongravitational forces acting on the spacecraft. Each of the four
gyros is spun up so that its axis is initially aligned with the line of sight to the star
Rigel to within a few arcseconds.

The direction to Rigel serves as a “distant inertial” reference against which the
relativity drifts are to be compared. A telescope mounted along the vehicle axis of
symmetry senses the apparent position of the guide star. The pointing control system
will keep the spacecraft aligned toward this image to within 20 marcsec [Parkinson
and Kasdin, 1988]. Over the course of the experiment, the star image will move due
to both the physical drift of the star, known as proper motion, and optical effects such
as parallax, deflection of starlight, and annual aberration. All of these effects are well
known and can be reliably calibrated and removed in the data reduction.

Proper motion refers to the change in the position of the star relative to very
distant objects in the universe. In 1979, Anderson and Everitt calculated that for Rigel
this motion was known to better than 1.7 marcsec/yr [Everitt, 1980]. They also
anticipated that significant improvements in this knowledge would be made prior to
the launch of the GP-B spacecraft in the late 1990s. Parallax is an apparent motion of
the star with period of one year and amplitude of less than 3 marcsec which is due to
the finite distance from the Earth to Rigel [Everitt, 1980]. The bending of starlight by
the Sun is a relativistic effect which has a yearly period and produces a maximum
deflection of the gyroscope of 15 marcsec [Duhamel, 1984]. Finally, the annual
aberration is due to the component of the velocity of the Earth around the Sun
perpendicular to the line of sight to the star. It also has a yearly period with a much
larger amplitude of about 20 arcsec [Vassar, 1982a). This large motion provides a very
reliable means for calibrating the measurements from the science gyroscopes.

An additional gyro drift term must also be identified in the data reduction. A

geodetic drift of 19.2 marcsec due to the Sun is expected to occur in the same direction
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as the frame-dragging effect. This can be accurately calibrated based on the results of
the determination of the Earth geodetic effect.

The most difficult errors to correct are Newtonian drifts of the gyros. These drifts
would be caused by forces exerted by the suspension system on the nearly spherical
gyros. The spacecraft has been designed so that most of these forces will average to
zero over an orbit or over the 10 minute roll period. However, if the spacecraft
symmetry axis does not lie in the orbit plane, gravity gradient torques on the
spacecraft will not average to zero, and there will be a net support force exerted on the
gyros. Such a misalignment will occur for two reasons: 1) the spacecraft must rotate
to track the apparent motion of the star, and 2) the orbit plane will rotate due to
perturbing gravitational forces. The largest contributor to the spacecraft rotation is the
20 arcsec annual aberration which must be tracked. This dissertation focuses on the
errors which are produced by the orbit plane motion and provides a means for them.
Further background information on GP-B can be found in references such as Parkinson
et al. [1986, 1987].

The orbit of the GP-B satellite is critical to minimize the disturbances on the gyros.
Ideally, the spacecraft musi follow a purely gravitational path, or geodesic, through
space. It should be preferably in a precisely polar orbit which contains the guide star
to cause the geodetic and frame-dragging effects to be orthogonal, and as circular as
possible to simplify the data reduction. Motions out of the prescribed orbit plane are
particularly harmful because they cause Newtonian drifts, described above, which will
be difficult to calibrate in the data [Vassar, 1986].

In addition to the primary relativity experiment, the spacecraft also may serve as a
platform for two co-experiments in geodesy and aeronomy. The objective of the
geodesy experiment is to use GPS data collected onboard GP-B to improve the

accuracy of the geodetic model of the Earth. It is expected to reduce the GEM T1
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Earth Model errors by a factor of more than 100 for coefficients of degree 5 through 32
[Tapley, et al., 1989]. The acronomy experiment uses the data from the drag-free
translational control system to determine a better model of the Earth's atmosphere at
orbital altitude [Jafry, 1989]. Both of these projects require accurate orbit
determination and a nearly circular orbit. Thus, a precisely determined orbit is
required for relativity, geodesy, and aeronomy objectives. A GPS based navigation
system as part of an onboard optimal trim system should also be able to satisfy these
needs.

Some previous work has been done on modeling the GP-B spacecraft orbit by
Vassar presented in his thesis [/982b] and in subsequent reports at Lockheed
[1986]. In particular, he considered the effect of launch date and orbit inclination on
the accuracy of the relativity measurement. Later, he also modeled the solar effect on
the orbit plane [Vassar, 1986]. Orbit effects on the relativity data were considered by
Vassar, Breakwell, and Van Patten [1982a]. In his 1977 Ph.D. dissertation entitled
“A Theoretical Analysis of a Relativity Mission with Two Counter-Orbiting Drag-
Free Satellites,” Schaechter evaluated the influences of the higher Earth harmonics,
Sun and Moon, precession of the equinoxes, and other disturbances on ranging
measurements made between two proposed relativity satellites [1977].

Orbit modeling and prediction in general has been addressed in a tremendous
number of papers. Recent work of satellite geodesists has greatly improved the
accuracy of the gravitational model of the Earth. In particular, resonance effects on
near Earth satellites have yielded information for individual harmonic coefficients of
relatively high order. The orbit modeling performed in this research is based on the
approaches presented by Breakwell in the Stanford course AA279B [1987]. This
thesis represents the most comprehensive study, thus far, of the orbit effects for the

current GP-B mission concept.
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1.4 Gravity Probe B Launch and Injection

The current plan is to launch the GP-B spacecraft on a two-stage Delta II booster
equipped with an improved guidance system [McDonnell Douglas Inc., 1989; Green,
1990]. Guidance for the Delta is provided by an inertial system known as DIGS. The
currently used configuration does not have the ability to target an inertially fixed orbit
plane except through the selection of the launch time and allowable window. A
planned upgrade to the onboard computer will rectify this situation in order to permit a
payload such as GP-B to target the desired ascending node direction [Green, 1990].

The first stage of the Delta II consists of a main engine and nine solid-rocket motor
boosters which burn out and separate from the rest of the vehicle after about 250 sec.
Following a short coast period, the second restartable stage ignites prompting the
release of the payload fairing. At this point, the GPS receiver on the GP-B spacecraft
is expected to acquire satellite signals and compute a reliable position and velocity fix.
The GPS fix will be provided to the Delta computer in order to calibrate the DIGS gyro
misalignments and possibly to reset the onboard position and velocity estimates.
This is expecied io improve significantly the achievable injection accuracy.

The second stage burns for about 200-400 seconds, and then the vehicle coasts in
a Hohmann transfer orbit for about 2900 seconds. The upper stage is then reignited to
circularize the orbit. Proper timing of the cutoff should permit accurate attainment of
the orbit altitude and eccentricity required, as further discussed below. The vehicle
separation from the payload will impart only a minute Av to the spacecraft.

At this point the GP-B spacecraft will begin its initialization and checkout
procedures. An attitude reference must be established to provide coarse information
to the onboard navigation and control systems. Thruster calibrations and telemetry
and command verifications are then carried out. Calibration of the exiremely low force

thrusters is critical for transiational and attitude control during the science mission.
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Once this has been completed, the task of the closed loop orbit trim system begins to
maneuver the orbit so as to remove any residual orbit errors left by the booster
system. This phase may last about 10-15 days during which time other housekeeping
and start-up procedures such as gyro spin-up may also be accomplished.

The task of the onboard GP-B orbit trim system is to adjust the orbit achieved by
the booster so that it meets the requirements. For the purposes of this study, two
sets of booster injection accuracies are considered. The first is a “poor injection” with
errors in the coinclination and node of + 0.01 deg (1.25 km), and errors in the
eccentricity vector of + 0.0015. The second is a “good injection” with orbit plane
errors of +0.005 deg (625 m) and eccentricity errors of 0.0007. In both cases we
assume altitude errors of £ 0.5 km. These numbers are consistent with the

performance expected from the improved Delta II guidance with GPS updates.

1.5 Gilobal Positioning System (GPS)
The NAVSTAR GPS is a satellite based navigation system currently under

deployment by the United States Air Force. In its planned configuration it will consist
of a constellation of 24 satellites, each broadcasting a highly accurate ranging signal
and its own orbital and clock parameters. The signal consists of an L-band carrier,
modulated by 1 MHz and 10 MHz identifying codes and a 50 Hz navigation message.
A user receiving signals from four or more satellites can passively determine its
position and velocity. Further information on GPS can be found in references such as
Milliken and Zoller [71980], ION [1980, 1984, 1987], or Wells et al. [1986].

To perform onboard orbit determination, a spacecraft must be equipped with a GPS
receiver, a set of antennas, and a navigation processor. Recent advances in GPS
receiver technology have made possible highly accurate and reliable units suitable for

space applications. These receivers are capable of simultaneously tracking both the
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code and carrier signals from all GPS satellites in view. Antenna designs have also
progressed significantly, resulting in small units which are highly resistant to
multipath interference. A minimum of three such antennas must be mounted on the
spacecraft to provide continuous tracking of all available satellites. Additional
antennas may be required if the spacecraft has large ~bstractions such as solar
panels, or if vehicle attitude is to be derived from GPS as well. The receiver takes
signals from the antennas and provides both range and range rate measurements to
the navigation processor. Using these state-of-the-art components, GPS range
accuracy is expected to be approximately 5 m (1- 6) and range rate accuracy about
0.01 m/s (1- ©). Less accurate measurements will occur during any period when the
Air Force deliberately degrades the GPS signals. A more detailed discussion of GPS
navigation and error sources will be given in Chapter 3. '

In the past five years there has been an explosion of interest in the use of GPS for
a wide array of applications. Most near Earth spacecraft planned for the 1990s and
beyond- including the Shuttle, Space Station Freedom, and TOPEX- will have GPS
receivers onboard performing a broad range of navigation functions [c.f. Jekeli, 1990].
The use of GPS in a closed loop system was first suggested by Parkinson and
Fitzgibbon for an aircraft automatic landing system [1989]. The orbit adjustment
system proposed here draws on much of this prior navigation research and ties it

together with time optimal control theory for a linear dynamic system.



CHAPTER 1. INTRODUCTION 11

1.6 Thesis Outline

The following chapters correspond to the three main topics of this research: (1)
orbit modeling, (2) spacecraft navigation, and (3) spacecraft translational control. The
orbit modeling section describes the orbit requirements for GP-B, the methods used to
predict the trajectory of the spacecraft over its 18 month mission, and simulation
results used to determine the target injection orbit. Chapter 3 discusses the
navigation system design including the basic layout of the GPS receiver and the
navigation processor. It illustrates open loop navigation system performance and
raises the significant implementation issues. The closed loop orbit trim system is
described in Chapter 4. A bang-bang control algorithm is described which adjusts the
orbit in minimum time using the onboard helium thrusters. Simulations of the closed
loop system performance are presented and discussed. The final chapter summarizes
the results and contributions of this work and provides an outline of future study and

related applications of the techniques described.
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2.1 Introduction

The primary drivers in the selection of an appropriate orbit for the GP-B spacecraft
mission are minimizadon of torques from nongravitational forces on the science gyros,
separation of the geodetic and frame-dragging effects, and maximization of the
relativity and geodesy data signals. This translates into an ideal orbit which is
circular, polar, and contains the guide star, Rigel. Nongravitational disturbances on
the orbit during the science mission are reduced to less than 10-10 g’s through the use
of a drag compensation system; however, this precludes any type of orbit adjustments
to maintain the nominal orbit. There are three major ramifications: 1) orbit corrections
can only be performed prior to the start of science data collection, 2) the orbit
requirements can only be satisfied on average, and 3) the target injection orbit must
be determined very accurately, accounting for the deviations which will occur over the
course of the mission. Clearly, a priori modeling of the GP-B orbit is critical.

This chapter describes the modeling of the GP-B orbit. The first section provides
background on the the orbit requirements. Variational equations are derived for the
set of orbit elements used to describe the GP-B orbit in Section 2.3. The following
sections develop the models of the perturbations caused by the Earth's noncentral
gravitational field, the Sun and Moon, the precession of the equinoxes, and the
spacecraft residual drag. Both analytical formulae and numerical simulation results

are presented to show the orbit variations over the course of the 18 month GP-B

mission.

12
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2.2 Orbit Requirements

The parameters of the spacecraft orbit influence both the relativistic drift and the
Newtonian precession of the science gyros. The ideal orbit is circular, polar, and
aligned with the direction to the guide star, i.e. Rigel lies within the orbital plane. If

such an orbit could be achieved, it would have the following advantages.*

1. Gravity gradient torques on the gyros average to zero over an orbit.
2. Suspension torques on the gyros average to zero over an orbit.

3. Geodetic and frame-dragging effects are orthogonal.

4. Data reduction is simplified.

If the orbit is nearly circular, it has the added benefit of obtaining the minimum
average altitude for a given dewar size.

Of course, it is impossible to maintain or even to inject the spacecraft into the
nominal orbit perfectly. Thus there will be precessions of the science gyros other than
the northerly geodetic and the eastwardly frame-dragging drifts. There are two ways
to deal with these disturbances to the relativity signals. The first is to try to reduce
the disturbance to an acceptably small level. If this is not possible, the second
approach is to account for the disturbance by mathematically modeling it in the data
reduction. In'practice it is likely that a combination of these methods will be
employed. The current goal is to reduce the physical error in the frame-dragging drift
to 1% of the expected value, i.e. 0.4 marcsec/yr. Of this we allocate about 0.1
maicsec/yr to errors caused by orbital effects. In the following paragraphs the
contributions to the measured science gyro drifts due to orbit deviations from the

nominal are summarized and possible calibration methods are briefly discussed. The

* These advantages are only approximate. That is, given the ideal orbit, the Newtonian torques on the
gyros will approximately average to zero. Further discussion of this can be found in Keiser [ 1985].
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general recommendation is that deviations from the ideal orbit plane should be reduced

to the lowest level possible.

2.2.1 Relativity Drifts
The orbit averaged geodetic and frame-dragging drift rates were given by Everitt

[1980] as follows:

$c = Ac (cos i cos O - sin i sin 8g sin Q )E + Ag sinicos 2 N

(2.1)
Spp = -%AFD [(1+3 cos 2i ) cos g - 3 sin 2i sin g sin Q1 E
- 32—App sin 2i cos 6p N
where the relativity drift constants Ag and Agp are,
_3_ Hen ’ _ Gl o (2.2)

2 c2a(1- €2)  2¢23(1- €22

and ug is the Earth's gravitational constant, /¢ is its moment of inertia, and c is the
speed of light. The orbit rate is n; a, i, and e, are the semimajor axis, inclination, and
eccentricity of the orbit; g is the Earth's sidereal rotation rate. The declination of
Rigel is g, and the right ascension of the orbit ascending node, referred to Rigel, is £2.

For a 650 km circular orbit the computed values of Ag and Arp cos Og are 6.6 arcsec
and 42 marcsec per year, respectively [Parkinson, et al., 1986]. Notice that these

coefficients would become smaller if the semimajor axis, @, were increased.

By making approximations for small values of the coinclination, i’, and node, £,

Eq. 2.1 becomes

S = Ag (i cos g~ Q2 sindg)E+Ac N 2.3)
S;rp= AppcosOr E - App3icos6r N
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Thus the geodetic signal appears primarily in the north direction, whereas the
frame-dragging drift is primarily easterly. However, since AG is two orders of
magnitude larger than Arp, we should compare the eastward component of the
geodetic drift to the primary frame-dragging term. Substituting the declination of Rigel
into Eq. 2.3 gives,

Seea=Agli'-0.15Q) 2.4

In order to separate this term from the frame-dragging drift, we must know the
values of the coinclination and node of the orbit to better than about 10-3 deg (125 m).
The eastward component of the geodetic drift can be determined by first obtaining the
geodetic coefficient based on the northward drift alone (the northward frame-dragging
drift is negligible). The frame-dragging term is then isolated by estimating and
removing the eastward geodetic drift based on XG and the time history of the

inclination and node.

2.2.2 Newtonian Precessions
Vassar [1982b, 1986] identified and modeled the orbit dependent torques and the

resulting Newtonian precessions of the gyroscopes as part of an end to end error
analysis of the relativity mission. The most significant drifts are caused by torques
produced by the gyro suspension system acting on the nearly perfect gyros. The
suspension system keeps each of the science gyroscopes centered within the housing
and supports it against residual specific forces including gravity gradients due to the
separation of the gyro from the proof mass, centrifugal acceleration due to spacecraft

roll, random drag, and disturbances caused by the pointing system.

Vassar found that the largest contribution was due to the gravity gradient forces,

and computed the resulting gyro drift rates to first order in the angle between the gyro
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spin axis and the orbit plane (7). This angle is given by the following combination of
the orbit coinclination (i’ ) and node measured relative to Rigel (£2) [Vassar, 1986].

¥ =i'sin 8g + 2 cos 6p (2.5)

Gyro drifts due to both primary suspension torques caused by the interaction of the
support forces counteracting the gravity gradient with the gyro out of roundness, and
the secondary suspension torques due to the asphericity of the gyro and the
asphericity of its housing were considered. The rotor shape is modeled by a spherical
harmonic expansion similar to the model of the Earth's graviational field. Vassar
found the dominant component to be the primary torque due to the even terms in the
harmonic expansion which produces a northward drift of approximately 500 y marcsec/

yr, where ¥ is measured in radians. Thus

Sge = 500 (i' sin 6p + £2 cos Or ) milliarc seclyr (2.6)

This expression can be integrated using the results of long term simulations of the
variations of the orbit plane to determine if the Newtonian drift will be within the
desired error margin of 0.1 marcsec. In Section 2.8 it will be shown that this goal can
be achieved if high

The suggestion has been made that if the Newtonian drift is in fact significant, it
would be possible to calibrate it in the data reduction based on the orbit plane time
history. There are several difficulties which might arise in trying to carry out this
scheme. For example, the effects of capacitance differences, gyro mis-centering, drifts
in the suspension system null, and thermal gradients would be impossible to model
and calibrate. It may be possible to extract from the measured data enough
information to determine coefficients describing the mean shape of the gyroscopes

using techniques developed by Feteih [1990], and Cohen [1990]. However this would

add significant complications to an already difficult data reduction task.
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223 Aliitude Variati

The requirement for the GP-B spacecraft to be placed in a nearly circular orbit is
based on two objectives - to make the eccentricity small enough that second order
terms can be ignored, and to keep the average orbit altitude as low as possible. In
order for the spacecraft to remain drag free, the translational control system must have
sufficient control authority to compensate for the maximum atmospheric drag, which
generally occurs at the perigee of the orbit. Since the dewar must be sized for the
altitude at perigee, the minimum average semimajor axis would be achieved by a
circuiar orbit. Unfortunately, as will be shown in Section 2.9.2, the combination of the
Earth oblateness and odd harmonic terms, cause even an initially circular orbit to
become elliptical. Based on the nominal dewar lifetime, periodic altitude variations of

15 km are considered tolerable; corresponding to a maximum eccentricity of 0.002.

2.3 Orbit Perturbation Equations

Figure 2.1 shows the orbit elements used to describe the GP-B orbit. They are
similar to the Delaunay and the equinoctial elements often mentioned in the literature
[Battin, 1987]. The semimajor axis, a, and right ascension of the ascending node, £,
in this case referred to Rigel, are two of the classical elements. The coinclination,
i'= -’% - i is substituted for the inclination, i, to facilitate small angle approximations for
the near polar orbit. Because the orbit is nearly circular, the classical perigee angle
and true anomaly are poorly defined, so the components of the eccentricity vector in
the equatorial plane, £, and in the northward direction, 77, and the argument of

latitude, u, or the mean argument of latitude, ug, are used instead.

