INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor Ml 48106-1346 USA
31377614700  800/521-0600






PROBABILISTIC ENGINEERING DESIGN
OPTIMIZATION: APPLICATIONS TO
SPACECRAFT AND NAVIGATION SYSTEMS

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
Samuel Phillip Pullen
June 1996



UMI Number: 9630375

Copyright 1996 b
Pullenl,r nguel Ph:l.lxip

All rights reserved.

UMI Microform 9630375
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.




© Copyright by Samuel Pullen 1996
All Rights Reserved



I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a dissertation for the degree of Doctor of Philosophy.

radford W. Parkinson
(Principal Adviser)

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a dissertation foptfie degree of Doctor of Philosophy.

A E o
ﬁK.Enge

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a dissertation for the degree of Doctor of Philosophy.

Z, L

‘ // N. Jeremy Kasdin

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a dissertation for the degree of Doctor of Philosophy.

;}_M'ﬂ?w Ho..

Jonathan P. How

Approved for the University Committee on Graduate
Studies: — <

/A % i
[ L S A .
. Lae e »
f




ABSTRACT

In addition to designing engineering systems for optimal performance, developing
systems that are robust to possible failures and/or non-ideal operating conditions is of
great importance. In modern engineering practice, this is normally accomplished by
incorporating conservative performance margins such that projected “worst-case”
outcomes can be accommodated. In aerospace, safety or robustness considerations often
dominate the design process, but this can lead to over-designed systems, lengthy
development programs, and expensive final products.

Provided that decision makers accept the unavoidable possibility of failure, a
superior approach based on system uncertainty and user utility modeling exists. System
performance uncertainty, including unknown parameters and possible unit failures, is
modeled using the best available information. The user’s utility function, of arbitrary
mathematical form, expresses the relative “goodness” of all possible outcomes. Once the
axioms of decision theory are met, a maximum-utility search among the design space
determines the optimal solution. Because these problems do not comform to standard
mathematical assumptions, there is no guarantee of finding the best possible answer, but
modern computer search techniques now provide the capability to converge toward the
global optimum in reasonable time. As with traditional systems engineering, the optimal-
decision process is iferative, since the computer search results are reviewed by designers
who can further develop their risk and utility models.

This approach has been successfully applied to several system design tasks in this
thesis. A tutorial aircraft landing control problem is used to illustrate the basic procedure
and to demonstrate the safety improvements that are possible when controllers are
designed with system failure modes in mind. Applications to spacecraft design are then
developed. New models for spacecraft reliability prediction have been combined with
mission utility functions to predict the overall mission reliability of the Gravity Probe-B
(GP-B) spacecraft and to find improved redundancy architectures for space vehicles.

Uncertainty-based optimization has also been demonstrated to significantly
improve the process of Receiver Autonomous Integrity Monitoring (RAIM) for Global
Positioning System (GPS) navigation users. Similar uncertainty models applied to
augmented Differential GPS (DGPS) systems can predict overall performance and
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integrity for large regions of users. Combining these with top-level objective models
allows augmented GPS architectures to be optimized iteratively, as the latest experimental
data updates the risk model and motivates additional system improvements.
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Editorial Notes

This thesis attempts to use gender-neutral phrasing where possible. However, in
some cases, the masculine pronoun may be used in the traditional grammatical sense to
refer to both sexes. Please note that there is no intent to limit the discussion to males in
any aspect of this research.

The quotes that are used to begin each chapter are taken from a variety of sources.
They are intended to provide a flavor for each successive topic from the wider world in
which the concepts presented here are meant to be applied. The opinions voiced within
these quotes do not always agree with the points raised in the text. In some cases, they
are included to illustrate the source of the disagreements about which the thesis is
concerned and to provide a global perspective on what is at stake.

Unlike most engineering theses, much of the text in this document is argumentative
because it draws support for its theories from technical results that could be interpreted in
several ways. There are no “proofs” to be found here; the uncertainty models constructed
and simulated for each application illustrate that no deterministic bounds or conclusions
about system performance can be drawn when the underlying mathematical models and
parameters contain questionable assumptions. Simulation results are evaluated to
determine if uncertainty-based methods offer significant improvements over deterministic
“worst case” design approaches.

However, the problems addressed in this thesis are subsets of the overall
development process, and the probability models and objective functions used in each case
are also open to question. The conclusions presented here thus require significant
qualitative discussion to bolster their case while fairly considering altemative viewpoints.
Therefore, the results of this thesis are intended to be taken as a demonstration of both the
feasibility of the new decision-based design paradigm introduced here and its potential to
be applied to an entire development program in a unified way. More work will be
required before the limits of this potential are well understood. In the meantime, this will

remain a controversial topic.
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Chapter 1: Introduction

The sciences do not try to explain, they hardly even try to interpret, they mainly make
models. By a model is meant a mathematical construct which with the addition of
certain verbal interpretations, describes observed phenomena. The justification of such
a mathematical construct is solely and precisely that it is expected to work.

- John von Neumann (1903-1957)

You cannot apply mathematics as long as words still becloud reality.
- Hermann Weyl (1885-1955)

There are three roads to ruin; women, gambling and technicians. The most pleasant is
with women, the quickest is with gambling, but the surest is with technicians.
- Georges Pompidou (1911-1974)

1.1  The Development of Systems Engineering Practice

The modern art of systems engineering developed in the latter half of the 19th
Century, as a “critical mass” of technical expertise developed in several fields to support
the cooperative work of engineers across various specialties. Prior to this, most technical
innovations were the product of inventors, working alone or in small teams, who
independently developed and publicized their specific inventions. The Industrial
Revolution changed this by bringing people trained in various complementary technical
specialties to work together to build and operate machines. Soon it became possible to
make incremental progress that fed on itself; taking advantage of new breakthroughs and
constantly refining accepted techniques. At the same time, the design and manufacture of
ever-more-complex systems required specialists to learn to work together to coordinate
and set standards for the work of each branch of the project.

This system-development developed into its modern form in the 20" Century and
has become a worldwide standard since World War II. Specifications are its skeleton:
they define the system-level parameters that must be achieved by each subsystem. Related
to this are budgets, which allocate total system cost, weight, power, etc. to each
subsystem in a more flexible way (for example, cost overruns in one area may be
combated by adopting a cheaper design in another subsystem). Within these limits, the

specialists working on each subsystem then have considerable freedom to design their



piece of the puzzle. Their ingenuity within their areas of expertise is thus indispensable to
the success of the project. As a result, systems engineers may appear to be merely “bean
counters” who limit innovation by citing budgetary or compatibility constraints.

As is true for any methodology that has worked well and has universal acceptance,
modern systems engineering has become enshrined in the aerospace design community.
Hierarchies of specifications developed over the years just after World War II while
aerospace technology development boomed. These provided (and still provide) a clear
framework for laying out a design effort in its initial stages and flowing down
requirements to each of the subsystem engineering departments. As aerospace technology
innovation leveled off by the early 1970’s (corresponding to a time when both NASA and
defense funding dropped precipitously), this structure solidified itself and became the
dominant development paradigm throughout the aerospace industry. Much of what is
taught in systems engineering classes at the university level implicitly assumes that this
structure naturally underlies all development efforts and teaches students how best to
operate within it.

In the world of rapid technological change in which we live today, this system
design framework increasingly appears out of date. In its current incarnation, it is built
upon large sections of engineers responsible for developing and enforcing arbitrary
requirements at every level of design detail. Entire organizations exist primarily to ensure
that ongoing development programs are held to the letter of these specifications and
budgets. In addition, specifications are inherently inflexible, making it difficult to adapt a
development project to new developments in the underlying technologies. All of this can
smother the spirit of innovation and the healthy tolerance for risk that leads to dramatic
technology invention and productivity improvement on almost a yearly basis in
electronics-related industries.

The research in this thesis takes the first step away from reliance on the traditional
framework still used in practically all aerospace companies. The basis of a new approach
is outlined in this section, and then each chapter of this thesis demonstrates its applicability
to a specific subset of aerospace design practice. The theory of decision making under

uncertainty lies at the core of each chapter; it provides a global means of analyzing the



uncertainty inherent in possible courses of action and develops theorems by which the
optimal choice can be made. It is introduced in Section 1.2. Section 1.3 shows how these
concepts can be applied to the aerospace systems design process by transforming it into a
series of decisions made at discrete points in the development cycle. A “master decision
tree” is presented which illustrates how the decision perspective is applied to a spacecraft
design, development, and test program. This top-level tree is easily broken down into
separate subsystem projects that normally are done independently, but its integrated
structure allows design optimization to be carried out as a cohesive whole. An integrated
approach thus has the potential to avoid the administrative overhead that comes with
detailed specifications to which lower-level design efforts are slavishly held.

This thesis covers a great deal of territory; thus a complete summary of the work
on which it is based is impossible to construct. Section 1.4 instead introduces the research
fields that are most relevant and cites the most important sources for each, giving brief
descriptions of what they contain. Section 1.5 summarizes the research contributions of
this thesis and draws the separate threads from each chapter together to demonstrate how
the tools developed here make fully integrated optimal aerospace design under uncertainty

possible.
1.2 Decision Making under Uncertainty

Decision making under uncertainty is based on a fundamental idea: all non-trivial
decisions made in the real world are best evaluated by building a model of the uncertain
consequences of each alternative and then choosing the one with the highest implicit
probability of the most desirable result. This requires much explanation to be applicable to
practical cases, but it helps to remember that it all boils down to this single concept.

A simple illustration helps to illustrate this applicability. Many people who are said
to be indecisive have trouble with simple decisions such as what to order in a restaurant.
If they knew that the dish that they would enjoy most can be prepared quickly and is
inexpensive, the choice becomes trivial. If the first two were known to be true but the

dish is very expensive relative to what the patron is willing to pay, a deterministic value



judgment must be made to trade off the taste value versus price for the alternatives on the
menu. However, if the patron is unsure of the value of each dish because he or she does
not know the quality of ingredients, preparation, etc., he or she must make a decision
based on a qualitative best guess as to which outcome is most likely for each choice.
Thus, uncertainty has been introduced, and even of it is not modeled quantitatively, it
tends to be the primary source of hesitation as our indecisive gourmand tries to form a
fuzzy uncertainty picture from which he or she can make up his or her mind.

The key element that decision analysis adds to this picture is a mathematical
demonstration that, given the assumption of a “rational” objective function in a number-
line sense, an optimal decision exists within this domain of user preference and
uncertainty. Along with this comes a conceptual method for deriving quantitative
uncertainty models in cases where quantitative input data is insufficient to allow the use of
statistical inference. Decisions can be formalized into a generic pattern where a decision
maker, at a given point separating the past (and what is known about it) from the future
(and the uncertainties it holds), faces a set of alternatives, each of which presents the
decision maker with a deal. A *“deal” can be thought of as a “bet” or “lottery” in which
the decision makers “payoff” depends on various future prospects whose realization (and
likelihood of realization) are uncertain [1-2]). The decision maker must evaluate the deal
presented by each alternative based on these uncertainties and a function which measures
the value of each prospect, or outcome.

The following two subsections further detail the decision analysis approach to the
two apparently unrelated issues of uncertainty modeling and user preference modeling.
Once the probability model (Section 1.2.1) is in place, a method for integrating preference
functions into a probability format for seamless evaluation is introduced in Section 1.2.2

and Appendix A.

1.2.1 Uncertainty Modeling
Occasionally, there is a well-respected and accepted method of formulating
probability estimates for uncertain future events in a given field. Or it may be possible to

come up with representative probabilities from controlled experiments. However, when



probabilities of rare events are required, these approaches tend to break down. One
conventional response to this problem in engineering is to design a system according to
the “worst” conceivable prospect and be satisfied if it can be accommodated while
maintaining satisfactory operation. This has proved successful in the past, but it can lead
to a deterministic design focus that allows unforeseen possible circumstances to fall by the
wayside. Once a “worst case” is defined, it is easy to focus on the peculiarities of that
situation in one’s attempts to mitigate it, and the design one then comes up with can easily
be non-robust to other threatening circumstances.

Decision analysis provides a means for formulating uncertainty models that at least
have the potential to avoid this problem. First, it is important to clearly define the possible
alternatives into unambiguous categories so that they pass the so-called “Clarity Test”.
Otherwise, confusion as to what outcome falls where could corrupt the relative likelihoods
that are assigned. Once this is done, probabilities can be assigned (without necessarily
using any data) for each of these possibilities based on whatever information is available.
A common notation for this is Pr(Bl&), where B is a specific distinction that represents a
given possibility and the “&” refers to all information generically available at the time the
decision must be made. A probability tree can be constructed to represent this as shown
in Figure 1.1, where B represents all outcomes other than B [1-3].

Setting the probability for B given “&” is simply based on the best estimate that
the decision maker armed with knowledge
“&” can form. There is no rule on how to
do this, but a guideline for intuitive
probability assessment exists which is best
demonstrated by example [1-3). Let us say

that a person with a reasonable knowledge

of American history (from high school and
1 - Pr(BI&)

college classes) is asked to determine his
uncertainty about how many separate

strikes (events of labor unrest) occurred in
the US. during World War 2. This Figurel.l: Simple Probability Tree for Possibility ‘B”



number requires a clear definition: we are referring to the period when the U.S. was at
war (December 1941 - August 1945) and statistics tabulated by the U.S. Department of
Labor. Lacking detailed knowledge of this subject, one is tempted to just guess a most-
probable number and call that the mean (50th percentile) of one’s uncertainty distribution.
Then one is faced with wondering just how much uncertainty exists about that number.

A better approach in cases where one is substantially uncertain is to instead
estimate the 25-75 percentile limits [1-3). In other words, one tries to place upper and
lower bounds on the number in question that make it equally likely that the number falls
inside our outside the chosen interval. Once one is thinking in that frame of mind, it is
easier to next choose uncertainty bounds of 5-95%, 1-99%, and so on before deciding on
one’s mean estimate of the number. Interpolating between these intervals can be done
using Gaussian curves or whatever one feels is most suitable to reflect the right amount of
low-probability “tail expansion.”" By the way, the correct answer to the World War 2
labor unrest question is on the order of 41,000, which tends to be much higher than most
people guess. By starting with an uncertain interval rather than a point guess, one’s frame
of mind is shifted to think about what key information is not included in “&” and, as a
result, just how wide one’s range of uncertainty is.

Although one may be hesitant to place any weight on a probability distribution
arrived at in this fashion, decisions based on whatever information is available are optimal
under this theory, provided that the resulting probability assessment truly represents the
decision maker’s “best guess.” In this sense, assessments based on the information
contained in “&" are in the same domain as any set of statistically significant data -- there
is only a difference in level of “relevance” to the uncertain outcome. A key point is that
there is nothing to be gained by wishful thinking about these likelihoods. Any amount of
willful or unintentional self-deception, such as goes on (it can be argued) with traditional
spacecraft reliability models, can lead to a sub-optimal decision. In effect, this is because
the resulting decision problem was evaluated based on something less than the set (&) of

available information.



While making decisions based a limited amount of knowledge in “&” is valid if a
decision must be made now, often alternatives exist which allow the decision maker to
obtain more information before making an irreversible choice. In a probability tree, this
can be demonstrated from a case of two distinctions B and A which are “relevant” to each

other. “Relevant” in this context refers to statistical dependence: knowledge of A or

A influences one’s probability distribution on B. We can present this situation in the

probability tree shown in Figure 1.2.

Pr(BIA)

Pr(Al&)

1 - Pr(BIA)

Pr(BIA)

1 -Pr(Al&)

1-Pr(BIA)

Figure 1.2: Probability Tree for Relevant Distinctions A/B

Often it is easier to assign probabilities in a certain direction. In the case shown in

Figure 1.2, it was probably easier to choose probabilities for A and then choose those for

B in the two separate cases of A or A. In some cases, however, the decision maker’s

outcome is most dependent on A, and he or she has the option of obtaining, for a cost,

information about whether B or B is the case. If this information regards knowledge of a



distinction C that is relevant to B, C could be added to Figure 1.2 in whatever order is
easiest to assess probabilities. For this illustration, we will simply assume that the decision
maker can find out whether B or B holds for some cost that has value in his or her
preference function. In this case, the decision maker can reverse the order of A and B in

Figure 1.2. The marginal probability distribution for B is given by basic probability theory:
Pr(B) = Pr(BIA)Pr(A)+Pr(BIA)Pr(A) (L.1)

Then, Bayes’ Rule is used to compute the dependent probabilities of A given knowledge

of B:
Pr(BIA)Pr(B)

1.2
Pr(A) (1-2)

Pr(AIB) =

Now we can represent these two options in an augmented probability tree that we will call
a decision tree. This is shown in Figure 1.3. The black square on the left indicates that a
choice is to be made between paying to obtain knowledge of B or B versus not getting
this information but going ahead with a project whose outcome is dependent on A. In this
case, a third option is not doing the project at all. The utilities U on the right hand side
give the value to the user of each possible outcome.

In this example, one has the option to obtain information on B which is relevant to

the key outcome A. The value of information in this case has a natural upper bound,

which is the value of perfect information on A or A . If the outcome A were known, the
decision maker’s choice and his resulting value outcome would be obvious (if not, more
uncertain distinctions should be added to Figure 1.3). Let us assume that the project
would only be worth doing if A is the result. Then the value of perfect information on A

is equivalent to the weighted value from the probability tree (where the value of doing

nothing holds if A isthe result) minus the value that would result if no information on A
were obtained (this is based on the best alternative in Figure 1.3, which will depend on the
specific values and probabilities involved):



Pr(AIB)

Uz
do project, no info. on B Ua
1 - Pr(BI&)
. . U-
get info. on B, then decide A
UA - Cinfo
B - do project Pr(AIB)
1 - Pr(AIB)
A UK - Cinfo
do nothing .
do nothing
U() - Cinfo
U()
Figure 1.3: Decision Tree for Problem of Distinctions A/B
Value(PLA) = U, Pr(A) - Uy Pr(K) - Value(best choice, Fig. 1.3) (1.3)

Given the value of perfect information on A, we know that the value of imperfect
information on A, which is given by perfect information on the relevant distinction B in
Figure 1.3 (and is assigned the cost Ciyn), must be no greater than the value of perfect
information on the key distinction A given in (1.3). Otherwise, it would never be optimal
to pay for that information. This is not as rare as one might think; as the value of knowing
more about what is likely to happen may not be significantly higher than accepting the
lottery one is faced with based only on the prior information “&”.

Note that this simple demonstration captures the whole realm of value-of-
information issues. In engineering design, it often comes up in the context of whether

expensive experiments on prototype hardware are worth the cost in time and money.



Traditional development processes have a standard set of experiments of increasing levels
of complexity that must be completed before development is considered successful. In
many cases where time or cost pressures are greater, the optimal decision may be to
proceed with fewer tests, which means less information and perhaps greater project
uncertainty, rather than to pass on the opportunity altogether.

At lower levels of detail, the value of information issue arises frequently in
controller and filter design. For example, Kalman filters begin with a prior covariance
model and propagate it forward in time, arriving at updated covariance results from a best
sequential least-squares fit. After-the-fact smoothing may use both a forward and a
backward sweep through the data to produce the posterior covariance [9-3,4]. This
approach, which is widely used in modern engineering design, is simply a Bayesian update
to a prior information (&) matrix such that the posterior covariance represents the best
uncertainty model given the dynamic information available up to the present time. A
control law or failure monitor will use that information to make an “optimal” decision on
the best action to take (size of the control input, or whether or not to warn of a failure).

Finally, the decision analysis perspective easily allows controller models to be
generalized to non-Gaussian, non-linear models where the model equations, order, and/or
parameters are uncertain. If a decision maker is uncertain about the validity of the Kalman
filter assumptions for a given application, its use would be inferior to the use of a model
that applies whatever is necessary to evaluate a more flexible uncertainty model in real
time. This is true even if the results are non-intuitive from the standpoint of the traditional
assumptions. The significance of this conclusion will become clearer as the decision-

analysis philosophy is applied to each of the applications in this thesis.

1.2.2 User Preference Function Modeling

To fit within a valid decision-theoretic framework, the decision maker’s
preferences for each of the possible outcomes must fit the “Rules of Actional Thought”
which are detailed in Appendix A. In general, these rules simply ensure that the user’s
preferences among the possible outcomes follow a logical order from best to worst with

no circularity. Almost all decision makers intend that their preferences and evaluation
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methods be logical and follow the intent of these rules. Thus, once decision makers agree
to take a quantitative approach, it becomes feasible to build a valid decision model for
their problem.

In addition to requiring the use of probabilities to assess uncertainty, the
equivalence rule has the decision maker choose a “preference probability” p for each
intermediate outcome. This number is chosen so that he or she would be equally willing
to accept either that intermediate outcome or a lottery in which he or she receives the best
possible outcome with probability p and the worst outcome with probability 1-p. Doing
this for each intermediate outcome accomplishes two things. First, all of the intermediate
outcomes are given a value between O and 1 that decreases as the user preference
decreases. Thus, a suitable objective function has been created. Where the “delta
property” holds (see [1-3]), the relationship will be linear, but any function that satisfies
the rules in Appendix A is fine. Second, because the preference probabilities behave as
real probabilities in a mathematical sense, a probability tree along the lines of Figure 1.1
can be substituted for each intermediate outcome to express all possibilities as functions of
the best and worst outcomes. The problem can then be “solved” by working out the
probability of receiving the best outcome for each alternative and choosing the one with
the highest probability of that most desirable result.

The preference probability approach allows the decision maker to choose any
weighting of the intermediate outcomes that he desires. This choice of weighting may
implicitly include a measure of risk aversion, which places higher values for certain
equivalents (C.E. = a certainty of getting a particular intermediate outcome -- see
Appendix A) than would be suggested from the expected value of the equivalent lottery.
For example, a person who is indifferent between a certain receipt of $80 and a 50-50
lottery between zero and $200 is risk averse because the expected value of the 50-50
chance is $100. Someone whose C.E. for this lottery is $100 would be said to be risk
neutral, and someone whose C.E. is greater than $100 would be risk seeking. For
significant decisions, the latter category is rare, of course.

In practice, it is normally convenient to represent a decision maker's implied

preferences in a mathematical function that can be evaluated either analytically,
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numerically, or by simulation (in decreasing order of convenience). Traditionally,
objective functions are chosen first and foremost by their ability to fit a standard
optimization format that has a well-known globally optimal solution. Good examples of
this are linear functions that can be optimized using Linear Programming and linear-
quadratic functions for which an analytical solution is given by Linear Quadratic Regulator
(LQR) theory [9-4]. However, it is often hard to translate these measures into the
decision maker’s system-level preferences. Furthermore, analytical functions are often
artificially constrained in non-realistic ways. For example, the LQR method requires that
the plant be “controllable” by the actuator in terms of linear system theory [9-8). In this
case, LQR can always stabilize the system and ensure that the objective function has a
smooth global optimum. Robust control theory [9-6,11] extends the LQR formulation to
include bounded parameter variation such that guaranteed stability is always possible. In
reality, this just does not hold water -- where significant uncertainty is present, a non-zero
probability of instability will remain for any feasible design. In marked contrast, the
decision analysis approach has the flexibility to handle a direct modeling of the user’s true
preferences expressed over the full range of envisioned uncertainty. Controller design
based on probability models that encompass all known sources of uncertainty provides
“robustness” automatically, since the solution will be an optimal tradeoff between nominal
performance and the entire space of off-nominal conditions.

Normally, preference probabilities or values assigned for possible outcomes can be
more conveniently represented as mathematical functions, but for complicated cause-and-
effect probability trees, no analytical representation of the outcome probabilities is
feasible. Monte Carlo simulation on modern personal computers and workstations now
makes it possible to evaluate any uncertain system behavior model and its associated
preference function. Therefore, a fair decision-theoretic representation of engineering
design problems is possible. Simplifying assumptions and analytical calculations remain
useful, of course, but the presence of a means of complete uncertainty modeling and
consequence evaluation opens up a new window of opportunity for system developers

whose domain of activity does not easily fit into the traditional format.
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1.3 Applications to Engineering System Design

In principle, the decision-analysis structure introduced in the last section can be
applied to any problem in which the decision maker(s) are willing to both formulate the
problem in the probabilistic framework of Section 1.2.1 and follow the “Rules of Actional
Thought™ described in Appendix A. Translating this to an aerospace problem is not
necessarily trivial, but all of the necessary elements are present in Section 1.2. In
particular, a means of building a reasonable “best guess” uncertainty model is required.
Traditional models that do not fit the precepts of decision theory (normally because they
are known to be inaccurate simplifications) can often be revised to include these “non-
ideal” sources of uncertainty. This is what is done for spacecraft performance uncertainty
modeling in Chapter 2. In the chapters on GPS, prior uncertainty models are built from
published data that is itself highly uncertain. In both cases, Monte Carlo simulation
provides the means to translate these models into uncertainty projections from which
decisions can be made according to user preference functions that measure top-level
performance (degree of mission success) from the simulation outputs. No formal decision
trees are shown, but each chapter explains how the solution it constructs is based on the
fundamental decision principles and analysis steps introduced in this chapter.

Figure 1.4 presents a conceptual decision tree that attempts to capture the
complete scope of a spacecraft design and development program. It demonstrates that the
entire process can be viewed as a single integrated decision analysis problem in which
many different levels of decisions are made over time. It shows an interlocking relation of
decision authority and uncertainty at each level of detail. While it is common for higher-
level decisions to be made earlier, resolution of the higher-level uncertainty (such as one's
ability to maintain a reliable constellation instead of just a single satellite) is not necessarily
resolved before uncertainty at lower levels. In fact, each of the nodes in this tree may
imply a smaller encapsulated decision problem that is resolved over time as more
information becomes available at all levels.

On the left-hand side, basic architecture decisions on how to accomplish a specific

satellite-based mission, such as how many vehicles to build and launch, are shown as
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Figure 1.4: Master Decision Tree for Spacecraft Design Process

“system-level alternatives.” Other decision points at this level may include the overall
schedule for development and deployment. One level further down in detail are the
“design-level alternatives” for a given satellite. Nominal orbit decisions may take place
here, but they are likely heavily influenced by the architecture decisions. A key decision at
this level is the layout of the spacecraft subsystems and the amount of redundancy applied
in each area. That decision problem is addressed in detail in Chapter 3.

Each subsystem has its own design decisions as shown further to the right in
Figure 1.4. Once the basic elements are decided (source of power and how much should
be available at beginning of life, for example), each subsystem must be designed to meet
the implied requirements of the higher-level decisions. Traditionally, subsystems are
designed to meet detailed lists of specifications decided at higher levels. In this case,
however, no such presumption needs to be made. Of course, higher-level decisions will
bound the space of acceptable choices, but the subsystem design format suggested herc
only needs to exchange information about user preferences within the overall decision tree

as optimal searches take place at several levels simultaneously. Using the evolutionary
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global optimization techniques introduced in Chapter 3, which easily make use of
simulation based evaluations, it is now feasible to do just that, although computer speed is
still a limiting factor.

While the complete problem as outlined here is not solved in this thesis, Chapters 2
and 3 on spacecraft reliability prediction and optimal design present a solution (for the
Gravity Probe-B spacecraft) to the part of the decision tree contained in the “system
design” box in Figure 1.4. This is a considerable advance in integrated optimization
capability over the traditional subsystem optimization problems shown in the smaller gray-
filled box. Note that almost all subsystem optimization methods in use today are either
deterministic or based on bounded-uncertainty, as in the case of robust control design.
The decision-theoretic approach developed here has been shown to handle a much larger
problem in reasonable time and to produce results. Admittedly, the optimization carried
out in Chapter 3 makes decisions only at the system (and not subsystem) level, but no
further leap is needed to integrate more-detailed subsystem simulations into the system-
level simulation model presented in Chapter 3 and to simultaneously optimize system
redundancy and subsystem design variables.

The chapters on GPS network and algorithm design demonstrate this by linking the
setting of thresholds for user integrity verification algorithms to the top-level design of
augmented GPS network architectures. In Chapters 4 and 5, prior probability models
(PPM) with substantial parameter uncertainty are constructed for both stand-alone GPS
and for part of the Wide Area Augmentation System (WAAS). A user value model is then
constructed based on a fundamental risk allocation for passenger aircraft contained in the
Required Navigation Performance (RNP) set of proposed requirements [6-10]. By
simulating GPS geometries and sampling from the uncertainty space of the relevant PPM,
a simple post-processed search algorithm can choose thresholds for Receiver Autonomous
Integrity Monitoring (RAIM) which minimize this top-level value model (and hence
optimize a fundamental cost vs. safety tradeoff). Both PPM simulation and user risk
optimization are different from the dominant requirements-based methods for setting
thresholds as described in the literature on the subject [7-10,11]. As a result, the optimal

thresholds and resulting user performance predictions vary widely (and are generally more
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pessimistic, as would be expected from an increased-uncertainty model) from previously
published results, suggesting that the traditional method is sub-optimal from a decision-
theoretic standpoint.

Using the covariance propagation model (which assumes Gaussian error
distributions) for normal WAAS conditions as developed in Chapter 6, a combined
accuracy and safety evaluation for WAAS networks is possible and is described in Chapter
7. Optimal RAIM threshold selected for a given network is included in this process. A
top-level value model for a governmental agency is then built to translate these WAAS
results into the domain of monetary costs and benefits. It then becomes possible to select
the optimal elements of a WAAS network designed for a particular airborne precision
approach application using a simple genetic algorithm, which is limited only by effective
computer processing speed.

In the context of Figure 1.4, the WAAS network optimization of Chapter 7 would
be a design-level decision that incorporates optimized integrity thresholds for each
network alternative (a subsystem-level decision problem) from Chapter 5. There is no
reason why this integrated decision framework could not be expanded further to include
system-level decisions, such as what sort of augmented GPS network (WAAS, LAAS, or
a combination of both) should be used to provide Category I precision approaches to the

commercial and private aviation communities.
1.4  The Gravity Probe-B Experiment

Chapters 2 and 3 use the Gravity Probe-B (GP-B) spacecraft as the example for
demonstrating the new reliability calculation models and redundancy optimization
procedures introduced in this thesis. This spacecraft is the result of a long-running
cooperative arrangement between Stanford University and NASA to develop a spacecraft
that will orbit experiments to verify Einstein's Theory of General Relativity. By orbiting a
spacecraft in polar low-carth orbit and using drag-free control to remove disturbances
caused by particle impacts, gravity gradients, and the like, it is possible to monitor two

relativistic effects on bodies in orbit around a massive object such as the Earth [5-3]). One
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is the geodetic effect, which is caused by the curved spacecraft bus dewar  telescope
space-time that results from Earth’s mass. The |
second is the frame-dragging effect, which is due
to the “dragging” of local space-time by the Earth’s
rotation on its axis. These effects (6.6 and 0.042
arc-seconds per year respectively for a 650 km
polar orbit) are tiny compared to Newtonian

disturbances. Therefore, extremely precise gyros

and readout sensors, a science telescope for precise
inertial reference, and an extremely accurate drag-
free attitude controller are all required [5-3,4,6,7]. Figure 1.5: GP-B Spacecraft
Figure 1.5 shows a drawing of the GP-B spacecraft.

The GP-B satellite is divided into two sections. The experimental payload is built
around the probe, which contains the gyros, sensors, proof mass, telescope, gas lines, and
electronics, and the dewar, which surrounds the probe with superfluid helium to keep its
temperature in the cryogenic range needed by the sensors. The payload is responsible for
measuring the measure the gyroscopic spin axis direction to better than 0.1 milliarc second
over one year [5-3,7]. Much of this equipment has never flown before; so its reliability is
uncertain. Methods for modeling payload uncertainty will be discussed in Section 2.5.

The spacecraft bus, which supports payload operations in space, is being
developed separately by Lockheed Missiles and Space Company (LMSC) [5-5]. It is
based on more conventional assemblies, many of which have been developed for use by
previous LMSC spacecraft. In conjunction with the payload, the spacecraft bus has four
key tasks which must be successfully achieved for the duration of the primary mission: (1)
maintain the gyros in a purely gravitational orbit, (2) minimize Newtonian disturbance
torques on the gyros by means of drag-free control, and (3) keep the satellite and probe
pointed at the guide star (which serves as an inertial reference) [5-4,6]. All of these tasks
have associated allowable error tolerances that are very demanding. These specifications

and the many more-detailed ones that flow from them represent the primary definition of
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success of the mission in terms of orbital operations. Simple value models that capture

these goals are discussed in Section 3.2.3.

1.5  The Global Positioning System (GPS)

The Global Positioning System (known as GPS) is a product of several decades of
development of spacecraft-based navigation systems by the U.S. Department of Defense
(DoD). Originated in the early 1970’s, it provides accurate position and velocity-
determination capability known as the Precise Positioning Service (PPS) to military users
all over the world. In 1983, President Reagan guaranteed the availability of a degraded
single-frequency GPS navigation capability known as the Standard Positioning Service
(SPS) to all civilian users. This degradation of the basic GPS Signal-in-Space (SIS),
known as Selective Availability (SA), is applied by the DoD to prevent civilian users from
obtaining the full 21-meter (95%) horizontal positioning accuracy specified for the PPS.
The SPS instead specifies 100-meter (95%) accuracy, but research into Differential GPS
(DGPS) has made it possible to correct for both the DoD-induced and ambient system
errors to provide horizontal accuracies well within 10 meters (95%). This level of
precision promises to revolutionize many aspects of airborne, ground, and marine
navigation [6-13].

The current GPS system, which reached Final Operational Capability (FOC) in
1995, contains 25 NAVSTAR satellites (all but one are now of the Block-II and IIA
varieties) in 12-hour (sidereal) orbits at 55° inclinations, arranged into six orbital planes.
Three of the 24 satellites are “active” spares. Figure 1.6 shows the orbits of these six
planes around the Earth. Note that this constellation of orbits repeats itself every
(sidereal) day from the perspective of a user fixed on Earth, a fact which simplifies the
simulation of GPS satellite orbits. The NAVSTAR constellation is controlled by the U.S.
Air Force 2nd Space Operations Squadron at Falcon AFB. The associated Operational
Control Segment (OCS) includes the Falcon AFB Master Control Station (MCS), a set of
worldwide DoD monitor stations to observe the health of each satellite, and ground

antenna sites which send uplinks to the satellites.
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Each GPS satellite broadcasts its :
position (along with other almanac information) = ;
and a precise time stamp to users on Earth or in oo

space. A user receiver can determine his or her

range to each visible satellite, and if four or
more satellites are in view, it is then possible to
compute location in three dimensions along
with an estimate of the time bias in the user
receiver [6-17]. Although Selective Availability
degrades user accuracy to the 100-meter range, Figure 1.6: The GPS Constellation
that is still sufficient for many applications

which now make do with much less accuracy available only in certain regions. It is also
possible to reduce GPS errors down to and below the meter-level if ground-based

augmentations are present to help correct for SA and other errors that are correlated over

a wide region.
1.6 A Survey of the Relevant Literature

Because this thesis draws on so many different areas, it is very difficult to
completely account for all of the key references in each one. Instead, I have listed a few
references in each specialty that I have used as starting points in my research. These and
the references that they contain may also serve as the starting point for a more in-depth
study of a specific topic. The bibliography included at the end of this thesis breaks up all

references into these categories as well.

1.6.1 Decision-Making Under Uncertainty

The key starting points in this relatively new field are the work of Professors
Howard and Matheson in [1-2]. The course notes for the Stanford class on decision
theory, EES 231, are also useful [1-3]). Prof. M.E. Pate-Comell, an expert in the

application of decision theory to probabilistic risk analysis, has applied it to the aerospace
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field by studying the risk to the Space Shuttle from debonding of the thermal protection
tiles [1-7]. She has also contributed greatly to the top-level study of safety-critical
warning systems and the tradeoff issues that they pose [1-5,6]. Finally, the most
authoritative exposition of modeling user preferences into mathematical objective
functions is [1-4]. An important discussion of the acceptability of assigning numerical

values to human life for the purposes of risk cost/benefit evaluation is in [1-1].

1.6.2 Spacecraft Reliability Modeling

MIL-HDBK-217F [4-12] details the traditional methodology used by almost all
spacecraft developers in making their reliability predictions, as well as serving as a source
of exponential failure rates. NPRD-95 [4-8] provides failure-rate data for non-electrical
assemblies. MIL-STD-1629A [4-7] is the corresponding government document laying out
the format of Failure Modes and Effects Analysis studies. Textbooks by Dhillon [3-5],
Billinton and Allan [3-2], and Leemis [3-10] are three of the many books that give a good
survey of system reliability, including traditional redundancy optimization.

The work of Herbert and Myron Hecht on fitting new probability distributions to
spacecraft reliability data [4-3] is a critical foundation of the sampling-based models
developed in this thesis. Also, studies published by TRW in the 1970’s and early 1980’s
have influenced the approach taken here, especially the “weak sister” concept [4-1,13,14].
RAND has studied the effect of post-failure improvised "work-arounds” on mission
reliability of military spacecraft [4-6].