E=ecosw, MN=esinw, u=f+w, u=M+ow 2.7
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Disturbing forces exerted on the GP-B spacecraft cause its orbit to deviate from a
Keplerian ellipse. For a typical near Earth spacecraft these disturbances are primarily
due to the noncentral terms in the gravitational field of the Earth, gravity gradients of
the Sun and the Moon, and atmospheric drag. GP-B is unusual in that the drag
compensation system will eliminate the atmospheric drag and solar pressure effects
on the orbit down to a level of less than 10-10 g’s. Other sources of orbit perturbations
which must be considered are solid Earth tides, precession of the equinoxes, and
residual drag.

The effects of these disturbances on the orbit elements can be analyzed using
standard variational methods, expressed in terms of either a perturbing potential or
force. For small disturbances to a near circular orbit we can model the position and

velocity'deviations from a Keplerian orbit using the linearized Euler-Hill equations.

2.3.1 Disturbing Potential
The perturbation equations for the classical elements, known as Lagrange's

Planetary Equations, are given in Eq. 2.8, where U is any perturbing potential

[Breakwell, 1987].

da _ o [a oU

dr pue oM

de -7 a_U_QQ)
dt eNUuga oM Jw

(2.8)
2

dM _,[He 5 @ U, V" U

dt a3 Ue da +e«/y£a de

di o _emi W ___ 1 U
dt  yApza 90 yJugasini 9Q

dQ .. 1 U
dt y Nz asini 0i




CHAPTER 2.

ORBIT MODELING FOR GRAVITY PROBE B

Plane \

Orbit
Plane

Celestial
Equator

yd Q,

Y

a - semimajor axis

&= e cos w - component of e vector in equatorial plane

N = e sin ® - component of e vector orthogonal to equatorial plane
i’ - coinclination

£2- right ascension of the ascending node

u - argument of latitude

Figure 2.1 Definition of Orbit Elements for GP-B.

Eliminates singularities of classical elements for a polar, near circular orbit.
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They can also be expressed as

day oU
=Pp——
dt °aa0

where ¥ =Y1-¢2 and ag=[a,e, 0, M, i, 2 1.

Pg is known as the Poisson Matrix.

20

(2.9)

The potential form of the variational equations is particularly useful because there

is no explicit dependence on the time variable, M. Thus, to determine the average rate

of change of the elements to first order, we need only average the potential, U, and

compute the rates using Eq. 2.8.

The perturbation equations for an alternate set of elements, (&) can be obtained

from [Broucke and Cefola, 1972]

d.Q:pa_U= do Py aaTaU
dt 0 aao aao Ja
For our set of orbit elements, o =[a, & n, up, i', £2 1T
i 1 0 0 0 0
0 cos @ 0 0 -esin o
oo | _ 0 sin @ 0 0 ecos o
ey 0 0 1 0 1
0 0 0 -1 0
L 0 0 0 0 0

— O O0OOOO0

(2.10)
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Then the orbit perturbation equations for the new orbit elements in terms of a

disturbing potential become

dt - 2'\/_ dup

dé _ vy U _ 143 oU tani'n oU
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dt YNUuga 05 YV uea Ny lga a“0 Hega cosi' 0Q

aQ _. 1 oU

dr vy liga cos i’ 0i'

Notice that by changing orbit parameters we have eliminated the eccentricity factor
from the denominators as compared to the classical form given in Eq. 2.8. Eq. 2.11 will

be used extensively to evaluate the effects of various disturbances on the GP-B orbit.

2.3.2 Disturbing Forces

An alternate set of equations for evaluating the rates of change of the orbit
elements due to a disturbing specific force is given by Eq. 2.12 which was obtained

from Small [1963] and Battin [1987].
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2
dc# = 2-21{ (& cosu +1] sinu )f,+a3., fe}
aé =7 dg—sini'+-’i{ sinuf, +af}
dt dt h v ’ ?
d .y
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12)
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Where

v=1+&cosu+n sinu,a=E+(1+y)cosu,B=n + (1+y)sinu

h=y VEa, r=ay?[y
and the disturbing force is expressed in terms of its components f;, fg, and fp, which
act in the radial direction, in the orbit plane perpendicular to ir, and along the angular
momentum vector, respectively. Notice that in these equations the anomaly, u,
appears explicitly, so each differential equation must be averaged after the expression

for the perturbing force has been substituted.

2.3.3 _Euler-Hill Equations
In the vicinity of a near circular orbit, linearized position and velocity deviations

from Keplerian motion can be modeled by the Euler-Hill equations [c.f. Kaplan, 1976).
xn-2n)"n-3 nsz=f,
Vu+2nin=fo (2.13)
Zn +n2zy= f h
where xy , yy , and zy , are the radial, along track, and out-of-plane positions as shown
in Figure 2.2. These equations are particularly useful for looking at short term orbit

dynamics, and for the computation of the the orbit adjust commands.
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Figure 2,2 Hill’s Coordinate Frame.

2.4 Earth Harmonics

In this section the influence of the geopotential on the spacecraft orbit is explored.
The Earth oblateness, sometimes referred to as J2, has the most significant effect on
both the orbit plane and the evolution of the eccentricity vector. Various tesseral
terms have periodic effects on the orbit, but no significant near resonances were found

for the suggested choice of orbit altitude (650 km).

The harmonic expansion of the perturbing geopotential is given by Kaula [7966] as,

PR

u
8"M8

. (2.14)
= 2 :,jg [Clmcosm/'l+slmsinml] Pim (sing)

where Cjp, and S; ,, are empirically determined coefficients, and P, are the associated

Legendre Functions. The coefficients are often normalized for computation purposes.
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L
Ezm=[ (Itm)l }zczm (2.15)
(I-m)!2I1+1)2-6om)

where &, = 1 for m=0 and &,, = O otherwise.
The C3 ¢ coefficient is three orders of magnitude bigger than the next largest
coefficient. The magnitude of high order normalized coefficients can be approximated

by Kaula's rule of thumb as follows, [Kaula, 1966, p. 98].

1160 x 10° 10

21%+12 12

Terms with m= 0, known as the zonal harmonics, depend only on the geocentric

|Cim | = (2.16)

latitude (¢ ) of the satellite subpoint. General terms, known as tesserals, have both
latitude and geocentric longitude (A ) dependence. For a nearly circular, polar orbit, ¢
and A can be approximated by, sin ¢ =sinu, A =Q - g t.

The following section deals with the Usg term by itself, followed by a description of

the zonal and tesseral effects.

2.4.1 Earth Oblateness

The Earth’s equatorial bulge or oblateness has an unnormalized coefficient
Cp=-J2=-1.082x 10-3. We will see in later sections that the coinclination and node
will have variations on the order of 10-3 and that the eccentricity will also be of the
same order of magnitude. Thus, Jo will be considered first order small. Substituting

I1=2,m=0in Eq 2.14 gives the J; potential

2
. HE JZRE (

Usz=
a3(1- e2)?

1+ecosf)3(g- cos2i' sin*u - %) 2.17)
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One averages this expression over time to obtain the slowly varying part of the
potential.

= UEe T R2
= FEI2TE (3 2.1
Uja pr (1-e2)3/2 (4 cos i 2) (2.18)

Eq. 2.11 can then be used to determine the average rates of the orbit elements
resulting from the J2 perturbing potential. Keeping terms to second order, (i.e. €2, 11 2,

& Ja, i’ J, etc.) we obtain the following nonzero average rates for &, 7, and £2, and ug:

dén _ 301, RE
dt 4 0274

d1712=_3n12 RE :

T

REZ (2.19)

t

i

n

49n_ 3,y
dt 2 a2y4

diy, 3, Re
=n{1l-=J
dt "( 2% 4243

If this were the only disturbance on the orbit, the average eccentricity vector would
rotate in the orbit plane at a rate of 6.69 x 104 rad/orbit (period of 101 days) in the
direction opposite the orbit motion. The node would have a secular drift rate of 45.5 i
per year in the same units as i".

To investigate the short term effects of Jp we use the Hill formulation of Eq. 2.13

with the disturbing forces computed by [Kechichian, 1989].

2
.ﬂn:-?—“—sré?ﬁs— (%--g-coszi'sinzu)
R?
fon = _3_;_15._1;2__5 cos2i' sin u cos u (2.20)
r
2
fhn=-2-‘—li‘-]—2&— sini'cosi'sinu
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A first order closed form solution for this perturbing function is given by Breakwell
[1987]. The perturbed position and velocity are modeled as deviations from a
reference circular orbit with mean radius of rp, which precesses at a constant rate. To

first order in eccentricity and coinclination, this reference orbit is defined as follows.

The reference orbit rate, ng, is given by

W/7{1 2 _z) } @.21)

The reference orbit precesses about the north pole at the rate

. —-3- R 2 .,
Qp = 2]2(75-) ng i 2.22)

The deviations from the reference orbit in the orbit plane are given by

o = {1 Ja RE) (cos2ur ) - eq cos (ux - w)}
L. [Re\?; .
Sug = Jz(if') sin 2 ug + 2eq sin (ug - ©)

8 ) (2.23)
Oz = ng m!--}- Jz(g—"r—) (sin2 ur ) + eq sin (ug - (0)}

Sig= L nk Ja ( Re ) cos 2 ug + 2eg ng cos (ur - ©)

where eg is the mean eccentricity of the orbit.
For a 650 km polar orbit with eg=0, the radial position variation is £1500 m. The
instantaneous eccentricity vector varies periodically in both magnitude and direction

as illustrated Figure 2.3.
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x10-3 J20 Eccentricity Variations
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Figure 2.3 Variation of the Instantaneous Eccentricity Vector Due to J2,

The top two graphs show E=ecosw and N=esinw as a function of time. The bottom one illustrates the
motion of the instantaneous eccentricity vector over one orbit period.
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2.4.2 Zonal Harmonics

The terms in the spherical expansion of the gravitational field which do not depend
on longitude are known as zonal harmonics. In this section we discuss the influence of
the zonal harmonics of order 3 and higher.

The disturbing potential for each zonal term in the model can be expressed as

o
Uro=-PERE 1 Py (sing ) (2.24)
rl+l
k .
where P; (sing)=2""Y oy; sin'"¥ ¢
j=0

oy = EDTQ2I2))8 ) _[1/2 for leven
o=zt (1-1)/2 forlodd

For [ greater than 2, the average potential over an orbit to first order in e and i’ is

2%

1

7 oo MeREJ 1 e - A

Uio= 4l y2i1 27 (1+ecosf) ™ Py (cosi'sinu)du
0

Y

{2.25)

I " k
= -—‘li—%rll— %f [ 1+ (-1) & cos u + (I-1) 1 sin u) z a,jsinl'Zjudu
a T, j=0

To first order, the average potential for the even zonals, Jy4, Jg, Jg, etc., does not
depend on the orbit elements &, 7, i’, or £2. Thus the average rates of change of the

orbit elements are all zero.

For / odd, the average potential can be expressed as
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(58

25 2
5 MeRESG 1 [ o i 12+
Utoaa=- =00 o (11)nj§a,,sm u du

L1
pe REJ 1) 2 (1-2j+1)!
=- Y ogj— z z (2.26)

= HE REJII (-1)n Pl.l
al+l

-1
11 .
where P[1= i (-1)—2—11(1+2‘1+1)!
j=0 214241 (“’Tl+j)!(1'71-j)! U+

When this is substituted into Eq. 2.11 one finds that each odd term drives £ at a

constant rate given by

d & odd He . RL
_=1/___J Re (1 1P )
T 73 Ia’ (I-1)FPa (2.27)

Table 2.1 gives the rates due to J3 through J35. The sum of the rates is
0.894 x 10-6 per orbit. The sum of the odd harmonic rates divided by the rotation rate

of the eccentricity vector due to the Earth oblateness, gives the “frozen eccentricity

offset of 0.00134 This will be illustrated in Section 2.9.

TABLE 2.1 Average Rate of Change of £ (Equatorial component of the eccentricity
vector) per orbit due to the odd harmonics.

Degree Rate Degree Rate Degree Rate
(x 1076 per orbit) (x 10-6 per orbit) (x 1076 per orbit)

3 -0.7098 15 -0.0014 27 -0.0013

5 -0.0658 17 -0.0135 29 0.0011

7 -0.0911 19 0.0027 31 -0.0012

9 -0.0278 21 -0.0049 33 -0.0005

11 0.0469 23 0.0106 35 -0.0002

13 -0.0352 25 00026 | Total  -0.8940 |
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2.4.3 Tesseral Harmonics

 Terms in the gravitational potential given in Eq. 2.14 for which m21, are known as
te§seral harmonics. In general they are a function of both latitude and longitude.
Sectoral harmonics, for which /= m, depend only on longitude. Kaula [1966, p. 24]
gives the following form for the potential due to a single tesseral of degree / and order

m in terms of the spacecraft orbit elements:

| i cos l-m even
m=‘ur_(‘f') z 2 Flmp(l) Glpq(e)-flm[ nu‘{ ]
= q =0 I-m odd
=(1-2p)ug+qM+m(Q-wet-Qipm) (2.28)
chm""slm , lan (m(DIm) E,"ﬂ

The inclination function Fynp as expressed by Allan [1967a] is

, l+m)' k+j [21-2p .
F (,)_ (-1)k+i ( )( c3l-m-2p-2k gm-l+2p+2k
mPp p! (1- p)yz I-m-k
(2.29)

where ¢ = cos if2, s = sin if2, j =0 for [ - m even and j =1 for / - m odd, and k ranges from
max(0,/-m-2p)tomin(l-m,2!-2p). A normalized inclination function, I—T}mp, is also
defined such that 1?1,,,,, .71,,, =Fmp Jim . The eccentricity function Gypq is a complicated
sum which is of order e/4/, with Gypp(e)=1.

Most tesseral terms will have only small periodic effects on the orbit elements;
however terms which are nearly commensurate with the orbital period may produce
large, long term variations in the inclination, node, eccentricity and semimajor axis.
Many papers have been written analyzing orbit resonances, and in fact orbital data
from near Earth satellites in near resonance have provided the means to estimate

certain high order coefficients very accurately [c.f. Allan, 1967a,b, 1973]. In the next
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two sections the effects of the tesseral harmonics on the GP-B orbit plane, and the
spacecraft motion within the orbit plane are described.

To investigate the change in the coinclination and node of the orbit due to the
tesseral harmonics, set e=0, and keep only terms which are first order in i’ in
Eq. 2.28. Substituting this in the variational equations Eq. 2.11 gives the following

expressions for the rate of change of i’ and £2 due to a single term Uy,.

di’ (R )‘i sin v l-m even
Im._.n RE Flmp Y4 m Jlml:- :’
dt @’ .20 (2) COSY |y modd 2.30)
1 l-meven .
dQim__ (Re A [cos w}
de n(a’lpgo Flmp(z)hm SV L) modd
where  Fipp(Z-1) = _(Lﬂ)'__z(lm(ﬂ 2p )( |(21-m-2p-24)
22 pt(i-p)! f-m

Thus, one would expect the coinclination and node to vary sinusoidally unless y is

close to zero. The amplitude of these oscillations can be bounded by

F, z
'Ai'1m|=n.11,,, %)Ii :M
o v (2.31)
(4
|A.le|=nJ1,,, (1—%5) zll Flmp( )
p=0 Wlmp

Table 2.2 gives the amplitudes for terms in the potential up to degree and order 5.
The largest contributor to the short term inclination variations is the J 2 term. It

contains frequency components at 2wg and 2(wg * n). Figure 2.4 illustrates the
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time history of i’ over one day due to all tesserals up to Js 5, as well as the i’ variation
produced by the J; 2 term alone for an orbit altitude of 650 km.

The largest nodal variation is due to J4,1; however, contributions from J3,1 and J4 3
are also significant. Figure 2.5 illustrates the variations caused by these three terms

and all terms up to fifth order.

TABLE 2.2 Amplitude of Ai’and AS2 due to Tesserals Up to [ =5, m =S5.

l m LAQ | AR I m [ AQ" | 1A
(x 10-3deg) (x 10-3 deg) (x 10-3deg) (x 10-3deg)

2 1 0.00 0.00 5 1 0.00 0.03

2 2 2.02 0.13 5 2 0.07 0.1
5 3 0.07 0.10

3 1 0.07 0.43 5 4 0.07 0.05

3 2 0.15 0.15 5 5 0.23 0.06

3 3 0.37 0.15

4 1 0.02 1.16

4 2 0.31 0.07

4 3 0.11 0.47

4 4 0.21 0.02

A librational resonance occurs when the driving frequency y associated with a

particular harmonic is nearly zero [Allan, 1967a]; expressed mathematically as,

v=(Il-2p)up-mwg=0
. (2.32)
or y=auy-Par=0

for some integers o and S.
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Figure 2.4 Low Order Tesseral Variations of the Coinclination.

Solid line shows the coinclination variations for all terms (Im) ={(2,1) (2,2) (3,1) (3.2) (3.3) (4,1) (4.2)
(4.3)(4,4)(5.1) (52) (5.3)(54) (5.5) }. Dashed line shows effect of J2 2 only.
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Figure 2.5 Low Order Tesseral Variations of the Ascending Nede.

Solid line shows the node variations for all terms (1,m) =((2,1) (2,2) (3,1) (3,2) (3.3) (4,1) (4,2) (4,3) (4.4)
(5,1) (5,2) (5,3) (5.4) (5,5) ). Dashed line shows combined effects of J3,1, J4,1, and J4.3 only.
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For any set of orbit rate and Earth rate multipliers & and B, we can compute the
orbit altitude for which resonance will occur. (For reasonable accuracy in predicting
these altitudes the effect of the Earth oblateness must be included in the orbit rate as
in Eq. 2.19.) Table 2.3 lists the closest resonances for terms up to degree and order
60, for a polar orbit at an altitude of 650 km. The exact rescnant altitude and the
period of the driving frequency for GP-B associated with these near resonances are
also shown.

In general, lower order resonances will be stronger than higher order ones because
both the normalized geopotential coefficients and inclination functions slowly decrease
as the degree and order increase. That is, although the GP-B orbit is closer to the
44:3 resonance than to 15:1, the latter will probably produce a more substantial

variation in the orbit elements.

Table 2.3 Near Resonances for Polar 650 km GP-B Orbit .

a 2 3 4 1

B 29 4 59 15

Resonant Altitude (km) 706.5 652.6 626.1 547.9
Period (days) 2.85 40.64 3.32 3.07

Each fB/a resonance is composed of contributions from a sequence of tesseral
terms, which satisfy the conditions (I-2p) = a, and m = 8. Table 2.4 lists the resonant
terms up to degree and order 60. Linear analysis can be used to approximate the
element rates for these near resonant terms; however if the computed value for y is
too small, the linear approximations are no longer valid and a more involved analysis
must be performed. In this situation the value of ¥ may vary considerably and

secondary influences must be taken into account.
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Table 2.4 Tesseral Terms Contributing to Librational Near Resonances.

B (Lm.p ) Pair

29/2 | (30,29,14),(32,29,15),(34,29,16), (36,29,17), (38,29,18), (40,29,19), (42,29,20), (44,2921),
(46,29,22), (48,29,23), (50,29,24), (52,29.25), (54,29,26), (56,29,27), (58,29,28)

4473 | (45,44,21), (4744,22), (49,44.23), (51,44,24), (53,44,25), (55.44,26), (57,44,27), (59,44,28)
59/4 | (60.59,28)

15/1 (15,15,73, (17,15,8), (19,15,9), (21,15,10), (23,15,11), (25,15,12), (27,15,13), {29,15,14),
(31,15,15), (33,15,16), (35,15,17), (37,15,18), (39,15,19), (41,15,20), (43,15,21), (45,15,22)
(47,15,23), (49,15,24), (51,15,25), (53,15,26), (55,15,27), (57,15,28), (59,15,29)

(30,30,14), (32,30,15), (34,30,16), (36,30,17), (38,30,18), (40,30,19), (42,30,20), (44,30,21),
(46,30,22), (48,30,23), (50,30,24), (52,30,25), (54,30,26), (56,30,27), (58,30,28)

(45,45,21), (51,45,24), (57,45,27)

Figure 2.6 shows the coinclination and node variation results from a simulation
which includes the terms in 15:1 resonance up to degree 36 over a 6 day period. It is
based on the GEMI10B coeffecients [Lerch, et al., 1981]. Also shown are the
variations if only the lowest order term, (15,15,7), is included. Notice that the
oscillation in both the inclination and node is clearly dominated by the leading terms
and the node variation is neglibly small. The resonant inclination variation is an order

of magnitude smaller than the dominant short term variations caused by J2 2.

The maximum possible amplitudes of variations of the inclination and node due to
the 15:1 and 29:2 resonances were computed for terms up to degree 36 based on the
GEMI10B coeffecients [Lerch, et al., 1981]. They are listed at the top of Table 2.5.
The second half of the table shows conservative upper limits for the maximum
amplitudes of the variations due to the first resonant term for the 15:1, 29:2, 44:3, and

59:4 near resonances. These approximations were made based on the following.
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Using the normalized coefficients and inclination functions, Eq. 2.31 for a single

(I,m,p) combination becomes

lAi'lmPI= nj[m(%ﬂ)l Fl"'_p(ﬂﬂ_)m_ (2.33)

Wlmp

Then, assuming that the normalized inclination function, fl,,,p, is less than or equal to

1, and using Kaula’s rule (Eq. 2.16) to approximate J,,, we find

- 1
nJj Re m / -6 !
Vimp 20041 Vimp

_ For each of the near resonances the smallest values of (/,m) from Table 2.4 and the

corresponding 1[/1,,,p from Table 2.3 were used in this formula to obtain the values in

the second half of Table 2.5 below.

2 x104 . 1§:1 Resonance - Coinclinatioln .
=3
L
R
Q
5
3
2 i L i it
0 1 2 3 4 5 6
time (days)
1 X103 . 15:1 Resonance - Ascending Node
e
2
(3]
2
=

Figure 2.6 Out-of-plane Variations Due to 15:1 Resonance.

Solid lines represent coinclination and node variations due to terms with resonant indices up to degree
and order 36. Dashed lines are due to only the (15,15,7) term.
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TABLE 2.5 Maximum Amplitude of Ai’and A2 Due to Near Resonant Tesserals.
For 15:1 and 29:2. Includes only resonant terms up to 1=36, m=36.

Variations Computed Based on Actual Fimp and GEM 10B Coefficients

Pla | A’ I* (deg) | AR * (deg) V¥ (rad/s)
15:1 3.07 x104 1.56 x104 1.90 x10-5
29:2 0.12 x10 0.04 x104 3.42 x10°5

Conservative Estimates of Variations Based on Fimp=1 and Kaula’s Rule

B ¥ m* Coinclination Amplitude | Ai’ 1* (deg)
15:1 15 15 3.5 x104
29:2 30 29 0.4 x104
44:3 45 44 0.8 x10-4
59:4 60 59 0.0 x104

It is difficult to precisely predict the effects of higher degree terms for two reasons.
First, the coefficients themselves are not well known and second, the usual series
expressions for the inclination function, Fipp(i), such as that given in Eq. 2.26, require
infinite precision for iarge vaiues of i. Recursive [Kosteiecky, 1986], and FFT
methods [Goad, 1987] have been developed recently for determining these coefficients
reliably; however, these techniques require substantial computational and storage
capabilities and are beyond the scope of this work.

The work that we have done indicates that the largest variation for GP-B is due to
the first few terms in the 15:1 resonance. The simulation results show a + 2 x 10-5
deg variation in the coinclination, and an even smaller oscillation in the node. The rate
of change in these elements due to any one high order resonant tesseral term, (I*, m*),

can be bounded as follows. Kostelecky, et al. [1986] have demonstrated, for m in the

range of 6 to 30, and / up to order 1000, that the normalized inclination functions for
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resonant indices slowly decrease with I. Then, assuming at worst the inclination
function is constant, and again using Kaula’s rule for J,,
'Y} _5
‘“—d"'£~ 10%(0.91) 1&=p
‘ ! (2.35)

-5
d—fzﬁ’“ 102091 1 @1-m-2p)
!

Since these rates are decreasing in /, and even the 15:1 and 29:2 resonance terms
up to degree and order 36 were not found to produce substantial changes in i’ and £,
we can expect that higher order terms in the Earth's gravitational field will not have a
significant effect on the GP-B orbit plane.

For GP-B we have the flexibility to seiect the semimajor axis of the orbit so as to
avoid low order resonances. Based on these preliminary analyses, it appears that the
suggested altitude of 650 km achieves this desired objective. The period of
oscillations associated with the 15:1 resonance is three days is fairly short. A long 41
day resonance occurs for f/a=44/3, which is of high enough order that the effects

appear to be negligible for long term orbit modeling purposes. If future work indicates

24.3.2 In-plane Motions

To investigate the in-plane effects of the tesseral harmonics it is necessary to
reintroduce terms in the series expansion of Eq. 2.25 to first order in e. Doing this and
substituting the perturbing potential in Eq. 2.8, gives the following rates for the

components of the eccentricity vector [Allan, 1967b).
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dflm _ n(BL l_[ i v - [cos y ]l-m even oF - [cos - }l-m even
dr a im o imp Ulp sin V+ L odd imp Ylp sin v L odd
. l-m even . I-m even
dMim _ (Re [ sin y+ ] ) [-sm w']
dt n( ) Vi E) FI'"P GIP “cosy l-m odd +thp Glp “cos Y- I-m odd
(2.36)

The maximum amplitude of the variation in either component of the eccentricity
vector which is possible, due to tesseral harmonics up to degree five is given in Table
2.6. Figure 2.7 illustrates the net effect of these terms over a two day period. Clearly
these oscillations are negligible in comparison to the variation caused by the earth

oblateness shown in Figure 2.3.

TABLE 2.6 Maximum Amplitude of Oscillation in & or 77 for Tesserals Up to (5,5).

! b Aluyucude l in nmpumdc i m nmpumuc
(x10°5) (x10-3) (x10°3)
2 1 0.00 4 1 0.15 S 1 0.06
2 2 1.06 4 2 0.32 S 2 0.90
4 3 0.28 5 3 0.34
3 1 1.30 4 4 0.18 S 4 0.21
3 2 1.04 S 5 0.54
3 3 1.31
total 7.69
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x10-5 Eccentricity Vector Variations
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Figure 2.7 Eccentricity Vector Variations Due to Tesserals up to I =5, m=5.

As in the out-of-plane motions, a resonance will occur when y is near zero. In
this case, however, the resonant perturbing force is periodic at the orbital frequency.
Blitzer (1966) termed these in-plane effects, dynamical resonances. Expressed
mathematically, the resonant condition is given by [Allan, 1967b],

v=(Il-2pt1)ig-mwg=0
. (2.37)
or y=auy-Pag=0

Thus, the same f/a combinations considered for the out-of-plane motions will
cause in-plane resonances, but the resonant indices are different (Eq. 2.32). For each
(/*,m*) pair there are two resonant values of p corresponding the +1 and -1 values of
q. Table 2.7 lists the in-plane near resonant indices up to degree 36 and Figure 2.8
illustrates the variation of the components of the eccentricity vector due only to the
terms in 15:1 resonance. The eccentricity vector has an amplitude of less than 2 x 10-6

and rotates clockwise in the plane with the period of 3.0 days associated with the 15:1
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near resonance. This variation is insignificant in comparison to the short term changes
produced by J2 and does not have a long enough period to cause long term effects as
did the odd zonal harmonics. If the spacecraft were in an orbit closer to a low order
resonant altitude, tesseral terms could contribute slow or nearly constant offsets to
_thc eccentricity vector which would appear similar to the odd zonal harmonics
discussed in Section 2.4.2. Again the higher order tesseral terms in near resonance
({244, and I 2 59) are expected to produce extremely small variations.

Table 2.7 Tesseral Terms Contributing to Dynamical Near Resonances.

Bra (Lm.p ) Pairs

29/2 (30,29,14), (32,29,15), (34,29,16), (36,29,17),
(30,29,15), (32,29,16), (34,29,17), (36,29,18),

15/1 | (16,15,7),(18,15,8), (20,15, 9), (22,15,10), (24,15,11), (26,15,12), (28,15,13), (30,15,14),
(16,15,8), (18,15,9), (20,15,10), (22,15,11), (24,15,12), (26,15,13), (28,15,14), (30,15,15),

(32,15,15), (34,15,16), (36,15,17), (31,30,14),(33,30,15),(35,30,16)
(32,15,16), (34,15,17), (36,15,18), (31,30,15),(33,30,16),(35,30,17)

x106 _—15:1 RESONANCE - ECCENTRICITY VARIATIONS .

€cosw

esinw

2 ; s
0 1 2 3 4 5 6 7

time (days)
Figure 2.8 Eccentricity Vector Variations for 15:1 Resonance - Terms to I = 36.
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2.5 Sun and Moon
The Sun and Moon affect the motion of the spacecraft both directly and indirectly

through the solid Earth tides. In this section, the influence of the Sun and Moon is
derived and computed. The primary gravity gradient effect of each body is a drift
consisting of secular and periodic components in the coinclination and node. The
second order effect of the Moon can influence ihe motion of ihe eccentricity vecior;
however, for GP-B it turns out to be negligible.

The potential due to a distant mass is given by

_ _Hs  Hs TsT
Us = |rs-rj rd
=2 “” Py ip vise) (2.38)
B2t

where tip is the gravitational constant of the disturbing body, rp is the distance to the
body, and P;is the Legendre function of the angle between the spacecraft and the
disturbing body at the Earth center. is;c and ip represent unit vectors pointing from
the center of the Earth toward the spacecraft and the disturbing body, respectively.

220 2
ot

If Eq. 2.38 is cxpanded to third order in 5, one obtains

Up = Bs , B8 (;%)2 [%(iu 'iS/C)z'%]
(2.39)

‘UB (—) [i( 15 - IS/C)3 3(18 |.S‘/C)]

4] 14
Table 2.8 provides the data for the Sun and Moon needed to compute the potential.
The gradient potential for the Moon is about 4 X 10-6 km2/s2 and for the Sun, 2 x 10-6

km?/s2. The second order lunar and solar potentials are on the order of 8 x 10-8 km?/s2

and 9 x 10 -11 km?/s2, respectively. Thus, the second order solar term is negligible.
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Table 2.8 Sun and Moon Gravitational Potential Parameters.

43

KB KB .,
3
up (km3/s2) rp (km) rirg g B
(sec2) (km2fsec-2)
Sun 1.327x101 1496 x 108 47x10°5 396x 1014 1.96 x 106
Moon 4.903x 103 3.844x 105 1.8x102 8.63x1014  428x106

The potential can be expressed in terms of the spacecraft orbit elements and the

right ascension and declination of the perturbing body by making the following

substitutions based on Figure 2.10.
isic = cos¢ coser iy + cos¢ sina iy + sing i3

iz = cosdp cosap iy + cosbp sinop iz + s5inds is

(2.40)

Notice that the longitudes, right ascensions, and orbit node ( £2’) are referred to the

direction of the equatorial crossing of the perturbing body ( is).

For a nearly circular, nearly polar orbit, to first order in i ’,
a=Q2"'+Aa, sing =sinu,

cos¢p cosAa =cosu, cos¢ sinAa =i'sinu.

Disturbing Spacecraft
Body

Up

O‘B

Figure 2.9 Geometry for Disturbing Body (Sun or Moon).

(2.41)
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2.5.1 Gravity Gradi
The second term in Eq. 2.39 represents the potential of a gravity gradient torque

acting on the spacecraft orbit. If this term is averaged over an orbital period and

expressed in terms of the position of the disturbing body as follows:

— 2
Up = Hs a [--;—4- %(coﬁ(as-ﬂ ') cos285 + sin®8p +i' sin(as- Q') sin265)]

3]

(2.42)

Then the average rates of change of i’ and £ due to the Sun and Moon can be

computed from Eq. 2.11.

We find that
dFBl __.1 ﬂ_B sinZ(a -Q')00528
dt 4 pp3 ’ ’ (2.43)
d.?l—m=_3_ Hs_ o op-0')sin 26
i i sin(as-2") sin 268

These rates can also be expressed in terms of the argument of latitude, up, and
inclination, ip, of the “orbit” of the perturbing body around the earth, by expanding

Eq. 2.43, and making the following substitutions:
sin 0p = sin ip sinus
cos O COS O3 = COS Up (2.44)
cos s sin 0 = cos i Sin ug

Then the average rates become

di'm __3 Hs { sin2Q' sinzia

dt 8 nr3
-2cos2Q" cosip sin2up +sin282' (1 +cos2iz) cos 2u5}
a (2.45)
dSs __3 HUs in2ip cos $2'
T 8 urd { sin2is cos §

- sin 2ip cos Q' cos 2up - 2 sinis sin Q' sin 2up)
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The form given in Eq. 2.45 is particularly useful because it immediately shows that
a perturbing body will contribute a secular drift plus a periodic term at twice the rate at
which the body orbits the earth. The secular part is simply the first term in each of the
expressions above.

Thus, the Sun will cause a secular drift plus a twice yearly oscillation in both
inclination and node. The secular drift is approximately -1.6 x 10-3 deg/yr in
coinclination, and -3.7 x 10-3 deg/yr in the right ascension of the node. Figure 2.10

illustrates the orbit variations due only to the Sun.

10 x10-3 g : : Sun On¥1y - Coinglination !
)
g
£
8
5 i H i i i i i i
0 2 4 6 8 10 12 14 16 18
time (months)
0.005 Sun Only - Ascending Node
@ 0
g
L33
-§~0.005
-0.01 i i i H . H i i
2 4 6 8 10 12 14 16 18

time (months)

Figure 2.10 Solar Perturbations on the Coinclination and Node.
Secular drift plus twice yearly variation in coinclination and ascending node.
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The Moon also produces a secular drift plus a twice monthly variation; however,
the magnitude of the secular term depends on the position of the lunar orbit in its 18.6
year precessional cycle around the ecliptic pole. Figure 2.11 shows the motion of the
lunar pole with respect to the ecliptic pole and the north pole of the Earth. In the top
figure the 5 deg cone which the lunar orbit normal traverses about the ecliptic pole is
illustrated. Notice that during part of the cycle it just crosses the nominal GP-B orbit
plane. The second two plots of Figure 2.11 give the approximate time history of the
lunar orbit plane inclination and node for the years 1990-2010.

The orbit plane secular drift rates as a function of the lunar motion are shown in
Figure 2.12. Finally, Figure 2.13 illustrates the total first order lunar effect on the

orbit plane for an 18 month mission beginning in the year 1997.

2.5.2 Secon der Lunar Effec

The third term in Eq. 2.39 can be expressed in terms of the spacecraft orbit

elements and the perturbing body right ascension and declination as follows,

— 3
Usz =- %g“—”’f— (& Cp+7 Ce) (2.46)
B

where Cy=cos3(0-Q' )cos36s + cos(as-R2") sin%6s cos 85 - g— cos(0p-82") cos 6s

Ce= sin38s + cos2(p-2") sins cos28s - %sin Os

The rates of change of the orbit elements &, and 77 due to the second order lunar
perturbing potential are then derived from Eq. 2.11.

dfn_ 75 M5 (a
dt 16 nr (e

dTs2 75 75 a
— - —— C
dt 16 pr3 (%)Cn

(2.47)



CHAPTER 2. ORBIT MODELING FOR GRAVITY PROBEB 47

Figure 2.14 illustrates the evolution of the eccentricity vector described by this
equation. Clearly, the effect of the second order lunar term is negligible in comparison

to the Earth zonal harmonics.

Year 2002 o Ecliptic Pole
l e GL/
,/ T Year 1994
Path of
lunar orbit
| normal Lo
North Pole
GP-B Orbit
Plane —™
‘ to Rigel
30 : , gLunar ln!clinau'on!
i)
8 25
§
g
.E O | vverrersmens rosnnens s S e e s sne oo ess g e s e 4R Rt AR AR S e .
[3]
g
15 ; L ;
1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
launch year
!.unar Ox'bit Node'

20 g T

node (deg)

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

launch year

Figure 2.11 Motion of the Lunar Orbit Plane with Respect to the Earth.

The top figure shows the relative positions of the Earth’s North Pole, the Eliptic Pole and the normal to
the lunar orbit plane. The second two figures give the variation in the inclination and node of the lunar
orbit plane over its 18.6 year precessional cycle.
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Figure 2.12 Average Secular Rates Due to the Moon.
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Figure 2.13 Lunar Orbit Perturbations Launch in 2000.

Secular drift plus twice monthly variation in coinclination and ascending node.
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x107 SECOND ORDER LUNAR PERTURBATION
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Figure 2.14 Eccentricity Vector Variations Caused by Second Order Lunar
Potential. :

2.5.3 Solid Earth Tides

The Sun and Moon exert forces on the Earth which cause variations in its shape.
These bulges in turn have a noticeable effect on the orbit of a near Earth satellite. A
simple model of this perturbation is often used in which the gravity gradient potential
of the Sun or Moon is evaluated at the surface of the Earth and muliiplied by the Love
number, k2, and a reduction factor of (Kri)3 [NASA, 1988, p. 152].

This formulation was used in the long term simulations for both the Sun and Moon,
assuming an elastic response time of zero and a typical Love number kp = 0.3 [NASA,
1988, p. 155]. These secondary effects of the Sun and Moon were found to be less
than one fifth of the direct influence. Thus, the simple model seems adequate at this

stage of the analysis.
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2.6 Precession of the Equinoxes

Precession of the equinoxes refers to the movement of the Earth’s spin axis in a
23.5 deg cone about the ecliptic pole. This motion, which is due primarily to the torque
exerted by the Sun on the Earth’s equatorial bulge, has a period of 25,700 years. As
the Earth moves out from under the spacecraft orbit it produces an effective change in
the inclination of the orbit.

The reference point from where the right ascensions of both the guide star and the
ascending node of the orbit are normally measured, also shifts as a result of the

precession of the equinoxes. However, because we are only interested in the relative

position of the node relative to Rigel, this shift has no effect on £2.