The use of Monte Carlo simulation to evaluate reliability models is now
commonplace. A detailed mathematical development is contained in [3-13]. Henley and
Kumamoto in [3-7] give a good application-oriented overview and reference some of their
more-detailed papers there. Law and Kelton, in [3-9], provide comprehensive coverage of
simulation, including sampling from a variety of probability distributions, statistical
inference on simulation results, and techniques for variance reduction. William Press,
et.al., in [3-12], give a series of helpful C functions for this purpose. In fact, all of the C

simulations performed in this thesis use the numerical routines given here.
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1.6.3 Global Optimization

Theoretical aspects of Simulated Annealing (SA) are well-covered in [2-15],
including the foundations of the proof that the algorithm will converge to the global
optimum given infinite time. Practical aspects of the implementation used here, including
the variation operators from one solution to the next and the resulting evaluation
covariance, are contained in [2-10,16]). Chapter 10 of Press, et.al. [3-12] also has useful
information on this topic, along with sample codes for the Traveling Salesman Problem.

The literature on Genetic Algorithms (GA) has expanded greatly in the past few
years. Two key texts written by Goldberg [2-5] and Davis [2-2] explain the basic
philosophy and search operators well and show how they can be applied to a variety of
real-world problems. In particular, Davis discusses the use of integer and real-number
solution encodings. Techniques for choosing optimal parameters for GA operators are
discussed in [2-7]. Several papers have applied genetic algorithms to the design of control
systems, see [2-10,12]. The latter shows how a genetic algorithm can use a flexible
encoding to handle solutions of widely varying complexity. Finally, the handling of
statistical noise as a result of simulation-based evaluation is discussed in [2-1,8]. In [2-1],
Aizawa and Wah show how the expected amount of uncertainty in fitness evaluations
affects the optimal GA control parameter choices and how these can be adapted during the
GA evolution.

In the aerospace field, Prof. Ilan Kroo and his students at Stanford are one of
several groups working on integrating top-level global optimization with subsystem-
specific optimization codes that incorporate gradient search and domain-specific
knowledge. The gradient-based approach to this task, which passes partial-derivative
information back and forth between the overall optimization and the subsystem searches,
is described in [2-18]. Peter Gage, in his Ph.D. thesis at Stanford [2-3], developed a
system-level GA for aircraft design optimization that has a variable-complexity encoding --
it incorporates solutions with varying vector lengths to allow certain members of the

population to include design items that others completely lack.
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1.6.4 Spacecraft Optimization under Uncertainty

This thesis represents, to the author’s knowledge, the first extensive study of
spacecraft optimization based on reliability models. Reliability-based optimization has
typically focused on maximizing a deterministic reliability measure under maximum
cost/size constraints or minimizing cost/size under a minimum acceptable reliability
constraint. Algorithms to solve this problem using NLP and/or dynamic programming are
discussed in [2-8,3-2]. The use of design heuristics to aid optimal redundancy allocation is

discussed in [2-11]. Recently, SA and GA'’s have been applied to optimal redundancy or
reliability design; see [2-13).

1.6.5 Control System Optimization under Uncertainty

Although not specifically covered in this thesis, the application of design-under-
uncertainty techniques can be extended to control system optimization. Control system
design for robustness is a very active research field. In the time domain, students of Prof.
Bryson at Stanford have developed SANDY for multiple-model (with probability
weighting) controller gain optimization [9-11] and, more recently, methods to optimize
these parameters to handle the worst-case deviation of the parameter uncertainty vector
[9-13]. These approaches rely on linear system theory and assumptions to evaluate the
possible system models, and they also have to bound the extent of possible parameter
variation so that a guaranteed-stable design is possible (this is also necessary for H..-based
robustness-design methods).

As is the case for spacecraft optimization, the use of simulation to evaluate control
systems removes the need to adhere to these limiting models. Simulation-based
evaluations can handle nonlinearities and cases where stability is not guaranteed with ease,
and a higher-level evaluation function could model the performance/risk/cost tradeoffs
involved. Prof. Stengel and his students at Princeton University have recently published
their approach to simulation-based control system evaluation, known as “stochastic
robustness,” in which simulation outputs such as probability of instability and probability
of meeting time-domain performance specifications are used as bottom-line robustness

metrics [9-14,16). Stengel and Marrison [9-12] have also applied GA’s to do top-level
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optimization for well-known “benchmark” problems. This is an extremely significant area
for further research, as it has the potential to revolutionize robust controller design by

linking it directly to real-world applications and objectives (as discussed in Section 1.3).

1.6.6 Global Positioning System: Introduction and RAIM Concepts

The body of literature regarding the intricacies and applications of satellite-based
navigation is growing rapidly. A comprehensive resource on the Global Positioning
System has recently been published [6-14]. The signal processing, delay-lock loop, and
correlator equations used to compute standard GPS positioning are given in [6-17]). An
analysis and explanation of the baseline GPS satellite constellation is given in {6-6].

The traditional assumptions and equations for traditional Receiver Autonomous
Integrity Monitoring (RAIM) are given by [7-8,10]. Sturza and Brown in [7-11] used
these models to derive practical means of setting residual statistic thresholds for snapshot
integrity checks as well as geometry criteria thresholds for availability determination.
Pervan [7-9] has demonstrated that for a very accurate system known as IBLS, RAIM
provides excellent capability to screen out a wide range of system failures if the traditional
RAIM assumptions are made. Walter [7-13] has introduced measurement weighting
matrices into the residuals decision statistic for the Wide Area Augmentation System
(WAAS) application.

In addition to single-epoch RAIM, general research into time-based filters to
perform Fault Detection and Isolation (FDI) is an extensive research field in and of itself.
Willsky [7-14] and Frank [7-5] give detailed surveys of this field and of the various
Kalman-type filters developed for this purpose. An attempt to derive a similar approach
for GPS integrity monitoring is described in [7-2]. Bancroft and Chen {7-1] have worked
out Bayesian-update equations from the traditional RAIM equations that provide the
framework optimal fault detection using a “loss function.” Finally, Specht [3-14]
discusses the use of probabilistic neural networks as classifiers which in effect update a
Bayesian network with current data, resulting in time-updated posterior fault probabilities

from which to make isolation decisions.
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1.6.7  Global Positioning System: Probability Models and User Value Functions

Although “official” GPS Space Segment failure modes and probabilities are not
available from the Department of Defense (DoD), several papers have published estimates
based on previous satellites with navigation-related missions and the limited amount of
available GPS orbital experience. Durand and Caseau [6-4] developed ten sets of “long-
term” and *‘short-term” mean failure and repair times which are intended to encompass the
range of failure parameter uncertainty. The resulting Markov models were used to
evaluate satellite availability throughout the GPS constellation. Phlong and Elrod [6-15]
further develop this Markov process approach using the Durand/ Caseau “most probable”
set data, and they show the results of updated simulations which include geostationary
satellite augmentations.

Statistical studies of observed GPS performance to date are contained in [7-4] and
[6-3]. The latter is based on results of the FAA Performance Analysis Network (PAN)
which has begun monitoring Standard Positioning Service (SPS) performance from three
sites in CONUS. Another important study on these lines is the IBM/DoD GPS Integrity
Study [7-3] which was summarized by Gower [7-6]. This study focuses on integrity of
the Precise Positioning Service (PPS) for military users and studies the effects of proposed
improvements to the DoD Operational Control System (OCS) architecture on PPS user
integrity. Because it includes a fairly comprehensive Failure Modes and Effects Analysis
(FMEA), albeit in a non-standard format, it is a useful resource for civilian GPS user
system failure models as well.

One of the motivations for the RAIM user value model developed in this thesis is
the Required Navigation Performance (RNP) tunnel requirements development
methodology, described in [6-10). In this effort, the probabilities of allowed penetration
of specified navigation boundaries are motivated by a top-level risk analysis that allocates
a small part of the overall aircraft fatal-accident risk to the navigation system. This
analysis provides a basis for trading off continuity and integrity risk in the optimal-RAIM
approach developed in Section 4.0 of this thesis. The RNP framework is controversial
because of its focus on Total System Error (TSE) instead of simply specifying allowed
Navigation System Error (NSE), but its key contribution is the setting of navigation
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system requirements within an overall risk/performance context. It provides an alternative
to the requirements for precision approach and landing developed for the Instrument
Landing System (ILS) in ICAO Annex 10 [6-9]. Recently, the FAA Satellite Program
Office has developed an Operational Requirements Document (ORD) [6-11] for GPS-
based approach and landing systems that borrows from both the RNP and ICAO Annex

10. These requirements are still in a state of flux, however, especially for Category III.

1.6.8 Global Positioning System: Wide Area Augmentation System (WAAS)

Many of the ideas behind Wide Area DGPS (WADGPS) were developed in Dr.
Changdon Kee’s Ph.D. thesis [8-9]. More recently, Enge and Van Dierendonck [8-7]
describe the layout of a practical WAAS network in detail, focusing on the design of the
250-bps digital signal to be transmitted via geosynchronous satellite to users. FAA plans
for the establishment of an operational WAAS to allow Category I precision approaches
are detailed in [8-11]. Performance requirements for the use of WAAS for Category I are
given in both the RTCA Minimum Operational Performance Standards (MOPS) for user
equipment [8-13] and the FAA WAAS Specification [8-16].

Much of the development of real-time algorithms for the computation of WAAS
corrections at the Wide-Area Master Station (WMS) has taken place at Stanford. Tsai [8-
12] explains the use of prior information in the batch least-squares solution for
clock/ephemeris corrections, and Chao [8-3] details the method for computing ionospheric
corrections in the MITRE grid format, which is itself described in [8-6]). Chao [8-2] also
has developed algorithms for calibrating the slowly changing spacecraft and receiver
interfrequency biases as part of the computation of WMS ionospheric corrections.

Dr. Jack Klobuchar at Phillips Research Laboratories is the acknowledged expert
on the effects of ionospheric delay on GPS ranging performance. Information of
ionospheric spatial decorrelation based on comparisons between fixed dual-frequency
receivers stationed hundreds of kilometers apart is given in [8-10). This data, along with
similar results published by MITRE {8-6], forms the basis for the ionospheric error models
constructed in Sections 5.0 ar:d 6.0 of this thesis. Other attempts to build models of this

type for WAAS user coverage prediction (as described in Section 6.0) have been reported

25



by Dr. Walter Poor of MITRE [8-15] and Dr. Tysen Mueller of Teal Consulting [8-14].
Recent ionospheric observations processed using the grid algorithm in real time are given

in [8-4], which estimates the obtainable grid ionosphere accuracy from the results.
1.7  Contributions of this Research

The primary top-level contribution of this thesis research is the application of the
general decision-analysis framework to aerospace system design problems. At a
fundamental level, this research illustrates how traditional approaches to the design of
spacecraft are sub-optimal and how decision analysis has the potential to reshape them.
For application to spacecraft and other acrospace systems, this thesis develops more
flexible probability models that better capture uncertainty due to both inherent randomness
and limited designer knowledge for a system under development. Monte Carlo simulation
is applied to evaluate resulting the resulting performance uncertainty, and flexible
optimization techniques that can tolerate evaluation uncertainty are applied to search for
optimal design parameters.

None of these methodologies are fundamentally new; references to key sources for
all of these categories are included in the preceding section. What is new is their
combined adaptation to specific aerospace design problems along with comparisons of the
results to those obtainable by more traditional deterministic methods. Because of the
presumption of uncertain behavior, it is impossible to prove that probabilistic solutions are
superior, but the results of this thesis strongly suggest that they are better tailored to real
problems and user value models. The five most significant contributions of a specific

nature are listed below:

1. Uncertainty-Based Engineering Reliability Models: Exponential failure rates are

converted to Weibull distributions whose scale (life) parameters are assigned
probability distributions based on the weight of evidence used to generate the
original failure rates. A new FMECA-based reliability uncertainty prediction
model is also presented and applied to Gravity Probe-B Unlike traditional
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reliability approaches, these algorithms are suitable for use in a decision-theoretic

framework to make optimal design choices.

. Simulation-Based Optimization using Global Search Methods: For most real-

world design problems in which the best possible probability model is derived, no
algorithm exists that is guaranteed to find a globally optimal solution in finite time.
This research develops and demonstrates the use of new approaches such as
Simulated Annealing and Genetic Algorithms for this purpose. These algorithms
require many iterations and can be time-consuming, but they can handle very
unstructured problems in which Monte Carlo simulation is required to give a
evaluation of the mission value function.

. GP-B Spacecraft System Design under Uncertainty: Revised reliability models are

combined with simulation-based optimization to demonstrate the application of
decision theory to spacecraft design optimization for the first time. The result
contains surprises (single-point failure modes) which conflict with traditional
design philosophy. A revised solution in which component redundancy is required
is derived, but some of the value-function benefit of the first solution is sacrificed.

. GPS RAIM Optimization using Prior Uncertainty Models: This thesis

demonstrates in several contexts that a fully general model for user navigation
uncertainty can lead to better accuracy and integrity algorithms than those given by
traditional “Gaussian i.i.d.” error models. The decision-theoretic method used is
flexible enough to be applied to any GPS navigation application, regardless of the
prior state of knowledge about specific GPS system failures.

WAAS Performance Prediction and WRS Optimization Approaches: The use of

linear covariance propagation under normal performance conditions is derived in
this thesis to predict accuracy and availability for a widespread set of WAAS users.
This *“coverage prediction” code is very useful in examining the effects on user
performance of changing the proposed WRS layout or geostationary satellite
augmentation. The predictions generated for a grid of WAAS users can be used
as the basis for rare-event simulations that determine optimal integrity

performance. Combined with a cost/benefit model, these results can be used by a
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genetic algorithm to search for the optimal set of network augmentations, making

end-to-end WAAS network design possible for the first time.

The applications of decision theory to aerospace design problems undertaken here
for the first time illustrate that the philosophy of decision making under uncertainty has
much to offer the field of engineering design. Methods that provide deterministic answers
under limiting assumptions will always have a key role in the initial stages of design (as
well as in education). However, the tools now exist to go beyond this paradigm where
necessary and produce solutions that are robust to an unrestricted picture of system
uncertainty and user preferences. Technology is rapidly coming along to support this
vision (see Chapter 8), but the fundamental question is the applicability of unrestricted
uncertainty models to problems that once had cut-and-dried solutions. Although this
thesis clearly demonstrates the feasibility of uncertainty approaches and illustrates its
important advantages, it is only a first step in motivating the gradual acceptance of

decision theory for the solution of real-world engineering problems.
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Chapter 2: Decision Analysis Tutorial -- A Canonical
Aircraft Control Problem

As far as the laws of mathematics refer to reality, they are not certain, and as far as

they are certain, they do not refer to reality.
- Albert Einstein (1879-1955)

The decision-theoretic approaches discussed in Chapter 1 can complement more
traditional design methods for problems with arbitrary performance uncertainty, but their
underlying philosophy is in conflict with the assumptions of deterministic procedures. It is
thus very difficult to directly compare the results of a deterministic procedure (under its
normal assumptions) with those of a decision-analysis approach with arbitrary (and
flexible) uncertainty and value models. For example, in Chapter 4, a new method for
computing thresholds for GPS integrity warning algorithms (based on new failure
probability models and airborne user cost functions) is developed and contrasted to the
traditional method, which relies on a chi-square distribution to compute the results. This
new approach will always do better once one applies the best available uncertainty and
value models, but it cannot be proven to be superior in terms of the performance measures
of the traditional method. Integration of deterministic and decision-theoretic approaches

for a single application is therefore non-trivial.

This chapter uses a fairly simple problem in aircraft control theory to illustrate the
differences between the two approaches and how they can be used cooperatively. It also
serves as a translation of the theory described in Chapter 1 to the engineering design
domain. The chosen problem starts as a textbook example of linear-quadratic controller
design for a passenger aircraft conducting a Category I precision approach using the
Global Positioning System (GPS - see Section 1.5) augmented by the Wide Area
Augmentation System (WAAS), which is the subject of Chapters 5-7. It is then expanded
to encompass a simplified mode! of both WAAS and wind disturbance uncertainty along
with a model of the accident risk inherent in wandering too far off the reference approach
path. Simulation-based optimization is used to refine the initial LQG controller/estimator

design in the presence of this uncertainty. The ability of the simulation approach to
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converge on the correct LQG answer (under traditional assumptions - no failures or
accident risk) is then demonstrated. Finally, the sensitivity of the optimal design to
changes in the parameters of the uncertainty model is examined to demonstrate the
connection between deterministic sensitivity analysis and the all-encompassing approach to

uncertainty modeling required by a decision-theoretic approach.

2.1  Linear-Quadratic Control Theory and Limitations

2.1.1 State-Space Dynamic Models

Given a deterministic linear model of plant dynamics for a system to be controlled
by state feedback, linear-quadratic regulator (LQR) theory allows the designer to choose
feedback gains that minimize state deviations from zero (or a desired trajectory). A brief
summary will be given here; complete details can be found in [9-4,8]. The control
problem examined here is first defined by the continuous time-domain linear plant

equations expressed in state-space form:

(1) = Ax(t)+Bu(r) + B, w(t) @
y(t) = Cx(1) + Du(t) + v(r) '

where x(1) is an n X 1 vector of plant states, y(t) is the system output vector, which is

some linear combination of these states, w(?) is a vector of disturbances, and (1) is a

vector of measurement errors. The corresponding discrete set of equations is:

x(k+1) = Ay x(k) + By u(k)+ wy(k) 22)
y(k) = Cx(k)+Du(k) + v(k) '

where a zero-order hold has been applied. In this Gauss-Markov process model, the

states at discrete step k+1 are only dependent on the states at step k. The equations

(involving a matrix exponential) for transforming from continuous to discrete models
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depend on the sampling time T, and (along with MATLAB code) are detailed in [9-2,3,7].
The discrete format is preferred here because actual controllers in aircraft, as well as
computer simulations of control response, are based on the discrete models.

State feedback control allows the designer to choose control inputs based on the

states at the last time step in order to improve controller response [9-7]:

u(k) = —Kx(k)

2.3)

x(k+1) = (Ay-By K) x(k) + wy (k)

where K is the feedback gain matrix. If all unstable modes in (2.1) are controllable by
state feedback (see [9-8]), K can be chosen to give stable steady-state response for the
deterministic case (w(k) = 0). In the absence of random disturbances w(k) (and with all
other matrix entries in (2.3) known with certainty), the closed-loop response of (2.3) is
guaranteed to be stable if the closed-loop eigenvalues A; satisfy A,(A - BK) <0, i.e., if all

roots s of the characteristic closed-loop equation [9-7]:

det(sI-A+BK) = 0 (2.4)

have their real parts in the left half of the s-plane (i.e., Re(s) < O for all s satisfying (2.4)).

In the discrete domain, the analogous equation is [9-8]:
det(zI-A;+B,K) = 0 (2.5)

and stability is guaranteed if all roots z of (2.5) are within a unit circle in the complex z-
plane, i.e., Re(z)’ + Im(z)* < 1.

State feedback requires measurements of each of the state variables to be fed back
in the form of control inputs. If ali states are not directly measured, an estimator loop can
be designed to feed back approximations of these variables in real-time. The estimator

equations have the form (in discrete space) [9-8):
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Z(k+1) = A x(k)+Byu(k)+Lz(k) - C,2(k)] (2.6)

where X is the estimate of the true state vector x at a given step, z is the vector of raw
measurements from the available sensors, and L is the estimator feedback gain matrix.
Note that the distribution of states to measurements is defined by the matrix C;, which
differentiates the measurements z from the system outputs y (governed by C). Defining

the estimation error as:
X(k) = x(k)-x(k)

and differencing (2.3) from (2.6) gives a relation which propagates the estimation error

forward in time as a function of the plant model and estimator gains {9-8]:
Z(k+1) = [Ay-LC]7(k) 2.7

This estimate has the same format as the controller model; thus similar conditions for
stability apply. Note that the estimator uses the knowledge of plant behavior presumed in
the controller model (2.3) to filter the raw measurements z(k). It may thus be used even
when all states can be measured as a means of "smoothing" noisy raw inputs. However, it
is dependent on the quality of the underlying physical model and is sensitive to uncertainty
in the plant parameters contained in the system matrices A4 and B,.

The controller in (2.3) is implemented by feeding back the estimated state (k)
rather than the true state x(k). According to the separation principle derived in [9-8], the
characteristic equation of the combined controller-estimator is simply the product of the
controller and estimator model determinants. As a result, the closed-loop poles of the
combined system are the same as if the controller and estimator were designed separately
and merged as the final step. This greatly eases the task of designing controllers with
estimator loops so long as the plant parameters are known precisely or are estimated in
real time by an adaptive controller (the former is usually assumed to the case, but

substantial uncertainty often exists and should be accounted for).
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2.1.2  Linear Quadratic Gaussian (LQG) Controller Formulation

Given that a system is stabilizable by (A4,Bs) and detectable by (A4,C,), the
controller and estimator gains K and L can be chosen to give desirable closed-loop
performance in several ways [9-10]. Pole placement allows the designer to select
desirable closed-loop poles (which dictate system response) and find the gain matrices that
produce the desired pole locations [9-7]. A more general approach is optimal control,
which produces system responses that are optimal according to a pre-defined objective
function. Discrete time-invariant linear-quadratic design, which can be applied to both
controller (regulator - LQR) and estimator (LQE) problems, chooses K to minimize a cost

function of the form [9-8]:
l oo
Jigr = EkZO[xT(k)Qx(k)+uT(k)Ru(k)] (2.8)

where the process is evaluated at steady-state (k => ). Q and R are constant weighting
matrices that express the relative costs of both off-nominal state responses (Q) and use of
controller authority (R). For example, if the baseline Q for a four-state system is the 4 x 4
identity matrix (Ls), more weight could be placed on limiting the excursions of state #1 by
increasing the first diagonal entry of Q. The solution for K is based on the steady-state
solution to the algebraic Riccati equation [9-4] and can be easily evaluated by computer
applications such as MATLAB.

Optimal estimator (LQE) design is performed separately to select L to minimize

the mean-square error state X(k) [9-3]:
I &1~ 1~ ATy -
Jioe = EZ[XT(")W YE(k)+(z-CH)'V I(Z-CX)] (2.9)
k=0
where W and V are the covariances of the random disturbances w (wind) and v (sensor
error) from (2.2), which are assumed to be white Gaussian noise processes. Note that the

solution that minimizes mean-square state estimator error weights the input data based on

the best available probabilistic measure (white Gaussian covariance matrices).
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2.1.3 Robust Control Techniques

In general, robust design techniques attempt to choose controller designs - in this
case the feedback gain matrices K and L - such that the outputs are not highly sensitive to
variations in the model form, plant parameter, and/or disturbance parameter values.
Several methods have been developed to do this. For the linear time-domain models of
Section 2.1.1, the SANDY multiple-model algorithm extends the LQR solution method to
a set of plant models (A;,B:), where each model is assigned a probability weight w; of
being the “true” model [9-11]. A more recent variant of this approach chooses the
controller that gives the best performance for the worst-case (normalized) variation from
the nominal model [9-13]. H.. control methods have been developed which essentially
parameterize plant uncertainty in the frequency domain and select controllers that suppress
the response to these variations [9-6]. These methods provide considerable theoretical
insight into the effects of system uncertainty because they model it using traditional
control design tools (linear models, Gaussian noise, transfer-function or state-space
descriptions, etc.). They thus share the assumptions and limitations of the theories on
which they are based.

In addition to these limitations, practical use of robust design tools is often limited
by the assumption that system uncertainty is arbitrarily bounded such that, under
controllability and other restrictions, systems can be designed which guarantee stable,
satisfactory performance for all possible outcomes. For robustness to relatively small
variations about a well-known nominal model, this should suffice, but in a more general
sense, robust controller design should acknowledge that in some cases, a guaranteed
bound on variations is unrealistic. Assuming bounded uncertainty works fine for many
problems as long as sensitivities to parameter errors are carefully studied. However, in
practice, there will often be a non-zero (and non-trivial) probability of unacceptable results
because it is impossible to protect against everything that can go wrong.

Many bounded uncertainty models focus on parameter variations due to
imperfectly identified, simplified, and/or linearized system models, neglecting to some
degree the prospect of rare but disabling system failures that can radically alter

performance. Decision theory demonstrates in very general terms that solving a problem
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(and making a decision) based on an uncertainty model that ignores these possibilities will
produce a sub-optimal design. Once it is acceptable to use models with non-zero failure
probabilities, the issue becomes finding the design that provides the optimal trade-off
between nominal (or near-nominal) performance and risk of failure (defined as not meeting
the original system requirements). This task is the focus of the design optimization
projects carried out in this thesis.

The potential gap between theoretical robust control and actual uncertain behavior
has motivated research on using more flexible tools to evaluate this performance-risk
tradeoff. Monte Carlo simulation of controller behavior under uncertainty was used in [9-
16] to evaluate a probabilistic LQG objective function. Genetic algorithms (discussed in
Section 3.3.2) were used in [9-12] to search for optimal gains, demonstrating that
simulation-based optimization under unbounded uncertainty is feasible. This research
coined the term "stochastic robustness” and applied it to aircraft control systems, the
subject of this chapter, in {9-14]. Because simulation can evaluate any performance
measure and any set of model equations, controllers can be optimized with respect to top-
level system requirements rather than the more limiting linear-quadratic formulations of
Section 2.1.2.

Using probabilistic simulation and evolutionary search techniques, it is thus
possible to apply the principles of decision theory to controller optimization under
uncertainty. Preference models can be designed based on the principles of Section 1.2.2.
and Appendix A, which weigh all possible outcomes (including various levels of system
failure) against the value of successful performance. Monte Carlo simulation of controller
performance under an unbounded navigation and wind failure model allows this value
model to be evaluated for each trial solution produced by an evolutionary search
algorithm. In addition to showing the result achieved for a linear autopilot problem, this
chapter aims to demonstrate the application of decision theory to a fairly simple problem
and to identify the value of applying such an approach in addition to (or instead of)
traditional robustness techniques for problems where bounded uncertainty is an unrealistic

assumption.
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2.2  Aircraft Dynamic Model and LQG Controller

2.2.1 Longitudinal 747 Aircraft Dynamic Model

A dynamic model for the longitudinal motion of a Boeing 747 near sea level in a
low-airspeed (V = 221 ft/s) configuration on final approach is given in [9-4] based on a
linearization about steady level flight. The six states in this model are expressed as
perturbations about the nominal condition: x = [airspeed (u,), vertical velocity (w,), pitch
rate (q), pitch angle (0), glidepath deviation (d), throttle (8,)]. Two longitudinal control
inputs are available: u = [elevator (0.), throttle command (8,c)]. Note that the throttle
includes a first-order model of 4-second time delay between command 6,. and response 6.
This details of this model (including values for the continuous and discrete plant parameter
matrices and nominal covariance matrices) are contained in Appendix B (pp. 276-278).

In the LQG problem, u(¢) is a random input vector expressing wind disturbances in
both horizontal and vertical axes, and v(f) is a vector of random errors in the three sensor
inputs: airspeed, pitch angle, and vertical glideslope deviation. An inertial measurement
unit (IMU) provides the first two measurements, while WAAS provides a measure of
absolute vertical position that is compared to the ideal 3° glideslope. Disturbance and
measurement covariance models are also given in Appendix B, along with the diagonal

matrix X, of initial state covariances.

2.2.2 LQG Optimal Controller for Aircraft Precision Approach
As outlined in Section 2.1.2, discrete LQR design minimizes the following index

chosen for the precision approach problem:

[ +104% +1087 + 10(52 + 033352 ) (2.10)

JLQR

=] M_Z

L
Nl
where in this case, the multiplier (1/2) from (2.8) has been replaced by (1/N,) - the result
does not change. Note that Jiqr is dependent on both aerodynamic control inputs, the

lagged throttle state &, as well as the airspeed and glideslope deviation states (these three
are output states; thus the output matrix C = diag(1, 0, 0, 0, 1, 1]). The implied state and
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control weighting matrices are Q = diag[1, 0, 0, 0, 10, 10] and R = diag [10, 10/3]. The
glideslope deviation (d) has the highest weight because it is the most critical parameter in
the RNP tunnel evaluation of system performance, but the weights also limit controller
authority and place some importance on "smooth" aircraft motion down the ideal
glideslope. Note that the weight on glideslope deviation was increased from 1 (as used in
[9-2]) to 10 in order to minimize terminal glideslope deviations, which translate into
accident risk according to the value model developed in Section 2.4. Optimal LQR
controllers for higher weights on d were also examined by simulation with the ideal noise
model, but these did not provide substantially better glideslope deviation suppression.

This example illustrates a key difficulty of LQR design for real-world problems:
the weights Q and R are not directly translatable into top-level performance preferences;
thus "trial and error” is often applied to search for the weights that give the "best-looking"
performance. Guidelines for setting weights (or solving for them in an "inverse" fashion)
exist [9-2], but this disconnect raises a key question: an LQR solution can be proved to be
optimal, but what is it optimal for? This issue is particularly important for "risk-sensitive"
LQG methods that attempt to find robust optimal controllers by minimizing a risk-averse
variation of the LQR/LQE performance indices. This risk-sensitive index is an exponential
of the basic LQ functions (2.8-9) that follows the "delta neutral” property discussed in
Section 4.2.6 [9-17]. Risk-sensitive LQG controllers should be more robust than standard
ones, but the key problem is that the basic LQ objective function is not a direct measure of
top-level user preferences. This makes it difficult to model risk aversion according to the
decision-analysis axioms of Appendix A.

Time-invariant LQR design carries a further restriction: it assumes that the system
is optimized based on steady-state performance as time (or the number of steps) goes to
infinity. The LQR cost (2.8) can then be computed directly based on known properties of
the steady-state response [9-9]. However, in this case, we are only interested in glideslope
tracking from 1500 to 200 ft altitude, which is lightly damped and highly oscillatory.
Thus, the steady-state LQR cost is not exactly the quantity of interest. Section B.2 of
Appendix B details a method for numerically computing the LQR cost at each step by

propagating state and state-error covariance matrices forward in time (for pre-defined
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controller and estimator gains). As explained in Section 2.4, Monte Carlo simulation is
required once non-ideal failures are introduced, and it can be used in the ideal case as well
at the cost of incurring statistical uncertainty. This is demonstrated and discussed further
in Section 2.5.

Based on the separation principle of Section 2.1.1, the associated Kalman
estimator is based on the weights defined by the uncertainty covariances W, and V.
Unlike the LQR case, the linear-quadratic estimation solution has a fundamental basis: if
W. and V truly represent the best possible model of uncertainty, the Kalman estimator
solution to (2.9) gives the minimum error variance (or maximum likelihood) estimator in
a staiistical sense [9-3,4, 3-3). However, in many cases, the white Gaussian model of
uncertainty is known to be flawed, implying (in decision-theoretic terms) that the resulting
estimator is sub-optimal. One approach in this case is simply to increase the Gaussian
variances to obtain a “"conservative" design. Time correlation in a given error channel can
be added to the plant model for cases where the randomness is not truly white, and
correlation between different errors can be modeled by non-zero off-diagonal terms in the
covariance matrices. But if the basic Gaussian error model is incorrect (or incomplete) or
if there is substantial uncertainty in the covariance entries and correlation coefficients, the
LQG estimator is not optimal in the most general sense.

For the 747 longitudinal approach problem and performance indices given here,

the LQG-optimal controller and estimator gains are as follows:

_ | -3448 9842 19095 -3.8728 -4649 -1.0952
T L6558 -7426 15684 28563 3634 2.4937

0312 -.0211 .0010 -.0063 —-0106 0" (2.11)
L = |-0106 -0462 0010 0148 3601 0
-0002 0014 0 0008 .0009 O

This optimal solution has an expected cost for the ideal case of J, or = 3400 (the overbar
that denotes "expected value" is deleted for clarity from this point on) and RMS glideslope
deviation = 18.1 ft at the terminal altitude (200 ft). This result will be compared to what is

obtained once a non-ideal uncertainty model is applied in Section 2.5.1.
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2.3  Performance Uncertainty Model

2.3.1 LQG Controller Sensitivity Analysis

The disturbance and noise models assumed for the LQG controller derived in the
last section hold reasonably well for normal conditions (which are assumed to exist at least
95% of the time for well-designed systems). For many systems whose rare-event
performance is well documented and understood, Gaussian error models adequately
represent all foreseeable performance uncertainty. However, for this problem, insufficient
knowledge exists to fully characterize WAAS as a navigation sensor in this simple way.
Because WAAS has not yet been fully implemented over CONUS and has not yet
experienced ionospheric errors at the peak of the 11-year solar cycle, there is reason to
believe that WAAS performance in rare cases is worse than that predicted by a simple
Gaussian distribution. Data in [8-10] supports this suspicion (see the detailed discussion
in Section 5.2.3). Furthermore, wind gusts in rare cases are likely to be worse than
indicated by the white-noise Gaussian model in W, even though this model may fit well
within 2 or 36 of the mean.

Faced with this uncertainty, one can examine the sensitivity of the LQG controller
to changes in the variances in the matrices W. and V. Table 2.1 shows to what degree the
performance index (2.8) and root-mean-square (RMS) terminal glideslope deviation
degrade when each of the diagonal entries in these noise covariances is (separately)
multiplied by four (i.e., the standard deviation is doubled), assuming that the optimal LQG

solution (2.11) is unchanged. The results show that increased noise variance has little

Noise Parameter Increased o Increase in Jugr | Inc. in d(200 ft)
airspeed 4 (fusec) 2.1% 6.1 %
pitch angle 4 (crad) 42 % 7.8 %
WAAS glideslope dev. 16 (ft) 1.9% 6.2 %
wind gusts (hor./vert.) 1.9 (ft/sec) 2829 % 120.2 %

Table 2.1: LQG Sensitivity Analysis Results
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effect on the final result, but increased wind disturbance variance has a major effect on
both steady-state (Jiqr) and terminal (d(200 ft)) performance. Wind model uncertainty
thus dominates the problem and is a key issue for autopilot design, as indicated by Boeing
in informal discussions (also see [9-15]).

If we could ensure that the underlying model is white and Gaussian and can be
bounded by the increased variances evaluated here, we could conclude that the optimal
solution is robust to any conceivable variation in a single sensor noise parameter, since the
results for increased sensor noise in Table 2.1 are acceptable. The robust control
approaches mentioned in Section 2.1 can expand on this by changing the ideal LQG
solution and finding a revised solution that is robust to the entire (bounded) range of noise
(or plant) parameter variances [9-2,6]. In this case, however, when the LQG estimator is

redesigned with the altered wind model of row 4 of Table 2.1 to give:

0860 —.0750 .0008 -0025 -0096 0]
Luos-cue = |—-0096 —1388 .0016 .0091 4912 0 (2.12)
-0016 0053 0  .0028 .0006 O

Jugr is still increased by about 140%, while the RMS terminal glideslope deviation
increases by 62% (to 29.4 ft). These results are better than those for the unmodified
estimator in Table 2.1, but they are still difficult to tolerate. Design effort would then turn
on finding a tighter upper bound on wind variance so that acceptable performance could
be guaranteed within a tighter envelope (this is what is done in autopilot certification
simulations [9-15]).

In the decision analysis framework, sensitivity studies of this type help identify the
value of (additional) information (introduced in Section 1.2.1) on the uncertainty of the
parameters in the disturbance/noise model. It is clear from Table 2.1 that information that
would allow the wind uncertainty to be reduced has high value in terms of the objective
function Jigr. New information that increases the wind uncertainty would also be very
valuable, but in a negative fashion, as it would illustrate the limitations of even the optimal

feedback control law in such an environment. However, the value of information cannot



be evaluated properly unless the decision-maker begins with a valid uncertainty model.
Since the ideal model (W,V) for the LQG controller artificially constrains the uncertainty
space, one cannot extrapolate the "true" value of information directly from it. Sensitivity
analysis can thus help isolate the key effects of uncertainty on nominal performance, but it
is difficult to examine the full space of uncertainty from an idealized noise model or deal

with cases where uncertainties cannot be satisfactorily bounded.

2.3.2  Prior Probability Model for WAAS/Wind Uncertainty

Given the current state of information on WAAS and wind performance, there is
no reason to have high confidence that we can bound all of the uncertain variables to
support a guarantee of acceptable performance. In this situation, it is difficult to evaluate
LQG system response under uncertainty if we are limited to white Gaussian noise models
with fixed variances. Decision making under uncertainty suggests that we instead attempt
to model both the likelihood of abnormal noise and our uncertainty about the degree to
which the noise variance will increase. Table 2.2 shows a simplified uncertainty model
that affects WAAS noise and wind gusts under rare conditions. It is approximated from

the studies of Chapters 5-7 and includes:

1. Sudden GPS/Inmarsat satellite outages: The loss of a single satellite ranging
source should not force the aircraft to abort its approach, but it will increase the
resulting WAAS vertical position error by an amount that depends on the
difference between the original and reduced (or “subset”) Vertical Dilution of

Precision as defined in Section 4.1.2.