The annual general precession is westward at the rate

Wpree = 55720-3—; = 0.000244 radfyr = 0.0139 deg/yr (2.48)

which produces a change in the coinclination of a polar orbit aligned with Rigel of

di prec _ sin (tiltg) sin ( A'R) WP’“

= sin (23.5 deg) sin (78.484 deg ) (0.0139 deg/yr)
=0.0054 deglyr

(2.49)

2.7 Drag Models
Two drag models are needed for GP-B. The first is applicable to the orbit injection

and trim phase of the mission and the second represents the environment during the
science data collection. During orbit trim the spacecraft experiences drag forces
typical of any vehicle in a polar orbit at a 650 km orbit. However, once the experiment

starts a drag compensation system is employed to ensure that the spacecraft follows
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a purely gravitational orbit. Thus, to model the long term spacecraft motions, we

should only consider the residual drag effects.

271 it Injection Drag Model

Drag effects during the orbit trim are modeled as a dissipative force directed
opposite to the velocity of the vehicle [Yekutiel, 1989]. The specific force due to drag
is assumed to be the sum of a steady term, (dp), whose parameters depend on the
solar cycle and a random term, (d,), with time constant 8 =10s, and steady state

variance 0=(0.1 dp)2, as shown below [Yekutiel, 1989].

8drag = - (do + dp) iy

_1pA 2 .
do=15Cpv (2.50)

dy=-Bd,+w,, wy~NO0,0.1doV2B)

A,m,Cp, and v are the spacecraft cross sectional area, mass, drag coefficient and
velocity. p is the average atmospheric density and iy is a unit vector in the direction of
the spacecraft velocity. The approximate value of dp for the GP-B spacecraft during a

year with average solar activity, is 1.5 x 10-7 m/s2.

2.7.2 Long Term Drag Model

The drag compensation system flown on Triad in 1976, successfully reduced the
accelerations of the proof-mass, and hence the orbit, down to the level of 5 x 10-12 g's
[DeBra, 1973]. The logic of the GP-B system will be quite similar to the earlier one;
however, proporticnal helium thrusters rather than cold gas will be used for actuation.
In the GP-B system it is expected that the spacecraft self gravitation and charging of

the proof mass will limit the performance to approximately 10-10 g or 10-9 m/s2.
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To investigate the effect on long term orbit motions, the residual disturbances are
modeled as follows. The variance of the disturbing force is 6p2 = (10-9 m/s2)2.
Assuming that the disturbance can be described by a white noise process up to the
bandwidth of the drag free translational controller (f = 0.1 Hz), its spectral density is
given by Q= op2/2f. Taking each component of the disturbing force - radial (wy), along
track (wg), and out-of-plane (wp), as independent, and substituting in Eq. 2.12 gives
the following rates of change:

dib . coslh

d1 na
%‘l=£ﬁ"&"‘- wi(?)

d‘f?": -2 wg (1) (2.51)
% =#{ sinu wy(t) + 2 cos u wg (1))

ddntD = FIZ{ cos u wit) + 2 sinu wg ()}

To first order, the variance of each of the elements due to the random drag

disturbance is given by,

. 2] _ ofla? 2] _ 0f/a?
Elro(?= sk E[2(1)?] !
E[£o(?] = 20274 4?2/‘2‘2 ' E[no(n?] = 2212 4";’2/‘;2 : 2.52)
n n
E[aD(r)2]=4—"lzf '
n

At the end of the 18 month mission the standard deviations of the coinclination and
node are 9 x 10-8deg; the eccentricity vector components, 8 X 10-9, and the semimajor
axis, 0.04 m. These changes are clearly negligible in comparison to the gravitational

disturbances discussed in the previous sections.
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Work is currently being conducted to refine the drag-free translational control

requirements based on improved gyro models [Kasdin and Keiser, 1990].

2.8 Short Term Orbit Motions

A computer simulation was developed to model the short term orbit dynamics
during the orbit adjustment phase of the GP-B mission. This program was then used
to investigate the performance of the closed loop control system. The spacecraft orbit
is propagated using the instantaneous orbit elements in the variational equations
given in Eq 2.12. Perturbing forces due to Earth harmonics up to degree and order 4
are included, as well as the uncompensated drag model given by Eq. 2.50. A fourth
order Runga-Kutta integration procedure with a time step of 10 sec is implemented.
This program is used to simulate time periods of 15 days or less.

Figure 2.15 shows the motion of the instantaneous eccentricity vector over a three
day period. Figure 2.16 illustrates the evolution of the instantaneous coinclination and
node over the same interval. The initial conditions were set so that the coinclination
and node are as close to zero as possible and the eccentricity is centered on the frozen
value for only the J3 odd harmonic, of (0, 0.00106). For simplicity in the simulation,
this value was used rather than (0, 0.00134) which is the frozen value when all odd
harmonics up to J35 are considered. This simplification does not alter the nature of the

results. These results will be discussed further in Chapters 3 and 4.
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Figure 2.15 Short Term Eccentricity Vector Motion.

Results of short term dynamic simulation. Includes drag model and Earth harmonics (1,m) ={(2,0) (2,1)
(2,2) (3,0) (3.1) (3.2) (3.3) (4,0) (4,1) (4.2) (4.3) (4.4)) }. Shows snapshots of the instantaneous
eccentricity vector at 5 minute intervals over a three day period.



CHAPTER 2. ORBIT MODELING FOR GRAVITY PROBE B 55
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Figure 2.16 Short Term Out-of-plane Dynamics.

Results of short term dynamic simulation. Includes drag model and Earth harmonics (I,m) ={(2,0) (2,1)
(2,2) (3,0) (3.1) (3.2) (3.3) (4,0) (4.1) (4,2) (4,3) (4,4)) }. Shows time history of the instantaneous
coinclination and node over a 3 day period.
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2.9 Long Term Orbit Motions

Simulation results for the long rerm motions of the spacecraft due to the combined
perturbations described in Sections 2.4-2.7 will now be presented. By long term we
refer to effects which are secular or have periods of more than ten days The short
term motions described in the previous section were not modeled in the long term
simulation, bui can be superimposed onio ihe long term resuits. The expressions for
the orbit averaged rates of change of the orbit elements were programmed and
integrated numerically. Table 2.9 lists the perturbations which were considered in the
previous sections, and identifies which ones were modeled in the long term simulation.

The target injection orbit was selected so as to minimize the separation between
the orbit plane and the direction to Rigel, and to reduce the mean eccentricity. The
following sections show the orbit evolution and compare the resulting variations in the
elements to the requirements described in Section 2.2. The effects of orbit injection
errors are also considered. Because of the very low eccentricity of the nominal GP-B
orbit and the elimination of surface forces by the translational control system, there is

no significant coupling between the in-plane and out-of-plane orbit dynamics.

2.9.1 Out-of-plane Simulation Results

The main contributors to the long term motion of the orbit plane are J, solar and
lunar gravity gradient and tidal effects, and the precession of the Earth’s pole. In the
simulation, the nodal drift due to J is modeled according to Eq. 2.19. The expressions
in Eq. 2.43 for the Sun and Moon effects are used, with the motions of the Sun and
Moon modeled based on almanac data [Naval Observatory, 1985]. The tides and
precession effects are programmed as described in Sections 2.5.3 and 2.6. The orbit

average coinclination and node drift rates are integrated numerically over the mission.
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Table 2.9 Summary of Long Term Simulation Models.
A “* indicates that the effect is negligible and was not modeled in the simulation.

Long Term Simulation Models

Effects Out-of-plane In-Plane
Earth Oblateness J2 Nodal drift proportional to Rotation of the eccentricity
coinclination. vector,
Low Order Tesserals * *
Odd Harmonics * Offset of the frozen
eccentricity vector.
Near Resonant Terms * *
Sun Gravity Gradient Secular and twice yearly coinc *
and node drifts.
Moon Gravity Gradient Secular & twice monthly coinc *
and node drifts.
Second Order Lunar * *
Solid Earth Tides Secular & twice periodic coinc *
and node drifts.
Precession of the Equinoxes Constant coinc drift. *
Residual Random Drag * *

Simulations were run for 18 month missions beginning on March 21 for the years
1997 and 2000. Table 2.10 summarizes the results by giving the target coinclination
and node, and the resulting deviations from the nominal orbit. Both the mean and peak
values of the coinclination and node are given. The target conditions were selected to
minimize the variation in the node over the 18 month mission, because this has the

most significant influence in reducing the Newtonian drifts described in Section 2.2.2.

Table 2.10 Target Values of i and £2 for Orbit Injection.
Initial values and 18 month mean and maximum deviations from the nominal.

target mean maximum target mean  maximum
Start Date i'o i’ L' o Q | Q21
(deg) (deg) (deg) (deg) (deg) (dep)
Mar. 21, 1997 | 0.00375 -0.0005  0.0057 -0.0128 -0.0008 0.0187
Mar. 21, 2000 | 0.00640 -0.0004  0.0071 0.0260 -0.0011  0.0261
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The maximum node deviation for the 1997 start date is less than 0.02 deg, and for
the year 2000 it is less than 0.03 deg. Figure 2.17 illustrates the Newtonian gyro
drifts due to the suspension forces for the nominal 1997 and 2000 simulations as
modeled by Eq. 2.6. In both cases the maximum drift is less than the desired 0.1

marcsec/yr error margin (for at least a 12 month mission).

APPROXIMATE NEWTONIAN GYRO DRIFT
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Figure 2.17 Newtonian Gyro Drifts for Nominal Orbit Injection.

The solid line shows the drift for nominal conditions in 1997 and the dashed line shows nominal results for
the year 2000. The dotted lines indicate the desired drift boundaries of #0.1 marcseclyr.

In order to specify the performance required from the orbit trim system, we must
evaluate the effect of orbit injection errors on the long term orbit motion and on the
expected gyro drift. Errors in the initial location of the ascending node translate
directly into a mean and maximum node error, and have relatively little effect on the
coinclination. An initial error of 0.01 deg in the node produces an additional gyro drift
of about 0.04 marcsec after 6 months, 0.09 marsec after 1 year, and 0.13 marsec after

1.5 yrs. Thus, one can judge from Figure 2.17 that such an error in the node injection
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can be tolerated in both 1997 and 2000, since the gyro drift remains within 0.1 marcsec

for the first twelve months, and within 0.15 marcsec during the full 18 month mission.

Inclination errors have a more subtle effect, due to the J2 induced drift rate which is

proportional to the coinclination. Table 2.11 summarizes the simulation results for

initial coinclination errors of + 10-3 deg and + 2 x 104 deg for each of the launch dates.

The evolution of the coinclination and node are plotted in Figures 2.18 and 2.19. for the

target conditions and these initial injection errors.

Table 2.11 Mean and Maximum i’and £ Due to Inclination Orbit Injection Errors.
Inclination errors of +0.001 and +0.0002 for Mar. 1997 and 2000 start dates.

error mean maximum mean maximum

Start Date Ai’g (deg) i’ (deg) "1 (deg) £2 (deg) | 1 (deg)
Mar. 21, 1997 | -0.0002 -0.0006 0.0059 +0.0076 0.0308
+0.0002 -0.0002 0.0055 -0.0060 0.0263
-0.0010 -0.0014 0.0067 +0.0348 0.0794
+0.0010 +0.0006 0.0057 -0.0332 0.0711
Mar. 21, 2000 | -0.0002 -0.0006 0.0073 +0.0079 0.0381
+0.0002 -0.0002 0.0069 -0.0056 0.0359
-0.0010 -0.0014 0.0081 +0.0350 0.0884
+0.0010 +0.0006 0.0074 -0.0327 0.0751
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In the coinclination plots one can identify the twice yearly variation due to the solar
effect as well as the small twice monthly oscillations caused by the Moon. Notice that
in 1997 there is almost no secular drift in the coinclination. In this year the sum of the
drift rates produced by the Sun, Moon, J2, and the precession of the equinoxes is
almost zero; whereas in the year 2000 there is a net secular drift of about
-4x10-3 deg/yr in the coinclination. This produces a larger deviation in the node for this

year compared to 1997, and causes greater drifts when orbit injection errors occur.

Figures 2.20 and 2.21 show the Newtonian gyro drifts corresponding to the
simulations with inclination injection errors for the 1997 and 2000 start dates,
respectively. In both cases, injection errors of + 0.001 deg (125 m) cause drifts of
more than 0.4 marcsec after 18 months. Errors of * 0.0002 deg (25 m) produce
acceptably small gyro drifts, within 0.1 marcsec over the 18 months for the 1997 launch
and slightly greater in the year 2000. Clearly this imposes a much tighter injection
requirement than the node error. If we allov&; for a £ 0.0002 deg inclination error, a
0.002 deg node error is still permissible. These results should only be used as a
guideline in determining the orbit injection requirements because of the great

uncertainty in the actual values of the gyro coefficients and their variability.



CHAPTER 2. ORBIT MODELING FOR GRAVITY PROBE B 61

x10-3 Coinclination : Start Date March 21, 1997
6 r
8
g
=
S
g
2
S
g
8
_8 L i
0 2 4 6 8 10 12 14 16 18
time (months)
Ascending Node : Start Date March 21, 1997

0.08 , , ,

0.06 : - 3

0.04 : :

0.02 o5
T 0 ,l 4 'l .
§ L //
e L

-0.02 e e

-0.04} - o

-0.06}- ;

-0.08 i i i H i H H N

2 4 6 8 10 12 14 16 18

time (months)

Figure 2.18 Long Term Motion of the Coinclination and Node - March 21, 1997.

Solid line shows target orbit evolution. Dashed lines show results for initial coinclination errors of
#2x10"4 deg. Dash-Dot lines show resultsfor initial coinclination errors of 1 0'3 deg.
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Coinclination : Start Date March 21, 2000
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Figure 2.19 Long Term Motion of the Coinclination and Node - March 21, 2000.

Solid line shows target orbit evolution. Dashed lines show results for initial coinclination errors of

+2x104 deg. Dash-Dot lines show results for initial coinclination errors of +1 03 deg.



CHAPTER 2. ORBIT MODELING FOR GRAVITY PROBE B 63

APPROXIMATE NEWTONIAN GYRO DRIFT : 1997
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Figure 2.20 Newtonian Gyro Drift - March 21, 1997.
Solid line shows target injection. Dashed lines show inclination injection errors of +2 x 1 04 deg. Dash-
Dot lines show inclination injection errors of £ 1 0-3 deg. Dotted lines indicate 0.1 marseclyr bounds.

APPROXIMATE NEWTONIAN GYRO DRIFT : 2000
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Figure 2.21 Newtonian Gyro Drift - March 21, 2000.
Solid line shows target injection., Dashed lines show inclination injection errors of +2xl 04 deg. Dash-
Dot lines show inclination injection errors of = + 10-3 deg. Dotted lines indicate 0.1 marsec/yr bounds.
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Long term motion within the orbit plane is governed primarily by the Earth
oblateness and the odd zonal terms. The near resonant tesseral Earth harmonics and
the second order lunar effects were found to cause only neglibly small variations. As
mentioned in Section 2.2.6, the J2 term causes the eccentricity vector to rotate in the
plane with a period of about 101 days. The constant rate in the east component of the
eccentricity produced by the odd zonals changes the center of this rotation from &=0,
n=0 to £=0, n=0.00134. This value of eccentricity, e=0.00134, with perigee directed
toward the north, is stable for a 650 km polar orbit. For this reason it is known as the
frozen eccentricity [Small, 1986]. The average eccentricity for GP-B will be minimized
by targeting this stable value. Any other starting values of £ and 7 will eventually
cycle to larger values. Figure 2.22 shows the trajectory of the eccentricity vector for
initial conditions near the frozen value. To ensure that the orbit averaged eccentricity
always remains less than 0.002, the initial vector distance from (£g,7.0) to (0,0.00134)

must be less than 0.0006.

2.10 Orbit Modeling and Requirements Summary

In this chapter the orbit of the GP-B spacecraft has been modeled considering the
perturbing effects of the the noncentral Earth gravity, the Sun and Moon, residual drag,
and the precession of the the Earth’s pole. Short term variations in the instantaneous
elements during orbit injection were investigated via computer simulation. The short
term dynamic model will be used in Chapters 3-4 to evaluate the performance of the

navigation and orbit trim systems.
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ECCENTRICITY VECTOR MOTION
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Figure 2.22 Long Term Motion of the Orbit Average Eccentricity Vector.

Evolution of the eccentricity vector is shown for four sets of initial conditions. The innermost trajectory
is very close to the frozen eccentricity vector of (0.0, 0.00134). Trajectory 1 shows the boundary for the
acceptable eccentricity vector errors. Note that if the initial eccentricity is zero it will grow to exceed
the permissible value.

Long term orbit averaged motions were simulated in order to define a target
injection orbit and to review restrictions on how accurately it must be achieved. The
target values of the most critical elements- coinclination and ascending node- depend
on the experiment start date. Table 2.12 summarizes the results of this long term
study. The nominal mission-average values of the orbit elements, the target injection
values for candidate start dates in March, 1997 and March, 2000, and acceptable
injection errors are given. Out-of-plane requirements are highlighted to emphasize
their greater importance. If these conditions are met, the Newtonian drift of the gyro
will be less than about 0.1 marcsec and the orbit altitude will not vary by more than

15 km.
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The target injection values determined here are averaged elements which define
the launch vehicle guidance objective. Short term variations described in Section 2.8
should be superimposed onto the average target values depending on the longitude of

the satellite subpoint to determine instantaneous target element values. It is unlikely

that the upper stage of any booster will be able to meet the stringent requirements

specified above; thus there is a critical need for a precise orbit trim system onboard

the GP-B spacecraft. In the next section we turn to the task of determining the orbit

onboard the spacecraft.

Table 2.12 GP-B Orbit Requirements Summary.

Elements Nominal Target Injection Target Injection
Value Injection Error Injection Error
Value Magnitude Value Magnitude
1997 1997 2000 2000
a (km) 7028.14 7028.14 <5.00 7028.14 <5.00
& 0.0000 0.0000 < 0.0005 0.0000 < 0.0005
n 0.0000 0.0013 < 0.0005 0.0013 < 0.0005
i' (deg) 0.0000 0.00375 <0.0002 0.00640 <0.0002
(£25m) (£25m)
0 (deg) 0.0000 -0.0128 <0.002 0.0260 <0.002
(from Rigel) (€250 m) (< 250 m)




CHAPTER 3. NAVIGATION

3.1. Introduction

The key element in the closed loop orbit trim system is the direct availability of
navigation data onboard the spacecraft via the Global Positioning System (GPS). The
primary purpose of the navigation system considered here is to collect information
from the GPS satellites and provide estimates of the orbit to the control system. In
addition it must give an orbit fix to the Delta II upper stage, assign time tags and orbit
estimates to the collected science data, and transmit raw GPS measurements to the
ground for processing of the geodesy data.

The navigation system consists of a set of GPS antennas, a receiver, and a
navigation processor. The navigation processor propagates the orbit estimates in two
parts- the reference position and velocity state, and the deviation from this reference.
An extended Kalman filter is used to incorporate new measurements from GPS and
improve the orbit estimate.

The next section of this chapter outlines the navigation requirements for each of
the phases of the GP-B mission. Following that is a discussion of the different
coordinate frames used in defining and determining the GP-B orbit. GPS and its uses
on the GP-B spacecraft are introduced. Then, the navigation processor algorithm is
described in detail and computer simulation results are presented which give an

indication of the system performance.