2. Ionosphere/Troposphere disturbances: As detailed in Sections 5.2 and 5.3,
atmospheric disturbances that are not well-modeled by the WAAS correction for a
given satellite may result in substantially increased ranging error. If the
disturbance is sufficiently localized, the WAAS network may not realize that its

broadcast corrections are erroneous.
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3. Missed WAAS correction messages: The most likely rare event to affect WAAS
users is missing one or two message updates which will be sent out every 6-10
seconds. Each message contains a “fast” update to allow the user to correct for
Selective Availability (SA - see Sections 1.5 and 5.2.2) if it is present. If messages
are missed, the SA error contribution will increase according to the following

equation (derived from (5.1)):

Cuusa = 05a(10+10n) (m) (2.13)

where n is the number of consecutive missed messages and a = SA acceleration =

0.004 m/s® = 0.013 ft/s>. If n > 2, the user must perform a missed approach.

4. User receiver/processing errors: Since user aircraft have multiple receivers, they
should be protected against local errors due to malfunctions in a single hardware
or software element. However, in rare cases, it may be possible for the same error

to manifest itself in all user channels, leading to significantly higher errors.

The effects of these WAAS performance uncertainties can be included in the
broader system uncertainty context by also modeling the wind gust variance as an
uncertain parameter. In operational autoland simulations, a wind gust model is assumed
beforehand and taken as gospel. Autopilot performance is tested in two cases: the normal
case (given by W) and a limit case where the wind variances are increased and degraded
performance is expected. As noted in Section 2.3.1, the results turn out to be very

sensitive to the wind model used [9-15]. For a decision-analysis approach, it is better not

Rare Event Probability Effect
GPS satellite outage 0.0001 N(1.5,.5) x error &
iono/troposphere disturbance 0.005 N(2.5,1) x error ¢
missed WAAS correction 0.009 + error function(n) (2.13)
user receiver/processing failure 0.001 N(@3.1) x error 6
high wind gusts 0.005 N(1.5,.5) x wind

Table 2.2: WAAS Failure Model Summary
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to artificially bound the possibilities in this way; thus Table 2.2 includes a random

multiplier for wind along with a probability of worse-than-normal wind behavior.

2.3.3 Simulation of Prior Probability Model

The total probability of the events in Table 2.2 (which are assumed to be mutually
exclusive for the purposes of this application) is 0.02. Normal conditions thus hold about
98% of the time and do not require sampling from the failure distributions. Normal-case
and failure-case performance are therefore simulated separately. When simulating failure
cases, one (and only one) rare event is assumed to occur just after the initial condition at
1500 ft altitude, avoiding the need to sample repeatedly over the course of the approach
(but also limiting the scope of possible failure effects). A uniform random variable u@,1)
is sampled at the beginning of each failure approach simulation and is divided by the total
failure probability (0.02) to determine which of the five failure classes in Table 2.2 is
present. A Gaussian sample is then taken to determine the error multiplier that is applied
to the standard deviation of the WAAS entry (row 3, col. 3) in V or to W. for increased
wind gusts.

Once revised error matrices are determined (and discretized as done in Appendix
B), the time-step simulation of a given approach is conducted in one-second steps. The
nominal descent from 1500 to 200 ft altitude takes 110 seconds; thus N, = 110 samples of
Gaussian distributions are generated for w(k) and for each of the three elements of v(k).
The discrete state-space equations (2.2) are then propagated forward from a Gaussian
initial condition sampled from the covariance X,. The state and control histories x(k) and
u(k) are then determined and used to evaluate the revised performance indexes described

in the next section.
2.4  Value Model and Optimal Controller Search
2.4.1 Accident Risk Cost Assessment

For this Category I study, it is assumed that precision guidance is relied upon until

the minimum ceiling of 200 ft is reached, although in many cases the pilot will reach a

43



zone of adequate visibility above this altitude. The RNP tunnel concept (discussed in
more detail in Section 4.3) defines a 107 outer tunnel for Category I approaches of total
system error (TSE), which combines navigation sensor error (NSE - error in the
navigation signal relative to the ideal “true” glideslope) and flight technical error (FTE -
the error in the autopilot flying the glideslope deviation signal). This tunnel gradually
narrows to a vertical limit of 110 ft error at 200 ft (the horizontal dimension is much
wider and is much less of a concern for WAAS - see Section 5.2). Penetrating this surface
is assumed to result in a 1% chance of an accident [6-10).

Based on this limited information, a cost model which measures the risk of an
accident can be built under the premises of decision theory. This risk is measured based
on the deviation at the terminal point d(200 ft) only. Total system errors of less than +30
ft are assumed to carry a base risk of 5 x 10 per approach (other failure modes form the
lower limit of risk for small errors). Accident risk then increases faster than linearly until a
saturation point is reached. Negative errors (plane below glideslope) leave less room for
recovery and are assumed to be 3 times worse than positive ones of the same magnitude.
Accident risk for negative errors is evaluated for d(200 ft) based on the following cubic

function which is valid for 30 < -d < 120 ft (simply divide the result by 3 for d > 0):

d2

Logyo {Pr(acc)} = —937x10|a*|+2.23x1073

2.14
~7.40x107* |d| - 8.59 19

As explained above, for Id(200 ft)l < 30 ft, the base risk of S x 107'° is assessed, and errors
outside the range [-120,150] ft have a saturation risk of Pr(acc) = 0.25. This function is
plotted on semilog scale for both positive and negative glidepath deviations in Figure 2.1.
This function is plotted on semilog scale for both positive and negative glidepath
deviations in Figure 2.1. Note that the slightly non-smooth corners of this plot are due to

fitting the cubic function (2.14) onto the actual risk model for ease of computation -- they

do not cause problems during optimization.
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based on this model is optimal under the precepts of decision theory.

2.4.2 Combined Risk and LOR Cost Function

The final cost of a given controller balances accident risk with near-nominal LQG
performance. A linear scale is used for Pr(acc) < 10* in which a risk of 10® (which is
25% of the ORD requirement of 4 x 10® for Category I precision approach [6-11]) is
assigned to be equivalent to an LQR cost of 3000, which roughly represents optimal
nominal performance. Once again, an arbitrary cost parameter is applied based on the
user’s projected preference for risk reduction versus off-nominal performance. In this
case, a doubling of the risk to 2 x 10® is equivalent to an LQR cost of 6000, thus users
will not stomach increases in risk beyond the ORD requirement (since they would

overwhelm any possible nominal performance gain). The total cost is then:
Jow = Jior+ Jrx = Jigr +3000Pr(acc)/ 107 (2.15)

While it may appear that this cost model was derived arbitrarily, it was in fact done

according to the precepts of decision theory, which poses very few restrictions on the
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preference functions that are "valid" for quantitative analysis. As explained in Appendix

A, it requires that:

1.

Probability Rule: Uncertainty must be completely and honestly expressed in
terms of probabilities. Within the limits of this example problem, this is
provided by the PPM in Section 2.3.2. Note that uncertainty in that model is
unbounded such that there is always non-zero probability of an accident.

Order Rule: All possible outcomes are clearly ordered from best (nominal
performance with minimal Jior and zero terminal glideslope deviation) to
worst (aircraft accident).

Equivalence Rule: This rule is satisfied by equating a given level of nominal
performance with a given level of accident risk. In this case, the "certain
equivalent” of a lottery in which the plane crashes with probability 1 in 10® and
is fine otherwise is simply Jiqr = 3000.

Substitution Rule: This requires that we be willing to substitute a certain
equivalent (nominal performance in this case) for the equivalent lottery in the
process of decision evaluation. This is done by Jioim in (2.15), which combines
nominal and risk-based cost into a single performance index, and all other
possibilities are ranked (in consistent order) according to this function.

Choice Rule: This is satisfied by the evolutionary optimization process which

selects the best design according to the lowest cost (2.15) found.

It should be clear that decision theory allows any preference function that is

mathematically consistent and is based on the best-possible probabilistic rendering of the

underlying system uncertainty. Note that the goal of optimization is now not just optimal

LQR controller performance but a broader measure of user acceptance. The intervening

step of setting specifications which must be met by lower-level design is avoided, along

with the inefficiency that results (as demonstrated in the rest of this thesis).
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2.4.3 Optimal Search using Simulated Annealing

Simulated Annealing (SA) is an evolutionary optimization technique, so called
because the optimal solution "evolves" in a series of gradual permutations of a current
"best" solution. It is described more fully in Section 3.3.1. Here, SA is used to search for
the controller design that minimizes the sum of LQG and accident risk costs as shown in
(2.15). SA operates in several iterative loops within which new solutions are generated
and evaluated, then a probabilistic decision is made on whether or not to accept each new
solution.

Beginning with the ideal LQG solution in (2.11), a new solution is generated in
each trial by perturbing the gains from the last solution KL, by a Normal(KL,,0.1KL,)
random sample. Only the elements of K and the 3™ column of L (which uses WAAS
measurements) are varied, giving 18 design variables. The other two columns are not
varied for this problem because they affect the airspeed and pitch angle measurements,
which are not part of the failure model. Note that this does not mean that the optimal
solution to this problem has the LQG gains for airspeed and pitch angle, but this
assumption is made here to simplify the search.

For each new solution, 100 approach simulations are run in which at least one
failure occurs. The failure state is sampled at the initial approach point (1500 ft) out of
the 2% total failure probability from Table 2.2. No-failure results can be computed from
the deviation covariance given by the discrete Gauss-Markov process [9-3]). The no-
failure and failure costs (both cases are evaluated using (2.15)) are given 98% and 2%
weights, respectively, to get the final cost, J.va.

Simulated Annealing always adopts a new solution with lower cost than the old

one. If the new solution cost is higher, it will still be randomly accepted with probability:
Pr(accept) = —( e JoM )/ T (2.16)

where T is a "temperature” that starts at 1000 (accepting most early changes whose cost
increase from the prior solution is 500 or less) and decreases by 10% after each set of 30

new solutions. While the high early temperature helps the search avoid becoming trapped
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in local minima, it becomes less tolerant of changes that do not give a lower cost as the

number of trials increases.
2.5  Baseline and Optimal Controller Results

2.5.1 Optimal Controller for PPM and Risk Model
The LQG solution from (2.11) has Jea = 4520; Pr(acc) = 3.3 x 10° when

evaluated by simulation. The best solution found by Simulated Annealing is:

K _ = -3026 13216 -1.0311 -3.7337 -8176 14158
O T 7803 1187 36723 10848 1848 48164

2.17)
L, (col. 3)=[-0002 0025 0 0011 0029 0]"

This result has Jev, = 4030; Pr(accident) = 1.2 x 10°, which is a substantial
improvement over the steady-state LQR solution. The SA solution results in a decreased
cost due to accident risk of 630: 990 (for LQR) - 360 (for SA), while it only gives up 140
in nominal performance: 3670 (for SA) - 3530 (for LQR).

Figure 2.2 shows a set of 500 failure-case glideslope time histories for both
solutions and shows that the best controller does a better job of avoiding large deviations.
This figure indicates both the RMS terminal glideslope deviations and the highest-risk
deviations found in the 500 simulations. For failure cases, the optimal controller improves
RMS terminal deviation by about 20% when compared to the LQG solution. Worst-case
terminal deviation improves about 10%, but this understates the risk reduction achieved,
as modeled by (2.14). The accident risk in the LQG worst case is 1.4 x 10, which is
seven times the worst-case accident risk of the best design found by simulated annealing
(2.0 x 10®). Note that in both cases, the "worst-case” for accident risk is a negative

glideslope deviation.
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Figure 2.2: Failure Approach Simulation Results

2.5.2 Use of LQR Terminal Controllers

Note that better terminal performance could also be obtained by using time-varying
gains, as described in [9-2,3,4]. This makes the controller and estimator gains variable at
each time step. In terminal LQG design, a separate quadratic cost is applied to the
deviation at the terminal point. Once one decides to apply time-varying gains, the terminal
LQR controller will do a much better job of suppressing terminal deviations. However,
the terminal LQG design is still dependent on noise and cost model assumptions that are
inaccurate; thus a better design (in decision-theoretic terms) would again result from
application of the PPM and the LQR/risk value model along with SA optimal search.

In this case, however, the resulting controller gain matrices are functions of time,
giving many hundreds of gain entries over the 110 one-second time updates in the

Category | approach modeled here. While evolutionary search has demonstrated the
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ability to handle problems with hundreds of design variables (see [2-2,5]), a shortcut is
available here: use the terminal-LQG solution calculation but make the entries in the
weighting matrices Q and R the design variables for optimal search (a total of 40 variables
for the precision approach problem). The PPM and cost model (2.15) can then be used
(with modification for the changed definition of Jiqr) with SA to search for the optimal

time-varying solution given by the "optimal" weighting matrices.

2.5.3 Simulated Annealing Solution for the Ideal Case

Evolutionary optimization approaches such as simulated annealing can search for
the best solution to a problem of arbitrary mathematical form, but they cannot guarantee
that the global optimum will be found in finite time. As a result, they are relatively
“expensive" tools for optimal design which should be used only when traditional
approaches (and their mathematical assumptions) do not fit the problem at hand. This is
usually true for real-world design, but it is also useful to examine how well the general
search approach handles an ideal problem for which a known solution exists.

As noted in Section 2.2.2, the LQR controller and LQE estimator are known to
globally minimize the unmodified linear-quadratic objective functions (2-8,2-9) under the
ideal error assumptions (i.e., no failures, white Gaussian errors as modeled by W and V).
Starting from an arbitrary set of gain matrices, simulated annealing search can be applied
to this problem, and the resulting controller can be compared to the known optimum
derived using LQG in (2.11). Although a deterministic evaluation of Ji o is possible from
the equations in Appendix B and could be used by SA, simulation will be used instead
(without sampling from the PPM of Section 2.3.2) in order to preserve the uncertainty
characteristic of the general decision-theoretic approach. The problem is simplified by
only optimizing the controller gains; the correct LQE estimator is used throughout the
search. This assumes that stochastic separation is maintained as in Section 2.1.1, but there
is no reason why the SA design space could not be expanded to refine controller and
estimator gains at the same time.

For this problem, the SA search was initialized with the "wrong" LQR solution.

The ideal LQR controller for a different state weighting matrix Q, = diag(1, 0, 0, 0, 2, 2]
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was chosen (recall that the "correct" Q = diag[1, 0, 0, 0, 10, 10]). The baseline controller

gains are then:

Ko =[ams 3s 1o 1000 o o) @18
These gains are all of lower magnitude than the optimal result of (2.11); they range
between 50-92% of the correct values on an element-by-element basis (all signs remain the
same). Simulated annealing begins with this solution, which has an LQR cost (using the
correct weights) of Jior = 4385, and searches for the known optimal result using the
parameters given in Section 2.4.3 (but without failure sampling). After 26 outer-loop
iterations (the search temperature being reduced after each), the search converged to the

following solution:

_|—2725 11689 -2.2955 -5.1491 -8073 -.3350 (2.19)
Ot | 4703 -8484 14550 19885 2431 27172 )

Figure 2.3 plots the z-plane closed-loop controller poles (the eigenvalues of A, -

B:K) of both the LQR controller 1 (

(2.11) as 'x' and the new SA controller 08 }

as '+. At first glance, these two

solutions are a little different. The

two real-axis roots are very similar,

but the SA controller has asked for

faster response from the glideslope
deviation pole-pair (the furthest left

pair of poles) at the expense of

another pair which has become a little
05 1

-1 05 0
more oscillatory (moved further right), Real Axis

signifying that slightly more control Figure2.3: Closed-Loop Pole Location Comparison
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authority is used in by the SA controller to make the glideslope deviation decay faster.
The average difference between the gain entries in K for the two solutions is 30%,
although the largest difference is 73% for the [1,5] entry.

An interesting result emerges: the ideal (no-failure) cost of this controller is
Jiqr(SA) = 2840, which is somewhat lower than the ideal cost for the steady-state LQR
controller (2.16) of about 3400. This is caused by the fact that simulation over a finite set
of points in time produces a cost evaluation that is different from the steady-state result,
for which steady-state LQR is the optimal solution. The analytical LQR solution considers
that time-invariant LQR cost (2.8) is based only on steady-state conditions (since early
costs are negligible over an infinite time scale), while the simulation which evaluates LQR
cost for SA search terminates at 110 seconds and only considers the cost to that point.
Thus, initial response and control usage is important to the simulation. In this case, the
LQR cost breakdown between state deviation cost xTQ¢x and control usage cost u'Ryu
shows that the controller designed by LQG (2.11) suffers an average state cost of 3320
and an average control cost of 80 over the 110-second simulation, compared to 2705 and
135 respectively for the SA controller (2.19) (the effect of the cross-term 2x"Nju that
results from the discretization of Section 2.2.1 is negligible). RMS glideslope deviation at
the terminal point (200 ft altitude) reflects this as well: it is 17.7 ft for the steady-state
LQR controller and 15.6 ft for the SA controller (both of these are better than the failure-
state results presented in Section 2.5.1). This confirms that the SA controller uses a little
more controller authority to improve state performance in the short run, whereas the LQR
controller is optimal at steady-state only and has less incentive to respond quickly.

It turns out that the LQR cost and RMS glideslope deviation performance are very
sensitive to the initial state covariance X,. The diagonal matrix for X, given in Appendix
B (and taken from [9-2,3]) has a very optimistic initial variance for glideslope deviation
(the fifth diagonal entry), representing total system error, of (1.32 ft)>. This is probably
too good even for a Category III ILS and autopilot, and it is certainly better than the
achievable steady-state performance with WAAS. The SA controller exploits this very
good initial performance with increased state feedback, resulting in better RMS state

response. The ideal controller has no knowledge of it and cannot do the same. However,
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if higher initial deviation variances are used, the ideal controller becomes superior. In fact,
if it is assumed that the aircraft uses unaugmented GPS (affected by Selective Availability)
before acquiring the WAAS glideslope and thus has an initial variance of (125 ft) (the
other elements of X, remain the same as before), the LQR costs over the approach
increase to 10,250 for the steady-state LQG solution and 11,400 for the SA solution [6-
14]. The ideal result is now better, as expected, since there is no reason to base feedback
on the poor initial state information. These cases with alternate initial covariances were
run with the original LQE estimator; SA should find further improvement (for a given X,)
if it were allowed to alter the estimator gains as well.

Note that time-varying LQR design does take the initial state covariance into
account and can choose time-varying controller gains accordingly [9-3]. It thus provides
the best possible controller response over a given finite-time window and update rate as
long as the (Gaussian) error model assumptions are correct. But as noted in the previous
section, simulation-based optimization has the potential to improve on even this solution

when non-ideal models (such as failure modes) are included.

2.6 Conclusions and Future Work

These examples demonstrate that simulation-based optimization can augment LQG
design by adapting a baseline solution to optimize an arbitrary value function with no
bounds on model uncertainty. More fundamentally, however, this approach illustrates that
decision theory can be applied at a practical level to optimize controllers and estimators
for arbitrary models of uncertainty and user value. The problem studied here, a simplified
linear controller/estimator for aircraft using WAAS for Category I precision approaches,
illustrates that this more general approach can add substantial value to control design.

This chapter serves as a brief tutorial on the application of decision theory to a
problem that is traditionally solved by linear-quadratic optimal design. Although this
problem is simplified for illustrative purposes and does not represent the best possible
model, several key differences have been discussed in detail. First of all, no assumptions

of the mathematical form of the noise or uncertainty models are required. Because
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uncertainty is not bounded in an arbitrary fashion, decision theory states that the resulting
design will be the best possible given the available information. Note that another
designer with a different view of reality may use a different uncertainty model, and the
design that results will still be optimal for that person. Decision theory also clarifies the
value of gaining additional information with which to update the uncertainty models.

In order to reflect user preferences in a flexible way, the decision-theoretic
approach allows for any objective function that meets the “rules of actional thought”
outlined in Appendix A. In this case, the standard LQR performance index J is augmented
by a penalty on accident risk at the terminal point of the approach. Designers can thus
trade nominal performance for risk of the worst possible resuit based on the uncertainty
model. The equivalence of the two defines the risk tolerance of the decision maker along
the lines of Section 1.3.2. No guarantee of acceptable performance can be obtained, but
the result is a more realistic guide for decision making under uncertainty than deterministic
robust control approaches that must arbitrarily bound worst-case performance.

The results of the decision theoretic approach for this sample problem are
encouraging because they demonstrate that simulation-based risk-sensitive controller
optimization is both practical and beneficial. The optimal controller found by Simulated
Annealing in Section 2.5.1 is a significant improvement over the nominal steady-state LQR
controller in that accident risk is reduced by two-thirds while nominal (fault-free)
performance is only slightly affected. In Section 2.5.3, SA with simulation-based
evaluation is shown to improve on time-invariant LQR design over a finite time window
even in the fault-free case, although of course time-varying LQR design (Section 2.5.2)
would provide the best possible performance for a given sampling interval.

A key feature of simulation-based optimization is raised by this chapter. While it is
clear that simulation-based optimization will converge to a known optimal result when the
model is fixed to the assumptions of the underlying theory, it will adapt itself to the actual
problem presented to it by the simulation model if it differs from those assumptions, as it
does here. The disadvantage of this is that the optimal result is sensitive to errors in the
mathematical model. But in the context of decision-making under uncertainty, this is a

major enabling advantage with significant implications for the execution of engineering
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design. In this context, decision theory states that it is better to find the design that is
optimal for the best possible model rather than one that is based on theoretical
assumptions that are known to be somewhat non-applicable. This is true even when the
"best possible model” is not itself correct due to limited information, because simulations
can be built that sample from the "information" or "assumption” uncertainty present at the
time a decision must be made. A result that is truly optimal according to the precepts of
decision theory can be derived, and it can be shown to be superior to the theoretical result
when the prevailing uncertainty is taken into account. This is in fact what is done in
Chapters 4 and 5 of this thesis.

The above findings do not imply that LQG design techniques cannot be adapted to
provide controllers that are robust to uncertainty. LQG design certainly provides a good
starting point as well as an important analytic foundation, and both structured-uncertainty
and ad-hoc models can be created to derive "sufficiently robust" controllers from the ideal
design. Sensitivity analysis was carried out in Section 2.3.1, but more could be done to
modify the ideal (2.11) or worst-case (2.12) LQG controllers to handle the failure model
of Section 2.3.2. The key difference is that simulation-based design has the ability to meet
all the requirements of decision-making under uncertainty for any reasonable problem
definition. This is important where failure mode effects that cannot be bounded exist and
where the risk-reward preferences of the user go far beyond what LQG performance
indices can handle.

Operationally, the result of Section 2.5 demonstrates that WAAS, even with
considerable performance uncertainty, provides a reasonable margin of safety for Category
I precision approach. WAAS performance will be subject to substantial rare-event
uncertainty for the foreseeable future, and the design approach introduced here allows
integration of the control law, estimator, and fault detection and isolation (FDI) routines
into a combined optimal design for any risk model (tailored to a given state of knowledge)
and user preference function. Chapters 6-8 of this thesis will demonstrate the capabilities
of WAAS, decision-theoretic optimal integrity monitoring algorithms for the Category |
application, and a means to integrate aircraft user performance models within a larger

optimization of an entire WAAS network architecture.
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Chapter 3: Spacecraft Reliability Modeling

It was said that the Saturn V (rocket) had a reliability of 0.9999. In the story, a group
from headquarters goes down to Marshall and asks Wernher von Braun how reliable the
Saturn is going to be. Von Braun turns to four of his lieutenants and asks, “Is there any
reason why it won’t work?” to which they answer (in German): “Nein.” “Nein.”
“Nein.” “Nein.” Von Braun then says to the men from headquarters, “Gentlemen, I

have a reliability of four nines.
- Charles Murray, Apollo: The Race to the Moon. Footnote, p. 102.

3.1 A Working Definition of “Reliability”

Before beginning a detailed discussion of spacecraft reliability prediction, it is
helpful to clarify precisely what we mean by the term “reliability.” Reliability is generally
thought of as the “probability of success” up to a given time of operation. More
specifically, a recent book gives the following definition [3-10):

Definition: The reliability of an item is the probability that it will adequately
perform its specified purpose for a specified period of time under specified
environmental conditions.

Each of the italicized words in this definition must be specified as necessary. For example,
“adequate performance” for a spacecraft must be defined by the system-level mission
requirements, and the “environmental conditions™ are given by the orbital or interplanetary
setting under which the spacecraft is expected to perform. Note that there is a related
concept called “availability” which is used for repairable systems on Earth. Systems that
can normally be repaired after a failure occurs may be modeled as being “operational” with
availability a over a long period of time and “down” or “unworkable” with probability 1-a.
Availability is a more general concept which we will encounter again in Chapters 6 and 7
when discussing GPS-based aircraft landing systems.

Returning to “reliability,” there is an important distinction to be made when using
the standard definition above. In practically all applications, it is understood that reliability
predictions presume that the system in question “should” work. In other words, reliability
prediction is considered to be separate from the more basic question of Jeasibility --

whether the system is designed in such a way that it should be expected to perform
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adequately. After all, the determination of basic feasibility is critical to the continuation of
any project past its initial stages. However, as will be discussed in detail later,
observations from spacecraft orbital history show that many failures result from an unseen
design or manufacturing flaw that resulted in failure being likely. This fact has not gone
unnoticed by system engineers; a common view is that traditional reliability predictions
(which often seem optimistic) only apply to “random” failures of otherwise-healthy
components. More likely causes of failures are thus separated from reliability calculations,
making the latter almost useless.

This result of the traditional reliability engineering perspective (detailed in Section
3.2) preserves the distinction between well-designed subsystems (which rarely fail) and
design or manufacturing errors that can be blamed on someone. However, to be useful as
a top-level predictor of system success (and for probabilistic optimization), a reliability
model should incorporate all sources of failure. Therefore, the probability models
developed in this thesis will presume a weakened assumption of original system feasibility.
In some cases, reliability will be contingent on *‘a reasonable belief of system feasibility™
despite the possible (unknown) presence of design flaws. In other (more risky) cases, no
preliminary assumption of feasibility will be made at all -- in essence, the question of
feasibility will be included in the model as a random variable. This might apply, for
example, to the design of a bare-bones nonredundant “lightsat” which itself serves as a
feasibility test for a new technology development effort.

The following sections develop these basic ideas. We start with the traditional
model and the assumptions which underlie it. After discussing its weaknesses and its
unsuitability for probabilistic optimization, we turn to new models which modify the
standard model by substituting mixed Weibull/Exponential time-to-failure distributions and
which include the sources of parameter uncertainty that the traditional model ignores. The
utility of these improved models will become clear as we turn to the following chapter

(Chapter 4) on reliability-based system optimization.
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3.2  Current Reliability Engineering Practice

Reliability modeling for spacecraft is currently conducted using a single standard
approach mandated by the U.S. Department of Defense (DoD), NASA, and practically all
commercial customers. The analysis method and relevant failure rates for electrical parts
are specified in MIL-HDBK-217F [4-11] and related requirements documents, and
supporting data for non-electrical parts is contained in NPRD-95 [4-7]. These methods

are based on the exponential failure distribution in which reliability over time ¢ is given by:
R(t) = e™ (3.1)

where A is a constant failure rate calculated using data and environmental factors
published in [4-11]. These handbooks of failure-rate data attempt to fit observed failure
data from many sources into simple equations that are used to compute A for a given
application based on temperature, environment, electrical package technology, etc. For
spacecraft orbital operations, the space flight environmental factor S; in [4-11] (which
multiplies tabulated data to produce a failure rate for a given application) was reduced
from 0.9 to 0.45 in the 1980’s to account for the Hecht report [4-3] observation that the
predictions using the older factor were too pessimistic. This is a crude representation of
the Hecht findings which are modelled more accurately in the models in Section 3.4.

The exponential distribution is memoryless; the probability of failure over a given
interval of time is independent of the length of time that has already passed. This
assumption is often questionable, as spacecraft have been observed to fail more often early
in their design life, when design and manufacturing flaws are most likely to become
apparent. After a certain amount of successful operation in orbit, the failure probability
decreases toward a baseline level, which pertains until system wearout takes effect. This
behavior is well-known to spacecraft engineers, but the exponential distribution continues
to be used because of its simplicity.

Most spacecraft contracts use (3.1) and the data in [4-7,11] to compute reliability

predictions for the components of their design. Redundancy is usually built in to avoid
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single-point failure modes, which are events that by themselves cause mission failure.
Using (3.1) to compute component reliability, series, parallel, and binomial (k out of n
units need to work) network reliability can be computed using the standard equations in

[3-5] which assume that all failure modes are independent:

series: R(t) = R)(t) Ry(t)
parallel: R,(t) = 1-(1 - R() (1 - Ro(t)) (3.2)
binomial: Ru(1) = i(:)[k(z)]" [1- RO

k

These equations also extend to the multiple-component case. For components which have
a “standby” backup unit rather than one that is always operating, a correction factor g =
0.10 is multiplied into the failure rate of the standby unit (this will not apply where passive
radiation or temperature exposure limits device lifetime). This is supposed to reflect the
much lower stress over time on a component that is not powered up. The resuit of these
calculations is a system reliability prediction over the mission time line that must meet user
specifications.

Since spacecraft are to a large degree unrepairable after launch, reliability is a key
concern, but most systems engineers distrust handbook data and the assumptions present
in the traditional model despite being obligated to do the computations. As a result,
spacecraft tend to be overdesigned to "ensure” adequate reliability. This guarantees that
the reliability specifications are met, but it does not help engineers make informed risk-

based tradeoff decisions.
3.3  Weaknesses in Traditional Reliability Analysis

As mentioned in the previous section, the body of spacecraft failure data collected
over the past 30 years tends to disprove the assumptions of the exponential reliability

model. This fact has been known for some time [4-1], but the ease of analytical reliability

calculations using (3.1) has dissuaded systems engineers from adopting various more-
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detailed models that have been proposed since the late 1960’s. In engineering, there has
always been a preference for equations that give analytical, direct results; thus the
continuation of the flawed traditional reliability model is not surprising. However, the fact
that the exponential distribution is a convenient mathematical operator is partially just an
excuse for the failure to update our analysis methods.

Clearly, one motivation for doing a spacecraft reliability analysis is to illustrate the
risks inherent in a planned mission. Early in the history of spaceflight, the dominance of
manned missions gave engineers strong motivation to classify and predict the extent of the
risk using the best tools possible. This period (the early 1960’s) coincided with the
development of Probabilistic Risk Analysis (PRA) as a tool to project the risks of nuclear
power station operations [1-5]. Attempts were made to apply reliability models to the
Apollo program, and these analyses gave what many NASA engineers thought were very
pessimistic estimates of overall mission success probability. A key difficulty was the lack
of observed life test data for many of the Apollo components. Since mass testing over
several years was impossible, it became easier to ignore the prediction of risk and instead
focus on intensive searches for design flaws, a procedure which motivated FMECA
analysis (to be discussed later). Although Apollo 13 (one out of seven missions to attempt
to land on the moon) suffered a mission failure (a plan was improvised which brought the
crew back home), the great success of the Apollo program as a whole suggested to many
engineers that reliability predictions in general were misleading and a waste of design
resources [4-4]. These observations fed a common preconception among engineers that
the goal of systems development was to achieve “determinism”. If a system were
designed, developed, and manufactured properly, it would succeed with probability one,
and if not, someone was to blame.

Although data with which to create better reliability models was available by the
early 1970°s [4-1,12], the fact that spacecraft reliability analysis was already suspect
removed any strong motivations to update the methodology. This state of affairs
continues to this day, and along the way, spacecraft engineers grew to distrust the results
of standard reliability analyses. They were necessary from a contract-compliance point of

view, but the results were not seen as aiding the design-for-robustness development



process. Current-day reliability analyses for spacecraft routinely predict mission-lifetime
reliabilities well above 95%, and customers now expect such a result as part of the system
requirements. Beyond this, few people pay much heed to reliability numbers. This can be
viewed as “Engineers pretend to compute reliability predictions, and customers pretend to
believe them.” As a result, current reliability prediction methods cannot be used for design
optimization under uncertainty, and in fact they serve little practical purpose.

This is not to say that current design methods do not attempt to provide high
reliability. While numerical reliability predictions tend to be ignored, certain basic design
philosophies have become universally applied to spacecraft. Foremost among these is the
dictum: “no credible single-point failures.” As mentioned earlier, a single-point failure is
defined as a specific failure event (breakdown of the flight computer, for example) that
directly leads to overall mission failure. Given sufficient design budgets, this is
conceptually easy to avoid: simply have at least wo of each mission-critical component
type. Most modern spacecraft thus have redundancy at the subsystem and/or component
levels to accomplish this. Spacecraft designs that include redundancy in this fashioned are
assumed to be “relatively” reliable in a deterministic sense.

In addition to the application of component-level redundancy, spacecraft systems
at all levels are normally designed with substantial performance margin. Since it is clearly
recognized that performance in orbit has a random element, engineers often look for what
they consider to be a “worst-case performance” event and design the system to operate
successfully even under such conditions. If a design can be found that can handle this
worst case, then the underlying risk factor is considered to have been removed, even
though it is usually impossible to bound a random event with certainty. If such a design is
not possible, the system in question gets special treatment as a source of risk that cannot
be eliminated. Mission designers will pay careful attention as more is learned through the
prototype-and-test process, hoping that new information will allow an acceptable worst-
case bound to be derived.

From a decision-theoretic perspective (see Section 1.2), this process is sub-optimal
in several respects. First, although NASA and commercial customers have good reason to

be risk-averse, the application of margin everywhere in an attempt to meet worst-case
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requirements leads to systems that are overdesigned for their objective; making them non-
cost-effective solutions from the user’s perspective. In trying to achieve a guarantee of
mission success, system resources are arbitrarily allocated to each risk factor as needed to
meet worst-case requirements that do not accurately correspond to mission risk. For
example, a subsystem that cannot satisfy an arbitrarily conservative requirement receives
an inordinate amount of attention compared to a system that does possess adequate
margin, even though the latter system may yet fail due to design, manufacture, hardware,
or the presence of environments outside the supposed “worst case.” The effort to achieve
arisk-free design is futile; thus resources are consumed for little performance gain.

A separate evaluation of likely failure causes, known as a Failure Modes, Effects,
and Criticality Analysis (FMECA), provides a means of highlighting the physical failure
sources that appear to pose the greatest risk to the mission and focusing risk-reduction
effort in these areas [4-6]. Details of FMECA analysis and a related reliability prediction
approach will be covered in Section 3.5. Note that FMECA is also a deterministic type of
analysis. Failure modes of sufficiently high “criticality” are intolerable; thus modes
identified to be unacceptable receive further development and/or testing until the apparent
risk has been reduced below the criticality criterion.

As mentioned above, deterministic design heuristics and failure-mode studies
certainly are important, but they often have the unfortunate side effect of leading engineers
to assume that systems which pass these criteria should be practically guaranteed to
perform successfully in orbit. If a failure should occur during the mission, a partial
solution can often be improvised (known as a work-around), but if mission failure results,
someone must be blamed for an error in design or judgement. Much of the apparent risk
aversion present in the spacecraft development process seems to be a result of
exaggerated expectations of flawless orbital performance promoted by NASA over the
years (to justify the cost of space exploration) and passed on to the public by the media.
Traditional reliability calculations continue to be made because of their analytical

convenience and their ability to be massaged to support these claims and expectations.
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34  New Concepts: Time-Dependent Failure Rates and Parameter Uncertainty

3.4.1 Time-Dependent Failure Model
The first step toward improving the traditional reliability model is to use a Weibull
failure distribution that allows failure rates to vary with time. It is a generalization of the

exponential distribution, and its success probability is given by:

R(1) = exp[ { ﬂ] (3.3)

o

Here, o is a scale factor that expresses mean time-to-failure, and P is a shape factor that
varies the effective failure rate over time (B = 1 gives the exponential distribution). TRW
studies using their own spacecraft anomaly databases in 1974-75 [4-1,12] recommended
the use of Weibull distributions in place of reliance on (3.1). In [4-3], Herbert and Myron
Hecht utilized their spacecraft failure database (consisting of 300 satellite missions over
the period 1961-1984) as the basis for a model which divides overall reliability into two
statistically independent parts represented by (3.1) and (3.3). Basically, this approach
separates so-called “random” component failures (RF) from those due to design,
environment, and/or manufacture (DEM) that occur early in the mission. This
corresponds to the discovery from the Hecht data that almost 50% of all spacecraft on-
orbit failures are due to early-mission DEM causes, and these were usually not foreseen by
the risk analyses that were conducted during spacecraft development. The Hecht method
places a rough dividing line at # = 2 years, which represents the crossover point in time
between the 50% of failures assumed to be DEM (Weibull) and the other 50% due to RF
(Exponential) events.

For the RF term, the exponential distribution (3.1) is used with a revised base
failure Ay, which is computed by dividing the tabulated (or sampled) failure rate by 1.41
(or 2.82 for rates computed using the old S; of 0.9). This new rate is then used to
compute a and  for the related Weibull distribution in (3.3) used to model DEM, based

on the type of spacecraft mission being conducted, as shown in Table 3.1. Where
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applicable, a separate Weibull distribution with B = 2 is used to model wearout failures

(WR) at the end of the spacecraft design life.

Mission Type B o Arf
General (default) 0.12 0.54
Communication 04 0.66
Navigation 0.9 0.93
Observation 0.13 0.55
Scientific 0.09 0.53

Table 3.1: Prediction Factors by Mission Type [4-3]

Given o A and B, the computation of R(r) for a component proceeds as follows:

(1) Obtain “official” exponential failure rate A for given component

(2) Obtain random failure rate Acf by dividing by 1.41 (2.82 for pre-1985 data
from previous versions of [4-11])

(3) Select parameters B and o Arf from Table 3.1 (B = 2 for wearout)

(4) Compute Weibull parameter ccusing: o = 0 Arf/ Arf

(5) Compute reliabilities R,.(7) from (3.1) and Rpeu(?) from (3.3)

(6) Compute R(r) by assuming independence between RF and DEM failures:

R(1) =Ry (8) Ry (0 3.4)

3.4.2 Failure Rate Parameter Uncertainty

The failure rates tabulated in [4-7,11] are the result of statistically inferring failure
model parameters from databases, which may be extensive but still contain considerable
statistical uncertainty. In particular, the authors of [4-11] merge observed failure rates
into a system of multiplicative factors based on unit complexity, operating environment,
design format, and other details. This system of multiplying inferred factors adds more

uncertainty to the final result. For its part, {4-7]) must rely on much smaller sample sizes



for the vast array of non-electrical components it surveys and groups into somewhat
arbitrary categories.

However, an effort was made during the compilation of [4-7] to estimate the likely
variance in its failure rate predictions, given that its data is a generic compilation from a
variety of sources. It was concluded (conservatively) that the natural logarithm of the

tabulated failure rate is Normally distributed with a mean () of A, (the unknown "true"

failure rate) and a standard deviation () of 1.5. This translates into a 68% probability

that A, lies within the one-sigma confidence interval [0.22A, 4.51] and a 95% probability

that it lies within the 2o interval [0.08A, 11.9A], where A is the tabulated failure rate as
before. This level of variance is very high, but it at least gives us a guide as to the
variability of tabulated failure rates. A o of 1.5 represents the maximum variability in our
model, since the data in [4-7] is very uncertain given its small sample spaces and imprecise
component classifications. Data from [4-11], as well as vendor-supplied component data
from life tests and operational experience, is given a smaller variance in this model. The
variances for different components are thus assigned using the “fuzzy” categories and
guidelines in Table 3.2, although specific circumstances may cause the reliability evaluator
to choose a different variability for the base In(A). For example, he may be aware that the
latest model of a rate gyroscope has had limited testing or operational pedigree and that its
predecessor models have recently experienced problems in orbit. A o of 1.25 or even 1.5
may be appropriate here. Other components which historically have given no problems
over many years may deserve a ¢ lower than 0.5 (note that even this small number
represents significant uncertainty about the mean failure rate). Finally, a combination of

data from [4-7,11] and operational experience could combine to lower the ¢ assessed.
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Source of Data Standard Dev. of Ln(A)

MIL-HDBK-217E 0.75
Specific component history 0.75
if based on 25 yr. orbit ops. 0.5
info. from vendor w/out orbit exp. 1.0
NPRD-95 1.0-1.5
Default
no significant information 1.5
substantial, varied information 0.75

Table 3.2: Failure Rate Variation Cases

The uncertainty inherent in the handbook failure rates is an important concern. To
resolve this underlying uncertainty without requiring limiting mathematical assumptions,
an algorithm for Monte Carlo simulation-based reliability predictions has been developed.
For each trial, an exponential failure rate for each component in the reliability model is
sampled from a Normal distribution with the mean published failure rate and the variance
assigned to that component from Table 3.2. The result becomes the “official” failure rate
for Step 1 of the conversion procedure in the previous section (for that trial only). The
conversion process of the previous section is then carried out to get R(f) for that
component type. Finally, once the samples and conversions for all components are
completed, the output reliabilities for a given time-to-failure can be combined based on the
overall system redundancy layout using (3.2). Because of the combined system
uncertainty posed by many interacting components, a significant number of trials are

needed to obtain the resulting reliability uncertainty distributions.

3.4.3 Application to Gravity Probe-B Spacecraft Bus

This approach has been applied to several designs for the Gravity Probe-B
spacecraft bus. The spacecraft bus is designed to support the experimental payload by
handling the normal orbital maintenance tasks, including power generation and regulation,
attitude control, thermal control, and overall coordination through the flight computer.

Unlike the experimental payload, the components that make up the spacecraft bus
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generally have some orbital history, allowing us to compute or extrapolate reasonable
failure rate estimates for them. Lockheed Missiles and Space Company (LMSC; now
Lockheed-Martin) won the contract for the spacecraft bus in 1993; thus the LMSC
component-redundancy design is considered the “baseline” for our study.

Figure 3.1 is a functional block diagram of the LMSC spacecraft bus design, taken
from Figures 2-16 and 2-17 of the LMSC management proposal [5-5]. It is broken into
two parts: Figure 3.1a (2-16) for the spacecraft bus and Figure 3.1b (2-17) for the
guidance and control subsystem and experimental payload interface. The block diagram is
broken down into six subsystems plus the components that are “shared” with the science
payload. Numbers of each component needed to work for mission success (e.g., “10of 27)
are given along with the failure rates used in the LMSC traditional-style reliability
calculation (expressed in failures per hour). Based on these figures, LMSC has predicted
a spacecraft bus reliability for the 1-year primary science mission of 99.0%.

Our analysis of the spacecraft bus reliability begins with the failure rates given by
LMSC (many of which were taken from subcontractor data). In most cases, the numbers
are reasonable enough to use as the tabulated mean failure rates A in the failure-rate-
sampling procedure. However, several subsystems, such as the SPRU, battery, and
magnetic torquer, seem to have been given overly optimistic failure rates. These were
changed to better agree with more realistic numbers published in competing proposals.

Figure 3.2 is a plot of reliability uncertainty (for r = 1 year) for the LMSC design.
Both curves were separately generated using 50,000 Monte Carlo trials in MATLAB.
This graph has “true” reliability, meaning the unknown actual reliability of the spacecraft
bus, on the x-axis. The y-axis represents the “probability of occurrence,” or the relative
likelihood of realizing a given actual spacecraft reliability, in logarithmic scale. Both
curves are cumulative distribution function (cdjf) plots that give the probability, for a given
level of reliability R, that the unknown “true” reliability is lower than R.

This plot can be quite confusing at first because most engineers are not used to
discussing the probability of a probability as shown here. Normally, a single probability
value is given when discussing reliability. However, the parameter uncertainty introduced

in Section 3.4.2 makes the true spacecraft reliability an uncertain value which must be
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Figure 3.2: GP-B Spacecraft Bus Reliability Uncertainty

characterized by its own probability distribution. This representation of spacecraft
performance uncertainty is necessary for the decision-theoretic optimization to be carried
out in Chapter 3 because it is a more honest depiction of the true uncertainty faced by the
spacecraft designer.

The two separate curves shown on the plot represent the same analysis done at
two separate points during the GP-B spacecraft development program. The upper curve
(plotted as a line) represents the reliability uncertainty at the time of the LMSC proposal
evaluation in mid-1993. Based on updated data and component-specific information, the
simulation was redone in mid-1995. New information is incorporated by revising the
mean failure rates and especially the variances from Table 3.2 for components which have
relevant new information. These later results are shown by the “+” curve. As expected,
the increased amount of information available for the 1995 study tends to lower the
variances for many components, producing the improved “+" results in Figure 3.2. The

1995 result is seen to be a clear improvement over the earlier 1993 study because the
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reliability curves visible in Figure 3.2 are primarily the 50% of cases worse than the
median (because the medians are close to 1.0). The 1995 curve lies below the 1993 curve
and falls off faster, indicating that the updated reliability prediction has better worst-case
tail performance in addition to having a slightly higher median reliability. Note that in the
1993 prediction, the likelihood of a true spacecraft reliability below 0.5 was 1%, while in
the 1995 prediction, this likelihood falls to 0.15%.

Figure 3.2 demonstrates the importance of reliability uncertainty and its
relationship to deterministic reliability predictions. Reliability uncertainty is obviously
bounded by one on the upside, but the downside reliability can be quite bad in rare cases.
Thus, the median (or the midpoint of an ordered list of samples) of the reliability
histogram is taken to be the closest equivalent of a single reliability prediction. The
medians for the 1993 and 1995 evaluations are 97.4% and 98.0% respectively. Primarily
because of the modeling of infant mortality as described in the last section, these results
are lower than the LMSC reliability prediction of 99% cited above. Note that infant
mortality gives a more pessimistic reliability result than the traditional approach for r < 2
years; thus our revised predictions will be more pessimistic throughout the duration of the
GP-B primary mission.

Also note that the reliability uncertainty was significantly reduced between the
1993 and 1995 evaluations, as the cumulative distribution curve for the 1995 case lies well
under that for the original evaluation. Looking at Figure 3.2, we can determine the 95%
lower confidence intervals (CI's) for 1-year spacecraft reliability from the point at which
the cdf’s cross the y = 0.025 axis (the upper CI's would be at the y = 0.975 axis crossing -
- they are clearly 1.0). They are 67% for the 1993 case and 81% for the 1995 case -- a
substantial improvement. Still, the presence of a 2.5% chance that the true reliability is
below 81% is still worrisome. As the developement-and-test process proceeds, new
information should continue to give reduced uncertainty each time the reliability
evaluation is updated. This “best estimate” of the remaining performance uncertainty
satisfies the requirements of decision theory, making it possible to use this reliability model

in the probabilistic optimization methodology to be presented in Chapter 4.
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3.5  New Concepts: FMECA-based Reliability Predictions

3.5.1 Introduction to FMECA Methodology

Unlike the spacecraft bus, the Gravity Probe-B spacecraft experimental payload is
a fundamentally new instrument, although it is built using space-qualified parts. The
functionality of many payload systems has not been fully tested in a space environment;
thus its subsystems face a performance risk that is greater than the sum of their piece-
parts. Without any significant statistics from which to derive representative failure rates, it
is difficult to apply the reliability prediction methods outlined in Section 3.4. Lacking a
better method, failure rate guesses would have to be used, and the large uncertainty that
results would require failure rate sigmas much greater than the maximum of 1.5 for
substantiated failure rates. Although this representation of performance risk would still be
valid (as it would be the best we can do with the available information), its uncertainty
would dominate the overall mission risk evaluation.

A better representation of the underlying uncertainty has been derived based on the
FMECA analysis tool discussed in Section 3.2. FMECA classifies risks by type of failure
event as opposed to failure source component, making it easier to perform a risk
breakdown without a complete component performance model. Failure events are
classified into three categories [4-6]:

(1) Occurrence probability: a rough estimate of the relative probability that the
failure mode will occur, ranked from A (most likely) to E (least likely)

(2) Severity: a measure of the seriousness of the resulting threat to the mission
given that the failure mode has occurred, ranked from 1 (highest threat) to 4 (lowest
threat)

(3) Conditional Probability: a measure of the likelihood of suffering the most
severe threat to the mission given that the failure mode has occurred, also ranked from 1
(highest probability) to 4 (lowest probability)

The goal of FMECA analysis is to compute a final value, or criticality, for each
failure mode that ranks its overall risk at the system level. The process for making this

computation is discussed in [4-6]. Basically, criticality is computed from approximate
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probability measures for each of the FMECA classifications. These three numbers are
multiplied together, and the result is then mapped into a ranking from 1 (highest risk) to
24 (lowest risk). Although it may differ for a particular application, a general guideline
lists criticalities of 7 or lower as “unacceptable,” 8-12 as “undesirable,” 13-18 as
“acceptable with review,” and 19-24 as “acceptable without review.” Once a FMECA
analysis of a particular subsystem is avaliable, an evaluation of the worst-criticality failure
modes can be made. They will either be “re-evaluated” to qualify, or specific
(deterministic) risk-reduction steps will be taken, such as additional prototype testing, to

support later reevaluation and qualification.

3.5.2 FMECA Reliability Sampling Approach

The “fuzzy” probability set that is used to compute criticality serves as the
foundation of a method to convert FMECA assessments into distributions of reliability
uncertainty. Clearly, there will be a great deal of variation among true (unknown) failure
probabilities; thus the variances about the approximate mean probabilities will be large.
However, we do obtain a reasonably comprehensive model of the failure space expressed
in terms of probability (as needed for PRA). The mapping of FMECA categories to
reliability uncertainty is given in Table 3.3. Note that the P(M), B, severity, and assigned
“meaning” in the first two columns of Table 3.3 are generally accepted FMECA concepts
(although numerals 1-5 may replace A-E in some studies), whereas the probability
distributions shown in the third column are introduced by this thesis based on the fuzzy
connection of “meaning” to implied probability orders of magnitude in [4-6].

Given this mapping to probability space, we can conduct Monte Carlo sampling of
overall subsystem reliability just as was done in the failure-rate mode! described in Section
3.32.  An overall mission loss probability can be approximated from samples of

probability uncertainty from the resulting dependent distributions:

P(MF) = P(M => occur) P(Sev | occur) P (B | Sev) 3.5)
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OCCURRENCE PROBABILITY

P(M) Meaning Failure Prob. Dist.(1,0)
A frequent Gamma(0.2, 0.125)
B probable Gamma(0.1, 0.07)
C occasional Lognormal(2, 0.5)
D remote Lognormal(3, 0.75)
E improbable Lognormal(5, 1.5)
SEVERITY
Sev. Meaning Failure Prob. Dist.(1,0)
1 catastrophic Uniform[0.5, 1.0]
2 critical Gamma(0.1, 0.05)
3 minor Lognormal(2, 0.5)
4 other Lognormal(3, 0.75)

CONDITIONAL PROBABILITY

B Meaning Failure Prob. Dist.(j1,0)
1 actual loss Uniform[0.7, 1.0]

2 probable loss Normal(0.5, 0.15)

3 possible loss Gamma(0.05, 0.03)

4 no effect Lognormal(5, 1.5)

Table 3.3: FMECA Risk Uncertainty Classifications

Ideally, assuming that each mission failure cause is statistically independent, we can
multiply all the sampled P(MF)’s for a given Monte-Carlo sampling trial together to get
the overall failure probability for the subsystem in question. In practice, many other
difficulties exist.

First, FMECA assessments of failure modes do not represent mission time-to-
failure. Failure modes are broken down by which phase of the mission they are applicable
to, such as ground testing, launch and ascent, and orbital operations. In converting to

spacecraft reliability, we normally ignore pre-flight events, segregate launch events into a
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separate category, and focus on orbital events, but our sampled reliabilities do not have a
time dependence built into them, as do those of Section 3.4. Generally, it can be assumed
that the FMECA-based risk of a given failure mode is evaluated to the end of the mission,
which is about 1 year in the case of GP-B. This can then be “back-converted” to a
reliability prediction over time by using (3.1), (3.3), and (3.4) in reverse, but significant
additional uncertainty is added by this time-mapping procedure.

Also, since FMECA assessments only exist for specific, already-known failure
modes, the question of measuring the risk of failure due to unforseen causes is still open.
The Hecht method discussed in Section 3.4.2 bases its 50-50 division of failure sources on
the historical record of spacecraft failure events. Strictly, 18.9% of the Hecht database
failures were due to “unknown™ causes. Furthermore, most of the “design” failures
(24.8%) were due to an unforseen occurrence that invalidated the pre-launch design model
[4-3]. One could thus assume that the FMECA-listed failure modes represent only 100 -
18.9 - 24.8 = 56.3% of the total failure likelihood. However, whether this is really a fair
judgement is not clear. Conservatively, though, multiplying the output FMECA
reliabilities R by 1.0/ 0.563 = 1.776 might be a prudent course.

Since the implied failure event probabilities given in Table 3.3 are uncertain, Monte
Carlo simulation must again be used to resolve them in a method similar to that given in
Section 3.4.2. For a given sample trial, "true" failure probabilities are sampled from the
above distributions, and then P(MF) is computed for each listed failure cause using (3.5).
Failure causes that are similar in physical origin, such as failure of a sensor type that exists
in several places on the apparatus, use the same sampled failure probabilities for each
cause of that type. In this way, failure rate dependencies are modeled for events where the
underlying failure likelihoods are correlated.

To compute the overall subsystem mission failure probability for a given trial, the
mission failure probabilities for each event are multiplied together as in a series network.
Note that at this level, probabilistic independence is indeed assumed. While much of the
correlation between different failure modes is captured by the common failure probability
sampling just described, the assumption of independence at the top level (failure

occurrences are independent even though failure likelihoods are correlated) may be
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questionable in some cases. Modeling of top-level dependencies can be accomplished by
building a tree of dependent events known as an event tree [1-5]. In the future, it may be
possible to link FMECA-based reliability sampling with an event-tree that directly
represents events as they occur in the mission timeline. This linkage would also directly
handle the question of representing mission time in the FMECA reliability predictions.

As in the spacecraft bus sampling procedure, top-level reliabilities for each trial are
stored in histograms which are plotted and analyzed after all trials are completed. For the
GP-B payload development program, draft FMECA's are presented at the PDR for each
subsystem, and revised ones are completed by CDR. Thus, we will conduct reliability
conversion analyses for each subsystem separately as its FMECA is completed. A
subsequent Monte Carlo sampling procedure will be used as needed to combine subsystem

reliability histograms into an overall payload reliability prediction.

3.5.3 Results for GP-B Payload Dewar

An example result of this FMECA reliability prediction method for the Gravity
Probe-B spacecraft dewar subsystem is shown in Figure 3.3. It is the result of 4 million
Monte Carlo samples (in C) of the 82 separate failure modes (69 on-orbit, 13
launch/ascent) of relevance to the mission itself (rather than testing and preparing for
launch) listed in the dewar FMECA released by Lockheed. Note that a much greater
number of trials are desirable for FMECA reliability evaluation (compared to the failure
rate method) because of the much greater number of separate failure sources, each of
which requires three samples as per Table 3.3.

Two curves are shown on the plot. The lower one (a line) simply plots the output
histogram of dewar reliability observed over the 4 million trials. Below a reliability of
0.925, the curve becomes jagged and incomplete because of the scarcity of trials that
result in such low success probabilities. The upper one (‘x’) shows the resulting
cumulative distribution (cdf) of dewar system reliability. From this curve, we see that
given the current FMECA information, the likelihood that the true dewar reliability (to the
end of the on-orbit mission) is below 95% is about 0.018, or less than 2%. In fact, the
median reliability of the histogram is 99.7%, which is very good. However, the cdf levels
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Figure 3.3: GP-B Dewar FMECA Reliability Uncertainty

off below 90% reliability, suggesting that our uncertainty makes it difficult to rule out
reliabilities lower than 85% beyond a baseline likelihood of 0.003.

Compared to methods using failure rate data, the FMECA reliability approach
gives very uncertain results. Lacking more definitive information, it does, however,
provide a representation of performance uncertainty suitable for probabilistic decision-
making. Furthermore, it provides a starting point for uncertainty models that evolve with
time, as they can be updated using Bayesian techniques [3-3] periodically as new

information becomes available.

3.6  Conclusions and Further Work
The key question to be asked about the new reliability models discussed here is:
what significant improvements in mission-level risk modeling do they provide? It is clear

that the traditional reliability method of Section 3.2 is of limited use. However, both the
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failure-rate and FMECA models developed here require extensive computer simulation,
and they only give reliabilility uncertainty results which many find hard to digest.

The most fundamental benefit of these new methods is the proper representation of
failure-rate uncertainty. The practical impact of “fuzzy” reliability predictions may be
unclear to traditional systems engineers, but its importance becomes evident when one
analyzes a system from the perspective of decision making under uncertainty (see Section
1.2). Even without this perspective, one can examine the 90% or 95% lower confidence
intervals of the resulting reliability uncertainty distributions in addition to the median
reliabilities to get a better picture of which subsystems pose the largest mission
performance risk. This information should help to refine the process of deterministic risk
reduction efforts.

In addition, several interesting phenomena become apparent from the use of
simulations to evaluate reliability uncertainty. The best example is so-called weak sister
subsystems, which are discussed in the 1974-5 TRW studies [4-1,12]. This refers to
subsystems or components that, unknown to the developers, contain critical weaknesses
that make them the key drivers in the overall (unknown) spacecraft reliability. These flaws
are more likely to become apparent early in the mission; thus missions that survive this
early phase are more likely to contain no such weak sisters. The TRW studies suggest a
complex model that requires indentifying the “weak sister” risk for each component by
fitting specific curves to failure databases that have been broken down into “weak sisters,”
“normal populations,” etc.

A detailed study of weak-sister likelihoods would be useful, but it turns out that
Monte Carlo failure rate sampling reveals the same phenomenon naturally, without
needing a separate mathematical construct. In each failure-rate sampling trial, there is a
chance that one of the component classes will “get unlucky” and receive a very high failure
rate that translates into, for example, only a 70% likelihood of surviving one year in space.
This causes the overall system reliability for that trial to be bounded by 70% on the upside,
even if every other component is sampled to be very reliable. Different component classes

will contain weak sisters in separate sampling trials; thus the result of a large set of
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samples automatically incorporates the effects of weak sisters into the overall system
reliability uncertainty evaluation.

In addition, simulations naturally represent some of the dependence between the
failure likelihoods of identical or related components. In a given trial, the same random
sample is applied to all systems judged to be similar, then the reliability for the affected
component classes is determined from (3.2) by assuming independence of actual failure
events. In many cases, even the latter assumption is questionable, but the inclusion of
dependence of failure probabilities goes a long way toward defeating the optimistic
assumpticn of complete probabilistic independence. For example, a particular component
class with one primary and one (standby) backup unit will have the following reliability if it
receives its median failure rate, which we will assume to be 1 x 10 failures/hour. After
one year, the overall reliability for that class, using a standby “g” factor of 0.1, is 0.99995;
a good result. However, if a sample of one order of magnitude worse, 1 x 107, is
obtained for a given trial, the reliability becomes only 0.995, or two orders of magnitude
worse. The modeling of dependence, even in a limited fashion, helps to more realistically
evaluate the true benefit gained from redundancy, which is a primary tool of the system
designer.

Finally, the need for computers to conduct Monte Carlo simulations is not as
onerous as it might seem. First of all, the sampling and reliability computation is simple
and requires only floating-point arithmetic operators. Coded in C, millions of samples can
be conducted in only a few hours on the newest personal computers. Furthermore, the
traditional method of Section 3.2 is now usually carried out using computer software
which can numerically transform a functional block diagram of the type (including the
applicable failure rate information) shown in Figure 3.1 into system reliability numbers.
Since the “Rubicon” of reliance on computers has already been crossed, the analytical ease
of (3.1) is no longer as significant as it used to be. Instead, the rapidly-increasing
processing power of PC’s and workstations aliows us to build very flexible models and

evaluate them in whichever way best represents the information we possess.

79



Chapter 4: Spacecraft Probabilistic Design Optimization

The concept of design was born the first time an individual created an object to serve
human needs. Today, design is still the ultimate expression of the art and science of
engineering. From the early days of engineering, the goal has been to improve the

design so as to achieve the best way of satisfving the original need, within the available

means.
- Panos Papalambros, Douglass Wilde, Principles of Optimal Design, p. 12.

4.1  Deterministic Reliability Optimization

While it is not generally true for spacecraft, many fields can take advantage of
deterministic reliability predictions built upon comprehensive failure databases to devise
methods for optimizing a given design from a reliability standpoint. More specifically,
there exist algorithms which can maximize system reliability under total system cost and
weight constraints. Conversely, they can minimize cost or weight given a lower-limit
reliability constraint. The design variables may include continuous variables and integers
that represent the amount of redundancy applied to each component class. Due to the
presence of nonlinear state equations (that compute reliability given a specific design
alternative) and discrete integer encodings, nonlinear programming (NLP) methods are
required to find the optimal design with certainty [2-8]. Typical problem statements of

this type are [3-5]:

Maximize Reliability Minimize Cost
M M
Max R, =]]R, Min  Cy =3
L or - 4.1)
such that Y p,;(R;)<a, such that R . =] R;(¥) 2R,
i=l i

where R represents reliability, C and ¢ represent (monetary) cost, py is the consumption of
resource k to obtain reliability R; for component i, a is the constraint on that resource,
and Y, is the unit redundancy chosen for that component. While NLP or dynamic

programming approaches can be applied to a general problem, the use of design heuristics
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in combination with a more-specific optimization approach tends to be more successful for
individual cases [2-11].

Note that despite the goal of design optimization for reliability, what is being
optimized here is a deterministic measure of risk performance. In other words, the
optimization method assumes that reliability can be directly computed from the model for
a given design, and it assumes that reliability, in and of itself, is the goal. This may be the
case for simple systems, but the design of a spacecraft is coupled with other issues that do
not necessarily fall within the designer’s control, such as the launch vehicle and orbital
insertion. The use of reliability as a system objective is a proxy for a more complete
model of mission-level user utility which, in part, expresses the effects of failures at certain
times on the overall objective, be it commercial, scientific, or otherwise. Therefore, a
better optimization can be done with a higher-level objective function that expresses a
tradeoff between probabilistic performance and design cost and effort.

In the spacecraft case, however, it is the significant uncertainty about mean
reliability predictions that limits the usefulness of deterministic reliability optimization. If
these mean values include the uncertainty demonstrated in the analyses of Chapter 3, the
deterministic approach would ignore the greater part of the true performance uncertainty.
This is an important reason why spacecraft design optimization using traditional reliability

methods is not seen as worthwhile.
4.2  Gravity Probe-B Spacecraft Bus Optimization

4.2.1 Optimization Problem Overview

As described in Chapter 1, the Gravity Probe-B spacecraft is designed to support a
physics experiment in orbit. As such, it can be subdivided into the experimental payload,
which includes the probe with its extremely precise gyroscopes to measure relativistic
drifts, and the spacecraft bus, which includes the support equipment needed to operate the
experiment in space. Because the payload is composed of new systems which have not
been extensively tested in space, reliability predictions for it are done using the FMECA
method described in Section 3.5. The design of the payload is controlled by scientific
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imperatives as well as the need for system-level redundancy. In contrast, the spacecraft
bus design uses well-understood subsystems to supply and regulate power, maintain the
required spacecraft position and attitude, etc. Thus, (uncertain) failure rates are available
for the spacecraft bus components, and the methods of Section 3.4 have been applied (as
shown in Figure 3.2 for the current LMSC spacecraft design).

Using these performance uncertainty models, we can optimize the layout of the
spacecraft bus design not with respect to its own reliability but instead to the overall
mission objective. Our basic decision vector will be the amount of component redundancy
to provide. In other words, we will choose the optimal number of each type of component
to provide to the spacecraft bus, relative to the minimum number of each component class
required to accomplish the mission. For a given design choice, the simulation-based
reliability method of Section 3.4 will be applied, and simulations of other relevant
performance models will be conducted as needed. The simulation outputs give the
objective function evaluation for that design choice.

Recall from Section 3.2 that the traditional approach insists on avoiding single-
point failures. Thus, every component class will have at least one more than the minimum
assumed necessary for mission success. This dictum is visible in the LMSC baseline
design shown in Figure 3.1 of the last chapter. In particular, it is thought that the GP-B
spacecraft bus should be made very simply and reliably so as not to add unnecessary
failure modes to the risks presented by the relatively untested payload system. This design

logic will be tested by the probabilistic optimization to be carried out here.

4.2.2 Probabilities of Non-Controllable Events

In the spacecraft bus optimization, the spacecraft bus reliability will be computed
using the failure-rate simulation method of Section 3.4. However, the unknown
reliabilities of the launch vehicle (including orbit insertion) and the experimental payload
are clearly critical to the mission value function. Although the spacecraft bus designer
cannot control these external risks, the marginal benefit of added spacecraft reliability will
be affected by the reliability of these other systems. For example, if the payload reliability

is below 0.90, the value (in terms of the overall mission) of increasing spacecraft reliability
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to end-of-mission from 0.98 to 0.99 will be lower than if the payload reliability is also in
the 0.98-0.99 range. This is true simply because the overall system probability of success
is dominated by its "weakest link" (recall the related "weak sister" effect on spacecraft
reliability described in Section 3.6); thus improvements to higher-reliability subsets of the
mission will have limited effect on the likelihood of overall success.

While payload subsystem reliabilities can be predicted from the FMECA method of
Section 3.5, it will not be possible to compute the end-to-end payload reliability until all
subsystem FMECA's have been completed. For now, simple uncertainty distributions will
be assessed for both the launch/orbit insertion and for the payload. For the Delta launch
vehicle and orbit insertion, the assumed mean success reliability is a point probability of
93%. The standard deviation of this mean reliability is 4%, and the true reliability is
sampled from a Normal distribution with these parameters but bounded by 100% on the
upside. The experimental payload is modeled with a single mixed Weibull-Exponential
failure model as per Section 3.4, with a mean base failure rate (computed by summing
failure rate estimates for each of the payload subsystems) of A = 8 x 10® and a (high)
lognormal uncertainty factor 6 = 1.0. Using Section 3.4, this mean failure rate translates
into an expected one-year success probability for the payload of 92.8%, although the level
of uncertainty for the payload is much higher than for the launch vehicle.

The success probabilities for launch/orbit and payload systems are sampled for
each uncertainty trial and then applied to the more-detailed spacecraft bus reliability
computations. The latter will change as different spacecraft bus designs are evaluated, but
the launch/orbit and payload reliabilities are considered to be independent of the optimal
spacecraft design and thus are not affected by spacecraft design variations. Admittedly,
this is a slight simplification, as the spacecraft/payload interfaces for GP-B do not allow
such an easy separation (see Figure 3.1b), but it makes sense given the very simple
payload model used.

Finally, there are roles on the spacecraft bus which are “one-shot” operations, such
as deploying the solar arrays after the final orbit has been attained. These are represented
by a point failure probability rather than the time-based model of Section 3.4. For the

(internally redundant) solar array release and deployment units required for GP-B, a mean
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point success probability of 0.9995 is assessed, and the (Normal) uncertainty standard

deviation is 0.001 (the success probability is bounded by a maximum of 1.0).

4.2.3 Decision-Maker Utility Functions

The optimal design is driven by the form of the objective function used to model
the wrility, or relative values of outcomes, of the decision maker. Because evolutionary
methods (detailed in Section 4.3) can perform an optimal search on any objective function,
the designers are free to choose any mathematical model that best describes their
preferences. This is a major improvement over conventional formulations such as 4.1),
but it is a double-edged sword: the optimal search will tend to exploit any “holes” in the
objective function, resulting in solutions that may not seem optimal to the human
designers. In general, it is difficult to properly weigh the preferences of both system
designers and users into a single objective function on the first try (but it is much more
difficult if the form of this function is mathemetically constrained) [1-5]. The results of the
first few optimization runs therefore fit into an iterative systems engineering framework as
they help designers refine their value models to better capture what they want to achieve.
It is possible to abuse this process in order to justify a pre-determined conclusion, but that
violates the basic precepts of decision theory and results in a decision-maker simply

cheating himself or herself.

4.2.3.1 LMSC Value Model: The objective function for LMSC is assumed to be the fee,

or profit as a percentage of the spacecraft bus cost, it is to receive depending on the
outcome of the mission. The following objective functions are based on the LMSC/NASA
reward contract for GP-B and thus are a reasonable starting point for expressing LMSC
preferences in terms of maximum gain from the mission, although they do not explicitly
give the true LMSC fee agreement. For LMSC, profit is divided into three categories
with the following random models:

® award fee: From 0 to 6% of spacecraft bus cost Cs, based on progress in meeting

development program milestones -- modeled as (unchangeable) Normal(4%, 1%).

84



® cost fee: From -6% to 6% of spacecraft bus cost Cs, based on a linear function of
the resulting actual cost of spacecraft bus. The actual cost Ca includes the amount
by which the number of components of a given design solution increases or
decreases the spacecraft cost, and a random cost amount of Gamma($25 million,

$10 million) - $10 million is added. The cost fee percentage is then determined by:

[
6% if C, <Cg — $5 million
CP. = { -6% if C4 2Cg + $55 million 4.2)
6 - 0.2 Ca=Ce +$5 million (%) otherwise
$1 million

® performance fee: From -6% to 6% of spacecraft bus cost Cs, based on results of
mission and spacecraft bus on-orbit. A successful mission which obtains valid
science data for the one-year length of the primary mission is worth 6% to LMSC.
A mission failure during launch or orbit insertion (resulting in no science data) that
is attributed to LMSC results in a fee of -6%. If the blame lies elsewhere, the fee
is 0%, which also applies to a non-LMSC mission failure during the first six
months of science data-taking. The fee for a failure blamed on LMSC during the
first six months, or any failure after six months have passed, is bounded by the

following Maximum Performance Fee (MPF):

(tm—6)’
MPF = m—g+6 PFF - 6
[pm—¢] 4.3)

where fm is the number of months of successful science data-taking, and PFF is an
independent, subjective performance evaluation made by Stanford which is assumed

to be distributed as (unchangeable) Normal(0.8,0.1) < 1.0.

NASA regulations bound the overall fee percentage, which is the sum of the fees from the

three listed sources, to a minimum of 0% (i.e., no financial loss is possible) and a
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maximum of 15%. The estimated base spacecraft bus cost is Cs = $100 million, which
translates into a possible value range of $0 - 15 million.

This expected-profit model contains few strong incentives for LMSC to maximize
on-orbit reliability. Much of Lockheed’s profit is determined before the spacecraft is even
launched, and there are many factors which the spacecraft redundancy designer cannot
directly control. As noted in Section 4.2.2, the relative importance of these factors lessens
the marginal value of reliability improvements. Also, the launch vehicle, upper stage, and
experimental payload are all intrinsically less reliable than the spacecraft bus. The

spacecraft bus designer must nevertheless make the optimal design decisions within this

extended context.

4.2.3.2 Stanford Value Model: The objective function for Stanford University, which is

focused primarily on the amount of high-quality experimental data obtained from the
mission, is based solely on an on-orbit performance evaluation similar in intent to that of
the LMSC performance fee. It is also normalized to be between $0 - 15 million, although
the resulting LMSC and Stanford values are not directly comparable, since scientific value
is not expressed in terms of dollars. Successful science data taking for the length of the
one-year primary mission is "worth" $15 million, mission failure before any data is

received is worth nothing, and intermediate results are valued by the following equation:

0.1 tm ($15million) tm <6 months

44
[0.6 + 0.0667(¢m - 6)] ($15million) 7 < tm <I12months @4

Stanford Value = {

This function increases linearly over the first six top-priority months, then it levels off as
further months of mission success are added. It should be noted that additional value
would be derived from “co-experiments” which will continue after the first year in orbit,
but they are of a lesser order than the relativity mission. Thus, payload and spacecraft bus
reliability is only computed out to one year for the purposes of optimization.

Unlike the LMSC value function, the Stanford model does not include extraneous

(and uncontrollable) variables. The resulting value is solely a function of how much high-
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quality data (i.e., data that meets the science requirements) is obtained. Note that this is
admittedly a simplification of reality, since Stanford's value (and LMSC's) is directly
connected to cost and schedule objectives during program development which are tied to
the complexity of the spacecraft design. A complete decision-theoretic solution would
include these concerns along with a model of program development risk and simulation of
the development process. This is not done here but is a key area of future work [1-5].

In the Stanford case, the reliability model is assumed to represent failures that
make it impossible to obtain good experimental data for one reason or another. Failures
which only degrade the amount or quality of data within acceptable limits are not counted
as mission failures, although considerable uncertainty exists over the threat posed by
specific component failures (see Section 3.5 for a discussion of FMECA's). Since we can
compute the overall distribution of failure times based on launch, orbit insertion, payload,
and spacecraft bus reliabilities (after uncertain failure parameters are sampled), it is not
necessary to run actual orbital simulations of the Stanford value function; the value (4.4)

can be computed as a weighted sum of each possible number of months of valid data.