3.2 Navigation Requirements
For the closed loop orbit trim system to operate properly, the mean errors in the

estimates of the elements, over an orbit, should be about a factor of 10 smaller than

67
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the required injection accuracies. Based on the orbit modeling results, the mean
coinclination and node estimate errors should thus be less than 2 x 10-3 deg and
3 x 104 deg, respectively, the eccentricity vector component errors 5 X 10-5, and the
semimajor axis errors approximately 500 m. In terms of position and velocity
requirements this translates to about 25 m and 0.025 m/s. The standard deviation of
the estimate errors should be somewhat smaller than the required injection
accuracies, perhaps by a factor of two. These numbers serve only as guidelines. The
test of the navigation performance is how well a simulation of the closed loop system

performs using the estimates provided.

During the science data collection, navigation information is required to time tag
the measurements and to compute the orbital aberration. The aberration is k}lown to
be proportional to the velocity of the spacecraft perpendicular to the line of sight to the
star. The current data reduction scheme assumes knowledge of this velocity to an
accuracy of about 0.01 m/s, 1-¢ [Qin, 1989]. In addition, position and velocity

information may be required by the onboard roll control and pointing systems;
however, these requirements have not yet been evaluated.

The most stringent requirements on the navigation system are imposed by the
geodesy coexperiment. The intensive data postprocessing needed to improve the
model of the Earth's gravitational field requires measurements of GPS carrier phase on
both L1 and L2, to a minimum of 6 satellites. The preferred data rate is 0.1 Hz with
measurement precision of under one centimeter [Tapley, et al. 1990]. This imposes
severe requirements on the GPS receiver and antennas as will be discussed in the
following section. The data transmission rate needed to forward the raw GPS
measurements to the ground has been estimated to be on the order of 150 bps out of a

total telemetry stream of 2500 bps.
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3.3 Coordinate Systems

Three fundamental coordinate frames come into play in the GP-B navigation
system. An Earth centered inertial (ECI) frame is used to define the target and actual
spacecraft orbit; the GPS system provides satellite ephemeris information in an Earth
centered Earth fixed coordinate frame known as WGS-84; and finally a locally level
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and controller algorithms. The Hill frame is defined by the navigation processor
internally based on the computed reference orbit as will be described in Section 3.5.1.
The ability to transform positons and velocities between the ECI and WGS-84
frames must reside either in the GPS receiver software or an external navigation
processor. This transformation must account not only for the rotation rate of the
Earth, but also its precession, nutation, and wobble. The algorithm for converting ECI
estimates to WGS-84 already exists as part of the GPS control segment process for

generating the satellite ephemerides. The details of this transformation have not been

included in this study, but should be addressed in the near future.

3.4 Global Positioning System

GPS is a passive satellite based navigation system consisting of a constellation of
24 satellites at an altitude of about 20,000 km. Figure 3.1 indicates the planned
spacing of the satellites within each of the six orbit planes [Green, et al., 1989]. To
navigate with GPS a user must be equipped with an antenna, a receiver, and a
measurement processor capable of interpreting the GPS observables. The user
determines the range to each:of four or more satellites in view based on the transit
time of the GPS signal. Position and velocity are computed using this ranging data

plus satellite ephemeris information also provided on the ranging signal. The following
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sections describe the GPS measurements and each of the hardware components

needed onboard the GP-B spacecraft.

PLANE

mf//////

eguator o
320, ngm ascensum
280 of the ascending
node

Figure 3.1 GPS 24 Satellite Constellation.

Known as the 21 Primary (+ 3 active spares) Satellite Constellation. Inclination of 55 deg, semimajor axis
of 26609 km, orbit plane node and satellite phase are shown.[Green, et al., 1989]

3.4.1 GPS Signal

The complex signals broadcast by the GPS satellites have been designed to meet
the following requirements listed in Table 3.1 [Wells, 1987]. Each GPS satellite
transmits two L-Band carrier signals at 1575.42 MHz (L1) and 1227.60 MHz (L2).
Both carriers are phase shift key modulated by a pseudo random noise (PRN) code
with a chip rate of 10.23 MHz, known as the precise code (P code). The entire P code
is 37 weeks long with each satellite assigned a unique one week segment of the code.
In addition, each satellite also has its own 1.023 MHz PRN sequence known as the
C/A code which modulates the L1 carrier in quadrature with the P code. The C/A code
is easier to acquire than the P code because of its shorter length of 1 msec and higher
power. A 50 Hz navigation message is also broadcast on both the L1 and L2 carriers.
This data allows the user to determine the position and velocity of the GPS satellites

in the WGS-84 coordinate system and to model the satellite clock errors and
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ionospheric delays. Figure 3.2 illustrates the how the GPS signal components are

combined [Langley, 1990).

Table 3.1 GPS Signal Requirements [Wells, 1987].

Requirement Solution
 Unlimited users - passive ranging
» Simultaneous ranging from many satellites - unique identifying codes
» Unambiguous ranging - PRN code modulation
* Real time position & velocity determination - satellite ephemeris broadcast
* High accuracy velocity - microwave carrier frequency
* High accuracy position - high frequency code modulation

dual frequency ionospheric correction

*» Good interference rejection - direct spread spectrum, PRN codes
* Military security - classified Y-code

selective availability

Figure 3.2 GPS Signal Components [Langley, 1990].

Waveforms are for illustration and are not to scale.
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Navigation performance for users of the P code is generally better than C/A code
because finer resolution can be achieved with a higher frequency signal and access to
the code on both carrier frequencies. However, most civilian GPS receivers track only
the C/A code, because the Air Force has reserved the right to substitute a classified
code known as the Y code for the unclassified P code, without prior warning. Only
military users would have access to this code, and, if it is turned on, unauthorized P
code receivers would not be able to acquire any satellites. An additional security
device, known as selective availability (SA) will intentionally degrade GPS

performance for most civilian users. This will be discussed further in Section 3.3.4.

3.4.2 Antennas

Modern GPS antennas, known as microstrip elements, are compact, simple in
construction, reliable, and have gain patterns which are highly resistant to indirect
signal interference, known as multipath. The antenna consists of the sensing element
and preamplifier. The phase center, or apparent signal reception point, depends upon
the observation angle. The motion of the antenna phase center does not significantly
influence navigation performance; however, to achieve the centimeter level
measurement precision required by the geodesy coexperiment, it must be stable and
calibrated to about 0.1 cm.

Figure 3.3 illustrates potential locations of the GPS antennas on the GP-B
spacecraft. Since the overall design has not been finalized, they may still be moved
around substantially. There will probably be a total of 4 antennas to provide a
continuous view of all satellites within 90 deg of the spacecraft zenith. Several of the
antennas may be located on the solar panels for improved viewing and at least one
should be mounted on the spacecraft body in case of panel warping or vibration. Signal

blockage or reflection from vehicle surfaces, communication signal interference, and
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thruster piume impingement on the antenna elements must be studied in detail once a
preliminary layout has been completed. An additional consideration is the viewing
geometry while the spacecraft is attached to the second stage of the Delta II. At least
one antenna must have a clear view of the sky to permit satellites to be acquired, and

a GPS update to be provided to the booster.

GPS Antenna

Solar Panel

GPS Antennas

Figure 3.3 Potential GPS Antenna Locations on the GP-B Spacecraft.

3.4.3 Receiver

The design of a generic digital GPS receiver is shown in Figure 3.4. A quartz
crystal oscillator with a frequency of 10.23 MHz serves as the timing reference for all

signals generated in the receiver. The incoming GPS signal is downconverted to an
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intermediate frequency and immediately digitally sampled. Each channel consists of a
code loop and a carrier tracking loop. The code loop works by correlating the incoming
P or C/A code with an internally generated version of the code. The code phase can be
used to find the range to the satellite modulo the chip width, which is about 30 m for P
code and 300 m for C/A.

In addition to code phase measurements, modern receivers are also capable of
determining the carrier phase, or accumulated carrier phase. This very precise
measurement can be used to determine the change in the range or average range rate
to an accuracy of about 0.01 m/s under benign dynamic conditions. This turns out to be

a key feature for GPS based orbit determination.

A third type of tracking element in the receiver strips off and interprets the
navigation message transmitted on both carrier signals. This provides a model of the
satellite clock error, an ionospheric error model, an almanac for all satellites in the
constellation, and an accurate ephemeris for the particular vehicle. The ephemeris
information is used to compute the position and velocity of the GPS satellite in an
Earth centered Earth fixed coordinate grid, known as WGS-84. To use GPS for
determining a spacecraft orbit, a coordinate transformation must be done to convert to
an Earth centered inertial reference frame as described in the previous section.

There are several tradeoffs which need to be carried out to determine what type of
receiver should be flown on the GP-B spacecraft. The number of channels must be
selected to permit continuous tracking of 6 to possibly 12 satellites in view. P code is
desirable from the point of view of geodesy but the threat of access limitations favors
C/A code. Dual frequency carrier tracking would provide additional measurements for
geodesy and ionospheric corrections, but is not really required for the orbit trim or

relativity mission. Access to the selective availability key may be required to achieve
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the necessary navigation accuracy and reliability. Table 3.2 lists the various options
and their costs and benefits.

In this study we will evaluate two receiver configurations. The low accuracy,
lower cost option is a standard single frequency C/A code receiver with no SA
correction. The higher accuracy option is a dual frequency carrier tracking C/A code

receiver with SA key access. At this time there does not appear any need for P code.

1 50 Hz
Navigation

Preamplifier

<
~

|

Down = A/D
Conversion '_.'
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= channel 2 ’“f
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=

e

Figure 3.4 Generic Digital Receiver Architecture.

Code tracking loops correlate internal code with low IF received signal. Once code lock has been
achieved, time shift is used to aid carrier loop. Carrier tracking loop maintains lock on the L band
carrier and provides Doppler aiding to code loop.
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Table 3.2 GPS Receiver Tradeoffs

Option Benefits Liabilities

Dual Frequency Improved geodesy More channels required for
Ionospheric corrections same number of satellites

C/A Code Guaranteed access Limited accuracy

P Code Improved accuracy Possible loss of access

More complex / expensive

SA Key Remove selective Requires DoD approval,

availability effects Makes receiver classified

3.4.4 Measurements

Based on the code phase delay and the accumulated carrier phase, the GPS
receiver generates measurements of the range and range rate from each of the GPS
satellites to the user, corrupted by the user clock error. These measurements,
referred to as pseudo range (p) and pseudo range rate (P), together with the GPS
satellite positions (rgps) and velocities (vgps) are then used to compute the host
vehicle position (r), velocity (v), clock bias (b), and drift (f).

The pseudo range and pseudo range rate measurements are modeled as follows:

pi=|Ari|+b+ey

3.1
= e] rops; - e{r+b+sp,-
Ar] Av;
= +/+E
©o A T+ &
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T T
=€ VGpsi - ¢V +f + g

Ar; . . .
Where Ar;=rersi- r, AvVi=vVeps;- v, ande;= IA—r‘—l is a unit vector pointed
i

from the user to satellite i. Random errors in the pseudo range, €pi » and pseudo range

rate, &;, are caused by the system, the environment, or the user receiver. GPS
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errors are usually expressed as a distance or velocity which is computed by
multiplying the time delay by the speed of light, ¢ =2.997 x 10 8 m/s.

The measurement errors produced by the GPS itself are GPS satellite ephemeris
an_d clock errors, and selective availability (SA). Errors in the ability of the control
segment to predict the satellite ephemerides causes different range errors depending
on the location of the user. These errors have been observed to be under one meter in
range for the Block I satellites; however the GPS Joint Program Office (JPO) unofficial
1-c range error is 4.3 m [Navtech, 1987]). The error in the GPS clock model was
expected to be on the order of 3.5 m [Navtech, 1987], but has been observed to be
below one meter as well. An optimistic, but realistic estimate of these contributions
is 4.0 m 1-0 range, and 0.005 m/s 1-G range rate.

Selective availability is an intentional degradation of the GPS signal by the DoD
for security reasons. The claim is that it would limit the real time accuracy achievable
by an unauthorized user to 100 m 2D RMS [Kremer, et al., 1990]). SA is implemented
by dithering the frequency of the signals leaving the GPS satellite; thus it affects both
code and carrier signals. The ranging errors have a slowly varying component with a
time constant on the order of 200 s. The magnitude of the errors has been found
experimentally to be as much as much as 60'm 1-0, in range, and 0.2 m/s 1-G in range
rate [Chou, 1990; Kremer, et al. 1990]. More typically it is less than 20 m. Figure 3.5
illustrates range errors for data collected simultaneously from two satellites by Chou
at Stanford University on June 25, 1990. Satellite 16 exhibits the dominant time
signature of a signal disturbed by SA, whereas satellite 20 shows the much smaller,

random “white” errors present on an unafflicted satellite.
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Figure 3.5 GPS Range Errors

The graph shows range errors for two satellites collected on 6/25/90. The solid line is satellite PRN 16,
which we believe had SA turned on, and the dotted line is satellite PRN 20, which had its SA option
turned off. Civilian users are not notified of the SA status of the satellites.

Chou identified the parameters of a second order Markov process which
characterize the observed SA effects. The SA induced range error (€sa) is modeled

as follows:

2
d B442B dji‘ +Besn=wsa , wsa~ NO,48%02) (3.3)
dt

where he determined = 0.011 sec'! and ¢ = 14.3 m. The correlation time, which is
related to the paramter S, is 190 sec. These numbers typically vary by about 10%.
Authorized users may obtain access to an SA key, which is embedded in the GPS
receiver, and permits them to undo the signal variations caused by SA. It is likely that
GP-B could justify this type of authorization.
The user receiver causes GPS errors mainly associated with thermal noise and its

internal ciock drift. Receiver noise is typically white with standard deviations of 1 m
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for C/A code measurements, and 0.5 cm/s for carrier measurements. The clock drift
depends on the type of oscillator. In most cases this drift will be quite large and must
be determined in the solution for the user location. Two or three variables- clock bias,
drift, and possibly change in the drift rate, are usually added to the solution set.

As the GPS signal travels from the satellite to the user receiver it is affected by
the environment. Delays are introduced by the ionosphere and troposphere. Indirect
signals reflecting off nearby surfaces may cause signal interference known as
multipath. Tropospheric delay is not a problem for GP-B as long as the elevation
mask angle is set to zero degrees or higher, because at an altitude of 650 km, the
spacecraft is well above the 80 km upper limit of the troposphere.

The ionosphere occupies the region from about 350 km to 1000 km, but the ion
density drops off quickly above about 500 km. Signals passing through the ionosphere
are retarded by an amount proportional to their frequency and the number of free
electrons encountered. Thus, dual frequency receivers are able to use the two
measurements to calibrate the signal delay due to this error source down to under
about 1 m. Single frequency users employ a model of the ionospheric delay which
eliminates about 75% of the error. For GP-B, dual frequency calibration should reduce
the error to under 0.5 m, whereas modeling would leave an error of about 2 m. The
range rate error due to variation in the ionospheric delay is assumed to be 0.5 cm/s for
both single and dual frequency. Again the elevation mask angle should be set no
lower than zero degrees to avoid looking at signals passing through the densest part
of the ionosphere.

Errors induced by multipath are highly dependent on the type of receiver and
environment surrounding the antenna. P code receivers tend to be more resistant to
multipath for two reasons. The nature of the code allows the receiver to identify

indirect signals which are delayed by more than 1.5 chip widths, that is 45 m for P code
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and 450 m for C/A [Hagermann, 1973). Signal reflections from spacecraft solar panels
or other structures may cause some errors for GP-B, but because it is highly geometry
dependent the exact values cannot yet be determined. Placing the antennas on the
tips of the solar panels may heip to alleviate this potential problem. We have
assumed a preliminary error budget of 2 m range and 0.5 cm/s range rate for multipath.

The total error budget for the high accuracy receiver considered in this study, is
5 m 1-0, for the range, and 0.01 m/s 1-c, for the range rate. These errors are assumed
to be uncorrelated between measurement epochs which occur at 10 second intervals.
The low accuracy receiver error is dominated by SA effects. Its range and range rate
errors are modeled by a second order Markov process as given in Eq. 3.3. The precise
digital model used in the simulation will be presented in Section 3.6.1.1. Typical range

errors are 20-30 m, and range rate errors are 0.1-0.2 m/s.

3.5. Navigation Processor

The main function of the navigation processor is to extract the GP-B orbit
information from the GPS data, and to provide an estimate of the current deviation
from the target orbit to the control system. Additional housekeeping tasks such as
antenna management, GPS signal integrity checking, and data processing for
transmission to the ground, must also be performed. Orbit estimation for the closed
loop control is accomplished by propagating a simplified dynamic model, and
incorporating outside information from GPS. The dynamic model is divided into two

parts- the reference state, and the deviation state.

Figure 3.6 shows a schematic of the navigation system. In the following sections

each of the functions is described with primary emphasis put on orbit estimation.
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Figure 3.6 Navigation Processor Diagram.

Shaded region represents the components and functions of the navigation processor.
Inputs are GPS measurements and commanded control accelerations. Output to the
orbit controller is the estimated deviation from the reference orbit. Spacecraft
position and velocity state is output to the attitude control system and ground.
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3.5.1 Reference State

The navigation reference state is based on the closed form model of short term
orbit variations due to Jo which was described by Eq. 2.21-2.23. The reference mean
orbit is assuined to be precisely polar (i'p = 0 deg), with its node aligned to the guide
star Rigel (29 = 78.474 deg). The reference mean position within the orbit plane is
propagated according to ur( t+7 ) = ur(t) + ng T.

This mean orbit motion defines a Hill reference frame ( iHj, iHp, iH3 ), with mean
orbit rate of ng, as was illustrated in Figure 2.2. The Hill frame is related to the
inertial frame ( ily, ily, il3 ), by a body fixed rotation of £2p about il3, followed by a 90 deg
rotation about the node, ard ug about iH3.

The eccentricity of the reference orbit is taken to be equal the target value, that is

Er=0.0000, Nz =0.001336. At any time, ¢z, the reference state is then given by

( ro + Org ) i ( Ot - ng ro Sug ) iy
rR=| rodug i Vr= { ng (ro + 8rg) + ro Our } iy (3.4)
0 i 0 i3

where ng, drz, dug, 8k, and dur were defined in Eq. 2.23.

After each GPS measurement update, the mean radius and argument of latitude of
the reference orbit are reset to reflect the best estimate of the current spacecraft
position. The details of the orbit reset will be described in Section 3.5.2.2. There are
two reasons for doing this reset. The first is that an extended Kalman filter works
better if the deviations from the point about which it is linearized are small. The
second is that since there is a rather wide range of acceptabie values for the

semimajor axis; thus, there is no reason to expend control effort trying to precisely
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achieve a 650 km altitude. In fact, the injection accuracy of the Delta upper stage

already puts the orbit within the required semimajor axis limits.

2 viation
The current estimate of the spacecraft state is given by

F=rr+8r, V=vi+0V (3.5)
where 8r and 8V are the estimated relative position and velocity, or deviation state.

The deviation state is assumed to be governed by Hill's equations, linearized
about the mean orbit. The discrete dynamic model decouples into three parts, the in-

plane motion, the out-of-plane motion, and the receiver clock dynamics, as follows:

XHk+1 XHk
Xn XH -~ [a
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rl-cosmgt 2(ngt - sinngt)
1 sin ngt 2(1 - cos ngt) _ 1 [1-cosngt
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WiN.PLANEs WouT.of-PLANEs @Nd Worock represent the discrete disturbance vectors, and t is
the time interval between measurements. In the filter, the disturbances will be
assumed to be zero mean, gaussian, white sequences. In fact, the disturbances
encompass all the unmodeled dynamics and are highly correlated. As a result, the
process noise in the filter will have to be set artificially high to prevent filter

divergence in the presence of these model violations.