4.2.4 Constraint Modeling

To represent constraints, penalty functions are applied which subtract costs for
exceeding spacecraft weight, volume, and power budgets from the LMSC and Stanford
value functions. The spacecraft bus has been allocated totals of 801.5 kg, 0.983 m’, and
223.75 Watts for each of these, respectively, in the LMSC spacecraft proposal [5-5].
Each trial solution has its totals in these categories (as well as unit cost) figured, and ratios
of these numbers over the base numbers given above are computed as Rw, Ry, and Rp
respectively. If these ratios are below 1.0 (indicating that the proposed solution is within
budget in that category), no penalty cost is applied. If not, penalties are computed based
on the following cubic functions whose coefficients are chosen to model the approximate

loss of mission value that would result from a given level of budgetary excess:
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weight penalty = Cs[0.001+0.5 (R}, ~1)] (4.52)
volume penalty = Cq [0.0001 +001(R}, —1)] (4.5b)
power penalty = Cg [0.001 +0.09 (R,3, - l)] (4.5¢)

where Cs is the base spacecraft cost of $100 million. Note that these equations rank
relative importance in meeting the budget as weight first, then power, then volume. Also,
in the weight case (4.5a), additional weight is assumed to be added in the spacecraft
structure at the same proportion (to baseline structural weight) that Ry exceeds 1.0.

The use of penalty functions to represent constraints is a controversial issue in
evolutionary systems optimization because such functions cannot easily enforce “hard
constraints” which must not under any circumstances be violated. If the spacecraft system
budgets truly were absolute black-or-white barriers, this approach would be insufficient.
There are two means of enforcing hard constraints in an evolutionary-search format. One
is to come up with a problem encoding that simply does not allow a constraint violation.
This is possible only if the constraints do nothing more than bound the range of each
separate entry of the solution vector. Another approach is to simply check the constraints
for each new solution generated and discard those that violate any constraint.
Unfortunately, this approach denies the algorithm the ability to search near the constraint
borders (as is done in Linear Programming) since many solutions close to the border will
be rejected before they can propagate their desirable elements.

Penalty functions are the right choice for most real-world problems because few
constraints are truly absolute, and those that are can normally be incorporated into the
problem encoding. In the spacecraft design case, the budgets proposed initially normally
have a “safety” margin to allow for possible overruns in key subsystems. The margin is
considerable in the GP-B case because of the separate set of budgets for the experimental
payload, where more budget margin is necessary. The functions in (4.5) account for this
by providing a small but noticeable ($100,000 in the weight and power cases) penalty for
any exceedence of the applicable budget and then increase the penalty exponentially as the

constraint violation worsens. Once the violation begins to use up most of the slack in the
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budget, the penalty cost from (4.5) becomes severe (greater than $1 million), ensuring that

that alternative is not close to optimal.

4.2.5 Final Objective Function Evaluation
After taking these possible penalty costs into account, the final evaluations for the

Lockheed and Stanford value functions can be computed:

LMSC value = award fee + cost fee + on-orbit fee - penalty costs (4.6a)

Stanford value = on-orbit value + cost savings - penalty costs (4.6b)

Because these evaluations are based on simulation results, many trials must be conducted
to produce a result distribution that can be converted into an objective value. In the
LMSC case, for each new solution evaluation, 10 mission failure-time simulations are
conducted for each of 500 samples of the reliability parameter uncertainties as in Section
3.4.  As mentioned before, the Stanford case does not require mission simulations.
Instead, the value function (4.6b) is evaluated based on the histogram of mission reliability
per month generated by 1000 samples of reliability uncertainty. The result is a
considerable speed-up compared to the LMSC evaluation, and the lesser need for
simulation reduces the random noise in the values that remain after the simulations are
completed.

In order to reduce the sampling noise or uncertainty over time, initial evaluations
of design solutions are not “thrown away.” Instead, results for solutions which have been
evaluated are stored along with a count (Ngis) of how many separate evaluations have been
conducted. When a previously-evaluated solution is re-evaluated, the specified number of
simulations per evaluation are conducted, then a weighted value update is conducted as

follows:

N 4 (0ld evaluation) + (new evaluation)
N, +1

Updated evaluation = 4.7
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The updated value then becomes the old value, and Nyyq is increased by one. Since
simulated annealing (Section 4.3.1) propagates only one trial solution at a time, this is
straightforward. For a genetic algorithm (Section 4.3.2) in which many solutions are

maintained at once, a list of previous evaluations needs to be kept.

4.2.6 Value Models for the Risk-Averse Case

If LMSC or Stanford were deemed to be significantly risk-averse to the effect of a
publicized mission failure, a risk aversion factor [1-3,5] can be added to the risk-neutral
value models presented in this section. In the LMSC case, risk aversion could flow from a
fear of loss of future spacecraft contracts if GP-B had a publicized failure that was blamed
on the spacecraft bus. This would apply to the performance fee only, and it would be
offset to some degree by the other fees which are (for the most part) determined before
launch. Stanford is concerned with orbital performance only and thus has a clear-cut
motivation to be risk-averse, since a failure of GP-B would make it difficult to receive
funding for another spacecraft to try the experiment again. However, this preference
shows up in the MPF equation (4.3), which places more importance on the first few
months of data-taking so that at least some science information is gained.

Risk aversion can be modeled arbitrarily using the preference probability value
model of Appendix A, which requires no mathematical assumptions outside of the basic
definitions of probability. For large risk-averse companies users whose certain equivalent
business (see Section 1.2.2 and Appendix A) for relatively small activities is assumed to be
independent of their overall "wealth", the delta property can be applied [1-3]). A
convenient model for this case is the following utility function, which would be applied to

the performance fee [1-5]:

uwp) = ‘PP 4.8)

I-exp(-7)
where p is the performance fee percentage and ¥y is a risk aversion coefficient. For a
strictly risk-neutral decision-maker, y = 0, which gives u = 0 for any p. This function is

thus inappropriate (and unnecessary) for a risk-neutral decision maker, but in the limit case
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as Y —> 0, u(x) —> x, which makes it logically consistent. Risk-averse users have Y>>0,
and risk-seeking users (an unusual case in practice) have ¥ < 0. Under the delta property,
'y must be constant over the range of possible outcomes.

A modified risk coefficient r = exp(y) has another useful property for ¥ # 0. For
risk-averse users, r > 1, and r gives the favorable risk odds that such a user would have to
be given in a lottery between outcomes +X (good) and -X (bad) before being indifferent to
a certain equivalent of 0. In other words, while a risk-neutral person would be indifferent
between a sure outcome of 0 and a 50-50 chance of winning X versus losing X (within the
delta property bounds), a risk-averse person would insist on a better than 50-50 chance of
winning before accepting the risk. His required chance of winning would then become
r/(r+1), which always exceeds 0.5 in the risk-averse case.

It is thus possible to derive risk-averse value models from risk-neutral ones directly
if the delta property holds. In general, this modification may significantly increase the
value of adding reliability to the spacecraft bus, although this effect is not significant for
GP-B because of the dominance of payload reliability (the weakest link) on overall mission
success. Even very risk-averse spacecraft bus designers can do no better than the payload
reliability (which cannot be altered here), thus overall mission reliability improvement is
hard to come by no matter what its potential value would be. This should be kept in mind

when considering the significance of the optimal results in Section 4.4.

43  New Design Optimization Approaches

Given an arbitrary user objective function and an uncertain reliability model which
cannot be represented analytically, the problem representation in (4.1) no longer fits. This
research uses the flexibility of evolutionary optimization methods, mentioned in Chapter 1,
to overcome these obstacles. Evolutionary approaches do not require a well-behaved,
analytic problem definition or value model. Instead, they rely on simulations to generate
arbitrary function evaluations. Since objective function gradients are not required, we can

more easily adopt the more realistic reliability models of Chapter 3.
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Variants of two well-known evolutionary methods are developed here for a
general reliability design problem. The simulated annealing approach uses one trial
solution which "evolves” in the search process, while the genetic algorithm maintains a
population of solutions that evolve according to the concept of natural selection. The
means by which a new set of solutions “evolves” from the current one differ considerably

between the two methods.

4.3.1 Simulated Annealing (SA) Algorithm

4.3.1.1 Methodology: Simulated Annealing, first applied in this thesis in Section 24, is
designed to carry out a global search of the design space using an analogy to the
thermodynamic process of annealing, in which a solid is heated and then slowly cooled to
improve its material properties. This cooling process is represented by the temperature
parameter (T), which is initialized to a value comparable to or above the value of the initial
design solution, or initial “energy” (U,). The temperature is slowly decreased as more
iterations are conducted, representing the “cooling” of the search procedure and the
desired convergence to a single globally-optimal solution. SA is discussed in more detail
in [2-10,16,17,3-12].

Figure 4.1 shows a conceptual

perturb evaluate
Xy —> X, objective U,

flow chart of the Simulated Annealing
solution procedure. Beginning with a
baseline solution vector x, the

algorithm sets up outer and inner

loops. In the outer loop, temperature

REJECT:

ACCEPT:
X=x, —_—

X=X,

is lowered by a constant multiplier

(Cr = 0.90-0.95), and a convergence

check is conducted. The algorithm

will terminate and report its current

solution and (if different) the best

solution ever found if the variation in

the objective value, relative to the Figure4.1: Simulated Annealing Flow Chart
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current value, is below a pre-set threshold €. The inner loop generates 15 N, (where N, is
the number of elements in the solution vector) successive new solutions. In each, a new
design x. is created by a random perturbation of the current solution vector X,. This
process is problem-specific, but it basically involves sampling of a new solution element
from a distribution whose mean is the number in the current solution.

Once a new solution is generated, the objective function is evaluated for the new
solution to give U.. If U, is an improvement over the current value, the new solution is
automatically accepted (i.e., it becomes the new x,). Otherwise, a sample p is taken of a
Uniform(0,1) distribution, and the new solution is accepted (despite being an apparent
move in the wrong direction) if p < Py, where Py is a function of the current temperature

(T):
(maximize value U) P.. = exp (—u) 4.9)

Since P decreases as the temperature is lowered, the algorithm will become less likely to
accept solutions with “worse” objective evaluations as the number of outer-loop iterations
increases. This allows the algorithm to search more of the design space in the early
iterations, hopefully avoiding getting “trapped” in local optima. As the temperature
decreases over time, the algorithm will be less likely to take exploratory steps, focusing
more on changes that give immediate improvement. Convergence will generally occur by
the time that no better solutions can be found and when the temperature has decayed to a
number that is small compared to U*, the value of the best solution found to that point.
Table 4.1 contains a summary of the key parameter settings for the spacecraft bus

optimization problem. The initial

SA Parameter | Value Notes
temperature T, = $2 million is

Initialtemp. | 2x10° | V., =1 6
chosen to give an initial P x10 ma = 15X 10

probability of accepting a move Num. temp. 300 | #iter. forgiven T

that causes a decrease of $I Temp. mult. 0.90 |dec. after 300 iter.

million in mission value of 0.606 Table 4.1: SA Algorithm Parameters
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(= exp(-0.5)). This high initial probability of a "backward" step decreases markedly as the
search proceeds, as the temperature is reduced 10% after each set of 300 new solution
trials. These last two parameters of Table 4.1 are chosen based on the studies of SA
performance in [2-10,16].

The basic concept behind SA is very simple, and it can quickly be implemented by
engineers who have their own system-specific performance analysis codes. Since SA has
proven to be a robust means of finding global optima for benchmark problems (such as the
Traveling Salesman Problem (TSP) [3-12]) that have eluded more traditional approaches,
it has great potential to be rapidly applied to a wide range of design optimization
problems.

Various enhancements to the basic SA algorithm have been developed in recent
years. SA variants that maintain an “ensemble” of several independent solutions at the
same time allow wider searches and can provide a “population” convergence stopping
criterion (as the separate SA evolutions converge toward the same solution). It is also
possible to adjust the covariance S of the new solution perturbations by computing the
covariance S, of the last 15N, accepted new solutions and multiplying by a “growth
factor” C, > 1 to enlarge the search space commensurate with the direction and magnitude
of the previous solution vector moves [2-16]. Many other modifications exist [2-10,3-12]

and can be applied when the basic algorithm has trouble converging efficiently.

4.3.1.2 Problem Encoding and SA Perturbations: The SA algorithm used in this study has

a new and unique method of generating a new solution. Trial solutions are specified by a
collection of integer "genes" that give the number of units (how many) of each spacecraft
component type included in that design. In the spacecraft case, the solution (a vector of
integers) is broken down into functional subsystems (as shown in Table 4.3). Each time a
new solution is generated, at least one of the changeable subsystems (all but the first two
in Table 4.3) is randomly selected for modification. Those not selected retain the same
values as in the last solution.

A new method for generating random perturbations of existing SA solutions has

been developed in this thesis. It maintains the SA perturbation philosophy of making small
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changes in the current design more likely than large ones, and it makes design changes
within subsystem partitions rather than randomly altering numbers of unrelated
components. For each component in a subsystem to be changed, a pair of staircase
functions is computed based on the current number of units (nc) and the minimum and
maximum number allowed for that component (m and M respectively). The minimum
number is the number needed for mission success, and the maximum for a given case is the
lesser of two quantities: 2 nc or the absolute maximum number allowed. The probability

function for the number of units in the new solution is chosen to be:

P[new =nx\old =nc] 2.5/{2 (M—m)} for nx=nc

_1-25/{2(M-m)}
Y

i=l

nx forM2nx>nc

_1-25/{2(M-m)}
ncim i
= (4.10)

nx fornc>nx>m

Equation (4.10) creates a "stairstep” distribution that peaks when nx = nc. Retaining the
current number of units is thus quite probable. The more different a new number is, the
less likely it is to be selected. Note that there is an equal probability of the new number
being either higher or lower than nc. Because large changes are unlikely in a single trial;
new solutions "evolve” from the best ones found thus far.

Figure 4.2 shows the stairstep distribution created by (4.10) for the case nc = 2, m
= 1, and M = 4, which is common in the subsystem redundancy allocation carried out in
Section 4.4. Note that retaining the current solution component number is the most likely

result, and the probability of choosing a different number is evenly divided among nx < nc
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and nx > nc; thus the most likely change 045
is to reduce down to nx = 1, the 04r
minimum possible number. As nx gets 0:35:
farther away from nc, its probability %‘ o02st
decreases accordingly. ;,—? 02}
When the SA algorithm generates 0.15F
a new solution, it randomly applies the 00("15:
perturbation operator (4.10) to all ‘0
components in a given subsystem. For : Numbirof Com;onems 4

the GP-B spacecraft bus, seven separate  Figure 4.2: Solution Perturbation Distribution

subsystems have been defined:

1. structure (1 component - unchangeable)

2. thermal (1 component - unchangeable)

3. power (4 components - 1 unchangeable)
4, communications (5 components)

5. computer/processing (5 components)

6. guidance and control (6 components)

7. solar array deployables (5 components)

Unchangeable components refer to things that the SA optimization algorithm is not
allowed to change. This includes the design of the structural and thermal subsystems as
well as the size (number of cell strings) of the solar panels in the power subsystem. Solar
array reliability is a function of the number of strings provided, but adding strings
increases the solar array panel area, which affects the solar pressure disturbances on the
spacecraft in addition to increasing weight and volume. Thus, a change would require
much more complex, integrated performance analysis software which is not practical here,
although it is an important long-term goal. Similar issues exist for the helium thrusters (in
guidance and control), but the total number of thrusters is allowed to be changed by the

optimal search procedure.
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For the five subsystems that have changeable components, each time SA generates
a new solution from the current one, it samples a Uniform(0,1) random variable for each
subsystem. Subsystems whose uniform sample is below a threshold level P, = 0.30 (a
30% chance) will have their component numbers altered by sampling from the stairstep
distribution (4.10). The rest will not be altered at all for this particular perturbation. At
least one subsystem must be altered -- if none of the subsystem samples is less than P,, one
of the five changeable subsystems is selected randomly for alteration (each has probability
0.2 of being selected). This procedure helps prevent solutions from changing too abruptly
from one trial solution to the next, but it also insures a very high probability of at least
some change in one of the variable subsystems.

Note that the perturbation approach described here has a couple of key parameters
that can be adapted as part of the SA algorithm. First, of course, the subsystem probability
threshold P, can be varied to increase or decrease the average amount of variation from
one solution to the next. Second, the key constant in the stairstep distribution (4.10) is the
parameter N = 2.5 which is in the numerator of the probability calculation for nx = nc
(and is by consequence in the other cases as well) and controls the likelihood of retaining
the same number of components for a given solution entry. If this number is increased,
the amount of variation produced by the stairstep distribution decreases, and vice versa.
As mentioned in the last section, it might be desirable to adjust one or both of these
parameters to increase the search space (i.e., increase solution variability from step to
step) if the current solution covariance S, is too small, and the reverse is also true [2-16].
This has not been implemented in the spacecraft optimization procedure simply because

SA converges quite readily without adjustments to P, and N.,.

4.3.2 Genetic Algorithms (GA’s)

Genetic Algorithms get their name from their attempt to model optimization as a
“survival of the fittest” battle among a population of possible solutions to determine the
onc that best satisfies the objective function. Rather than trying one solution at a time, as
in Simulated Annealing, genetic algorithms maintain a population of Np solutions and

“evolve” them from one generation to the next using operators that are modeled on
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Natural Selection and the reproduction of biological organisms. These operators, while
not deterministic, tend to favor solutions which have higher objective function evaluations,
or fitnesses.

Selected higher-fitness solutions can directly reproduce into the next generation,
but most of the search effectiveness arises from the crossover and mutation operators.
The former is the more important; it mixes the solution-vector entries, or genes, of two
selected (for their fitness) “parent” solutions to create “children,” some of which will
hopefully combine the better attributes of both parents into a superior offspring. The
population will tend to converge toward similar-looking solutions that appear to give the
best fitness, but the mutation operator exists to prevent premature convergence to a local
optimum by randomly altering individual genes within the overall population with a small
probability. Populations that appear to reject all mutated variants of the dominant solution
can be said to have converged “close” to a global optimum -- there is no guarantee of
reaching such an optimum in finite time [2-5].

GA'’s can be said to search the objective function by hyperplane. A hyperplane is
simply the set of all possible solutions that share a given sub-solution encoding. An

example is:
#iH ] 1 O#HE1#)

where the #'s are “wild cards” that can be any allowed entry. Hyperplanes whose
common entries have a high fitness will slowly come to predominate in the population as
the GA searches for the right combination of wild-card entries to maximize the value of
the overall design. A formal explanation of this concept and its consequences is given in
the Schema Theorem [2-5,9).

In the canonical genetic algorithm (GA) format [2-5], chromosomes, or members
of a population of trial solutions, are expressed as binary numbers (0-1), and the standard
genetic evolution operators are designed for this type of population. Figure 4.3 shows
example cases of crossover and mutation operators for binary encodings. For this system

design application, however, the integer solution encoding used for the SA algorithm in
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Section 4.3.1.2 is much more natural. |

00110101 1110001, = :0011010!1[0110101

10111(!1:[01101@ aneqairt (1011100 1110001,

Thus, variants of the GA operators for

________

this genetic format have been developed aossover
and are discussed here. It should be
possible to improve them by
' 00110t 11001 = 0011g§111001
incorporating more problem-specific anehit mutation
information; this is left for future
Figure43: Canonical GA Operator Exanle

research.

As for Simulated Annealing, revious research on using Monte Carlo simulation to
evaluate the objective function (or fitness) of population members has provided insight
into the GA design parameters used here [2-1,6]. These are given in Table 4.2. The

revised operators are:

Reproduction: Roulette wheel selection, in which solutions are randomly chosen with a
probability that is proportional to their fitness, is used to choose solutions for the next
generation (before crossover). Since the spacecraft bus value function evaluations tend to
be similar, the fitnesses are linearly normalized from best to worst by multiplying the
difference between the best fitness and a given solution fitness by 10. The best solution is
always reproduced into the next generation (elitism), and the weighted-average equation
(4.7) is used when applicable to update (rather than replace) the fitness of the best solution
[2-2].

Crossover: Subject to the crossover rate in Table 4.2, after sets of parents are chosen by

the reproduction operator, two solutions

. “ v GA parameter | Value Notes
at a time are “mated” together to

produce one offspring. The two parents Population size | 25 | duplicat. poss.

simply average their unit numbers for Crossoverrate | 0.6 after reprod.

each component type within a randomly Mutation rate | 0.02 use (4.4)

selected (using the SA subsystem No. simulations | 500 | per func. eval.

Converge tol. | 0.01

selection procedure - see Section 4.3.1.2)

crossover window to give the number of Table 4.2: GA Parameters
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units in the offspring (randomly rounded up or down if the result includes a decimal: n.5).
The crossover rate determines the ratio of offspring to reproduced strings in the next

generation, as Nr (= 0.6 N) solutions are crossed over in N¢r separate combinations to

produce Ncr offspring.

Mutation: Each gene (number of units for a given component) is subject to random
mutation with the mutation rate probability given in Table 4.2. If a gene is mutated, the
current number of units is replaced according to the SA probability equation (4.10). This
function has a high probability of retaining the same number of units; so the mutation rate

is inflated somewhat to compensate.

Population Convergence: The convergence test is conducted after fitness evaluation but
before the next generation is reproduced. If the average fitness of the population differs
from that of the best solution in the population by less than the tolerance given in Table

4.2, the algorithm stops and outputs the final solution population as well as the best single

solution obtained thus far.

Genetic algorithms have several advantages over simulated annealing. Most
fundamentally, the search of hyperplanes via the Schema Theorem is potentially much
more particular than the simpler solution perturbation operators used in SA. In other
words, GA’s have a better chance of making fine distinctions within the problem encoding,
making it more probable that they will arrive at the optimal entries for each solution vector
element. Also, the evolution of a population of solutions in GA’s rather than a single one
provides more robustness to the optimal search (SA can also be modified to conduct
multiple solution propagations simultaneously). Examination of the final population at
convergence and comparison to the best solution found shows how much variation exists
within the final population and may display a genetic “line” of solutions quite different
than the dominant families but which nevertheless have competitive fitnesses. This gives
the human designer a basis to do his own search, combining various elements of the final

population that he or she thinks might complement each other.
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However, GA’s have a significant disadvantage for users who are not familiar with
their inner workings: they are simply much more complex than SA and require
incorporating many special subroutines into the software that computes system
performance and value. Many GA source codes can be purchased or obtained through the
Internet, but it is not usually possible to just use them as “black box” codes because they
are heavily dependent on the solution encoding (as demonstrated above). In marked
contrast, the basic SA concept is so simple that any engineer can write his own code of
less than 50 lines to execute it, and one can include the solution perturbation algorithm
that fits the problem at hand. In addition, SA codes which propagate a single solution are
good enough for most applications; thus a great deal of computer time is saved by not
having to evolve and evaluate a much larger set of trial solutions.

These decisive advantages of SA when used by design engineers of varying
specialties suggest that SA be the preferred optimal search strategy. GA's definitely have
their uses, however, especially when the design engineers have significant background in
and understanding of them. Generally, GA’s should be used only when they can be carried
out with populations if non-trivial size (5 at a minimum; preferably at least 10 solutions) in
a reasonable computing time and when at least one of the following two conditions

applies:

o search particularity and/or robustness are very important for a particular
application (in this case, GA helps by searching more of the design space and by
differentiating more between similar-looking solution encodings)

* abinary encoding naturally fits the solution space for a given problem (in this case,

black-box codes for a “canonical” GA should work with few modifications)

For the spacecraft bus optimization problem, SA search has demonstrated
sufficient particularity (ability to distinguish between values of similar solutions) and
robustness, especially since, for the majority of component types, the value models are not
very sensitive to small changes in redundancy. Attempts to run the GA search algorithm

have not been able to come close to convergence in the same time that the SA code does
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(i.e., within 18 hours). Faster convergence may be obtained by decreasing the mutation
rate, but in any case, the good results from SA preclude the need to use GA's for this
particular spacecraft bus application. The results in the following section thus come from
runs of the SA algorithm only. However, Section 8.4 introduces an augmented-GPS

network optimization problem where GA’s are the preferred solution strategy.

4.3.3 Optimization Process Flow Chart

Figure 4.4 is a flow chart which illustrates the overall simulation-based
optimization procedure. All of the elements of the process work together smoothly in a
compiled program that includes all of the relevant performance evalvation subroutines
shown as well as the code which executes the evolutionary optimal search. Note that the
final result is not the last word. Once convergence is obtained, the human designer must
compare the result to his expectations and determine if the optimal result was chosen
because user preferences were not fully modeled. Revisions to the value models and
penalty functions are thus natural outcomes of a single run, and the entire process

resembles the iterative design procedure that is familiar to systems engineers.

subsystem

o simulation i
reliability design
model constraints

~ yd

simulation-based
objective evaluation

iterate

| SA/GA generates >
new solution(s)

SA: acceptreject
GA: gvolve pop, Tlemmmm

converged?

Figure 4.4: Spacecraft Bus Optimization Flow Chart

102



44  Spacecraft Bus Optimization Results

4.4.1 Baseline Design and Problem Formulation

Figure 3.1 in Chapter 3 shows the component redundancy of the LMSC baseline
spacecraft bus design for which the reliability results in Figure 3.2 were computed. The
separate lines indicate which components fall into the subsystem classes listed in Section
4.3.1.2. It also shows, at a simplified level, the number of components of each type
needed for mission success (usually just one). This nimber serves as the minimum number
(m) for that component type in the encoding scheme. The absolute maximum number (M)
allowed in the encoding varies, and it is a somewhat arbitrary constraint in most cases.
Generally, components with 2-for-1 redundancy in the baseline design have M = 4, and
components with k-out-of-n redundancy where k > 1 and/or n > 2 have M = 8. For the
helium thrusters, M = 24, which is probably higher than necessary.

The encoding used here allows for single-point failure modes since the minimum
number of components allowed (m) is always equal to the minimum number needed to
work. This is by design; one of the spacecraft design principles being tested here is the
one which forbids non-redundant designs as too risky. However, if non-redundancy really
were deemed to be unacceptable (regardless of the added weight or expense) by the
decision-makers, m could simply be increased by one for each component class.

Using the reliability results from Section 3.4 along with the non-spacecraft-bus
failure models of Section 4.2.2, the baseline design has an LMSC value of $13.12 million
and a Stanford value of $13.48 million. These are already between 87.5% and 90% of the

maximum possible value of a completely successful mission ($15 million); thus the
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Component Min. Component
Structure 1 telem proc.
Thermal 1 remote proc.
SA string 92 flight comp.
power reg. 1 2 solid-st. rec.
NiCd battery 1 2 P/Y gyro as.
pwr. control 1 @ star tracker
omni antenna | 1 4 | i R/Y gyroas.
circ. switch 1 2 thrusters
RF switch 1 2 ATCelect. 1
trans. switch 1 2 mass trim 1
transponder 1 2 SA release 4 4 (ir)
cmd. proc. 1 2 SA separ. 1 1(ir)
(nc) cannot be changed (ir) internally redundant
redundancy removed Q redundancy added
Table 4.3a: LMSC Optimal Design Results
Component Min. | baseln. | optim. Component Min,
Structure 1 1 (nc) 1 telem. proc. 1 @
Thermal 1 1 (nc) 1 remote proc. 1 £3 )
SA string 92 | 96(nc) 96 flight comp. 1 2
power reg. 1 2 A1 solid-st. rec. 1 1
NiCd battery 1 2 A P/Y gyro as. 1 1
pwr. control 1 1 (Gr) 1 star tracker 1 2
omni antenna 1 4 -1 R/Y gyro as. 1 2
circ. switch 1 2 i 5 thrusters 16 Q
RF switch 1 2 ATCelect. 1 2 1
trans. switch 1 2 & mass trim 1 2 2
transponder 1 2 2 SA release 4 4 (ir) 4
cmd. proc. 1 2 E SA separ. 1 1 (ir) 1
(nc) cannot be changed (ir) internally redundant
redundancy removed o redundancy added

Table 4.3b: Stanford Optimal Design Results




potential improvement from an optimized design will not be dramatic. Optimal design runs
using both the LMSC and Stanford objective functions and the SA algorithm have been
conducted. Attempts have also been made to determine which input parameter changes

show the most sensitivity in the optimal results.

4.4.2 Design Optimization Results

Using the SA algorithm of Section 4.3.1, the best spacecraft designs obtained after
convergence are given in Tables 4.3a and 4.3b, which contains the minimum numbers of
working components, the LMSC baseline design, and the optimal component numbers for
the LMSC and Stanford value functions, respectively. The algorithm was always
initialized with the baseline solution, so it is to be expected that the objective value would
drop as the SA algorithm explores a range of options. Figure 4.5 below has mean result
values that show 5.2% improvement over the baseline design for the LMSC case and
3.5% improvement for the Stanford case. Running on a Sparc-10 workstation,
convergence was generally obtained within 18 hours, but as noted above, the tolerance
could have been increased (stopping the runs earlier) with little change in the results.

Note in Table 4.3 that the optimal designs show some consistent patterns when
compared to the baseline solution. While the baseline has the same redundancy for all
components, the SA-generated solutions remove redundancy from less-risky or cost-
effective components and add redundancy to components that have high failure rates
and/or failure rate uncertainties. This is not surprising, and it points out the potential sub-
optimality of the traditional method of allocating redundancy, which applies redundancy
everywhere because conventional spacecraft risk predictions cannot be trusted to isolate
components that have the most impact on overall mission risk (see Section 3.3).

From these results, we see that in both the LMSC and Stanford cases, the optimal
result for the NiCd battery is a single non-redundant unit. This not only violates the
single-point failure guideline, it removes redundancy from a component that has a
relatively high mean failure rate. While it is surprising at first glance, the reason becomes
evident when one realizes that a certain amount of weight, power, and volume must be

freed up to allow added redundancy for riskier subsystems. Removing one battery frees
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up enough room for additional units elsewhere. A non-redundant battery does pose a
non-trivial failure risk, but its mean failure rate uncertainty is relatively low since
considerable orbital experience exists for it. Since the length of the primary mission is
short, the high mean risk and the normal battery wear-out problems may come into play
less, allowing the algorithm to take an educated risk in removing one battery to make way
for additions in the “electronic box” subsystems (communications, processing, guidance
and control), where components typically have higher failure rate uncertainties. Higher-
uncertainty components pose special risks because they may have a non-trivial chance of
having such a poor reliability (90% or less) that the design of the rest of the spacecraft
becomes almost irrelevant. The degree to which these arguments are relevant for GP-B is
studied in Section 4.4.6, where a variant SA evolution is run for the two-battery case.

It is also notable that separate optimization runs often give widely different optimal
results for several component types, even when the same value model is applied. This
pattern, evident for many of the switches and antennas (and the thrusters for reasons of
limited cause-and-effect modeling), normally suggests that the objective value is not very
sensitive 1o changes in these design elements. In these cases, spacecraft reliability is not
much affected, and the system budgets are not significantly altered by the inclusion or
removal of a single unit in one of these classes. Components which demonstrate this lack
of sensitivity can thus easily be set to the “intuitive” redundancy level (2-for-1, 5-for-3,
etc.) without controversy. Attention will then be directed where it belongs: to more
detailed studies of the components, such as the NiCd battery, that give both consistent and

surprising results.

4.4.3 Optimal Design Value Evolutions

Figures 4.5a and 4.5b show the evolution of the LMSC and Stanford objective
values, respectively, for the two runs which gave the results shown in Table 4.3. The
dashed line represents the initial evaluation of the LMSC baseline design for each value
model. Each evaluation point represents the value of the current SA solution at the end of
each constant-temperature iteration. The last points on these plots represent the latest

evaluations of the best solutions found. Convergence in Figure 4.5a appears rapid, but the
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Figure 4.5a: LMSC Optimal Value Evolution Figwe4.5h: Stanford Optimal Value Evolution

time scale is misleading, since the termination tolerance in the LMSC case is deliberately
made tight in order to run more system simulations and to study the steady-state variance
of the optimal design values.

One thing that is notable in Figure 4.5a is the decrease in the value of the SA
solution during the first five iterations. With an initial “temperature” of $2 million, the SA
search was initially very tolerant of moves in the wrong direction, but this tendency was
suppressed as the temperature was lowered, and the wide search of the design space was
able to focus in an area that clearly achieved higher values than the starting solution. In
the Stanford case, the starting temperature was set to be $1.5 million because the value
model had less randomness (since no award or cost fees were included). This prevented
the SA search from accepting as many downward moves and thereby limited the search
space explored. However, convergence to an improved solution was obtained more
rapidly.

Figure 4.6 shows the evolution of penalty function cost for these two LMSC and
Stanford runs. The use of penalty functions works well here, as no "invalid” solutions
were accepted after the first 10 iterations in either case. This is evident because the
penalty cost, after bouncing around a bit as different non-feasible solutions are tried early

in the search process (when the SA temperature is high) falls to zero and stays there for
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the duration of the search. If optimal

solutions with non-zero penalty costs @15 IMSC: T, =$20 Mil
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coefficients should be made more §
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functions are grounded in a valid E v
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that solutions once thought to be Temp. lteration

infeasible actually give better bottom- Figure 4.6: Penalty Costs for SA Runs

line results. The flexibility provided by

“soft” constraint modeling thus has the important advantage of allowing one to check
whether the pre-set constraints actually make sense at the system level, rather than
enforcing “hard” constraints that are assumed to be inviolate and etched in stone. For
example, if the final converged solution included a non-zero penalty cost, that would
suggest that the constraint which it modeled may not be as critical as originally thought,
since overall mission value was maximized when that constraint was slightly violated. If
that constraint really were critical, its penalty function would have to be changed to make

small violations .of it more expensive.

4.4.4 Optimal Spacecraft and Mission Reliability

Using the Stanford value model, Figures 4.7a and 4.7b show the resulting
probability densities of system reliability at t = 1 year (the end of the GP-B primary
mission) for the spacecraft bus alone and for the overall mission, respectively. Table 4.4
compares the mean reliability of the optimal solution with the LMSC baseline in both
spacecraft and mission categories. The baseline and optimal density curves in Figure 4.7
look very similar. Table 4.4 shows that a small improvement in mean reliability was
obtained for the spacecraft bus, which translated into a slightly larger improvement in

mean mission reliability. Improvements of a similar scale are also obtained at the worst-
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Figure 4.7a: Spacecraft Bus Reliability Density Figure 47b: GP-B Mission Reliability Density

case end of the reliability spectrum, meaning that the likelihood that system reliability will
turn out to be much worse than the mean prediction has decreased a little.

The reason that more improvement is not forthcoming is simply that limited
leverage exists to improve the overall mission reliability by tinkering with the spacecraft
bus. After all, spacecraft bus reliability is much higher than that for the launch vehicle and
experimental payload, and no control is exercised over these more significant risk sources.
Even if enough spacecraft redundancy were added to bring the spacecraft mean reliability
to 0.99, the mean overall mission reliability would only improve to about 0.855, which will
not provide enough value-model benefit to compensate for the added cost. Furthermore,
the constraint penalty functions prevent the optimal search from adding significant

redundancy without taking it away somewhere else. In effect, the evolutionary search

Spacecraft Bus Overall Mission
Baseline Design Mean Reliability 0.957 0.827
Optimal Solution Mean Reliability 0.960 0.834
Mean Reliability Improvement 031 % 0.85 %
Unit Cost Decrease $ 3.1 Million
Cost Savings 9 %

Table 4.4: Reliability and Cost Improvement for Optimal Design
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process has to “learn” that efforts to gain value by improving reliability (i.e., trial solutions
which add overall redundancy) are non-optimal for this particular application.

At the same time, however, the search process learns how to achieve much greater
improvement over the baseline solution by reducing overall redundancy (and component
costs) while maintaining the baseline level of reliability. This is illustrated by the unit cost
savings of $3.1 million (or 9% of the total component cost) over the LMSC baseline
solution as indicated in Table 4.4. Obtaining this level of cost reduction while still gaining
a marginal system reliability improvement is a significant achievement, and it is obtained
by removing restrictions on single-point failure modes and uniform redundancy patterns
(e.g., in which every component class has 2-for-1 redundancy). Note that the Stanford
value function summarized in (4.6b) includes credit for 10% of this cost savings, or about
$310,000, which accounts for two-thirds of the total improvement over the baseline
design. The LMSC value function gives greater credit for unit cost savings as part of the
“cost fee” (see Section 4.2.3.1), which explains why greater percentage improvement in
bottom-line value (5.2% vs. 3.5%) is obtained for the LMSC case in Figure 4.5.

As noted in Section 4.4.2, for certain components, certain elements of the optimal
redundancy vector can change significantly from one run of the SA algorithm to the next.
It was suggested there that component types which display this trend are amenable to
human designers who could adjust the results using their own qualitative design
knowledge. Interestingly, attempts to do this for the spacecraft bus application have not
yet been able to achieve a higher objective value (for either LMSC or Stanford) that is
statistically significant. This supports the earlier hypothesis that the objective function in
this case is insensitive to components whose optimal unit numbers vary noticeably
between optimization runs. It also suggests that the SA optimal search is able to converge
to specific component numbers in almost all cases where the objective function would be

significantly affected.
4.4.5 Objective Function Evaluation Uncertainty

One other facet that must be addressed is convergence uncertainty resulting from

two related sources: (1) randomness in the Monte Carlo performance evaluation, and (2)
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variation in the optimal solution from one SA iteration to the next. Using the Central
Limit Theorem (CLT), the simulated function evaluations can be considered to be
approximately Normally distributed as the number of simulation trials becomes sufficiently
large [3-9]. The effective number of trials in the SA search increases over time since
previous evaluations of a given solution are factored in using the update equation (4.7).
From Figures 4.5a and 4.5b, we see that convergence around a limited range of result
values is obtained after about 30 iterations. These figures contain a box which lists the
mean optimal values (1) and standard deviations (6) of these values for both cases. The
figures make it clear that much less variability exists in the Stanford case. As noted in
Section 4.2.5, this is due to the fact that one level of simulation (sampling of failure times
for trial missions) is not necessary to evaluate the Stanford objective function. The larger
one-sigma variation of $143,000 in the LMSC case is non-trivial. While it could be
reduced by more simulation trials for each function evaluation, it does not seem to be
necessary for the SA search, since convergence around the mean result is not lost after it is
acquired, and the best solution stops changing as the SA temperature approaches zero.

As long as objective function variability does not prevent convergence to the
“right” solution, no changes to the search procedure are needed. Instead, it is much easier
to take the final converged solution and simulate it with many more trials off-line. In the
spacecraft bus case, an off-line performance simulation of the LMSC-case optimal result
could be conducted with 500 million trials (instead of the 5000 used for each evaluation in
the SA routine) in a couple of hours or less.

For problems where a more sophisticated response to simulation uncertainty is
called for, various approaches exist. A simple one is to monitor the variance statistic in
Figure 4.5 in "real time" and to only stop the Monte Carlo evaluations when sufficient
certainty is attained. This idea is developed for GA's in [2-1]. The measure of statistical
certainty can be based on a measure of risk aversion to the variability of the award result,
but this will not normally be necessary. Note that in the SA case, the algorithm may
continue after solution changes are practically impossible -- the code will simply keep

adding simulation trials of the best solution found until the noise reaches an acceptable
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level. Another important tool is the intelligent use of variance-reduction techniques in the

design of the Monte Carlo simulations [3-9].

4.4.6 Variant Solution with Two Batteries

Recall that in Section 4.4.2, the fact that both the LMSC and Stanford objective
functions resulted in a non-redundant spacecraft battery (only one was supplied) was
discussed. The SA method detailed in Section 4.3.1 makes it easy to do a sensitivity study
of the battery redundancy issue. A separate design evolution is run in which the minimum
number of possible components m (see Section 4.3.1.2) is reset from one to two for the
battery only. In other words, although only one battery is needed to work, the designer
can deliberately choose to limit the range of possible solutions so that at least one
redundant battery is provided.

An SA evolution for this variant case has been done for the Stanford value
function., and the resulting optimal solution is shown in Table 4.5. Not surprisingly, since
the global optimum for the base case in Section 4.4.2 has only one battery, the optimal

result for this more-constrained problem gives two (2) batteries -- the constraint m = 2 is

Component Min. | baseln. | optim. Component Min. | baseln. | optim.
Structure 1 1 (nc) 1 telem. proc. 2 2 Q
Thermal 1 1 (nc) 1 remote proc. 2 2 2
SA string 92 96(nc) 96 flight comp. 2 2 i |

power reg. 2 2 1 solid-st. rec. 2 2 @

NiCd battery 2 2 2 P/Y gyro as. 2 2 1

pwr. control 1 1 (ir) 1 star tracker 2 2 2

omni antenna 2 4 2 R/Y gyro as. 2 2 1

circ. switch 2 2 1 thrusters 7|18 | @]
RF switch 2 2 ATC elect. 2 2 2
trans. switch 2 2 mnass trim 2 2 2
transponder 2 2 SA release 4 4 (ir) 4
cmd. proc. 2 2 SA separ. 1 1 (ir) |
(nc) cannot be changed (ir) internally redundant
redundancy removed o redundancy added

Table 4.5: Stanford Optimal Result with Redundant Battery
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active here. In adding a battery to the optimal solution shown in Table 4.3b, the optimal
search decides to reduce the level of redundancy by one for the RF switch, remote
processor, flight computer, and roll/yaw gyro assembly (the latter two become non-
redundant as a result). Conversely, one level of redundancy is added to the ATC
electronics (which were non-redundant in Table 4.3b), and numbers of components in a
few other non-critical classes (such as antennas, and thrusters) go up or down a little as
well. This variant solution does not incur any constraint cost (see Section 4.2.4), but it
does add 54.5 kg of mass (a 7.4% increase), 12 W of power (a 6.9% increase), and adds
8.3% in unit volume. Thus, it has stayed within the constraint boundaries, but it has still
eaten up significant design margin in each of the spacecraft budget categories.

In terms of unit cost, the variant solution has added $2.8 million, which is an 8.6%
increase over the solution in Table 4.3b. This represents a significant increase because it
removes almost all of the $3.1 million in savings that the original optimal solution achieved
from the LMSC baseline design (see Table 4.4). This increase does result in a slight but
noticeable mean reliability improvement. Compared to the results in Table 4.4, mean
spacecraft reliability improves 0.83% to 0.968 and mean overall mission reliability
improves 0.73% to 0.840. More interesting is the somewhat-unexpected reduction of
spacecraft bus reliability uncertainty for this two-battery design. Compared to Figure
4.7a, where the R = 0.90 crossover is at a likelihood of 107, the variant solution has the
same crossover at 2 x 10,

It is thus clear that the addition of the second battery improves spacecraft bus
reliability, but the question posed by the Stanford user value function of Section 4.2.3.2 is
whether this improvement is worth the $2.8 million additional unit cost it requires. Recall
that even for the LMSC baseline design, spacecraft bus mean reliability and uncertainty are
lower than for the other two mission elements, the launch vehicle and the experimental
payload. If one looks at the mission reliability uncertainty for the two-battery solution, it
turns out that the spacecraft bus improvement is almost “washed out” by these two non-
controllable categories. The (pessimistic) R = 0.60 crossover in Table 4.7b gives a
likelihood of 4 x 107, which is Just as good as the same crossover point for the two-

battery variant. Therefore, the additional investment in the spacecraft bus does not
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translate into significant reliability advantage for the overall GP-B mission. This is borne
out by the overall Stanford value of $13.79 million for the two-battery design, which is
$150,000 (or 1.1%) below the optimal result for the non-redundant battery design as
shown in Figure 4.5b.

This process illustrates the relative ease by which a decision maker can tailor an
evolutionary search to his or her own qualitative limits and “comfort zone.” If he or she
really would not feel comfortable with a non-redundant battery, this implies that a certain
degree of user preference is not modeled in the value function used for the search.
Updating the value model to incorporate this is possible, but as shown here, it is not
difficult to simply preclude a non-redundant battery in the design encoding. The result
shown here indicates that this user-defined restriction costs him or her about $150,000 in
terms of the original value function (when compared to the optimal result without this
restriction). The decision maker, given this tradeoff, can then make up his or her own

mind as to whether a qualitative preference for two batteries is justified.

4.5  Spacecraft Design: Conclusions and Significance

The results shown here seem to justify the use of global optimization for this
spacecraft design problem. Using simulated annealing, improvement can be obtained
relative to the LMSC baseline design even though the objective functions are only partially
sensitive to changes in component redundancy. Convergence of the global search did not
take very long considering the complexity of the reliability analysis and the variance of the
Monte Carlo simulations. The smooth pattern of convergence demonstrates that
evolutionary global search using simulated annealing is a useful way of conducting
reliability optimization based on the new reliability models developed in Chapter 3.

The usefulness of this type of design optimization algorithm is threefold. First, it
allows search of the design space to globally optimize an arbitrary value function based on
an arbitrary system performance model. Second, it demonstrates the flexibility of
evolutionary global optimization using simulation evaluations, since it accommodates

domain-specific modifications to canonical SA and GA that improve search efficiency.
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Lastly, it is a design tool that allows the user to complement the computerized search by
making manual variations to the optimal result in an attempt to gain further improvement
and to explore the sensitivity of the solution to the value function and search parameters.

One of the results of the optimizations carried out here is controversial: the
discovery that the policy of avoiding all single-point failure modes is not optimal for
several of the GP-B component classes. This is not really surprising, since the prohibition
against designs with single-point failures is meant to bound the amount of uncertainty
faced by designers and users rather than to always represent the best course of action.
Since predictions of the traditional spacecraft reliability models are taken with a grain of
salt, other design principles have been introduced to shield spacecraft customers from
some of the resulting performance risk. The key benefit of the reliability models of
Chapter 3 is that by providing better estimates of the underlying uncertainty, some of the
“safety net” that now exists in spacecraft engineering can be removed, allowing direct
cost/benefit optimization to be carried out. The optimization approaches in this chapter
take advantage of this because they can handle any models of user preferences and risk
aversion. In other words, simulation-based optimal search can determine which users
should invest more to reduce and limit spacecraft performance uncertainty and which ones
are better off taking more “educated risks”.

In addition to incremental improvements in value models and evolutionary search
operators, further development of this probabilistic optimization capability for spacecraft
should come from two different areas of research. While this thesis focuses on improved
reliability modeling of spacecraft orbital performance, that is only one element of the total
uncertainty picture facing a spacecraft development program. Design of the spacecraft
itself is but a small part of such a program; the rest lies in managing the pace of technology
development, prototype manufacture, testing of both prototypes and finished flight
hardware and software, and cost/effective manufacturing and delivery of the product to
the launch site. Much more improvement in cost-effectiveness would be possible if
engineers had a consolidated model of overall program risk when working on the initial
feasibility analyses and contract proposals. Not only would this allow one to optimize the

key programmatic decisions early on, it would also provide a complete “uncertainty map”



for the project which can be updated as new information (test results, for example) is
obtained, allowing for optimal decision-making every step of the way. The program-
development decision tree shown in Figure 1.4 of Chapter 1 serves as a model for making
all program decisions within the resulting risk-assessment framework.

At the same time, our current focus on the spacecraft design itself can be extended
by integrating the redundancy optimization carried out here with more detailed prediction
software that simulates the dynamics of each spacecraft subsystem. To illustrate by
example, decisions on optimal redundancy of the guidance-and-control subsystem
components could be conducted hand-in-hand with optimization of the controller and
estimator feedback gains if the spacecraft performance simulations had an integrated
simulator for the resulting controller time histories. In addition to providing a tool for
simultaneous optimization of all of the major design variables, more-detailed performance
simulations would remove the need to approximate the consequences of component
failures on overall performance. The model used here assumes that the minimum-working
requirements of Figure 3.1 are absolute, but in reality, functioning at a degraded level may
still be possible after “mission failures” occur in a particular component class. The
concept of a small spacecraft-design company centered around software and hardware
with this unified-simulation capability will be introduced in Chapter 8. It is certainly
possible to develop end-to-end software simulations -- the hardest challenge comes from
choosing the level of abstraction that provides maximum fidelity while allowing the
optimization process flow pictured in Figure 4.4 to converge in a “reasonable” amount of

time.
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Chapter 5: GPS System Integrity Monitoring

Warning systems can be a powerful way to reduce risks. They may also create risks
themselves. The best warning systems are not necessarily the most sensitive ones. The
sensitivity that gives optimum benefits (i.e., maximum risk reduction) depends on the
expected response to signals, the reliability of the warning system, and the values that
are involved in the trade-off between the consequences of Type I (missed alert) and

Type Il (false alert) errors.
- Prof. M.E. Pate-Cornell, “Warning Systems in Risk Management”, pp. 233-34.

5.1 Global Positioning System (GPS) Performance Simulation

The Global Positioning System (GPS) was introduced in Section 1.6. In order to
evaluate the effects of model uncertainty on GPS navigation performance for various
classes of users, a simulation of GPS geometries, ranging errors, and the resulting user
position errors is needed. The basic elements of GPS satellite simulation are an almanac
that describes the nominal ephemerides of all GPS satellites (and other satellites that
provide ranging signals, if any), the location of users receiving GPS broadcasts, ranging
error models, and code to solve the overdetermined least-squares problem to obtain
solutions for 3-D position and user time bias as well as errors in these quantities. This
section describes in detail how this is done. This basic simulation format is used in all of

the GPS performance studies reported in the next four chapters of this thesis.

5.1.1 GPS Satellite Constellation Almanac

As explained in Section 1.6, the 25 currently-operating GPS satellites are arranged
into six orbital planes. Figure 5.1 is a plot of orbital phase vs. right ascension shows the
partitioning of 24 “primary” satellite locations into these six planes (additional satellites
can serve as active spares). Since this the constellation of orbits repeats itself every
(sidereal) day from the perspective of a user fixed on Earth, the simulation of GPS satellite
orbits can be structured to sample from a single day of local user time while spanning the
complete set of possible geometries. However, once satellite failures are introduced,

sampling over many days may be needed for adequate statistical significance.
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Figure 5.1: NAVSTAR Constellation Orbit Geometry

Satellite orbital simulation is used in all of the GPS performance analyses
conducted in this research. For this purpose, a model of nominal circular orbits with the
parameter set of Figure 5.1 is constructed, and a matrix D(f) of nominal satellite positions

in xyz Earth-centered (but non-rotating) coordinates can then be computed as a function

of GPS system time #:

M) = cos(w, t+M)

Di() = R, [cos(M')cos(®’)~sin(M’)cos(1)sin(® )

Di(r) = R,[cos(M)sin(e) )+ sin(M")cos(1)cos(€)] G-D
Di(r) = R,[sin(M)sin(1)]

where i is the spacecraft number (1 < i < 24), ©' is the right ascension of the ascending
node for spacecraft i (depending on which of the six orbital planes it is in), I is the orbital
inclination, Rs is the radius of the orbit, and M, is the orbital mean anomaly for each
satellite at 1 = O (discussed below). Note that all angles are assumed to be expressed in
radians. User positions are also computed as u(f) in which the Earth’s rotation rate

(rad/sec) is included (note that a spherical Earth is assumed here):
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u (t) = Rgcos(Upar)cos(Uy oy + GRA +Qt)
u,(t) = Rgcos(Upsr)sin(Upoy + GRA +Qt) (5.2)
(1) = Rgsin(Upsr)

where Upar and Uyon are the user latitude and longitude (in radians), , Rg is the Earth’s
radius, and GRA is the right ascension of Greenwich, England (at 0° Longitude) on a given
date. User line-of-sight vectors to each of the satellites are then computed as explained in
Section 5.1.2.

All of the simulations in this research use the Volpe almanac data provided by
Karen Van Dyke to serve as a consistent baseline. It provides the mean anomalies for the
24 GPS satellites and the right ascensions of the six orbital planes as of July 1, 1993 (these
are slightly different from those shown in Figure 5.1). Of course, these may change over
time as the OCS moves spacecraft around to fill “gaps” that may develop in the
constellation. Simulations can be run for the latest configuration by simply applying the
almanac message from a recent GPS receiver observation, or a recent almanac may be
downloaded from the U.S. Coast Guard Navigation page on the Internet
(http://www.navcen.uscg.mil/gps/gps.htm). However, simulations with other almanacs
have not produced results noticeably different from those produced by the Volpe data.

Satellite geometry simulations propagate the orbits forward in time by updating the
GPS system time ¢ by a random amount. Depending on the application, the update
parameters will vary, but the basic concept is to update GPS time by sampling from a
Uniform(a,b) distribution, where a and b are the minimum and maximum update times.
The default update parameters are a = 0 minutes, b = 30 minutes, which gives a mean
update time of 15 minutes. In some cases, a more limited range of [5 min., 20 min.] is
preferred, and in simulations that examine navigation service outage durations, a short,
deterministic update time of 1 minute is used. All updates are cumulative; the system time
simply propagates forward from a randomly-sampled starting time. Using constant 1-min.
updates, the nominal constellation configuration repeats every 1436 trials (1 sidereal day).

The random-update method is designed to avoid this repetition even though the total time
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“elapsed” may span many days or weeks. Simulations of satellite service failures also
provide an element of non-repeatability (see Section 5.3.2).

As discussed in Chapter 8, many civilian augmentations to the current GPS system
are being considered. The provision of GPS-like ranging capability is planned for
inclusion on Inmarsat geosynchronous (GEO) satellites which will also broadcast the Wide
Area Augmentation System (WAAS) correction message (see Chapters 6-7). Current
plans call for the lease of a transponder for this purpose on four Inmarsat GEO satellites
stationed over the Equator at AOR-W (54° W Longitude), AOR-E (15.5° W), IOR (63.5°
E), and POR (178° E). GEO satellites are easy to include in the satellite orbit simulation:

they have I = 0, satellite radius Rsy = 5.6 Rg, thus:

Di%(r) = 6.6R; [cos(SVixr)cos(SVioy + GRA+ Q1) |

D) = 6.6R; [cos(SWixr )sin(SV,ioy +GRA+ Q) | (5.3)

D)

66R; [sin(SWxr)] = 0

where SViar' is always zero. Note that their Earth-centered xyz-coordinate positions

change with time due to satellite orbital motion.

5.1.2  User Locations and Position Calculations

A user with a GPS receiver can determine his location anywhere on Earth if he can
receive the broadcasts of at least four GPS satellites and the resulting geometry matrix
from (5.7) is non-singular (if only four are visible). Now that the system has reached
FOC, this is the case well over 99% of the time, at least in CONUS [6-3]. The C/A signal
used by SPS is broadcast by each satellite on the L1 frequency (1.575 GHz). It contains
an almanac which gives satellite location and health information as well as ephemeris and
ionospheric correction data. The heart of the signal is the satellite time at which each
signal is broadcast. The receiver *“delay-locks” to the C/A code and can determine, by
matching its own C/A code with that received from a known GPS satellite, the receiver

can determine a “pseudorange” to that satellite. This range contains an unknown time bias
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(the receiver clock is not perfectly synchronized with GPS master time) which affects all
pseudorange measurements equally and becomes the fourth location parameter to be
solved for (in addition user position in three dimensions). By knowing ranges to four
known (from the ephemeris message) locations in space, one’s position (and time bias) can
be uniquely determined.

In simulations which evaluate user navigation performance, the actual location of
the user depends on the application. The location of Stanford University (37.43° N,
122.17° W, 6.94 meters elevation) is the default when only one location is evaluated, as in
the work done in this chapter. Stanford has considerably better-than-average GPS satellite
visibility, though. Analyses described in the following chapters either use a set list of
locations or randomly sample within a defined geographic area.

For a given user location, the satellite visibility for any given constellation
geometry sampled using the method of Section 5.1.1 is determined by converting all of the
satellite location vectors D' into an East-North-Up coordinate frame fixed at the user’s
location (and rotating with the Earth). This is done by multiplying by the transition matrix
T defined by:

Dénu = T(D;yz_uxyz) (5.4)
-sin(A) cos(A) 0
where T = |-cos(A)sin(¢) -sin(A)sin(¢) cos() (5.5)
cos(A)cos(9)  sin(A)cos(9) sin(p)
and A = Upy+GRA+Qt ¢ = Uz

Once the spacecraft position vectors are expressed in a frame relative to the user,
we can determine whether or not that user can see each of the active satellites by
computing the user’s elevation angle € to each one from the “z"-component (up) of the

unit vector to each satellite:

e = arcsin(Df, 1) (5.6)
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Satellites whose elevation angle is greater than the visibility “mask angle” E of the user’s
receiver antenna are then deemed to be visible. For this research, the user’s mask angle is
assumed to be 7.5°, and the mask angle of any DGPS reference station (see Chapters 6-7)
is taken to be 5°. Depending on the number of channel’s in the user’s receiver, he may or
may not be able to use all of the visible satellites in his position solution. The default
assumption here is “all in view”: the user includes all visible (and healthy) satellites. If that
is not possible, the user receiver must apply satellite selection algorithms to decide which
satellites to use. This determination is usually made by finding the set of satellites that
gives the best “geometry” in terms of user position-fix accuracy. This concept is
explained further below.

Given the matrix D, of all satellite position vectors with respect to the user, an n
X 4 user geometry matrix G is constructed, where n is the number of usable satellites in

view:

-D; -D, -D, 1
_P2 _P?2 _72
G < D; ?.. ?u 1 (5.7)

-D! -D! -D" 1

The barred elements of D are unit vectors, i.e., the three elements of each applicable row
Of Den, are normalized by the magnitude of the resulting 3-element vector. The basic

measurement equation for user pseudorange then becomes:

Z = Gx+v (5.8)

where z is the vector of pseudorange measurements for n satellites in view, x is the 4 x |
navigation state vector in three position coordinates and the clock bias (in most

simulations, the true location is [0, 0, 0]), and v is a random vector of measurement errors
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(noise). For n 2 4, the best user position fix vector (relative to truth in this case) is given

by:

% = Gz = (67G)"'G"z (5.9

where G is the pseudoinverse of G for the overdetermined (n > 4) case. The key
mapping between pseudorange error statistics and those for user position error (assuming
ranging errors are i.i.d. and Normally-distributed) is given by the Dilution of Precision

(DOP), which is a function of the geometry matrix only:
-1
Goor = (G'G) (5.10)
The diagonal terms of the 4 x 4 matrix Gpop give the DOP parameters for horizontal

(HDOP), vertical (VDOP), position (PDQOP), and overall geometry (GDOP) as follows [6-
13]:

HDOP = \[Gpop[ 1]+ Gpopl2,2] (5.11a)

VDOP = \[Gpopl3.3] (5.11b)

PDOP = [Gpop[L1]+ Gpopl2.21+ Gpopl33] (5.11c)
GDOP = \[Gpop[L1]+Gpopl2.21+ G popl3.3] + G popld,4] (5.11d)

Under the i.i.d. Gaussian assumptions mentioned above, these DOP parameters
simply multiply the expected one-sigma pseudorange error G (assumed to be the same for
all satellites) to give the expected one sigma position error 6p for the relevant axis (ie.,
VDOP ok = 5 in the vertical direction). These DOP parameters primarily measure the
effect of the current satellite geometry on user positioning accuracy. VDOP tends to be
the worst one, since most satellites are looking “down” on the user, giving the least

geometric “leverage” to user position-determination in the vertical axis. As a result,

123



vertical error is usually the limiting factor for precise aircraft navigation applications,
especially since the requirements for this application are the most stringent as aircraft
approach the ground. DOP factors are a convenient way to represent the overall “quality”

of GPS satellite geometries, even when the assumptions that govern their use do not hold.

5.1.3 SPS Ranging and Position Accuracies

The pseudorange errors for the Standard Positioning Service (SPS) are dominated
by Selective Availability (SA), which is the quickly-changing deliberate error signal
applied primarily to the satellite clock (although it could also be applied to the ephemeris
message). Table 5.1 lists the SPS error sources and typical one-sigma ranging errors
(which assume 10-second averaging of raw pseudoranges) that are used in this research.
They date back to the late 1980's and are quite pessimistic for modern receivers, but they
are retained here to compare the results obtained here with those published in the original
papers on RAIM [7-8,10). In any case, the dominating SA error term leaves the “bottom-
line” one-sigma error (RSS’ed from the individual error sources) more or less unchanged
at 32.4 meters [7-11]. Section 5.4.5 presents the solution for the case where up-to-date

error models [6-13] are introduced without the effects of SA.

5.1.4  Performance Evaluation Concepts and Terms
The evaluation of overall user navigation performance for a set of GPS simulations
depends on the requirements for the application being studied. In almost all cases, this

evaluation can be summarized by four parameters: performance (accuracy), integrity,

Error Source One-Sigma Error (m) Noise Type
satellite clock/ephemeris 5 colored
ionosphere and troposphere 10 colored
receiver noise/multipath 15 white/colored
selective availability (SA) 30 colored

Table 5.1: Errors for Normal SPS Operation
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continuity, and availability, which form the acronym “PICA”. Detailed explanations of
each of these terms are given below. Note that they are concept definitions which express
the intent of “official” definitions published in (for example) [6-11], but they do not
necessarily follow the letter of these sources, as the focus here is on general principles of

navigation system assessment.

5.1.4.1 Performance: This is measured by 95% user position accuracy under so-called

“normal conditions”, i.e., when the Signal-in-Space (SIS) and all relevant error sources are
within expected tolerances. The Normal pseudorange and position error distributions
mentioned in Section 5.1.3 thus apply, and the 95% position error bound in any given
dimension can thus be approximated by twice the one-sigma position error. This can be
decomposed into ranging error and relevant DOP, but it is more accurate to simply store
simulated position errors in a histogram and then compute the 95% error limit from this
histogram in post-processing.

Accuracy is the most commonly-cited comparison statistic for different
(augmented) GPS system architectures because it is the only one that is easily measurable.
Ranging error estimates and DOP calculations as per (5.10-11) allow approximate
accuracy predictions from simple covariance analyses, and field tests can obtain enough
actual performance data to statistically infer a reasonable mean and 95% error bound. A
key problem, however, is that field or flight-test data is very situation-specific. Any given
test has a particular prototype mechanization with problems and biases that can be
factored out but may take a different shape when a production system is developed.
Satellite geometry also varies among field-test results, and a simple translation of the
inferred statistics to a different geometry using (5.10-11) is not always representative,
Simulations cannot demonstrate basic feasibility for a given system, but once that is
established by experiment, they can provide a more complete basis for PICA evaluation
and comparison over a wide range of operating conditions.

Accuracy for a given system is also highly correlated with the other PICA
parameters discussed below, because systems whose accuracy is very good relative to the

sizes of errors that pose safety threats or require aborts will be less likely to encounter
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such risky situations. PICA assessments should therefore not be seen as four independent
evaluations but as a single strongly-correlated whole that is produced by a set of

interwoven simulations.

5.1.4.2 Availability: Availability is essentially the probability (over time and operating
conditions) that the navigation service will be usable at the point at which the planned use
is to begin. In an aircraft application, an airplane would have to abort its intended mission
if the GPS-based navigation service is known to be unavailable and if it is a “sole-means”
(i.e., no separate backup system can fill the role) application.

Loss of availability can result from a number of causes. System failures that
prevent the reception of an adequate SIS (or differential correction message if needed) are
one obvious source. Even if the system is operating nominally, ranging error behavior
and/or poor satellite geometry could provide an expected positioning accuracy which is
outside the normal 95% error tolerance. In addition, systems that require integrity
monitoring may lose availability if conditions make the use of the monitor impossible or
unsafe. The formal definition in [6-11] requires that all accuracy, integrity, and continuity
requirements for safe operation be met at a given time for the system to be available.

In simulation, availability can be handled in a couple of ways. It may be
determined in post-processing by looking at the resulting distributions of number of
satellites in view and satellite geometry (expressed as a DOP) and then computing how
many cases would have been unavailable. The PICA user cost model developed in
Section 5.3.4 allows the DOP thresholds which determine availability to be optimized in
post-processing. Alternatively, availability can be assessed during individual simulation

trials by applying predetermined conditions at the availability decision point.

5.14.3 Continuity: Continuity is similar to availability in that it occurs when the user is
warned that current conditions do not allow him or her to proceed with an application that
has already begun. The service interruption thus happens unexpectedly during the
execution of the mission, affer it had been determined that the system was available. This

can result from a failure during the mission that prevents further position/velocity fixes,
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such as the sudden flagging of one or more satellites as unhealthy or a GPS receiver
shutdown. In other cases, the problem will be more subtle, requiring the integrity monitor
(if one is provided) to detect it and alert the user.

Like unavailability, loss of continuity has an inconvenience cost resulting from the
cancellation of the intended operation. In addition, since continuity breaches occur after
initiation of the application, a sudden abort may have to be improvised under hazardous
conditions. Thus, a continuity breach carries with it a significant threat to safety, albeit a
threat much lower than would be the case if the user were not warned of the problem.
Because loss of continuity occurs during a relatively brief “exposure time” interval,
simulations which measure the probability of loss of continuity must be time-based and
have an update time short enough to allow the simulation to register their occurrence.
This is not explicitly done in this research, but future plans call for the adaptation of our
current failure simulations into a Markov chain with short update times, along the lines of
[(6-4,15].

A simplified continuity assessment is possible from the perspective of integrity
monitoring, however. If we look at a “snapshot” in time, the integrity monitor must make
a decision as to whether continued navigation is safe. If it warns the user of a hazardous
situation when the true situation is safe enough for continued operation, that constitutes a
false alarm (FA), which is a loss of continuity and a loss of the availability of the system.
Detection of an actual hazard is also a continuity breach but a desirable one. If the
monitor should fail to warn of an actual hazard, this is a missed detection (MD) which is
the least desirable outcome, as explained in the next section. The probabilities of FA and
MD events in this abstracted sense can be determined by the simulations described in

Section 5.3.

5.1.4.4 Integrity: The probability of loss of integrity refers to the probability that the

user is not warned of a situation or event that poses an unacceptable risk. It is thus
equivalent to the missed detection probability mentioned in the last section if an integrity
monitor is present. Depending on the system, it may be possible to switch to redundant

systems or isolate the best-guess failure cause without sending a warning. Loss of
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integrity would then occur if this decision to continue is faulty. Note that this definition of
integrity assumes there is some underlying failure in the system that can be detected or
isolated. It is also possible for a dangerous situation to result under “fault-free”
conditions, and here it is assumed that no warning is possible. In other words, no specific
system element is operating out of its specified range, but a combination of “rare-normal”
events nevertheless places the aircraft in a hazardous situation. Integrity threats that
cannot be detected must be shown to be “extremely improbable”, meaning a probability of
occurrence of no higher than one in a billion. In the fault-free case, this is based on a “tail-
extrapolation” of the system accuracy distribution under normal conditions.

For most safety-critical navigation applications, requirements on these four
elements are issued by a governing body such as the Federal Aviation Administration
(FAA). Performance and availability requirements are set to ensure that the system does
not inconvenience its users (or other uninvolved people) by not operating in an efficient,
predictable manner or by simply not being reliable. Continuity and integrity requirements,
on the other hand, are designed to insure a minimum level of safety. In the case of aircraft
precision approach and landing (to be discussed in detail later), safety requirements are
based on both the heritage of older systems such as the Instrument Landing System (ILS)
and a simple risk allocation to the navigation system of the overall fatal accident risk for a
commercial airliner [6-10). The simulations reported in this research can be used to
evaluate PICA performance relative to these requirements, but the focus here is more
fundamental. In this research, instead of simply accepting requirements as written, these
specifications are used as references in the construction of an objective model of user
costs and benefits. This value or preference model follows the philosophy of decision
analysis as explained in Section 1.2.2 and Appendix A. It is constructed at several levels
of detail; thus it can be used to both optimize system parameters and to help determine

what the system-level requirements should be.
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5.2 GPS RAIM Integrity Monitoring Approaches

This section explains the basics of Receiver Autonomous Integrity Monitoring
(RAIM) for stand-alone GPS (SPS) users. Unless GPS navigation is supported by a
completely separate source of information or by non-DoD external messages regarding
GPS satellite health, a user will have no other means of determining whether or not the
GPS signals are safe to use for his or her intended application. The essentials of the
traditional approach to “snapshot” (one epoch only) RAIM are introduced, and
weaknesses in the assumptions traditionally used to compute decision thresholds are
discussed. A more generalized method for finding optimal decision thresholds will be

introduced in the Section $.3.

5.2.1 Mathematical Background

The basic concept behind RAIM is the use of additional information to verify
position solutions. Since more than the minimum number of four satellites will be visible
in almost all cases [6-15], redundant satellite pseudorange information is available, and
the position fix may be computed from a best fit to the overdetermined data (5.9). The
consistency of the redundant measurements provides a clue as to whether a GPS satellite
or some other unit is operating out of specification and whether this error makes the
position solution unusable.

Traditional RAIM methods are based on variations of the parity-vector based
threshold tests described in [7-8,9,10]. Most of these algorithms have been shown to be
functionally identical in [7-2). Because they are expressed as practical, usable algorithms,
the CFAR and CPOD algorithms given in [7-11], which attempt to set thresholds to
achieve constant false alarm rate and constant probability of detection, respectively, will be
taken as representative of this methodology.

The basic GPS measurement equation is given by (5.8), in which the noise vector
v is assumed to have a Gaussian distribution with a mean =0 and a variance of 6, = 32.4
m for each entry (from Table 5.1). Note that for a true position of [0, 0, 0], (5.8) can

express the errors in z and x since the equation and assumptions are linear. A position fix
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is computed for every epoch (10 seconds in this case, after averaging one-second ranging
measurements) where n 2 4 using (5.9). A least-squares residual statistic (a scalar) can
then be computed from the magnitude of the projection of the measurement vector into
parity space, which is defined by the null space of the original geometry matrix G. An (n -

4) x 1 parity vector p is computed from:

P = Pz = P(v+b) (5.12)

where the measurement z is given by (5.8) and the (n-4) x n matrix P spans the parity
space; i.e., it has rank{P} = n-4 and satisfies both PP" = I, (I, is an n x n identity matrix)
and PG =0, where 0 is a matrix of all zeros. The n x 1 vector b on the right-hand side of
(5.12) expresses any bias errors that may exist on the measurements in addition to the
“ordinary” Gaussian noise contained in v. If one or more satellites have bias errors in their
measured pseudoranges, the corresponding entries in b will contain these (unknown to the
user) errors, otherwise the entry will be zero. If b = 0, the elements of p will be
uncorrelated with equal variance 6, from the distribution of v [7-10].

In order to check the consistency of each of the pseudorange measurements within
the overall position solution, it is desirable to project state (position) and parity space

vectors back into measurement space. This results in the n x | fault vector f defined by:
f = Sz = PPz (5.13)

where S is n x n and has rank{S} = n-4 and §* = S (i.e., S is idempotent). The fault vector
thus has a mean E[f] = Sb (which is zero under fault-free conditions) and covariance
Covl[f] = So,’ if the bias vector components are i.i.d. with a mean of zero (note: this is a

strong assumption). The matrix S can be computed directly by [7-10}:

S = I, -GG’ (5.14)
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The RAIM residual decision statistic is then defined to be the 2-norm of the fault vector:
D = |f], = 2"Sz = 2"[I,-GG|z (5.15)

This decision variable D equals the magnitude of the parity vector projected into
measurement space. In other words, it represents the size of the inconsistency of the
position solution from (5.9), which is what the parity vector expresses. Note that it is
mathematically equivalent to the “sum of squared residuals” definition used in other papers
on RAIM. Given this representation and the assumptions made above, D represents a
sum-of-squares of Normal random variables (possibly plus a constant non-zero bias
vector); thus it is assumed to be chi-square distributed. These distributions and their

relation to false-alarm and missed-detection probabilities are given in the next section.

5.2.2  Choosing Thresholds for RAIM Statistics

Normally, D is computed using (5.15) and compared to a predetermined threshold
T. If D> T, an integrity alarm is issued. Otherwise, normal (no-fault) operation is
assumed. As mentioned in Section 5.1.4.2, cases of "bad" GPS satellite geometry are
designated as non-available RAIM cases, i.e. no failure determination can be issued. A
scparate geometry statistic (DOP or a variant of DOP) and threshold are also chosen to
make this determination.

Generally, traditional RAIM algorithms choose T either by Monte Carlo sampling
[7-8] or by the chi-square probability distribution [7-8,10,11] to give desired false alarm
(FA) and missed detection (MD) probabilities:

Pea = Pr[D > T18x <RPE] (5.16)
Pyp = Pr[D < T18x > RPE] (5.17)

where &x is the true (unknown) position error and RPE is the allowed position error limit.
Various sources of maximum allowed FA and MD probabilities are issued based on the

application (see [6-11,6-18,8-13]). Non-availability thresholds are chosen based on
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geometry dilution of precision parameters (such as HDOP and PDOP) which relate the
noise standard deviation oy, to the position error standard deviation. These limits may
correspond to a specification on Pyp when the threshold T is chosen to meet a false alarm
requirement. More complicated availability criteria are described in [7-2], such as those
which utilize delta-Hmay as described below.

Because the residual statistic D is a quadratic function of z, which is itself a linear
function of the normal random vector v in (5.8), the false alarm probability (which assumes

fault-free operation) is given by the chi-square distribution:
Pra = Q(T°/0] 1 n-4). (5.18)

where the operator Q represents one minus the incomplete gamma function P [3-12]. In
traditional RAIM, only bias failures on a single satellite are considered (i.e., b can have no
more than one non-zero entry). The missed detection probability is then bounded by the

non-central chi-square distribution:

Pwo < P(T?/,21 n-4, RPE/[c,,8H,,,, ]). (5.19)

in which 8Hmay is a geometry parameter defined to be the worst (largest) DOP parameter
over the n sets of visible satellites each with one satellite dropped out [7-11]. This worst-
case “subset DOP” measures the effect if the most critical (from a geometry point of view)
satellite is the one which fails.