3.5.2.] Kalman Filter

An extended Kalman Filter implemented in square root form is used to propagate
the ceviation state and GPS receiver clock error. The deviation state estimate,
denoted by X, consists of the in-plane components, xu, Xu, Y, and yu, the out-of-plane
components, zu, and zy, and the clock variables, b and f. Based on the dynamic models

presented in the expressions above, the state estimate is propagated according to the

following:
DIN-PLANE TIN-PLANE 0 Gcx
”~ ~ a
Xg41 = ®OUT.of-PLANE xi o+ 0 FouUT-of-PLANE ___f_y_ (3.7
®cLock 0 0 ac,

The (-) and (+) signs indicate estimates before and after a measurement update,
respectively. The measurement covariance is also propagated based on the transition
matrix, and the process noise covariance, Q. The discrete process noise covariance

(W) is computed from
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!
w=[¢mGthwnm (3.8)
0

where G is the disturbance input distribution matrix, and the Q matrix is based on the
expected disturbance acceleration levels. Typically, this process noise must be set
artificially large if the unmodeled dynamics are correllated rather than white to make
the filter converge properly.
The measurement update is given by
ﬁ=ﬁ+K{?“§J (3.9)
Pi- Pi Ik

The predicted values of the measurements p; and ;‘5,-, are computed based on the
current estimated state from Eq. 3.5, and the satellite position and velocity, as
follows:

Pi= |A%|+ b= T reesi-eTF+b

(3.10)
~ A‘l\‘-{ AV,‘
P Ta]

The gain vector, K; is a function of the current error state covariance, the

~ ~T AT A~ “
+f = € Vepsi- €;V +f

measurement noises, 0, and 0, and the measurement gradient vectors, Hy and Hj .

(3.11)
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3.5.2.2 Reference Orbit Reset
As explained before, after each measurement update the reference orbit is reset

according to the following rules to improve the accuracy of the linearized model and

prevent unnecessary expenditure of control authority.

ot
r+=ro‘+5fif u$=u§+LA+ (3.12)
| re + 8|

The deviations from this new mean orbit are computed and propagated in time by
the Kalman Filter. In theory, one should also recompute the system matrices based
on the new radius and orbit rate; however, this is computationally burdensome and
does not have any noticeable effect on the results. Thus, the linearized model
governing the deviation state is evaluated only once based on the target injection
values.

Alternative methods for resetting the reference orbit were also considered, such as
matching the velocity of the reference orbit rather than the position, to the current
estimate, or some appropriately weighted combination of both position and velocity.
No significant improvements in orbit trim time or estimation accuracy were observed,
thus we opted for the conceptually more straightforward approach.

The best estimate of the spacecraft orbit can be determined by the following three
steps. First compute the position and velocity in the Hill frame by summing the
reference state and the deviation state; then transform to the inertial frame based on
the current mean position; and finally compute the orbit elements from the inertial
position and velocity. The instantaneous crbit elements can be transmitted to the
ground to evaluate the performance of the closed loop system. The deviation state is
sent directly to the controller and serves as the basis for computing the orbit trim

commands.
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3.53 [ itv Checki

An additional task assigned to the navigation processor is the verification of the
integrity of the GPS measurements. Although in general the system is extremely
reliable, there is the potential for a satellite failure to go undetected by the control
segment for up to one hour. A satellite failure in this context includes events such as
onboard clock failures, faulty ephemeris or clock model uploads, and extremely severe
selective availability errors.

Because of the redundancy available in the full operational constellation, it is
usually possible for a GPS user to detect such failures autonomously. Several
techniques based on batch processing of the pseudo ranges from all satellites in view
were developed by Parkinson and Axelrad [1987, 1988]. These methods evaluate the
measurement residuals to isolate a potentially faulty satellite. The estimated
maximum range error can then also be used to predict the approximate positioning
uncertainty.

Such an approach could be implemented on GP-B to ensure reliable navigation
estimates; however, given the need for an onboard navigation filter, a more
straightforward check would be to discard any GPS measurement yielding a
measurement residual greater than four times the expected standard deviation.

The loss of a few measurements or possible incorporation of faulty data is not
critical for near Earth space navigation for two reasons. First, as will be shown in the
simulation results, there are usually about 9, and almost always more than 7 satellites
available at any time. Thus, the dependence on any one satellite measurement
accuracy is diminished. Second, the GP-B satellite is in a orbit with period of about 97
min. With a mask angle of zero degrees, any one GPS satellite is typically only in
view for 20-40 min. For these reasons, an integrity checking algorithm was not

implemented in the closed loop orbit trim study.
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For our particular closed loop navigation and control system, the effect of
navigation errors is even further reduced by the low level of thrust involved in the orbit
adjustment. Since maneuvers are carried out over several days, errors caused by poor
estimates over a short period of time do not have a significant impact on the final orbit
accuracy.

On the other hand, integrity verification is crucial if GPS information is to be used
to reset or calibrate the Delta inertial navigation system. This system has a high
thrust single burn capability which must be done correctly the first time.
Implementation of some form of integrity verification for the boost phase must be done
either on the Delta vehicle or in the GP-B receiver. This issue must be considered in

the near future.

4 Antenn nagemen

The antenna management function involves determining which GPS satellites are
in view of which onboard antennas and how to assign tracking channels appropriately.
Ideally, a satellite should be tracked by the same antenna as long as possible. This
minimizes the risk of loss of carrier lock which would decrease the ranging accuracy.
As the GP-B satellite rolls with a 10 minute period, any satellite may pass through
the whole field of view of a single antenna in as little as a few minutes.

An algorithm must be developed which takes as input the GPS satellite
ephemerides, the spacecraft position estimate, and spacecraft attitude information,
and as output sends a sequence of commands to the GPS receiver(s) designed to
optimize the amount of GPS information obtained. The implementation of this scheme
must be combined with a model of the spacecraft roll dynamics.

An additional topic which was not discussed in the preceeding sections, is the

translation of the GPS measurements received by different antennas to the spacecraft
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center of mass (c.m.). In computing the position and velocity of this point, the
processor must account for both the location of the antenna on the body and the
spacecraft attitude, before using the measurements to update the navigation state.
Until now it has been tacitly assumed that measurements are taken at the point of
interest.

Once the science data collection begins the attitude of the GP-B spacecraft will be
extremely well known. The pointing control system will keep the telescope axis of the
vehicle aligned with the guide star to within 100 marcsec [Parkinson and Kasdin,
1989] and the roll control system maintains the roll phase locked in time to 50 arsec
[Parkinson and Crerie, 1990). Thus, the inertial position offsets of each antenna from
the c.m. can be precomputed to better than 1 mm. This information will be important
for postprocessing of the geodesy data.

The attitude information available during orbit trim maneuvers has not yet been
determined. Following release from the launch vehicle, the GP-B symmetry axis will
probably be pointed roughly at the guide star Rigel. Some form of coarse attitude
information must be provided to the navigétidn filter. However, since the sequence of
events has not been established, it is not clear at this time if the spacecraft will be
rolling, or whether the pointing and roll control systems will be turned on. This will
have some impact on the implementation of the GPS antenna management function.

Given the approximate spacecraft attitude, the magnitude and direction of a vector
from the c.m. to each antenna can be determined in inertial coordinates. This vector is
then added to the position estimate for the c.m. in computing the GPS measurement
estimates in the Kalman Filter. Attitude rate information is used in a similar way to

account for the velocity of the antennas relative to the c.m.
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The details of this implementation have been omitted in this study but are critical
in an overall system simulation, and practical orbit trim system design. Attitude and
roll rate tagging of the raw GPS measurements for geodesy is imperative if centimeter

level accuracy is to be achieved.

3.6 Navigation System Performance

The performance of the navigation system was evaluated by computer simulation.
The first subsection provides the details of the simulation. Then results of a
simulation of GPS satellite coverage are shown. Sections 3.6.3-4 present simulation
results for the high accuracy and low accuracy receiver options respectively. The final
section describes the navigation filter performance during closed loop system

operation.

3.6.1 Simulation Description

Figure 3.7 illustrates the components of the navigation system simulation and
their interactions. There are three main parts- the truth model, the navigation
processor model, and the data storage and processing unit. When closed loop control

is introduced, a fourth unit is added to compute the commanded controis.

1.1 8i jon Truth M

The truth model consists of a dynamic model of the spacecraft orbit and the GPS
system. The spacecraft orbit is propagated using the instantaneous orbit elements in
the variational equations given in Eq 2.11. Perturbing forces due to Earth harmonics
up to degree and order four are included.

Drag effects during the orbit trim are modeled as described in Section 2.7.1.
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NAVIGATION PROCESSOR

Kalman Filter
Measurement Update -
GPS Incorporate GPS information to
; improve deviation state estimate.
Time update -
Propagate deviation state estimate
using linearized dynamic model.

Propagate GPS orbits.
Determine visible satellites.
Compute true ranges and rates.
Add random errors.

)
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r’v (4] r ]

/

Orbit Dynamics Reference Orbit

Generate instantaneous disturbing Propagate mean orbit including
forces due t0 J(2,0)-J(4,4) & drag. Earth oblateness.

Integrate variational equations. : | Define Hill coordinate frame.
Reset mean orbit based on deviation

estimates.

DATA PROCESSIN STORA

Compute actual deviations from the mean orbit.
After each time step accumulate :

- instantaneous orbit elements and actual deviations,

- estimated instantaneous orbit elements and estimated deviations.
At each storage interval compute mean and RMS values and store to disk.

SR

Figure 3.7 Navigation System Simulation Block Diagram.

The variational equations for the orbit elements are integrated numerically using a
fourth order Runge-Kutta algorithm with a time step of 10 sec. Numerical roundoff
errors are avoided by using extended precision variables and ensuring that all angle

variables remain within 0-2x rad.
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The orbit of each satellite in the GPS constellation described in Section 3.3 is
modeled as circular with the given orbit elements. GPS measurements are
constructed for each satellite within the field of view of the spacecraft at each 10 sec
epoch. The pseudo range and pseudo range rate are generated by computing the true
range and range rate, and adding the appropriate error for the type of receiver
configuration considered. For the high accuracy receiver, the errors are zero mean
gaussian random variables with standard deviations of 5 m for the range and 0.01 m/s
for the range rate.

The lower accuracy GPS errors are modeled so as to include the correlated nature
of SA as described in Section 3.4.4. The discrete version of the second order Markov

process given in Eq. 3.4 is

[es,, i ]m =¢m[€s.4i]k+ [WE“J (3.13)

Esai Esa i Wesa
where, for 0 =14.3m, f=-.011s-1, and a sampling time of 10 s [Chou, 1990],

=[ 0.9941 8.9325 ] - Weg, ~ N (0,0.58 m)
-0.0011 0.7923 1", ~N (0, 0.097 m/s)
Figure 3.8 illustrates typical simulated SA errors for a single satellite.
Additional zero mean gaussian errors of standard deviation 5 m and 0.01 m/s are
added to the low accuracy pseudo range and range rate respectively, to represent

receiver thermal noise and other uncorrelated error sources.
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SIMULATED SA RANGE ERRORS
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Figure 3.8 Simulated SA Errors for Low Accuracy Receiver.
The graphs show typical simulated pseudo range and range rate errors caused by SA.
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36.1.2 Navieation P Model

The navigation processor is implemented based on the description in Section 3.4.
The extended Kalman filter used to estimate the position and velocity deviations, and
the two GPS receiver clock states is implemented in square root form. This
formulation is less prone to numerical difficulties than the classical form. At each
measurement epoch, it incorporates the measurements provided by the GPS unit to
update its state estimate. The estimate of the deviation state in the Hill frame is then
used to reset the mean reference orbit. Instantaneous orbit elements are computed
based on the sum of the reference and deviation states.

Note that the dynamic model used by the navigation processor is much simpler
than that of the truth model. Thus, one should expect the unmodeled dynamics to have
a significant effect on the estimator performance. In fact, this turns out to be the case
as will be seen in the later sections.

In addition, in the navigation filter the GPS measurements are assumed to be
uncorrellated with zero mean, even though the errors generated by the truth model are
correlated. The filter assumed standard deviations of the measurement errors for the
high accuracy receiver are set at 5 m and 0.01 m/s, and 30 m and 0.2 m/s for the lower

accuracy receiver.

Datrg Stor Pr
A separate software unit was used to store and process the simulation data for
later plotting and review. After each 10 sec measurement interval, the simulation
provides the true instantaneous orbit elements and deviation state, and their
estimates. The mean values of the actual elements, as well as both the mean and the
RMS values of the estimation errors over the storage interval are stored on disk. For

simulation run times of two orbits or less, the data is averaged and stored every
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minute. For simulation run times of one day or more, the data is averaged and stored

every 10 minutes.

3614 Initializasi

Three data files are used to initialize the simulation parameters. The first sets up
the time steps, storage intervals, and stop times., The other two select the actual
orbit parameters and the navigation system parameters.

The actual orbit is initialized to one of three sets of conditions: an orbit
approximately equal to the target, a good injection orbit representative of the upgraded
Delta II upper stage system, and a poor injection orbit more typical of the current
launch vehicle capability with no GPS update. The offsets of the instantaneous orbit
elements from the target values which were used for the good injection and poor
injection cases are listed below in Table 3.3. These are used only as representative
examples. To properly verify the operation of the system, a Monte Carlo type study
with a large number of runs using different initial conditions would have to be carried
out and the results evaluated statistically.

The GPS measurement errors and Kalman filter parameters are initialized to either
the accurate GPS receiver (Gp=5 m, 6 = 0.01 m/s) or the lower quality GPS receiver
(cp=30m, Op = 0.2 m/s). In both cases the continuous process noise variance for
each of the filter states was set to 10-4 m2/s4. The initial estimates are set equal to
the target orbit and the initial covariance is set arbitrarily large. In the simulation

results, the first point is omitted from the plots and the computed statistics.

Table 3.3 Simulation Actual Orbit Initialization Errors. Lists the values used for the
simulations. The numbers are representative of possible injection orbit errors.

AE An Ai’ AQ Aa

(deg) (deg) (m)

Good Injection -5 x104]-5x104| -5x103 | -5x103 -500
Poor Injection +1x103} +1x103 | +1x102 | +1x102| +500




CHAPTER 3. NAVIGATION 96

3.6.2 Coverage
Figure 3.9 illustrates the typical GPS satellite availability for GP-B. The

spacecraft is assumed to have a 180 deg view angle centered about the zenith. The
results shown are for one arbitrary orbital period and one 24 hr period. For this one
day segment there are always between 6 and 12 satellites visible, with 8 or more in
view about 95% of the time. Although the exact pattern of available satellites will
shift each day, the general result stays about the same. Thus, there will always be
sufficient satellites for GP-B to navigate reliably even in the event of a single satellite
outage, and probably enough redundancy to permit the implemtation of an autonomous

integrity verification scheme to discard potentially faulty measurements.

g

12

Number of Visible Satellites : 1 Orbit

0 20 40 60 80 100
time (min)

Number of Visible Satellites : 1 Day

0 5 10 15 20 25
time (hr)
Figure 3.9 GPS Satellite Coverage for GP-B,

The bottom graph shows the number of visible satellites(elevation > 0 deg) over a one day period. The top
one shows an expanded view of the coverage pattern for a single orbit.
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3.6.3 High Accuracy Results

The simulation was run with the higher accuracy GPS receiver (range error of 5 m,
1-0, range rate error of 0.01 m, 1-6). Figures. 3.10-11 show the orbit element
estimation errors, and the errors in the estimates of the deviations from the reference
orbit in Hill’s coordinates, respectively. The errors shown are averaged over the data
storage interval of 1 minute. In this first case (NAV1), the GP-B spacecraft orbit was
initialized as closely as possible to the target orbit. The mean errors over one orbit
are well below 10% of the injection error requirements specified in Table 2.11.
Table 3.4 lists the RMS and mean errors for each of the orbit elements and
components of the state. In particular, the coinclination estimate which is the most
critical parameter for orbit injection, has a mean error of only 0.1 x 10-5 deg (< 0.2 m)
over the second orbit, and an RMS error of 3.2 x 10-3 deg (4 m).

The estimation error statistics for two runs (NAV2, NAV3) with the same GPS
receiver, but in orbits more typical of the injection accuracy capability of the Delta II,
are also listed in Table 3.4. The initial conditions used are given in Table 3.3. Notice
that there is an increase in the magnitude of the in-plane estimation errors particularly
in the argument of latitude and semimajor axis, as the orbit deviates from the target.
This is also reflected in the errors for the in-plane positions, xy and yy, which show an
increase in the RMS errors, from 1.2 m to 12.1 m, 1-0, in the radial direction, an& 0.5m
to 9.8 m, 1-0, in the along track direction. The time history of these errors is also more
systematic than the best orbit case. This result is typical of an extended Kalman filter
operating farther from its linearization point.

Table 3.4 summarizes the two orbit, high accuracy GPS receiver simulation
statistics. All of the results meet the navigation requirements proposed for the orbit
trim phase of the mission, and the target orbit results satisfy the science mission

requirements as well. As will be shown in Chapter 4, fairly large estimation errors are
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quite tolerable when the orbit is far from the target. As long as the estimates are not
larger than the orbit errors, the controller is‘ able to compute the right commands to
correct the orbit errors, and thereby bring it into a range where the navigation
performance is improved. The low level of thrust used to adjust the orbit provides the
opportunity for the errors to average over many orbits.

The high accuracy of the velocity measurements (less than 2 cm/s RMS error for
estimates made every 10 sec), is due to the low noise level of the GPS carrier phase
measurements (10 cm/s, 1-6). This is the key element for obtaining highly accurate
orbit estimates. By comparison, the performance of the lower accuracy receiver is
severely hampered, most noticeably in the Hill velocity estimates by the lack of a good

range rate measurement.

4 L.ow Accuracy Resul

Figures 3.12-3.13 illustrate the estimation errors averaged over one minute
intervals for a GPS receiver which does not have access to the SA key corrections.
As in Figures 3.10-11, the orbit is initialized as closely as possible to the target orbit
(NAV4). The RMS estimation error statistics for this run, as well as for two runs
with the good (NAVS) and poor (NAV6) injection conditions are summarized in Table
3.5. The RMS errors with this receiver are found to be about an order of magnitude
worse than the high accuracy receiver.

Although the mean and RMS values of the orbit estimates shown in the figures do
not quite meet the recommended navigation performance criteria, they are of the right
order of magnitude. The surprising feature of these results is not that they are worse
than the high accuracy case, but rather that they are quite good, in spite of the large,
time correlated errors produced by SA, which were not modeled explicitly in the

navigation filter.
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SA errors have a far less detrimental effect on orbit determination for near Earth
spacecraft than on Earth bound vehicles for several reasons. The most obvious is the
larger number of satellites which are visible at any time. Greater redundancy
decreases the dependence on measurements from a particular sateliite. Rapidly
changing geometry is perhaps an even more important reason. For GP-B, or any
similar near Earth spacecraft, any one GPS satellite is typically in view for 20-40
minutes. During this time the user/satellite geometry changes quite substantially,
causing any bias error in the range measurement to be projected onto different
components of the vehicle position vector. An Earth bound user on the other hand,
may track the same satellite for several hours. Thus a bias in one satellite may pull

the solution off the correct value for a significant period of time.