The CFAR algorithm in [7-11] sets a decision threshold T, for each number of
satellites (n) in view from (5.18) to meet a (constant) requirement on Py, (note that o, is
considered to be constant). These thresholds would then be checked using (5.19) to
determine whether the requirement on Py, is also met. The more complex CPOD
algorithm in [7-11] uses (5.19) to set a threshold as a function of n and 8Hpax to achieve a
required Pyp. Note that this latter approach adjusts the threshold as a function of

geometry; thus it has an implicit availability screen. If it is impossible to meet the PFA
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requirement for a given n and/or 8Hmay, no valid threshold can be set, and that geometry

is declared unavailable.

5.2.3 Weaknesses of Traditional RAIM

In theory, these conventional RAIM approaches allow one to choose T to meet
specifications on either Pra or Pyp while checking to ensure that the requirement on the
other is not exceeded. However, there are many assumptions embedded in the above

equations. First, note that Pga in (5.18) implicitly assumes that any bias fault (i.e., any case

where b # 0) will lead to a position error exceeding the RPE. In practice, a specific
“worst case” bias size (normally a bias on the worst-case satellite that leads to just
exceeding RPE) is assumed during threshold selection. Even so, for systems with high
accuracy margin relative to the protection limit (i.e., RPE >> Cn), a focus on worst-case
bias will tend to “tighten up” the thresholds such that many biases are detected which do
not cause the position error to exceed RPE. This leads to a higher false-alarm rate than is
indicated by (5.18).

The assumption of no multiple-failure cases is also directly built in to the standard
RAIM algorithm. This seems reasonable because, since the elements of b (and the
underlying failures on different satellites) are assumed to be independent, the likelihood of
two or more separate failures occurring at the same time is remote. This reasoning is
questionable on at least two counts. First, failures that cause position error to exceed RPE
should by definition be very rare events, much rarer than failures of spacecraft components
(where this assumption is often made, see Section 3.2). In this case, neglecting multiple
failures may be frequent enough to affect user integrity on the one-in-a-million or rarer
level. Second, as just noted, high-accuracy-margin systems will not often exceed RPE due
to a single spacecraft bias. Errors substantial enough to threaten the protection limit may
instead come from an unusual underlying failure that manifests itself in more than one
satellite psuedorange. One example would be an OCS (or differential reference station)
error that (before being detected) mangles the ephemeris corrections for more than one

satellite in a non-evident way. In short, the independence assumption is dangerous for
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SPS and should be investigated more carefully. This is even more true of DGPS
applications because atmospheric errors will be correlated across multiple satellite
pseudoranges. This will be discussed further in Chapter 6.

The common thread to the above flaws is that conventional RAIM assumes no
prior knowledge of satellite, receiver, and ground station failure modes. Instead, failure
mode and effect models are represented in a very simplified way, and failure uncertainty is
effectively paid for by becoming very risk-averse and setting parameters for supposed
worst-case events. In addition to possibly being inefficient in cost/benefit terms, the fact
that only single failures are considered can bias the “worst-case” analysis in the wrong
direction; i.e., the worst-case may actually involve multiple failures. The probability
models introduced in the next section address this point.

Finally, the true utility of the RAIM algorithm should be a function of more than
Just Pra and worst-case Pvp as defined here. The cost model to be introduced in the next
section addresses all of the possible RAIM outcomes as functions of the resulting fatal
accident risk, thus providing a more general context within which to select the best
possible decision thresholds along the lines of Chapter 1. Using this approach and
extensive simulation of a GPS uncertainty model, the approximations on which

conventional RAIM is based can be carefully examined.
5.3 A New RAIM Approach Using Cost-Based Optimization

This section presents the results of a RAIM study in which the traditional
assumptions are set aside. These results are based on a simulation of the GPS
constellation geometry along with distributions which model user uncertainty regarding the
probability of failures in the satellites and ground equipment. The outputs of the
simulation are observed probabilities of errors given knowledge of the current geometry.
Thus, given a cost function which models the negative utility of RAIM decision errors for
a given application, we can not only check the theoretical error predictions assumed by
current RAIM methods; we can also directly choose an optimal threshold for each

geometry case.
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3.3.1 GPS System Faults: Prior Probability Model (PPM)

The assumptions made by traditional RAIM not only contain simplifications; they
do not consider any prior probability information that might influence Prs and Pyp.
They essentially consider that there is one possible spacecraft failure mode of unknown but
small probability. While it is true that only limited data on navigation satellite and receiver
integrity has been made public, it is sufficient to at least attempt to express a Prior
Probability Model (PPM) and examine its usefulness in computing optimal RAIM
thresholds. This PPM would express our uncertainty regarding whether or not system
failures are present before any measurements are conducted. Note that this PPM is
designed to satisfy the requirements for decision making under uncertainty as promulgated
in Section 1.2; thus decisions derived from it will have the property of being optimal under
the chosen objective function and “rational thought” axioms from Appendix A.

In an attempt to predict the likelihood of GPS position fix availability for various
classes of users, two studies have been conducted from which our PPM can be drawn.
The more general study is [6-4], which is based on failure models drawn from previous
space-based and inertial navigation systems. A spacecraft failure/renewal model was
assumed, and ten separate parameter sets were selected as representative of the
uncertainty of the GPS constellation. The satellite model in [6-15] uses the “most likely”
set of failure parameters from [6-4] and updates them with later constellation information
and the possibility of geosynchronous augmentation satellites. The probability distribution
for numbers of healthy satellites presented in [6-15] is now used as a standard for
simulations of satellite availability.

Using the model in [6-4], we divide failures into “hard” and “soft” cases, “hard”
meaning complete spacecraft shutdowns and “soft” meaning spacecraft operating with
GPS signal errors. These “hard” and “soft” classifications more or less match the *“long-
term” and “short-term” distinctions (respectively) used in [6-4] and use the corresponding
MTBF and MTTR values. Rather than using ten discrete failure parameter sets, our PPM
uses continuous Gamma(a.,p) and Normal(u,0) distributions to model the uncertainty in
the failure parameters based on the data in [6-4]. For spacecraft failures, the key

parameters in a simple renewal model are the mean-time-between-failures (MTBF) and the
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mean-time-to-repair (MTTR). These distributions and the relevant parameter uncertainty
models are shown in Table 5.2.

In the case of a hard failure, the satellite either stops transmitting or has been
flagged by the OCS as unhealthy. In the soft failure case, the satellite continues
broadcasting an erroneous message (i.e., it does not meet the SPS specifications [6-3])
and does not initially warn the user of that fact. Given a soft failure, a distribution is given
of the size of the resulting pseudorange error (it is a “bias” because we are sampling a
snapshot in time). It is assumed that the OCS is more likely to eventually “flag” a soft
failure (thereby warning the user) if the resulting error bias is large (see Section 5.2.3).

In addition, models for GPS receiver soft failures are given. These represent
errors in the receiver’s internal processing of one or more healthy received signals. If a
such a failure exists, it is assumed to be on a single channel with 50% probability, inducing
an apparent bias on the relevant spacecraft. Otherwise, it is assumed to affect all channels,
thereby increasing the effective receiver noise by a randomly-generated multiplicative
factor (see Table 5.2). It is still assumed that most receiver faults will be hard failures
which make GPS position fixes impossible. From these models of our failure parameter
uncertainty, we can generate probabilities of system failures for each trial and then apply

them to the GPS constellation.

Parameter Distribution mean (J1) standard dev. (o)

SV hard MTBF Gamma 100 mo. 12 mo.

SV hard MTTR Gamma 1.5 mo. 0.6 mo.

SV soft MTBF Gamma 16 mo. 6 mo.

SV soft MTTR Normal 28 hr. 8 hr.

SV soft PR bias Gamma 300 m 240 m
SV soft failure flag Uniform 400 m 2309 m
RCVR failure prob. Normal 0.0015 0.0025
RCVR channel bias Gamma 30m 24m

RCVR noise multiple Normal 8.0 2.5

Note: Normal distribution outcomes < 0 are taken to be 0.
Table 5.2: Prior Probability Model Parameters
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Modeling the effects of system failures is very difficult because of the many
possible failure modes that can exist. There is little information to go by; thus the Gamma
distributions in Table 5.2 which model the likelihood of bias magnitude have a large
variance. This represents considerable prior uncertainty. No detailed attempt has been
made to break down the causes of failures because there are so many possibilities. The
models in Table 5.2 simply try to model our uncertainty regarding possible bias outputs as
required by the decision-analysis paradigm of Chapter 1. Note that these failures are taken
to be above and beyond the “normal-case” uncertainties modeled as noise in ©,” from

Table 5.1.

5.3.2 Simulation of GPS System under PPM

The GPS performance consequences of the prior probability model outlined above
cannot be calculated analytically; Monte Carlo simulation is the best way to perform the
analysis without having to make severe limiting assumptions on the PPM. For this study, a
simulation of the GPS primary 21+3 satellite constellation with Volpe almanac parameters
(as described in Section 5.1.1), the PPM, and the results of RAIM-assisted position fixes
was written in C. Each simulation run executes Ny, position fix trials. From one trial to
the next, a clock is incremented by a random time interval that is uniformly distributed
between 0 and 30 minutes. The GPS constellation position is then updated accordingly.
Beyond this step, however, no continuity between trials is assumed; i.e. no correlation
with time is included in the probability models. For each trial, new values of the PPM
failure parameters are randomly generated from the distributions given in Table 5.2. Given
the MTBF and MTTR for both hard and soft satellite failures for a given trial, the
probability of being in a failure state at that instant is given by a simple application of

renewal theory, where separate results are derived for hard and soft cases [6-4):

- _MITR __ (5.20)

P = .
MTBF + MTTR
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Each of the 24 satellites is then checked for failure against the resulting P¢’s. Those that
suffer hard failures are simply removed from possible visibility for that trial (only). Those
which suffer soft failures receive a randomly generated bias which is assumed to be static
for the purposes of a single trial. Dynamic effects such as ramp errors are not specifically
simulated, but the sampling from the bias distribution in Table 5.2 implicitly assumes some
combination of possible error dynamics. This random bias is then compared to a uniform
random number to determine if the bias has been “flagged” by OCS ground control. The
higher the bias, the more likely it is to be flagged. Flagged soft failure effects are the same
as those for hard failures; i.e. these satellites are not used if they are visible. Note that this
means of simulating OCS flagging of short-term failures fits with (but is not limited to) a
ramp-error time history, since a steadily-growing bias error will be more likely to be
flagged as more “time” passes. The simulation simply picks out one moment in time and
then simulates the error states in the context of how much time might have passed since
the underlying failure occurred.

Once the status of all satellites is determined, the GPS geometry is resolved to
determine the number of satellites visible to a receiver positioned at San Francisco (this
position does not change) with a 7.5° mask angle. Using the PPM, it is possible that one
or more of the apparently usable satellites has an unflagged bias error. The probability of
receiver error is then generated, and the receiver error state (either single-channel error or
an increase in the overall receiver noise variance) is sampled for this trial.

Next, white noise with variance o, is added to the output pseudorange of each
satellite using the variances given in Table 5.1 (which assume a 10-second averaging time).
GPS position is then computed and compared to the known user position. In addition to
the position fix error magnitude &x from (5.9), the least-squares residual magnitude D = &r
is computed as the RAIM decision test statistic from (5.15).

These results are stored in histogram arrays that contain the number of occurrences
of the discretized index values in question. The application of SPS navigation that we will
focus on in this chapter (see Section 5.3.3) is most concerned with horizontal (East-North)
position error; so the geometry criterion uses horizontal DOP (HDOP). One bin equals 10
meters in 8r and 8x and 0.1 in HDOP. Each trial is recorded according to the number of
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usable (non-flagged) satellites in view (called n_view) and the HDOP of the visible
spacecraft geometry. In addition to recording Or vs. 8x within the prevailing n_view and
HDOP, marginal distributions of 8r vs. $x along with satellite failure state, psuedorange

error, receiver error, and others are stored for later analysis.

5.3.3  Non-Precision Approach using SPS

The application of the GPS Standard Positioning Service considered in this chapter
is known as non-precision approach. This mission involves navigating an aircraft in the
horizontal (E,N) plane down to several hundred feet of altitude. Altitude navigation is
assumed to be provided separately, so the limits on accuracy are not as burdensome. In
fact, the 100-meter 95% horizontal error characteristic of SPS should be sufficient.

Overall PICA requirements for non-precision approach were published by the RTCA
Special Committee 159 (SC-159) in [6-18]. In [7-11], these requirements are converted
into Pra < 1.4 x 10” and Pup < 10* at every 10-second RAIM decision epoch. Also, a
required protection error of 550 meters is cited, which is 17 times the base pseudorange
standard deviation G, Availability requirements are not specifically called out. In [7-11],
the assumption is that RAIM is unavailable for geometries in which a threshold that meets
both of the above requirements cannot be found. When all 24 GPS satellites are healthy, it
calculates RAIM availability for non-precision approach as 98.9%.  Heretofore,
specifications of this sort have been the only guidelines for RAIM threshold calculation

and performance analysis.

5.3.4 Risk-Based RAIM Cost Model

Instead of just taking the published requirements as a given, it is important to ask
where these specifications come from and what is the underlying philosophy. Clearly,
requirements should be based on the “cost” to the user of a false alarm, missed detection,
or non-availability result. These costs may not be uniform for all users. Furthermore, as
pointed out in [7-4], absolute specifications cannot be demonstrated to 100% confidence
in any case. Since uncertainty is unavoidable, it may be better to use a cost-based method

that more easily models uncertainty and risk aversion.
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A basis for both the RTCA specifications and a cost-based model can be found in
the RNP Tunnel Concept for precision aircraft approaches and landings [6-10]). It
describes a means of setting position error specifications along an approach “tunnel”, and
it estimates the consequences of straying outside the tunnel based on the historical record
of commercial aviation accidents. For a precision approach, integrity decisions must be
made close to the ground. A false alarm (causing an aborted landing) has a small but
significant probability of leading to a fatal accident, while the more serious missed
detection has a much higher chance of leading to a fatal accident. Since non-availability
decisions are made before the final approach begins (based on satellite geometry), there is
minimal risk involved, but there is still a small inconvenience cost that must be weighted
against the fatal accident risk.

The non-precision approach case studied here does not face the same exacting
requirements, so the relative costs are harder to specify. The RPE in this case is much
looser, however; violating it still poses considerable risk if not detected. Any detected
violation (known as a “bad” position result) requires an alternative approach method, so
there is an inconvenience cost plus some minimal risk. A false alarm should have the same
cost as a “bad” position result except that the availability of the GPS system is wasted.
Thus, the false alarm cost is equal to the “bad” cost plus the small non-availability (NA)
inconvenience cost. Although many different cases have been tested, a generalized set for
SPS which is used for the results shown here is given in Table 5.3. Note the variable cost
of the MD event means that in addition to the base cost of any MD, an additional cost is

paid for each bin (10 m) beyond the RPE limit that the missed position error is located.

RAIM Result Base Cost Variable Cost
good position 0 0
detected bad pos. (Cpaa) 1 0
missed detect. (Cup) 200 S (per 10 m)
false alarm (Cga) 1.01 0
non-available (Cya) 0.025 0

Table 5.3: SPS RAIM Cost Parameters
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The RNP identifies relative fatal accident risks most clearly for Category III
precision landing, where the aircraft is guided all the way to the touchdown point. It
estimates the probability of a fatal accident given that a missed detection occurs (i.e., the
aircraft continues the approach while not being warned of a hazardous navigation error) as
10-25% for non-Category III approaches (100% is used for Category III). The risk of a
fatal accident during a missed approach caused by a RAIM-derived abort (a continuity
breach - either a detected bad position or a false alarm) is estimated to be 0.001. Most
likely, the same risks would not apply to an abort or a violation of the RPE during non-
precision approach, but there is still substantial risk to the affected aircraft and to aircraft
in its vicinity. The cost model in Table 5.3 thus is assumed to be approximately the same
for all aircraft approach applications, as the relative risks of continuity and integrity
breaches are thought to be similar. What varies, then, is an (uncertain) constant parameter
Rc which is defined to be the ratio of actual accident risk to RAIM cost from Table 5.3.
For Category III, Rc = 0.001, meaning that an actual fatal accident has an implied RAIM
cost of 1 / Rc = 1000. For non-precision approach, on the other hand, the fatal-accident
risk is taken to be 20 times lower; thus Rc = 5 x 10°. This translation of RAIM cost to
bottom-line risk establishes a means of tracing navigation and RAIM algorithm design to
top-level system goals and constraints; thus it can serve to place existing requirements
within a larger context.

The NA cost for non-precision approach is perhaps the most important to specify.
Unlike the other costs,, which trace back to accident risk, this cost derives from the
economic inconvenience of not having the service available at a specific time it is needed.
One way to derive this cost into dollar terms is to estimate the average additional flying
time required in a non-available case and multiply that by the direct operating cost and fuel
cost for an aircraft over that time. From a recent ICAO study [6-8], an average cost per
hour for commercial aircraft is about $4800. Assuming a half-hour average delay, the per-
occurrence NA cost becomes $2400.

To translate this economic cost into the risk domain of the RAIM cost model, we
refer back to Chapter 1, where the equivalence of fatality risk to dollars was justified for

sufficiently small risks (i.e., less than 0.0001). A conservative fatality-equivalent cost of
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$10 million per life was chosen there. Based on the weighted aircraft usage parameters in
[6-8], a fatal accident is assumed to result in a (conservative) average of 200 deaths
(which may come from more than one plane if a mid-air collision results); thus the cost per
fatal accident is about $2 billion. For non-precision approach, where R is conservatively

estimated to be 5 x 107, the comparative cost of a single non-availability event would be:

NA cost ($) _ $2400

R [fatal acc.cost ($)] (5 X 10‘5)($2 %1 09) 0.024

npapp  _
Cha =

Since this estimate is based on several assumptions regarding the parameters in (5.21)
below, a range of non-availability costs from 0.01 to 0.025 has been tested in the RAIM

optimization described in Section 5.4.

5.3.5 Cost-Based Threshold Optimization

Since each combination of n_view and HDOP for non-precision approach
represents an independent decision case, an optimal residual threshold can be chosen
separately for each one. Recall that the simulation described above stores Jr as a function
of dx for each discretized geometry case. Once all trials are completed, threshold
optimization is conducted simply by computing the cost of all possible discrete thresholds

T = rjimj; using the following equation:

Jram (T) =Pgs Gy + PMD(5e)CMD(5e) + Poay Cona (5.21)

where 8¢ is the amount by which RPE is exceeded. The cost parameters Ceag, Cup, and
Cka are defined in Table 5.3, and cost numbers are given there for each of these categories.
The threshold that gives the lowest Jram(T) is the optimal choice.

At this point, the expected cost of the optimal threshold is compared to the GPS
non-availability cost. If the optimal threshold gives a lower cost, then GPS is available for

that case and the optimal RAIM threshold is set. Otherwise, that case of n_view and
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HDOP is designated as non-available for integrity, and GPS is assumed to be unusable.
Note that the NA cost is thus a critical number, as it measures the user’s risk aversion
regarding the reliability of RAIM decisions. Higher NA costs, representing greater degrees
of inconvenience, result in higher availability probabilities, as the optimization algorithm is
willing to tolerate more risk in choosing the best possible threshold. Finally, the optimal
thresholds (or zero if non-available) are output in a lookup table of n_view vs. HDOP
which can be directly fed into aircraft avionics. Overall results for all of the cases,
weighted by the likelihood of each, are also computed to measure the general utility of this
RAIM methodology as well as the marginal probabilities of FA, MD, and NA outcomes.
Figure 5.2 illustrates the selection of the optimal threshold for a given geometry
case. The 2-D plots show the simulated and stored &x vs. &r for each geometry [n_view,
HDOP], where each “x” represents a [or, 8x] histogram bin. Taking the RPE (the
boldface horizontal line 8x = RPE) as fixed, a RAIM cost J(T) is computed for a given T
(the boldface vertical line) using (5.21) as shown in the upper left quadrant of the figure.

Jor each HDOP bin: simulation results:
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Figure 5.2: Optimal Threshold Selection Process
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Even if RPE is fixed, improving the system accuracy (i.e., reducing ©,) effectively
improves J(T) for all T by shifting the RPE line (normalized by ©,) upward as shown in the
upper right quadrant. In the lower left quadrant, the trial threshold is reduced, moving the
vertical line leftward. This shrinks the missed detection region (8x > RPE but ér < T,
which is the upper left corner of the 2-D plot) but widens the false alarm region (the lower
right corner of the plot where 8x < RPE but 8t > T). The RAIM cost model in Table 5.3
effectively determines the optimal tradeoff between these two undesirable outcomes for a
given [dr, 8x] simulation result. Thus, the bold vertical line is moved from the far left to
the far right of the residual statistic domain until the location that gives the lowest RAIM
cost J(T*) is found. That T* is the best possible choice for the situation in question. Also

note that the lower right corner expressed the availability vs. risk tradeoff discussed above.

54  Simulation and Optimal Threshold Results

All the results shown in this section use the parameters given in Tables 5.2 and 5.3
and a sample size of Njax = 10 million trials. Simulations have been run with variations of
the Prior Probability Model and cost parameters; thus we can draw some conclusions

regarding solution sensitivity to parameter changes while we study the nominal results.

5.4.1 Spacecraft and Receiver Reliability

The simulation outputs contain important marginal output probabilities that
deserve study so as to illustrate the effects of the prior probability model with regard to
spacecraft and receiver health. Table 5.4 shows the observed probability of these failure
categories. Note that although flagged soft failures have the same effect as hard failures,

they are probabilistically separate events in the simulation results from Section 5.2.3.

Observed Event Probability
no SV failure 0.98237
SV hard failure 0.01492
SV soft failure-unflagged 0.00173
SV soft failure-ﬂzig'gg 0.00098
RCVR failure (separate case) 0.00191

Table 5.4: Observed Failure Probabilities
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These results contain few
surprises. Most spacecraft failures
are "hard"; they only degrade GPS
geometry. The 0.014 probability of
hard failure (or “unhealthy” status)
for a given satellite agrees with the
numbers implied by the results in
[Phlong]. The issue of flagged soft
failures could use further study, as
the PPM distributions from Table 5.2

result in a 64% chance of a given soft
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Figure 5.3: Distribution of Satellites in View

failure being unflagged. With the information currently available, it is hard to say how

accurate this result is. Although receiver failures are not too uncommon, their effects

from the PPM are usually not very significant (see Table 5.2).

3.4.2 GPS Geometry Results

Figure 5.3 gives a bar-chart histogram of the number of healthy satellites visible to

the San Francisco user over the set of
simulations. Using only the basic 24-
satellite NAVSTAR constellation and
a 7.5° mask angle, the user can see
six or more satellites 97% of the
time. The six-to-eight satellite range
occupies 91% of the cases, and nine
or more satellites are in view about
6% of the time. This level of satellite
availability gives a reasonable basis
for RAIM, but note that the 0.5% of
the cases where four or fewer

satellites are visible places an upper

1

08
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bound of 99.5% on RAIM availability, since at least five satellites are needed to provide
redundancy in the position solution.

Figure 5.4 provides separate curves of cumulative probability for HDOP for 5, 6,
7, and 8 satellites in view. The probability on the y-axis is the likelihood that the actual
HDOP is lower than that shown on the x-axis. Thus, for five satellites in view, HDOP
above 2.5 occurs about 5% of the time, whereas for six or more satellites in view, it does
not happen at all (at least within the 10 million samples done here). This suggests that
many 5-satellite cases will end up being unavailable for RAIM due to high HDOP, while
almost all cases with 6 or more satellites in view will be feasible. Note that HDOP limits

for RAIM availability will vary with numbers of satellites in view.,

5.4.3 Optimal RAIM Results for SPS Users

Figure 5.5 shows the marginal probabilities of &r and 8x over all geometry cases.
The dotted and dashdot "theoretical” probability curves are generated from an “ideal"
simulation (with no SV soft failures) and are included for comparison. Agreement is
reasonably good for the low error, high probability cases, but above 150 meters, the ideal
plots dive well below what is observed using the PPM, as the “soft” ranging error models

significantly extend the tail of the

position error distribution. 10"

Disagreement between the ideal and 10"

expected residual statistic curves is 10l

even greater. The small oscillations

in the lower right-hand corner are E 107

due to limited sample size for the g 10°%}

lowest probabilities. - 10"
Figure 5.6 shows two plots

of the best RAIM thresholds found 10°

as functions of HDOP, where the 107
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thresholds down by number of FigureS5.5: Ranging and Position Error Densities
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Figure 5.6: Best RAIM Threshold Results

satellites in view. These thresholds are simply the magnitude of the residual statistic from
(5.15) above which a failure warning is issued. The two plots shown are for cases which
differ only in the assumed RPE. The top graph is for an RPE that was halved from the
550-meter one specified for non-precision approach and shown in the bottom plot. In
both cases, the best thresholds tend to increase with the number of satellites in view and
fall with HDOP. This is the expected result because, as the GPS geometry worsens, the
likelihood of severe position errors increases, producing a greater threat to user integrity.
In these cases, the allowable threshold on the RAIM statistic will be lower than cases
where the GPS geometry is better and thus the “prior” probability of extreme position
errors is much lower.

Normally, we would expect the change in the optimal threshold to vary
continuously with HDOP, but this is clearly not the case in Figure 5.6, as there is a lot of
“noisy” wandering of the best threshold within the clearly-visible larger trend. This is
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Optimal User RAIM Thresholds: RPE =275 m
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Figure 5.7: Optimal RAIM Threshold Results

especially visible for the 6 and 7 satellite-in-view cases. By discretizing the GPS geometry
space by both number of visible satellites and HDOP (divided into bins of width 0.1),
relatively few failure events (position errors exceeding RPE) occur in each case; thus the
results will be inconsistent even for similar geometries. The more events recorded in each
S€parate geometry case, the more significant the best threshold result. This is visible in the
upper plot for the 275-meter RPE case, which is considerably less jumpy because there are
many more position errors that exceed this lower protection limit.

Figure 5.7 shows the optimal thresholds as a function of GPS geometry for both
RPE cases. The only difference between this figure and Figure 5.6 is that the availability
determination has been made for each geometry, and cases where the cost of the best
threshold is higher than the non-availability cost are declared unavailable and shown with

an optimal threshold of zero. From looking at these plots, one can determine HDOP limits
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Number SV in View | HDOP limit (% available) HDOP limit (% available)
RPE=275m RPE =550 m
5 1.3 (17%) 2.0 (78%)
6 1.5 (84%) 2.6 (99.5%)
7 2.2° (100%) 2.2° (100%)
8 1.6° (100%) 1.6 (100%)

*: represents maximum HDOP from any simulation trial

Table 5.5: HDOP Availability Thresholds
above which RAIM is unavailable for each n_view. The input non-availability costs (Cya)
and output availabilities are indicated in the legend.

Table 5.5 has the HDOP availability thresholds and resulting availabilities as a
function of number of satellites in view for both RPE cases. Note that for 7-8 satellites in
view, all HDOP’s are available; thus the availability limit is simply the largest HDOP
result for that case. The limits for five or six satellites in view do eliminate some
geometries, but their trend in Table 5.5 makes sense; i.e., more spacecraft in view give a
higher HDOP limit even as they provide a lower HDOP probability distribution. As a
result, availability improves markedly when at least six satellites are in view. However, the
noise in the RAIM cost evaluations causes Jjagged availability results as well. For example,
it is not clear where the right limit is for six satellites in view in the bottom plot, as it
shows HDOP = 2.3 non-available, then HDOP = 2.4-2.7 are OK, then HDOP > 2.8 all
seem available. The listed cutoff of 2.6 in Table 5.5 is an estimate, as the HDOP bins
above that are considered unreliable because they contain few samples and thus have
limited statistical significance.

Figure 5.8 illustrates the source of the randomness in the optimal threshold results
by plotting the RAIM cost of the best threshold found for each geometry. The y-axis
shows the RAIM cost in logarithmic scale, and the non-availability cost Cya = 0.025 is
shown as a horizontal dotted line to indicate which geometries beat the availability cutoff.
The upper plot for RPE = 275 m is relatively well-behaved, as costs for 5 and 6 satellites
in view increase with only a few jumps as HDOP is increased. The curves for 7 and 8

satellites in view have costs which drop off as HDOP increases simply because few
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Best User RAIM Costs: RPE=275m
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Figure 5.8: Best RAIM Cost Results

samples exist for the higher HDOP’s in these cases. The lower plot for RPE = 550 m
shows a great deal of local variation, as the best cost jumps above and below the non-
availability cost at an excessive rate, forcing us to estimate the point at which the “true”
RAIM cost curve crosses the non-availability cost line.

The best way to make use of the noisy simulation-based cost evaluations is to fit a
mean curve to the raw result from Figure 5.8. In most of these plots, the underlying trend
looks linear; so a linear fit to the results for each of the satellite-in-view cases gives a
reasonable HDOP availability threshold for each one (see Table 5.5). However,
substantial uncertainty about the validity of this approximation remains. For actual use,

many more simulation trials should be conducted to gain further statistical significance.
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5.4.4 RAIM Optimal Result Summary

Table 5.6 gives the bottom-line RAIM results for this minimal-cost approach in
terms of overall SPS user RAIM cost and the RAIM event parameters important to PICA
evaluation (see Section 5.1.4). Looking at the PICA event probabilities, we see that they
vary considerably from the results published for traditional RAIM [7-8,10] and the implied
SPS RAIM requirements from Section 5.3.3 [6-18,7-11]. For example, the false alarm
probability for the RPE = 550 m case is about twice that specified in the implied RTCA
requirement. It is an order of magnitude worse for the RPE = 275 m case simply because
it is much harder to reliably detect a position error reduced by 50% when the noise floor
(0,) is not improved. We see significant differences for the 275-meter case precisely
because only RPE was changed. Bad position fixes are more probable, so the thresholds
must "tighten up” to reduce Pyp at the cost of increasing Pg,.

The missed-detection results are particularly interesting. For the 550-meter case,
Pwmp is very high (28%), much higher than is thought to be tolerable by traditional RAIM.
The reason is twofold. First, the RAIM cost model has a different weighting of missed
detections to false alarms than does the implied requirement. Since the cost model is
directly tied to user accident risk, it should be a better guide according to the principles of
Section 1.2. Second, the missed detection probability derived from (5.19) is based on an
arbitrary bias that should lead to a position error exceeding RPE, but the simulations of the
PPM suggest that reality is much more complex.

Recall that the simulation approach in Section 5.3.2 samples failures from the PPM
in Table 5.2 based on first sampling uncertain failure model parameters. While two or
more serious failures at the same time are quite uncommon, they become more likely in

trials where the sampled failure parameters turn out to be dangerously bad. The resulting

Simulation Output RPE =550 m RPE=275m
Overall User RAIM Cost 0.00100 0.01216
f-uise Alarm prob. 0.00040 0.00574
Bad Position prob. 13x10° 0.000325
MD | bad position prob. 0.282 0.039
Availability prob. 0.990 0.904

Table 5.6: RAIM Simulation Output Summary
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high failure rates are then applied to each visible satellite in turn, introducing significant
correlation between their failure states. This indirect correlation invalidates the i.i.d.
assumption of traditional RAIM (Section 5.2.1). Note that this same correlation effect
was introduced for spacecraft reliability evaluation in Section 3.4.2.

As mentioned in Section 5.2.3, most single-channel bias errors do not result in a
position error exceeding RPE. Single large-bias failures that do lead to errors exceeding
RPE can be detected, but many threatening cases are multiple failures that are often less
evident in the RAIM parity space. In other words, the missed detection probability
derived from simulation results is not directly comparable to the traditional result of
(5.19), since the latter does not represent a “true” missed detection in the sense of (5.17)
for high RPE/s, ratios. Reducing the RPE by 50% gives a much lower missed detection
probability (4%) because easier-to-detect single-bias failures become more threatening, but
the price paid is a decline in availability (down to 90%).

The RAIM availability probability is quite good for both cases. It is much higher
for RPE = 550 meters because fewer position errors introduce unacceptable risk; thus it is
safer to rely on RAIM over a wider range of GPS geometries. This fact is reflected in the
most important number in the table: the overall RAIM user cost, which is an order of
magnitude lower for the 550-meter case because far fewer events threaten user integrity.
Note that the 275-meter results can be seen as a “controlled” case in which simulation-
based optimization is easier and the results are more predictable. The 550-meter case
corresponds more to the actual risk inherent in non-precision approach. For this
application, the conversion factor Rc = 5 x 10 gives an estimate for the faral accident risk
per mission event to be (overall RAIM cost) Rc = 5 x 10%. This is the bottom-line
acceptability factor as developed from the RNP; thus it demonstrates the relative
acceptability of the RAIM approach without relying too heavily on arbitrary requirements
which, as demonstrated by Table 5.6, will be difficult to meet given a realistic PPM and

cost model.
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3.4.5 Results for Improved SPS Ranging Accuracy
The results in Table 5.6 hold for the original nominal SPS error assumptions made

in Section 5.1.3. As noted there, they are now quite pessimistic because GPS user
equipment has improved substantially [6-13]. Furthermore, studies of SPS user accuracy
have concluded that Selective Availability (SA) over time does not degrade user accuracy
as much as is suggested by the SPS specification [6-3]. Because SA is of limited value in
denying the use of GPS to U.S. adversaries and because its presence retards the growth of
civilian GPS applications, considerable debate has arisen over whether it should be
terminated as a matter of U.S. government policy [6-12]. While the improvements in SPS
user equipment are of limited consequence to integrity if SA remains, the possible removal
of SA would significantly improve SPS accuracy and therefore improve user integrity
significantly for the aircraft enroute and non-precision approach applications.

Table 5.7 shows the revised 16 SPS ranging errors for improved user equipment
along with the amount of improvement obtained over the numbers in Table 5.1. Retaining
the 10-second averaging of receiver noise, the resulting 16 rms ranging error would be 6.5
meters -- a dramatic 80% reduction from the SPS error model in Section 5.1.3. This error
model] variant can be applied to the RAIM threshold-optimization methodology to
determine the risk reduction that would result (in terms of the RAIM cost function). As
before, cases were run for both RPE = 550 m and 275 m.

The results for the improved noise model are a little surprising: the only cases
where horizontal position errors exceeded 275 m had only four satellites in view with

HDOP > ]5. Position errors in these cases which exceeded 275 m occurred with

Error Source One-Sigma Error (m) Error Reduction
satellite clock/ephemeris 4 20%
ionosphere and troposphere 5 50%
receiver noise/multipath 4 73%
selective availability (SA) N/A removed

Table 5.7: Revised Errors for Normal SPS Operation
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probability 3.6 x 107 (errors exceeding 550 m occurred with probability 1.9 x 107). By
definition, these geometries would be screened out by the availability check. If all
geometries with 5 or more satellites in view are declared available (the optimal solution in
this case), the availability probability becomes 0.9997, which should meet any proposed
requirement (and is much better than the RAIM-limited result in Table 5.6).

This result, based on the SPS PPM in Section 5.3.1, indicates that the probability
of dangerous position error for 5 or more satellites in view is very likely below 5 x 10®
(since none were found in 20 million trials). This is a major improvement over the result in
Table 5.6. According to the optimal result, RAIM would be unnecessary, as all
geometries that allow RAIM are safe for any reasonable failure. Not requiring RAIM has
a further availability reward, as including four-satellite geometries where HDOP < 5 (a
conservative bound) would improve availability to a remarkable 0.999995. However,
other considerations suggest that RAIM be maintained along with the consequent 5-
satellite availability requirement. One is that the PPM is limited to simulating "snapshot"
errors at a given point in time. According to the PPM, the probability of a sudden
pseudorange error of many kilometers that would be needed to threaten user safety is
exceedingly remote. However, it could result from an incipient error that grows to
dangerous levels over time and is not flagged by the DoD Operational Control Segment
before it becomes hazardous. Although this possibility is also remote, RAIM with the
improved error model provides a nearly ironclad guarantee of detecting and single-
channel and almost all dual-channel errors because the margin between nominal and
dangerous error is so large (this is also the case with the Integrity Beacon Landing System
developed at Stanford for Category 111 landings, see [7-9,15]). This protection could be

obtained without significantly affecting availability and continuity because the detection

Simulation Qutput RPE =550 m RPE=275m
Overall User RAIM Cost 0.00100 0.01216
False Alarm prob. 0.00040 0.00574
Bad Position prob. 1.3x 10° 0.000325
MD | bad position prob. 0.282 0.039
Availability prob. 0.990 0.904

Table 5.8: RAIM Output Summary for no-SA Case
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thresholds could be set very loose. Further study of RAIM effectiveness for very large
SPS pseudorange errors (based on a time-dependent PPM that simulates errors growing in
time) is a key topic for further research.