It will be demonstrated in Chapter 4, that both the high and lower quality receivers
work equally well in adjusting the spacecraft orbit. However, it may be desirable for
other reasons to use the better receiver onboard. For example, to improve orbit

determination for ground verification.

6. losed Loop Navigation Result
The last two figures in this chapter (Figures 3.14-15) illustrate the RMS
estimation errors for the high accuracy (NAV7), and low accuracy (NAVg), GPS
receivers when they are employed as part of a closed loop orbit trim system. The
initial conditions in the runs were set to the good injection orbit, and the duration is 9
days. For the first two days no control is turned on. The time optimal control
algorithm, which will be described in the following chapter, was then turned on for five

days and turned off again for the last two.
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The RMS coinclination and node efrors in the good case (NAV7) are less than
0.4 x 104 deg (7 m) - well below the level of the injection accuracy requirements. The
in-plane elements are also well within the acceptable limits. Notice in Figure 3.14
that the RMS error in these elements decreases as the controller drives the actual
orbit closer to the target orbit requirements.

The performance of the lower accuracy receiver is shown in Figure 15 (NAVS).
As we saw earlier in the two-orbit simulations, the RMS errors are about an order of
magnitude worse than NAV7. Although the RMS coinclination error is only slightly
less than the desired injection accuracy of 2.0 x 10-4 deg, we found that the controller
performed well. Again an improvement in the in-plane elements can be observed as
the orbit approaches the target.

Based on the results of this chapter, we expect that both types of receivers will
serve well in the closed loop system. For orbit trim purposes GP-B does not appear
to require a GPS receiver which has the ability to remove the effects of selective
availability. However, other mission objectives, such as the Delta II navigation
update or ground verification of the vehicle orbit, may favor the selection of an SA
keyed unit. Further modeling and simulation of the detailed operation of the GPS
receiver and navigation algorithms are required. We can expect that a navigation
system such as the one described will fulfill the requirements of a closed loop orbit

trim system. We now turn to the control system design and algorithm development.
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Table 3.4 High Accuracy GPS Navigation Results. Summary of simulation results.

Simulation time is 2 orbits. GPS measurement errors are S m and 0.01 mis, 1-6. RMS of estimation
errors taken at 10 sec intervals, over the entire simulation run are listed in Table 3.4a, and mean errors
over the second orbit are listed in Table 3.4b. Results are shown for 3 different initial conditions - orbit
approximately equal to the target, a good injection, and a poor injection orbit.

Table 3.4a RMS Estimation Errors - Good GPS

NAVI1 NAV2 NAV3

Approximate Good Injection Poor Injection

Target Orbit Orbit Orbit
Orbit Elements
£ 1.6 x 106 2.1x10% 2.5x106
n 1.5x 106 1.6 x 106 20x 106
i” (deg) 32x105 3.1x105 3.1x 105
Q (deg) 2.9 x 105 3.0x 10 3.1x 105
u (deg) 0.4 x 105 3.7x103 8.0x 105
a (m) 11.1 14.5 21.5
Deviation State
X position (m) 1.17 5.55 11.9
y position (m) 0.52 4.51 9.8
z position (m) 0.45 0.67 1.2
x velocity (m/s) 12 x 10-3 13 x 103 14 x 103
y velocity (m/s) 6x 103 7 x 103 8 x 103
z velocity (m/s) 6x10-3 6 x 103 6x 103

Table 3.4b Mean Estimation Errors - Good GPS

NAV1 NAV2 NAV3

Approximate Good Injection Poor Injection

Target Orbit Orbit Orbit
Orbit Elements
& -0.0x 106 -0.6 x 106 1.1 x10%6
n 0.0 x 10-6 0.3 x 106 -0.6x 106
i’ (deg) 0.1 x 105 0.1 x 103 0.0 x 105
Q (deg) -0.2 x 103 0.2 x 103 0.5x 105
u (deg) 0.0 x 103 -0.2x103 -12x105
a (m) 0.7 -0.8 -1.5
Deviation State
x position (m) 0.3 -0.5 -1.0
y position (m) 0.0 -0.3 -1.5
2 position (m) 0.1 -04 0.7
x velocity (m/s) 0.2x103 -1.6x103 10.0x 103
y velocity (m/s) 0.0 x 103 0.2 x 103 0.3 x 103
z velocity (m/s) -0.0 x 10-3 -1.0x 1073 1.2x103
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Table 3.5 Lower Accuracy GPS Navigation Results. Summary of simulation results.

Simulation time is 2 orbits. GPS measurement errors are modeled to include SA effects in the range 200-
40 mand 9.1-0.2 m/s. RMS of estimation errors taken at 10 sec intervals over the entire simulation run
are listed in Table 3.5a, and mean errors over the second orbit are listed in Table 3.5b. Results are
shown for 3 different initial conditions - orbit approximately equal to the target, a good injection, and a

poor injection orbit.

Table 3.5a RMS Estimation Errors - Poor GPS

NAV4 NAVS NAV6
Approximate Good Injection Poor Injection
Target Orbit Orbit Orbii
Orbit Elements
£ 21 x 106 25 x 106 34 x 106
n 21x 106 23x 106 33x106
i' (deg) 38x 105 41 x 105 43 x 105
R (deg) 37 x 103 38 x 105 38 x 103
u (deg) 8x 105 9x105 13x 105
a (m) 158 182 182
Deviation State
x position (m) 15.6 22.2 18.1
Y position (m) 9.8 10.8 15.5
2 position (m) 7.7 9.0 7.0
x velocity (m/s) 142 x 103 163 x 10-3 213 x 103
y velocity (m/s) 83 x 10-3 97 x 103 146 x 10-3
z velocity (m/s) 69 x 10-3 73 x 10-3 75 x 10-3

Table 3.5b Mean Estimation Errors - Poor GPS

NAV4 NAVS NAV6

Approximate Good Injection Poor Injection

Target Orbit Orbit Orbit
Orbit Elements
& 0.0x 106 -15.0 x 10-6 25x 106
n -0.8 x 10-6 9.0 x 10-6 -23x106
i’ (deg) -2.5x10-5 4.2 x 105 3.5x 105
Q (deg) 1.6 x 10-5 -0.7 x 10-5 0.2 x 10-5
u (deg) -0.3x 103 0.2 x 103 -3.4x 103
a (m) 19 30 25
Deviation State
X position (m) 5.7 10.1 34
¥ position (m) -0.3 0.3 -4.1
Z position (m) 20 -0.0 i.2
x velocity (m/s) 6x 103 14 x 103 3x103
y velocity (m/s) 4x103 5x103 10x 103
z velocity (m/s) 2x 103 2 x 103 -4x103
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NAV1 ELEMENT ESTIMATION ERRORS
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Figure 3.10 NAV] Orbit Estimate Errors - Good GPS

Errors in estimates of instantaneous orbit elements averaged over 1 minute intervals. GPS errors Sm &
0.01 mls, 1-0, and initial conditions on orbit set 0 the target values.
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NAV1 DEVIATION STATE ESTIMATION ERRORS
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Figure 3.11 NAV] Deviation State Estimate Errors - Good GFPS
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Errors in estimates of deviation from reference orbit in Hill coordinates averaged over 1 minute

intervals. GPS errors 5 m & 0.01 mls, 1-0, and initial conditions on orbit set to the target values.
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Figure 3.12 NAV4 Orbit Estimate Errors - Poor GPS

Errors in estimates of instantaneous orbit elements averaged over 1 minute intervals. Low accuracy GPS

receiver (without SA key) and initial conditions on orbit set to the target values.
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Figure 3.13 NAV4 Deviation State Estimate Errors - Poor GPS

Errors in estimates of deviation from reference orbit in Hill coordinates averaged over 1 minute
intervals. Low accuracy GPS receiver (without SA key) and initial conditions on orbit set to the target
values.
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Figure 3.14 NAV7 Closed Loop Orbit Estimate Errors - Good GPS

Good initial injection orbit and GPS errors of 5 m and 0.01 mis 1-6. Total run time of 9 days. Time
optimal controller on for days 3-7.
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Figure 3.15 NAV8 Closed Loop Orbit Estimate Errors - Poor GPS

Good initial injection orbit and low accuracy GPS receiver (without SA key). Total run time of 9 days.
Time optimal controller on for days 3-7.
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4.1 Introduction

This chapter describes the guidance or control segment of the closed loop orbit trim
system. The onboard controller objective is to issue commands to the helium
thrusters so as to adjust the orbit of the GP-B spacecraft to the target specified in
Chapter 2. A controller reference orbit is defined to account for out-of-plane motions
caused by the Earth's gravitational field, which produce oscillations in the elements
with periods on the order of a day. The deviations from the reference orbit are
described by Hill's linearized equations. A time optimal, “bang-bang” control
algorithm to adjust the orbit to the reference is presented. In addition, a design is
considered which combines an LQR approach with the time optimal solution to reduce
the number of switches as the actual orbit nears the reference.

The first section reviews the orbit trim requirements. This is follpwed by a
description of the extremely low thrust (10 pg) helium actuators used for orbit control.
The controller reference orbit is defined, and the control algorithms and simulated

performance are presented.

4.2 Orbit Trim Requirements

The primary requirement on the closed loop orbit trim system is that the daily
mean coinclination and node meet the targets specified in Chapter 2 within the
allowable error margins. That is, for a 1997 start date, the mean value of the
coinclination must be (3.75 £ 0.2) x 10-3 deg, and the ascending node measured
relative to Rigel must be (-12.8 + 2.0) x 10-3 deg. In general we will specify that the

daily mean coinclination error should be less than 2 X 10~ deg and the daily mean ncde

109
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error less than 2 x 10-3 deg. The performance simulation results which will be
described in Section 4.5 indicate that these requirements can be met by the proposed
orbit trim system.

A secondary objective of the orbit trim system is to adjust the eccentricity of the
orbit to its frozen value. This is done to minimize the overall eccentricity during the
course of the mission. The desired values of the orbit averaged eccentricity vector
components are &= (0 +0.5) x 10-3 and 1 = (1.3 £0.5) x 103 It is quite possible that
these requirements can be met by the Delta II. In section 4.5, we investigate a control
scheme which can adjust the eccentricity to far better than these values if so required.
It should be emphasized that the correction of the in-plane elements is far less critical

than the orbit plane adjustments.

4.3 Control Actuator

Part of the challenge in designing an orbit trim system for GP-B was to employ the
extremely low authority onboard helium thrusters for translational control. These
thrusters are fueled by the cryogenic boiloff of superfluid helium from the experiment
dewar. During the science data collection part of the mission, the helium thrusters
perform as actuators for both the attitude and drag-free translational control systems.

The original design and testing of the helium thrusters was done in the 1970s by
Bull and Chen [Bull, 1972; Chen, 1973]. Currently research is being conducted by
Wiktor, Jafry, and Lee on thruster design, configuration, control, and performance for
the GP-B spacecraft [Wiktor, 1989, 1990]. Wiktor analyzed various thruster
configurations and dewar heating rates to find the maximum thrust available in the
direction of the minimum control authority. It generally lies in the range of 1-10 mN.
The actual thrust available will probably depend on the rate of dewar heating, which is

primarily a function of the skin temperature of the dewar.
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For the purposes of the orbit trim system, we have assumed a maximum thrust
authority of 10 mN in each of the Hill frame directions. For the current spacecraft

mass estimate of 2000 kg this corresponds to a specific force of 0.5 pg's. That is

lacxl <5x 106 mfs2, |acy]<5x108mfs2,  |a..|]<5x108mis2 (4.1)

Perhaps a more accurate way of limiting the control authority is to specify the toral
available. The control algorithm would then have to find the optirhal steering angle to
adjust the in-plane and out-of-plane elements simultaneously. One advantage of the
approach we have taken is that the guidance law becomes merely a set of switching
functions which can easily be evaluated in real time. For steering angle control, a set
of desired trajectories must be determined a priori, and neighboring path controls

computed onboard.

4.4 Controlier Reference Orbit

A reference orbit for the controller is defined to account for the variations of the
out-of-plane elements caused by gravitational forces with characteristic periods on the
order of a day. In particular we model the twice daily oscillation in the coinclination
due to J2,2, and both once daily and three times daily variations in the node due to J4 1,
and J4 3 réspectively.

There are two reasons for doing this. The first is that the gravitational forces due
to these dominant terms are far greater than the maximum control authority available
from the onboard helium thrusters. This means that we could not eliminate these orbit
plane motions through the use of the helium thrusters even if we wanted to. Thus by
accounting for them in the reference, the controller does not attempt to counteract

them at all.
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The second reason is that once a satisfactory orbit trim has been completed, the
control system will be turned off, and the drag compensation system will take over the
translational control of the spacecraft. Thus to have the drag-free orbit be as close to
the target as possible, we should account for the variations it will experience due to all
the noncentral terms in the Earth's gravitational field plus the Sun, the Moon, and
other planets. As a compromise between accuracy and simplicity, we only account for
the effects of the dominant Earth terms, and expect that the orbit will change character
somewhat after the controller has been turned off.

We saw in Section 2.4.1 that the short term coinclination variation was dominated
by a twice daily oscillation produced by the J2 2 term, where the rate is given by

N 2
d ; tz.z - n_( % )22 Jz'z}é) F2,2.p(12£) [- sin (y225 - 92.2)] (4.2)

and the reference coinclination is thus approximated by

2
i'r(t) = -%n(lfz—E) 12,2(:082(/13- WE!L- ¢2.2)+i'7-

4.3)
=0.00189 cos Qwet-0.12) +i'r deg

which is illustrated in Figure 4.1. i’7 is the mean target coinclination specified based
on the start date such as in Table 2.11.

The variation in the node is somewhat more complicated as was shown in Figure
2.5. Here there is a clear once daily oscillation, but other higher frequency terms are
not negligible. As a compromise we have elected to model both the once daily and

three times daily terms.

4.‘-1?_'? =-n (&a’ir [F:t.ll(g)h.l sin (;{R - WEt- @a,)
4.4)

+ Fisa(E)Jaasin3(he- wet- @a3)]
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Then after integrating and substituting values for the derivatives of the coinclination
functions, the orbit, the right ascension of Rigel, and the geopotential coefficients, £z

is modeled by
Qr(1) = 0.00108 cos (we t +2.50 ) + 0.00079 cos (3 wet + 1.97 ) + Qr deg (4.5)

which is illustrated in 'Figure4.2. Q7 is the target node for the particular start date
specified in Table 2.11. In the simulations this was set to zero.

The in-plane elements of the controller reference orbit (a, &, 77 and u) are set equal
to the navigation reference values, and the reference position and velocity in the Hill
frame are determined. The reference out-of-plane position, zg, and velocity, iz, are
subtracted from the deviation states estimated by the navigation system to find the

out-of-plane state to be corrected.

4.5 Out-of-plane Time Optimal Control

This section describes the performance of a bang-bang control algorithm for the
out-of-plane motions of the GP-B spacecraft. The objective is to achieve the target
orbit in minimum time with the constraint that the maximum control authority is limited
to 5x 10-6 m/s2. Simulation results are shown for typical injection conditions expected
from the Delta II upper stage. In all cases the orbit trim requirements are satisfied.
The duration of the trim maneuvers depends on the size of the injection errors and the
limitations on control authority. The correction time is approximately proportional to
the magnitude of the specific force.

The values of the estimated out-of-plane position and velocity relative to the
controller reference orbit are used to determine what commands to issue to the helium

thrusters.
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Figure 4.1 Reference Orbit Coinclination.

Mean should be set to target coinclination for the start date. Here it is set to zero
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Figure 4.2 Reference Orbit Ascending Node.
Mean should be set to target ascending node for the start date. Here it is set to zero.
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4.5.1 Algorithm

The out-of-plane orbit control problem is formulated as follows- compute a control
acz (t) to bring the position and velocity deviations from the reference plane, z and z to
0 in mimum time, subject to the dynamical and magnitude constraints given by

w+nlz=a,, 4.6)
Qcz=0max Uz, |U| 1

The cost function is simply equal to the time. The well known solution to this
problem is to command full authority control, that is u; =+ 1 at all times with the sign
determined by the scalloped switching curve illustrated in Figure 4.3 [c.f. Athans and
Falb, 1966 or Bryson and Ho, 1975]. This figure shows the phase plane along whose
axes are plotted n2zlamay and nilamay. The states are scaled so that the axes are

unitless.

uz=-1

switch curve

nRZ Of..... N N N
Amax :
2+ i
4l ]
-6 :
-6 -4 -2 0 2 4 6
np?z
Qmax

Figure 4.3 Switch Curve for Qut-of-plane Control.

Phase plane for out-of-plane position and velocity. Location of the state within the phase plane
determines the optimal control.
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Figure 4.4 shows optimal trajectories in the phase plane for several arbitrary
starting conditions. In the absence of control or disturbance forces, the deviation state
would just move in a circle centered at the origin of the phase plane.. If the optimal
control is issued, the trajectories will consist of circular arcs centered at n2z/a,gy = -1
for points above the switching curve ( i.e. uz=-1) and n?z/amgy = +1 for points below

(uz = +1). The switching function is defined by

R Zswitch ='\/1_[2( niz modZ)-l]z 4.7
Amax Qmax

In theory, the time it takes to get to the origin can be calculated by summing the
angles swept out by the circular arcs along the trajectory. The actual time to the origin
will be different from this ideal situation because of errors in the state estimates,
unmodeled dynamics, commanded acceleration errors, and phase delay associated
with a digital control implementation. The performance of this algorithm was

evaluated by computer simulation.

4 1 rforman

The time optimal out-of-plane control algorithm was added to the dynamics and
navigation simulation described in Section 3.6.1. An additional control block takes the
deviation state estimates from the navigation filter and computes control commands
according to the algorithm described above. These are applied to both the true
dynamic model and the estimator dynamic model.

in the simulations, the target values of the mean coinclination and node were both
arbitrarily set to zero. For a more detailed study, different numbers would be used

depending on the start date. In addition, the target value of the northward eccentricity



CHAPTER 4. CLOSED LOOP ORBIT TRIM 117

OUT-OF-PLANE BANG-BANG CONTROL

n zdot/amax

n2 z/amax

Figure 4.4 Optimal Qut-of-plane Trajectories in the Z Phase Plane.

Curves A, B, and C represent the optimal trajectories for a harmonic oscillator with three different
starting conditions. Each 180 deg circular arc takes half an orbit to complete (about 49 minutes).

was set to 0.0011 rather than the true frozen value of 0.0013 computed based on the
odd harmonics up to degree 35. This value corresponds to the offset produced by J3
alone, which is the only odd zonal harmonic term included in the simulation.

Figure 4.5 illustrates the simulation results for a good initial injection condition
(CON1). A high accuracy GPS receiver is assumed, corresponding to the estimation
results shown in Figure 3.14. For the first two days no control is applied. Notice the
oscillations in the coinclination and node produced by the J3 2, J3,1, and J4,3 terms. The

conirolier is then turned on for five days. The orbit elements clearly move toward the



CHAPTER 4. CLOSED LOOP ORBIT TRIM 118

desired zero values. After five days the controller is turned off. At this point the
science data collection could begin, or a ground evaluation of the orbit may be
performed to see if further adjustments are required. After the controller is turned off,
there is a slight shift of both the coinclination and node due to simplifications in the
| controller reference orbit. However, the final mean errors are well within the orbit trim
requirements. Table 4.1 lists the mean values for each of these three simulation
phases.

Figure 4.6 shows similar results for a poor initial injection and a good GPS
receiver. In this case the controller is on for 10 days, and again we include two days
before and two days after the control period where no control commands are issued.
The mean values of the elements are listed in Table 4.1.

An interesting feature to note in all of the plots is the that even when the control is
turned on, the variation in the elements caused by the gravitational terms is not
eliminated. Although the reference coinclination and node vary smoothly, the helium
actuator does not have the control authority to suppress these oscillations. Figure 4.7
shows a three day simulation with the same starting condition as CON2 but a
maximum control force of 104 mys2. In this case the elements are forced to precisely
track the reference orbit. The fact that the actual thruster does not drive the orbit to
the reference does not have an adverse impact on the performance since the
deviations would reappear after the trim is completed anyway.

Table 4.1 also lists results for the same initial conditions as the first two runs, but
with the low accuracy GPS receiver statistics (CON3, CON4). Plots of the simulation

results are not shown since they are indistinguishable from the higher accuracy runs.
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Larger estimation errors do occur for these runs; however, they do not adversely
affect the orbit trim performance. Based on these results, from the standpoint of the
closed loop orbit trim system there is no need for the Selective Availability key to be

built into the GPS receiver carried onboard GP-B.

Table 4.1 Summary of Out-of-plane Closed Loop Simulation Results.

Lists the mean values of the coinclination and node for the first two days of each
simulation before control is turned on, the mean values for the last day of controller
operation, and the mean over the last two days after the controller has been turned off.

Mean Values of Orbit Elements
First 2 Days | Last Day of Last 2 Days
Control Off =Control On Control Off
CON1 - Good GPS
(Control On 5 days)
i' (deg) -49.3 x 104 -0.5x104 -1.5x 104
Q (deg) - 50.4 x 104 __00 _ _ 1.3x 104
CON2 - Good GPS
(Control On 10 days)
i' (deg) 100.1 x 104 -0.4x104 -2.0x 104
Q (deg) 106.5 x 104 - 0.2 x 104 - 1.3 x 104
'CON3 - Poor GPS
(Control On 5 days)
i' (deg) -493 x 104 -0.5x 104 -1.4x 104
Q (deg) -50.4 x 104 -0.1 x 104 1.5 x 104
CON4 - Poor GPS
(Control On 10 days)
i' (deg) 100.1 x 10+ 0.2 x 104 -0.8x 104
Q (deg) 106.5 x 104 0.2 x 104 1.2 x 104
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Figure 4.5 Out-of-plane Bang-Bang Control Results 9 Days - (CON1).

120

Good GPS receiver, good injection conditions. Mean values of the coinclination and node are shown.
Control off days 1-2. Control on days 3-7. Control off days 8-9. Dashed lines indicate control ONIOFF

switches.
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Figure 4.6 Out-of-plane Bang-Bang Control Results 14 Days - (CON2).

Good GPS receiver, poor injection conditions. Mean values of the coinclination and node are shown.
Control off days 1-2. Control on days 3-12. Control off days 13-14. Dashed lines indicate control
ONIOFF switches.



CHAPTER 4. CLOSED LOOP ORBIT TRIM 122

10 x10-3 . _COINCLINATION i
B
S
5 i ; i i ,
0 05 1 1.5 2 25 3
time (days)
10 x10-3 i __ASCENDING NODE '
B
S

0 0.5 1 1.5 2 2.5 3
time (days) '

Figure 4.7 Higher Thrust Control Results 3 Days - (CONS).

Good GPS receiver, poor injection conditions. Mean values of the coinclination and node are shown.
Control specific force of 10 mis? is used. Control is on for 3 days. Notice that it tracks the reference
orbit without deviations due to higher terms.

A fundamental limitation on how well the orbit trim system can perform is the
accuracy of the controller reference model. Dynamics not modeled in the closed loop
system will lead to errors in the injection parameters; however, we have found them
to be acceptably small. One other source of errors may be due to phase lag or chatter
in the bang-bang controller implementation. In the following section we investigate a
method for eliminating this potential problem and perhaps further improving the closed

loop orbit trim performance.
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4 R Control

As the orbit nears the target the bang-bang control system will have a tendency to
switch rapidly back and forth or chatter. This is due to several effects including
estimation errors, phase lag caused by the digital control implementation, and dynamic
mismodeling. One way to alleviate this problem is to implement a proportional control
scheme as the deviation state nears zero. It is a bad idea to use this proportional
scheme all the time because it would then take the system longer to achieve the
objective.

LQR gains were derived such that the control would reach saturation for an offset
of 2 x 10-4 deg in coinclination or node, corresponding to a position error of 25 m or
velocity error of 0.025 m/s. That is for errors larger than these values, the commanded
control is + apax with the sign determined by the sign of the gains times the estimated

states. Thus the control is given by,

ULgR = - (0.0015 n2 z + 0.1620 ng 2n)
(4.8)

Qep = Qmax min (ULgr, sign(ucgr))

Figure 4.8 shows simulation results in which the LQR control law has been
implemented (CON 6). The starting conditions and GPS receiver are the same as in
CON 1. There is no significant difference in the results from the pure on/off case. This
implies that the residual errors produced by our closed loop controller are primarily the
result of the simplifications in the target dynamic model and the inability of the control
actuators to overcome the higher order terms in the Earth’s gravitational field, rather

than chatter problems typically associated with on/off control.
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Figure 4.8 LQR Out-of-plane Control Results - 9 Days (CONG6)

Initial conditions are

good injection and GPS receiver is good. Same run as CON1 but with proportional

feedback gains implemented instead of time optimal control.
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4.6 In-Plane Time Gpiimai Control

In this section we investigate a time optimal control law to reduce the in-plane
deviations from the target orbit. This is not as critical an effort as the adjustment of
the orbit plane, thus it is likely that the orbit trim system will be turned off before the
precise in-plane target elements are achieved. First the algorithm is described, and

then performance results are presented.

4.6.1 Algorithm
The in-plane orbit dynamics are described by the following pair of coupled linear

second order differential equations.
Xy - 2nx)"n- 3n%XH= Qcx
. ) 4.9)
yH + 2nRXH = acy
We are interested in driving the radial velocity to zero and having it stay there after
the control is turned off, i.e.
2ng yu (tf) +3nf xu (tf) =0

(4.10)
Xu (I f) =0
If we define g7 and g2 as the terms of interest, namely,
= - (2 ).'H"' 3 npxy)
. Oma (4.11)
2= g

take derivatives, and substitute the expressions in Eq. 4.9, we find that the dynamics

of g7 and g are represented by a harmonic oscillator, this time with two control inputs.
shs s le M
[ qz] [-nk 0 q92 * u (4.12)
where acy and acy in Eq. 4.9 can be expressed as,

o et (4.13)
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The in-plane control objective can then be formulated as follows. Compute controls
u1 (t) and ua(t) with magnitude less than or equal to 1, to bring ¢q; and g to zero in
minimum time. Since the position within the orbit and the altitude are arbitrary, the
problem has been reduced to second order. The additional variables correspond to a
constant radial position offset and an integral of the along-track velocity.

Once again the solution is to use full control authority at all times, with the sign
determined by two sets of switching curves in this case, as illustrated in Figure 4.8

[Athans and Falb, 1966). The centers of the innermost scallops are located at

(nq1, nq2) = (1, £2).

switch A
curves

nr q1

Figure 4.9 In-plane Time Optimal Switch Curves

Phase plane for in-plane states, q; and q2. Location of the state in the phase plane determines the signs of
the two control inputs.
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The horizontal switch curve is defined by

n& Goswich = sign (q1) ‘ 2-45-[(| ne g1 | mod 2)-1]? } (4.19)

The vertical switch curve is defined by

R Qaswirch = Sign{(q1) { 2-45-[ (| ne g1 | mod 2) -1]2 ) (4.15)

Figure 4.9 illustrates several optimal trajectories in the q7,q2 phase plane. The
state evolves along a sequence of circular arcs whose center shifts clockwise among
the points (+1,+2), (+1,-2), (-1,-2), (-1,+2), each time the switching curve is crossed.
When the trajectory reaches the origin, the desired final state has been achieved. If
the control is turned off at this point, the radial acceleration will be zero.

To implement the in-plane control algorithm, the g; and g2 are computed based on
the Hill state estimates provided by the navigation processor. The appropriate values
of u;, and uz are computed based on the location of the state in the phase plane. The

actual controller commands, acy, and acy are then determined using Eq. 4.13.

4 rf n

The in-plane control algorithm was implemented in the closed loop computer
simulation. In all cases the target mean values of the eccentricity vector components
were, &= 0.0000, and i = 0.0011. In the first simulation (CON1), the initial conditions
were set to the good injection values specified in Table 3.3, and the good GPS errors
were used. Figure 4.11 shows the evolution of the instantaneous eccentricity vector
over the nine-day run. For the first two days the control was off. It was then turned

on for five days, and off again for two more. The figure eight pattern caused by the
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IN PLANE BANG-BANG CONTROL
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Figure 4.10 Time Optimal Trajectories for In-plane Control.

Curves A, B, and C show optimal trajectories for three arbitrary starting conditions.

Earth oblateness dominates the graph; however one can see the motion of the center
of the pattern from its initial location at approximately (0.005, 0.005) toward the
desired value of (0.000, 0.0011). Figure 4.12 shows a similar result for the 14 day run
starting with the poor injection conditions (CON2).

To focus on the motion of the mean eccentricity, the results were averaged over
daily intervals. Figure 4.13 shows the motion of the daily mean eccentricity vector for
the two runs just described. During the two days prior to the start of control and the

two days following, the mean vector moves along a circular arc centered at the frozen
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Figure 4.11 In-plane Time Optimal Control Results - $ Days (CON1).

Good GPS receiver, good injection conditions. Each dot represents the instantaneous eccentricity vector averaged
over a 10 minute storage interval. Dark circle indicates target mean value. Control off days 1-2, Control on days 3-7.
Control off days 8-9.
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Figure 4.12 In-plane Time Optimal Control Results - 14 Days (CON2).

Good GPS receiver, poor injection conditions. Each dot represents the instantaneous eccertricity vector averaged
over a 10 minute storage interval. Dark circle indicates target mean value. Control off days 1-2, Control on days 3-
12. Control off days 13-14. .
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eccentricity. Recall that this rotation of the direction of the perigee has a period of 101
days and is caused by the Earth oblateness as was illustrated in Figure 2.22. The
path that the eccentricity would have taken in the absence of control is indicated by
the solid lines. The actual path is shown with “+”. Thus the bang-bang control
aigorithm was quite successful in reducing the deviations from the target within the
orbit plane, and the requirements specified in Table 2.11 were easily met.

As in the out-of-plane simulation studies, no significant difference between the
closed loop results with the good and poor GPS receivers were found. Thus these

results are not shown here.

esinw

€cosw x10-3
Figure 4.13 In-plane Results Mean Eccentricity.

Daily average values of the eccentricity the vector for runs shown in Fig. 4.10 (CON1) and Fig. 4.11
(CON2). "+" are actual daily mean values. Solid lines show the path which the e vector would have
followed if the control was not turned on. Dashed lines indicate the expected long term path of the
eccentricity due to the Earth oblateness and odd harmonics.
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4.7 Closed Loop Control System Summary

The simulation results indicate that the time optimal closed loop orbit trim system
using the onboard helium thrusters can successfully correct typical injection errors
produced by the Delta II launch vehicle in under 10 days of operation. Final errors in
the mean coinclination and node were less than 2 x 10-4 deg. These errors are due
primarily due to approximations made in specifying the target orbit, and the low level
of control authority. Similar results were obtained for both the good and bad GPS
receivers. From these results it does not appear that a high quality GPS receiver will
be necessary for orbit trimming,.

Out-of-plane elements were corrected to within the requirements in the same
period of time. Other effects which were not modeled here including actual thruster
response dynamics, and spacecraft attitude dynamics are not expected to have a

significant influence on the results.
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5.1 Overview

The closed loop orbit trim system study presented here can be described as both
very specific to Gravity Probe B and very generic in its potential applications. In
general, it represents the design of an onboard system for performing extremely
accurate orbit adjustments without the need for ground support. In the particular
application to GP-B, it is a system to correct the orbit injection errors introduced by
the Delta II launch vehicle, using the onboard helium thrusters.

This chapter summarizes the system design and results for GP-B in each of the
three areas considered, namely orbit modeling, navigation, and orbit trim. It also
recommends future efforts necessary for a full implementation on GP-B, and suggests

extensions of this work to other applications.

5.2 GP-B Orbit Modeling

The requirements on the GP-B orbit were clearly defined; the most important of
which is that the orbit plane not deviate by more than about +500 m from the direction
to the guide star, Rigel. Deviations from this orientation produce Newtonian drifts in
the gyros due to gravity gradient torques which do not average to zero over an orbit.
The orbit plane should also be polar to within + 50 m in order to separate the geodetic
and frame-dragging drifts, and preclude rotation of the orbit plane due to J2. The
requirement on the altitude of the orbit is fairly lax (+ 5 km), and is driven primarily by
the ability of the drag compensation system to overcome the atmospheric
disturbances. The target altitudé may also be adjusted to avoid low order resonances.

Maximum eccentricity should be kept small to avoid large altitude variations.
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To satisfy these long term orbit requirements, target values for the orbit elements
were derived based on simulations of the motion over the 18 month mission. The
effects of the higher Earth harmonics, the Sun and Moon, the tides, and the precession
of the equinoxes were included. The target values for coinclination and node depend
on the launch year because of the variaiion in the lunar orbit plane. The allowable
injection error in coinclination is + 2 x 104 deg (25 m), and in node + 2 x 10-3 deg (250
m). This is far beyond the capability of the Delta II launch vehicle. The target
eccentricity vector points northward and has a magnitude of 0.00133. This frozen
value is produced by the interaction of the Earth oblateness and odd zonal terms.

Low order terms in the Earth’s gravitational field cause periodic variations which
dominate the short term motion. The in-plane elements vary once per orbit primarily
due to the effects of Jo. The coinclination varies twice daily due to J2 2 and the node
has a variation composed of a once daily and three times daily oscillation caused by
Js1and Ja3,

Further work must be done to refine the orbit modeling begun here. In particular,
the effects of near resonance terms should be examined in more detail to insure that
the selected altitude of 650 km is in fact, acceptable from this standpoint. Similarly, a
more elaborate tidal model should be introduced

The orbit modeling performed here is quite useful for approximating the long term
motions and specifying the injection conditions and required accuracies. As GP-B
nears its launch date, a higher fidelity model of the orbit evolution will be necessary to
precisely determine the target injection values. A number of large, highly accurate
orbit simulation programs exist at Goddard, JPL, and several universities. Such a
proven resource should be employed to verify and enhance the predictions of the

simpler models used here.
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. 8.3. GPS Based Navigation System
The proposed navigation system for GP-B is based on GPS. The key feature of

GPS is that it provides orbit information directly to the vehicle, thus eliminating the
need for extensive ground support. Two GPS receiver types were investigated, a high
accuracy version with access to the SA keys (5 m, 1-6 range, and 0.01 m/s, 1-0 range
rate), and a lower accuracy version which would not have this benefit (correlated
errors of 20-40 m range and 0.2 m/s range rate). The navigation performance of the
more accurate receiver was of course better, but both were sufficient for the closed
loop system operation. The conclusion is then that a standard C/A code SPS receiver
is acceptable as the navigation sensor for the orbit trim segment of the mission.

The navigation system estimates the state of the vehicle by propagating a
reference orbit which includes the short term effects of J, and a deviation from this
reference. The deviation state is propagated using a Kalman filter and updated based
on the GPS measurements. The semimajor axis and argurhent of latitude of the
reference orbit are reset based on the current state estimates, since we are not
concerned with the precise altitude or the position of the spacecraft within the orbit
plane. The performance of the navigation system necessarily degrades if the actuai
orbit is far from the reference in either the out-of-plane direction or in eccentricity,
since the dynamics of the deviation state have been linearized about the reference.

Further research needed to implement this system onboard GP-B involves four
areas: coordinate frame transformations, GP-B attitude dynamics and its effect on
signal reception at different antennas, antenna management, and improved models of
GPS errors. The transformations needed to convert GPS satellite information into
orbit element estimates were mentioned in Section 3.3. These must be worked out in

detail to ensure that errors in the uncertainty of this transformation do not exceed the
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estimation requirements. Attitude dynamics relates to the assumption made here that
measurements are taken at the center of mass of the vehicle. In particular, one must
evaluate the effect of the tangential velocity of the antennas located on the tips of the
solar panels of the rolling spacecraft on the GPS doppler measurements ( ~ 1 cm/s).
One must compensate for this motion in the data reduction in order to achieve the
measurement accuracies required for geodesy. This may become a critical area of
investigation given current considerations of decreasing the spacecraft roll period from
10 min to 3 min [Everitt, 1990).

It is clear that GPS will be used as a navigation aid on a wide variety of spacecraft
and other vehicles. Thé navigation scheme developed here is directly applicable to a
near Earth spacecraft such as a space station using onboard navigation for tagging of
measurements or as part of a closed loop orbit adjust system. A similar system could
be developed for more maneuverable vehicles such as orbital transfer vehicles or the
shuttle; however, in this case the reference orbit must be adjusted based on the

vehicle trajectory.

5.4. Closed Loop Orbit Trim

The closed loop orbit trim system consists of the GPS based navigation system,
and a time optimal control algorithm which issues commands to the onboard helium
thrusters. Simulations indicated that typical Delia II orbit injection errors could be
corrected within about 10 days of controller operations. The final mean orbit errors
satisfy the orbit injection requirements specified in the orbit modeling section.
Peformance of the system was virtually identical using either the high or the low

accuracy GPS receiver models.
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The out-of-plane control algorithm accounts for the oscillations in the coinclination
and node produced by the low order Earth harmonics by finding the deviations from a
control reference orbit. These deviations are represented by a harmonic oscillator, and
are driven to zero by commanding full control authority (5 x 10-6 m/s2) at all times with
the direction determined by a scalloped switching curve. The in-plane control
algorithm eliminates the radial velocity and acceleration using bang-bang control
commands in the radial and tangential directions. The eccentricity vector is brought to
the frozen value within the allowable error bounds.

This type of a closed loop orbit trim system is vital for GP-B. It will be virtually
impossible to achieve the necessary orbit injection accuracies using only ground
commanded controls.

Further work on the GP-B orbit trim system should involve more accurate
modeling of the onboard helium thrusters and their response to commands. In this
work, it was ass.umed that commands could be issued in each of the three axes of the
navigation frame. In actuality, commands to individual thrusters must be determined
so as to control both translation and attitude motions of the vehicle. The true test of
the trim system design will be to incorporate it in an overall GP-B system simulation
now under development.

One important aspect of this work has been its general applicability to a host of
orbit trim applications. A similar system could easily be implemented on an Earth
observation satellite requiring periodic or continuous orbit adjustments. In this case
the controller cost function would likely be changed to include a penalty for fuel
consumption. Similar closed loop guidance schemes could be used for other low thrust
vehicles such as a space tug, and applications to higher thrust and greater
maneuverability vehicles could also be developed which would improve efficiency and

injection accuracy.
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