This result, which demonstrates that the key to improved integrity for SPS users is
simply to turn off SA, is important in the context of the current political debate on the
future of SA, which is pursued in great detail in [6-1,12]. As of April 1996, a presidential
directive has indicated that in accordance with the increased priority being put on the use
of GPS for civilian applications, SA will be turned off within a decade. But within this
time frame, the use of SPS for enroute and non-precision approach will expand
dramatically, and the increased hazard due to the presence of SA (as indicated in Table
5.6) amounts to a mean of one serious accident in every 20 million approaches. With SA
off, this risk drops by at least of factor of 100. The safety gain for unaugmented users of
SPS amounts to a benefit in economic terms (based on the cost model in Section 5.3.4) of
at least $100 per flight. Projected over the millions of SPS approaches to be conducted
over the next decade, this benefit of removing SA by itself runs into the hundreds of

millions (if not billions) of dollars.
5.5  Comparisons with Traditional RAIM

It is difficult to compare directly the performance of this PPM-based cost
optimization method with that of traditional RAIM methods in [7-10,11] because their
thresholds were set to meet arbitrary specifications. In order for a fair comparison to be
made, the same user preference model must be used to set thresholds for both methods.
This is very difficult for the case of traditional RAIM, as it is not set up to optimize any
realistic cost model but instead focuses on black-and-white PICA requirements and
evaluations.

Requirements such as those for SPS enroute and non-precision approach issued by
RTCA SC-159 [6-18] are normally motivated by an implicit “target level of safety,” but
they often do not attempt to model prior performance uncertainty when analytical studies

suggest that an acceptable level of integrity can be provided by RAIM alone. Traditional
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RAIM is shown in [7-8,10] to be capable of missed detection probabilities of 0.001 or
below with reasonable availability. Once traditional RAIM assumptions are accepted,
these results may influence the committees who write the requirements. This is despite the
fact the assumptions outlined in Section 5.2 are questionable in practice. For example, it is
unreasonable to assume that a position error just under the required limit is perfectly safe
while one just over it is a dire safety threat. A user cost model along the lines of Section
5.3.4 not only represents risk more reasonably; it is also completely independent of what
can or cannot be done using a specific technique.

Lacking a fair bottom-line performance comparison, another approach is to
determine the accuracy of the chi-square model (5.18, 5.19) used in traditional RAIM in
the context of the PPM used in our simulations. The RAIM method outlined here chooses
optimal thresholds based on the simulation outputs instead of relying on (5.18, 5.19). It is
also possible to compute the observed Pg, as a function of the detection threshold for each
n_view and HDOP. Using (5.18), we can also compute the expected P, given any chosen
threshold T and n_view (it is independent of HDOP) and then use a chi-square statistical
fest to determine the significance (T) of the chi-square assumption; that is, the likelihood
that the simulation output Py, was produced by the theoretical distribution (5.18).

For a discrete dependent variable N, the chi-square statistic (distinct from the chi-

square residual distribution of Section 5.2.2) is given by [3-12]:

2
N. —n,
x2 = 2( ln'nl) (5.22)

]

where N; is the number of events observed in bin i and n; is the theoretical number of
events from (5.18). The definition of “event” here is a false alarm, so in fact the inputs to
(5.22) are the actual and predicted numbers of false alarms rather than the relevant
probabilities. Note that N, is an integer while n; (derived from (5.18)) can be a fraction.
The bin counter i represents all 80 possible threshold bins in &r; thus an actual and
predicted number of false alarms is computed for each threshold size, and a single chi-

square statistic is then computed for each geometry. The significance of that statistic, or
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Chi-Square Significance: PPM-based GPS Model

10° e NI~ e DET——
o
£ 10 -

K o
g 102 .7 ¢
g g3 7 dashed: 5 S square: 7 SV
E: g a solid: 6 SV dashdot: 8 SV
“ gt - - . . . . : :
08 1 1.2 14 1.6 1.8 2 22 24
Horizontal DOP
P Chi-Square Significance: GPS Control Model (Hard Failures Only)

~~~~~
~~~~~~~~
________
~~~~~~~~
______

dashed: 5 SV square: 7 SV
solid: 6 SV dashdot: 8 SV

) 3 35 r
Horizontal DOP
Figure 5.9: Chi-Square Comparison Results
the likelihood that the simulated data is described by the theoretical distribution, is
computed from the incomplete gamma function Q| v), where v is the number of
degrees of freedom, which in this case equals 80, the number of threshold bins.

For comparison, a "control" simulation was run in which all soft failure models
were removed (hard failures were retained since they simply reduce the number of
available satellites). In this case, (5.18) should hold almost exactly, since the assumptions
which underlie it (see Section 5.2.2) are all satisfied. In practice, however, bin
discretization error and limited sample size prevent 90-100% statistical confidence from
being achieved.

Figure 5.9 shows the levels of significance obtained for each geometry case, where
the upper plot uses the PPM simulation results and the lower one uses the control
simulation. Geometry is on the x-axis, while significance probability is plotted on log scale
on the y-axis. Note that the significance scale on the upper plot is much lower than that of
the control case, as the visible results for moderate HDOP give significances on the order
of 107, whereas the control case significances are much greater. The random pattern of

these results is important, as it suggests that noise in the underlying simulation will make
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high significance unlikely even for the control case. It can also be observed from the test
data itself that, as expected, agreement is better for lower thresholds (where many false
alarms will result) than for the thresholds likely to be selected as optimal.

A summation of these results weighted by the number of position fixes in each bin
is shown as Overall Significance on both plots in Figure 5.9. For the control case, the
result is 0.579, meaning that it is quite probable that the false alarm results do come from
the chi-square residual distribution of (5.18). For the PPM simulations, however, the
result of 0.053 means that we can reject the hypothesis that the PPM simulation outputs
are chi-square with 94.7% confidence. We must conclude that using what we believe to
be a reasonable PPM, the chi-square distributions used in RAIM are likely to give
somewhat incorrect results.

Just how incorrect the assumptions behind traditional RAIM are is still unclear, as
it will vary with the application and amount of underlying system performance uncertainty.
It should be noted that if (5.18) were completely inaccurate, the resulting significance
would be zero. Thus, it is likely that traditional RAIM is not too far off the mark for most
applications. Since it produces thresholds without a lengthy simulation-based optimization
process, it can be used to set preliminary thresholds that can be substantially improved by
the methods and cost functions derived in Section 5.3. A fair bottom-line cost comparison
is needed before we can be more specific about the relative penalty incurred by traditional
RAIM methods.

5.6  Bayesian Updating and GIC Potential

While the method used to compute the optimal thresholds shown in Figure 5.7 can
be used as part of a "snapshot" RAIM algorithm (which uses only the current sample of
pseudorange data), more benefit may eventually be gained by applying the PPM and the
cost model to a multi-step updating algorithm. Fault Detection and Isolation (FDI) using
multi-step filters is an established field of research (see [7-5,14]). Its use can make the

integrity warning algorithm much less sensitive to aberrations in a single epoch, either by
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simple averaging of pseudorange measurements or by using single-epoch measurements to
update a “prior distribution: of failure uncertainty.

A Kalman filter algorithm for this role is derived in [7-7]. It relies on "censoring"
out the estimated bias from a single source. This idea utilizes past sensor information and
requires fewer assumptions than does traditional RAIM, but failures are still assumed to
come one at a time, and random effects are presumed to be perfectly white and Gaussian
once the bias estimate is removed. Another approach is implied by current plans for a
GPS Integrity Channel (GIC), which uses the FAA Wide Area Augmentation System
(WAAS -- see Chapters 6-8) to do an integrity check for each satellite visible to the
WAAS network in addition to broadcasting precise pseudorange corrections [8-8].
WAAS observes past pseudorange data; so it indirectly conducts multi-step updating.

We can avoid the white noise limitation built into Kalman filters by conducting
Bayesian probability updates at each time step. This type of algorithm is presented in [7-

1] using a hybrid version of Bayes' rule:

f (e, 19;) h(6,)
Y f(e.18,)n(6;) (5.23)

h(©;le) =

where e is the residual vector, 0j is a fault hypothesis, h(6jlet) is the posterior probability
of 6 given ey, f(etl6j) is the likelihood of the observed residual vector given an assumed

fault state, and h(8j) is the prior probability distribution given by:

l-ma fori=0

h(ei) B < o for1<ism’ (5.24)

Here, a is the assumed prior probability of a single spacecraft soft failure and m is the
number of visible satellites. This model thus has only m + 1 independent failure modes

(either no failure or one of m single-satellite bias failures). In [7-1], f(e(l6;) is computed
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based on the least-squares fit model in Section 5.2.2 after applying a correction for the

most likely bias estimate.
This formulation can be modified to incorporate a PPM and more general fault

assumptions. In [7-1], o is not set from prior information; it is chosen to give a desired
Pea just as in traditional RAIM. Introducing the PPM from Section 5.3.1 complicates the
problern, but it can be simplified by adding just one additional fault mode to (5.24): a "grab
bag" of miscellaneous receiver and multiple satellite faults. The overall prior likelihood of

these miscellaneous cases can be estimated from our PPM simulations, and f(et6;) could
be obtained by storing residuals conditioned on failure causes 0j. If the simulation does

not provide enough samples of the miscellaneous Ome failure hypothesis, we can

arbitrarily represent our uncertainty here by:

f(e‘ Ie'"“) =2 "el"/ "emaxuz; "emax" > 2. (5.25)

This is simply a ramp-shaped probability density which suggests that the likelihood of a
residual vector e; given the occurrence of this “unexplained” fault class increases linearly
as the magnitude of e; increases. The higher the expected "maximum" residual €max is
chosen, the more uncertainty exists (because the probability band is spread over more
possible results). Of course, an attempt to isolate a single satellite failure can give more
information about this likelihood (see [7-10]). Finally, a "loss function” decision cost
model (which does not need to set thresholds per se) is proposed in [7-1] and could be
modified to handle risk-based cost models using the concepts in Section 5.3.4.

An interesting system design problem results from the introduction of GIC: how
should system-wide algorithms and parameters be designed to optimally utilize all available
information and transform it for use by independent receivers with simple RAIM test
capability? WAAS GIC should be able to carry out the complex filtering or probability
updating algorithms outlined here and then transform its posterior results to test thresholds
which users can vary based on their distance from the station, their own observable GPS
geometry, and their risk aversion. The optimization of the overall shared RAIM algorithm
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is a system design problem suitable for global search optimization algorithms such as
Simulated Annealing and Genetic Algorithms (described in Section 4.3). Top-down
optimization of this type avoids over-reliance on simplifying assumptions, as will be

demonstrated in Chapter 8.
5.7 Summary and Future Developments

In this chapter, a prior probability model of the GPS system was constructed and
applied to RAIM algorithm threshold optimization. Monte Carlo simulations of the PPM
and the GPS non-precision approach application produced output probability distributions
from which optimal decision thresholds were computed to minimizc a risk-based cost
model. The outputs were also used to show that the chi-square assumption of traditional
RAIM is questionable in real GPS operating conditions. The PPM-based thresholds
represent a more general solution to the RAIM problem while using the snapshot residuals
algorithm of traditional RAIM. With more extensive design-stage simulation and cost
modeling effort, it could be turned into an independent high-fidelity RAIM algorithm.

One key limitation is the discretization of GPS geometries by both HDOP and the
number of satellites in view. Since this doubly partitions the set of observed position fix
errors and residual statistics, there are fewer samples in each bin from which to search for
the best threshold. The noisy RAIM cost results in Figure 5.7 demonstrate this problem
clearly. As mentioned there, we can get reasonable thresholds by simply fitting a line to
the jumpy curve of raw best thresholds, but a more general solution is simply to normalize
the residual test statistic by the number of degrees of freedom (number of satellites in
view) as motivated by the chi-square distribution assumption. This means that the
position-fix samples will only be discretized by DOP, increasing the number of samples in
each bin by a factor of 4-5 or so given the same number of overall trials. This is done in
the RAIM optimization for WAAS as reported in Chapters 6 and 8. Also, the use of DOP
by itself is not the only geometry parameter that can be used. Using “worst-subset DOP”

(OHnmax from Section 5.2.2) or the mathematically similar maximum failure slope might
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work better even though it implicitly assumes only single-channel failure modes. This
hypothesis will be tested for the European WAAS application in Section 8.3.5.

Finally, a key issue is to what degree simulation-based and risk-based RAIM
threshold optimization should supplant the more traditional approaches. The traditional
RAIM approach is used by almost all GPS system designers, and while it may be
approximately accurate, much greater robustness to the underlying uncertainty can be
obtained from more-detailed probability models, cost functions, and system simulations.
This suggests that conventional RAIM can be used during the initial stages of GPS system
design to derive a simple set of approximate thresholds. As development proceeds,
simulation-based evaluation should provide two things: (1) a means of revising the
original thresholds to take the more-complex risk models into account, and (2) a PICA
evaluation for safety and certifiability analysis that is a major improvement over the
numbers provided by traditional RAIM. Thus, some sort of detailed simulation
methodology will be needed to demonstrate PICA feasibility with the optimal integrity
parameters. Reliance on the single-failure chi-square models may be fine for development
of the basic integrity algorithm, but using those results as a “proof” of PICA acceptability
is a trap that we, as engineers working in a new field with many unknown and

unmeasurable failure modes, must be careful to avoid.
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Chapter 6: Wide Area Augmentation System
Ionosphere Integrity

Coupled with satellite communications, GPS will contribute to increased safety and
efficiency of international civil aviation by supporting real-time surveillance of aircraft
and reducing the separation requirements - and increasing the number of flights
possible - on busy transoceanic routes that represent the most favorable routes between

origins and destinations.
- Robert Loh, “Seamless Aviation: FAA's Wide Area Augmentation

System”. GPS World, April 1995, pp. 20-21.

6.1 Introduction to the Wide Area Augmentation System (WAAS)

In recent years, several approaches have been proposed which utilize additional
ground and space-based systems to augment the performance attainable from “stand-
alone” GPS. Differential GPS (DGPS) is an augmentation approach that offers substantial
user accuracy improvement. The basic concept of DGPS is the use of one or more
reference stations at known, pre-surveyed locations. These stations have accurate, well-
calibrated GPS receivers which determine their position and compare to their known
“true” locations. Several algorithms exist for calculating scalar (“lumped” pseudorange)
or vector (error-specific) corrections for each GPS satellite in view of the reference
station. A key distinction exists between “local-area” and “wide-area” DGPS. In the
former, also known as LADGPS or LAAS, a single reference station provides corrections
for users in its vicinity (i.e., within about 100 km). The latter, known as WADGPS or
WAAS (for the FAA's “Wide Area Augmentation System”), is composed of a network of
widely spread reference stations (or WRS’s) which transmit their observations to a master
station. The master station, or WMS, fits the combined observations into corrections that
encompass the set of GPS satellites visible to users over a large geographic area. These
corrections are ideally transmitted over a hemispheric area by geosynchronous
communication sa‘ellites, which broadcast their signal on the GPS L1 frequency and also
provide additional GPS ranging signals. A pictorial outline of the FAA WAAS system is
shown in Figure 6.1. Commercial WADGPS systems may substitute ground-based

communications schemes, such as FM-subcarrier broadcast [6-14).
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Figure 6.1: WAAS Network Layout Overview

Because wide-area DGPS ties the observations of its reference stations together
into a uniform set of corrections, it promises to provide navigation accuracy sufficient for
FAA Category I precision approaches to a large region of users at a much lower price
than would be required if the same service were to be provided by many independent
local-area DGPS stations. However, key uncertainties regarding WAAS performance are
raised by the fact that, unlike denser LAAS networks, users must rely on observations
from points hundreds of kilometers away. While it is expected that spatial decorrelations
are well-behaved over these distances, insufficient data has been gathered to verify this to
the necessary statistical certainty.

At Stanford, a prototype WAAS network has been built with three wide-area
reference stations (WRS's) in Arcata, CA., San Diego, CA., and Elko, NV. Each of these
stations has a dual-frequency GPS receiver and a PC. The wide-area master station

(WMS) computer, which receives all of the WRS observations and computes the WAAS
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corrections, is located at Stanford. The Stanford site also has a separate dual-frequency
receiver which serves as a static user for purposes of WAAS performance evaluation but
does not contribute to the WAAS message solution. This network has demonstrated sub-
3 meter 95% vertical accuracy during flight trials at Palo Alto Airport (near Stanford),
Livermore, and Truckee airports [8-18].

The FAA is developing the WADGPS concept further by introducing a nationwide
network of reference stations to cover all of the Continental U.S. (CONUS). This
operational system will be preceded by a so-called “National Satellite Testbed” (NSTB) of
as many as 24 reference stations, possibly including three each in Canada and Mexico.
The NSTB network is separate from the operational system and will serve to verify the
WAAS concept in full-scale operation as well as help determine the accuracy and integrity
to be expected of WAAS when the operational system comes on-line [8-11]. In addition
to the SPS requirements mentioned in Section 5.2, RTCA, a Federal Advisory
Organization comprised of industry, government, and academia, has promulgated
Minimum Operational Performance Standards (MOPS) for WAAS user equipment [8-13].
The FAA has also released the WAAS Specification [8-16] which attempts to provide a
set of requirements which the networks under development will be expected to meet.

This chapter applies the RAIM concepts introduced in the preceding chapter to
WAAS. A WAAS integrity study is conducted which focuses on rare-event ionospheric
spatial decorrelations. The extent and likelihood of these are unknown at present; thus an
uncertain probability model is fitted to limited experimental data and then extrapolated by
Monte Carlo simulations. In other words, the PPM for the SPS user is replaced by a
model of the uncertain magnitude of ionospheric correction errors based on the best
available information. The process of simulating WAAS-aided user position fixes along
with these error modes is similar to that of the SPS case. The key application considered
is aircraft Category I precision approach, which would rely on GPS/WAAS to provide a
3-D (not just horizontal) position fix accurate to within a few meters (under normal
conditions) down to a minimum decision height 200 feet above the ground. This puts
great stress on vertical position accuracy, which is the weakest dimension for GPS

because of the generally poorer geometry (VDOP) in that dimension. Therefore, all
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WAAS accuracy and integrity simulations carried out here focus on vertical position error
only.

A deeper understanding of WAAS operations and performance will be provided in
subsequent chapters. Chapter 8 will introduce a system-wide evaluation procedure for
WAAS user accuracy performance under “normal conditions,” i.e., the 90-95% of the time
that all elements of the system are within normal operating parameters. Under these
conditions, massive simulation of user position fixes is not necessary, as system errors can
be propagated from one element to another using stochastic linear system theory since all
of the basic assumptions are met. The integrity approach developed in Chapters 5-6 is
then applied to the results of the normal-case analysis to simulate how RAIM handles a
variety of possible failures modeled in prior failure probability distributions.  After
combining the accuracy and integrity studies into a unified PICA evaluation, Chapter 8
proposes a system value model for the candidate WAAS architectures being considered.
Finally, using this model as the objective function for the WAAS-based capability being
provided, a genetic algorithm formulation is introduced which can evolve an optimal

WAAS network architecture.

6.2  Rare-Event Ionosphere Decorrelation Models

6.2.1 Introduction

Recent experimental data suggests that ionospheric spatial decorrelation is the
most serious systematic threat to WAAS accuracy and integrity. Whereas other WAAS
error sources, such as ephemeris and tropospheric error, appear to have reasonably well-
bounded tails, ionospheric decorrelation has the potential to become very large (over 5-
meter differences) when pierce-point separations exceed 1000-1500 km. A probability
model based on the latest available data has been constructed to model our uncertainty
regarding the magnitude of “worst-case" ionospheric errors as well as the error
magnitudes to be expected under more normal conditions. This model forms the basis for
a series of WAAS performance simulations in which accuracy and integrity for users

randomly located in the Continental U.S. is measured. Our goal at this stage of WAAS
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program development is to use computer simulation to project WAAS performance given
what is now known. Due to the limited error data and uncertain error models we have
now, it is very difficult to verify that WAAS meets the continuity and integrity
performance requirements for Category I aircraft precision landing [8-16], but our results
under these limitations suggest that it will be feasible to certify this once data from WAAS

full-system tests is available in a couple of years.

6.2.2 Breakdown of WAAS Error Sources

WAAS employs GPS corrections computed by a network of reference stations to
remove most of the satellite-based errors that exist without differential corrections. Small
errors due to spacecraft clock and ephemeris remain, however, and depending on the
latency (time to reception) and age (time to last usage) of DGPS corrections, Selective

Availability (SA) will contribute a ranging error estimated by the simple kinematic relation:

SA error (m) = -l— ar®; a = 0.004 m/sec

2 (6.1)
where 1 represents latency plus age, and the "acceleration factor" a has been estimated by
studies of SA over time [6-14]. This parabolic approximation should be valid for r < 40
seconds. Using ¢t = 12 seconds as a conservative number for WAAS, this time-
decorrelation error is very small (see Table 6.1 below).

Errors that are spatially decorrelated depend on the geographic separation
between the user and the site for which the corrections were computed. Local
conditions within the ionosphere (about 350 km above the Earth) and the troposphere
(the band of the atmosphere from the surface to about 7 miles up) cause variable delays
in the GPS ranging signals which distort the true range to the user. These are described
in detail in Section 6.3.3.

Other user-specific errors are due to conditions at or near the user itself, such as
multipath (due to reflected ranging signals) and receiver noise. The user should be
aware of these local error conditions in order to make good integrity decisions; this is

one reason why RAIM is traditionally handled by the user. A summary of the normal-
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condition user error model (excluding spatial decorrelation errors) is given in Table 6.1
[8-5,7]. The ephemeris and clock error terms are after the WAAS correction is applied;
thus they are much better than the uncorrected SPS numbers in Table 5.1 of the previous
chapter. The rms of the variances in Table 6.1 is about one meter. In our WAAS
simulations, the effects of these errors are modeled by Gaussian noise with a standard
deviation of 1 m.

However, for WAAS, the quality of the DGPS corrections is another key
integrity factor. The network of remote monitor stations each has backup hardware that
computes the corrections independently and looks for any significant discrepancies
which might indicate a WAAS hardware or software fault [8-12). Flagged faults may
lead to non-availability of one or more reference stations; WAAS applications would not
be possible during that time for users located in areas whose corrections without those
stations do not meet integrity requirements at the monitor station. Unflagged faults
could lead to integrity breaches and are thus very serious, as they would affect many
users without their knowledge. As a result, WAAS integrity is a dual responsibility of

the network and of each individual user.

Error Source Standard Deviation Notes
receiver noise 0.5m user-dependent
multipath 0.5m user-dependent
SV ephemeris 0.4 m after WAAS corr.
SV clock (with SA) 0.3m 12 sec. latency + age
reference survey errors 0.5m misc.

Table 6.1: WAAS Error Source Summary

6.2.3 Spatial Decorrelation Error Models

The ionosphere layer of the upper atmosphere is awash in charged particles that
can affect the delay experienced by electromagnetic signals sent through it. lonospheric
conditions in general are dependent on seasonal and daily variations as well as solar
effects, which include an 11-year cycle of waxing and waning solar emissions of charged
particles (the “solar wind") and the occasional solar flare or other temporary event that

creates higher charge levels in the ionosphere. At a smaller scale, charged-particle
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conditions in the ionosphere will vary from site to site on the globe. GPS ranging signals
received by a user are assumed to penetrate the ionosphere at a variable altitude that
averages about 350 km (this penetration point is called a pierce point, or PP) and suffer a
variable propagation delay in doing so. Note that signals from satellites at lower elevation
angles will pass through this layer at a more oblique angle, suffering relatively more time
delay. This delay appears as an error to the measured pseudorange for that satellite.

The unaided GPS user relies on the Klobuchar Model to adjust for ionospheric
conditions based on almanac data contained in the GPS ranging message [8-6]. This
model is accurate to 5-10 meters one-sigma, so the remaining error is significant.
Differential stations can greatly improve this accuracy by using high-quality dual-
Jfrequency GPS receivers to measure the local ionospheric delay to around 0.5 meters one-

sigma (the remainder is primarily Tgq error, which is the error between the L1 and L2-

frequency satellite timebases). Local-area DGPS systems without dual-frequency
reference receivers assume that the user is close enough to the reference site (that
broadcasts DGPS corrections) that the variance in the local ionosphere between the user's
satellite pierce points and those of the reference station are manageably small [6-14]. For
WAAS, however, the relatively low density of monitor stations across the U.S. means that
these distances, or baselines, are much larger [7-12). Thus, algorithms to model
ionospheric delays across a wide area are critical to the accuracy of WAAS corrections.
Research at MITRE has developed the "grid algorithm” to handle ionospheric
corrections for WAAS [8-6]. Figure 6.3 in Section 6.2.4 illustrates this process.
Basically, the remote monitor stations report their measured ionospheric delays for their
satellite pierce points to the master station, which computes vertical (i.e. from a
hypothetical satellite directly overhead) ionospheric corrections for each point in a lattice
that is superimposed over the U.S. Grid points could be separated by either 5 or 10
degrees of latitude and longitude, or the grid may use higher gridpoint densities at lower
latitudes, where grid points separated by a constant longitude are further apart. Lower
gridpoint separations clearly are less susceptible to spatial decorrelation, but they become

difficult from a communications standpoint due to the greater number of estimates that
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must be uplinked to the user, who receives the corrections for each grid point as part of
the WAAS message.

For each of his or her satellite pierce points, the user determines the four grid
points that surround it, the distance d; (i = 1,...,4) between the pierce point and each grid
point i, and then he or she interpolates the vertical correction at that pierce point using the
following equation [8-6]:

: . T /d;

Iono. Vertical Correction = E I, W

k (6.2)

where L,/ contains the WAAS gridpoint estimates. This vertical correction must be

adjusted for the obliquity of that satellite, which can be calculated from its local elevation

angle 0 and pierce-point elevation 6' using the obliquity factor (OF):

. 96 - 0(deg.)]’

OF = 1/sin() = 1+2[9*(§eg)}
(6.3)

Note that this is an approximation based on a flat Earth and is only valid for 0 < 8 < 90
degrees. Multiplying this factor by the interpolated vertical delay gives the final

pseudorange correction for that satellite.

6.2.3.1 lonosphere Sampling Model: Various researchers have attempted to measure the
accuracy of ionospheric corrections of this type using two to four reference stations. In
[3], daytime differences between slant ionospheric error predictions at reference stations
from 300 to 1800 km apart were measured in 1992-93, when ionospheric conditions were
normal apart from a few "stormy" days. In [4,13], grid algorithm corrections were
computed based on a network of three reference stations in the Mid-Atlantic area, and the
interpolated slant error prediction was compared to the error measured at a fourth station
at the assumed user site. This data was taken from November 1992 - July 1993, and again

short periods of peak activity were observed.
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Using the data in [8-5,6,10], a model of ionospheric delay likelihoods suitable for
WAAS performance simulation has been developed. This model gives a distribution for

the relative slant ionosphere error between two locations as a function of the following

factors:

(a) Solar Cycle: Most of the experimental data obtained to date is from the early 1990's,
which are between the high and low peaks of the current 11-year solar cycle. Delays in
peak years would be approximately double those measured in these experiments [8-10].
Similarly, the bottom of the cycle would give delays about half those observed. This is

modeled by a correction factor for solar cycles, CF, which ranges from 0.5 to 2.0:

CF

1+ sin(2 nt, /1 l) when sin(e) >0

CF 1-05sin(2mt,/11)  whensin(s)<0

(6.4)

In our WAAS simulations, the current date within the solar cycle, ¢, is sampled in the
outermost loop by a uniform distribution over an 11-year time span. Note that in the
covariance projection method of Chapter 6, this distribution is not sampled. Instead, a

reasonable worst case value CF = 2 is used to model “normal conditions™ conservatively.

(b) Seasonal: Slant error results are provided in [8-10] over three seasonal conditions:
winter, summer, and equinox. In addition, the presence of ionospheric storms on a handful
of days in 1992-93 is a fourth possible condition. Data for various station separations was
collated by seasonal condition to calculate base ionospheric standard deviations for a
baseline of 348 km. These two-sigma results and the seasonal probabilities are given in

Table 6.2.

Condition 20 Deviation Probability
summer 0.68 m 0.45
winter 1.05 m 0.45
near equinox 1.18 m 0.09
ionosphere storm 1.85m 0.01

Table 6.2: Ionosphere Deviations by Season
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Local conditions also vary according to the time of day, with the peak deviation
occurring at about 2 PM local time, and errors are generally much lower at night [8-10].
This effect is not modeled in any of the WAAS simulations in this thesis, but it could be
easily added if a distribution of local user time is incorporated. This would be desirable for
a simulation that is used to project the risk inherent in conditions at a specific local time of
day. For this work, the conditions prevailing near the 2 PM peak delay time are assumed

to always be in effect.

(c) Baseline: Data was taken in [8-10] at various station separations, allowing us to fit a
line of ionospheric standard deviation to same-season data over varying-length baselines
and then normalizing by a standard 348 km separation. The following linear fit was

obtained, where RM is the differential slant error in meters:

RM = 0416 + [0.542 (i0.06)]§%§
(6.5)

where d is the separation distance (in km) and the (%) represents the one-sigma deviation
in the slope of the linear fit. Note that the constant factor of 0.416 in this equation, which
would exist at a separation of zero, partially represents the effects of L1-L2 interfrequency

biases in reference receivers as well as simple noise decorrelation between receivers.

(d) Tail Distributions: Data provided in [8-10] represents 90-98% values of slant
ionospheric errors. It is clear from this data that the 98%/90% error ratio is greater than
1.416 as predicted by a Normal distribution. The amount of excess varies between
individual data points, but it can be approximated by a multiplicative factor TM (“tail

modifier”) using the standard Normal(0,1) distribution as follows:

1.645 < 'Z;amp' <233 = TM=11310.11 (6.63)

Zanp| 2233 = TM =1401025
else ™M=10

(6.6b)
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No breakdowns are given for less than 90% confidence; thus it will be assumed
that the distribution of slant delay is Normally distributed between the Sth and 95th
percentiles. The delay error plots in [8-6,10] support this conclusion, although significant
uncertainty remains. Between the 1st and 99th percentiles, we continue to use the Normal
distribution framework but expand the base variance by multiplying by the (uncertain) TM
factor given in equation (6.6a). In the worst 2% of cases, we multiply by the larger factor
given in equation (6.6b). This is not the most convenient analytical model for ionospheric
tail distributions, but it is well suited for Monte Carlo simulations using standard Normal
random numbers. Computer simulations of this type allow us maximum flexibility in

expressing our model's uncertainty.

6.2.3.2 WAAS Ionospheric Sampling Procedure: ~ Monte Carlo sampling of this WAAS

ionosphere model is conducted in the C programming language. Figure 6.2 gives a flow
chart of the processes and iteration loops executed by this simulation.

The outermost of three loops randomly places an airborne WAAS user within the
Continental U.S. (CONUS) by uniformly sampling his latitude and longitude (note that
each 2-D point has an approximately equal chance of being chosen) between [25°, 49° N]
and [66°, 125° W] respectively. Sampled points that happen to lie outside the borders of
CONUS are discarded and re-sampled. The resulting position is compared to the locations
of 20 FAA Air Route Traffic Control Center (ARTCC) sites proposed as WRS locations
for the operational WAAS network to measure the relevant separation distances [8-11].
In the second loop, for each user position, approximately one day's worth of GPS satellite
geometries is simulated in approximately 15-minute intervals using the sampled time
update explained in Section 5.1.1. The Volpe data for the Primary-21 constellation is
used, along with the four geosynchronous satellites listed as proposed WAAS
augmentations in Section 5.1.1. Two of these extra GPS ranging sources (AOR-W and
POR) are normally visible within CONUS. Hard failures (only), which render satellites
temporarily unusable, are also simulated for the 24 GPS satellites based on the PPM
probabilities and procedure given in Section 5.3.
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Figure 6.2: WAAS Integrity Simulation Flow Chart

For each GPS geometry, the observation matrix G and the vertical dilution-of-
precision (VDOP) are computed along with elevation angles for each satellite in view of
the user using (5.7) and (5.11b). In the innermost loop, 100-200 individual samples of
slant ionospheric error are generated for each satellite in view. Not only does this allow us
to tabulate the overall distribution of ionospheric errors, but it allows separate position
error computations for each inner-loop trial, even though the satellite geometry has not
changed.

For each inner-loop iteration, the current state of the 11-year solar cycle is sampled
from a uniform distribution, and CF is computed from equation (6.4). The seasonal
condition is sampled using the distribution in Table 6.2 to obtain the base sigma, Op,.
Given a baseline distance, we compute the separation modifier RM from equation (6.5),
sampling the uncertain slope parameter when necessary. The ionospheric error variable z

is sampled from a standard Normal(0,1) distribution, and outcomes outside the 5-95%
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“normal” range result in the tail modifier TM from equation (6.6). Finally, since the base
data in Table 6.2 is slant error (not vertical), it already includes an implicit obliquity factor
that must (imprecisely) be factored out. From the data in [8-10], a "mean obliquity factor”
MO = 1.765 was estimated. This is a necessary approximation which represents the
normalized obliquity based on a set of GPS orbit simulations which give satellite elevation

distributions. The final slant jonospheric error SE is computed as:

ru cr 2 e,

SE samp
1.765 6.7)

Note that SE represents an error, reported by the nearest "monitor”, relative to the "true"

ionosphere error of zero that would be obtained with zero spatial decorrelation.

6.2.3.3 Troposphere Sampling Model: Local atmospheric conditions in the troposphere

also create transmission delays. Simple models exist for the troposphere, and the WAAS
user must rely on them to help correct for this delay [6-14]. Because the troposphere is
closer to the Earth than the ionosphere, the delay error is even more sensitive to satellite
elevation than for the ionosphere. Data relating 95% tropospheric errors observed by a
WAAS user as a function of satellite elevation is given in Figure B-1 of [8-5]. Using two
cubic polynomial fits to this data, we can compute the standard deviation for any satellite

elevation angle 0 (in radians):

0, =—61230" + 55902 —19.76 + 3.045 (lowel.) (6.82)
G, =-0.4956" +1.730% — 1990 + 098 (highel.) (6.8b)

where the boundary for low/high elevation is 18.75°. Tropospheric errors are generally a
lesser problem than are ionospheric errors, and their error distribution saturates in [8-5]
rather than indicating tail inflation. Thus, Gaussian sampling of the standard deviations

computed in (6.8) is actually conservative. In the simulation, tropospheric errors are
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sampled from Normal(0, o) distributions for each satellite pierce point in view. This

error is added to the sampled slant ionospheric error from the previous section.

6.2.4 Simulation of DGPS Corrections

The spatial decorrelation sampling algorithms can be packaged in various ways to
model differing DGPS correction algorithms. The simplest application is local-area, or
LADGPS, corrections which are broadcast from the nearest monitor site that can see the
satellite in question. The user is thus dependent on a single monitor. Using only the
ARTCC locations proposed for WAAS, long baselines of hundreds of kilometers result.
For each SV in view of the user, an independent slant ionospheric error is generated using
(6.7) based on the distance to the nearest qualified monitor. Tropospheric errors are also
sampled, and a sample of the other error sources from Table 6.1 is added. Using the
standard GPS observation equations from Section 5.1.2, the 3-D and vertical position
errors can be computed and stored for each trial.

Simulating the grid algorithm is much more complex. Without a complete

simulation of all WAAS ground operations, an exact model is not possible. The grid

Gridpt. Gridpt.
#3

Lat + Grid

nearest
WRS
La
Gridpt.
Lgng Long + Grid

Figure 6.3: User Pierce Point and WMS Grid Geometry
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model is designed to represent the essence of interpolation in correcting for spatial
decorrelations given the layout of monitor stations on which the gridpoint estimates are
based. The grid is composed of 5 or 10-degree cells that cover the geographic area from
10-70° N latitude and 50-160° degrees W longitude. The pierce point of each satellite in
view of the user is within one of these grid cells. An illustration of this pierce point
separation geometry is shown in Figure 6.3.

To sample an ionospheric delay error at a given user PP, an ideal normalized slant
ionosphere error is derived for each grid point by sampling, using (6.7), given the distance
from that grid point to the user. Equation (6.2) interpolates for the effects of already-
sampled grid points (this is a necessary abstraction since no multiple-baseline dependent
ionosphere data exists). Another error sampled from (6.7) is added to each grid point
based on the distance from that grid point to the nearest monitor station. Finally, the
user's slant ionospheric error is computed by a final interpolation from the four gridpoints
using equation (6.2) and applying the obliquity correction (OF / MO). Troposphere and
other errors are handled as before, as is the GPS position fix calculation and storage of
results. The result is a representation of temporal correlation among the separated user

pierce points; they will all be affected by similar conditions at any given time.
6.3  Ionosphere Decorrelation: Simulation Results

6.3.1 Spatial Decorrelation Error Results

Although the spatial decorrelation models presented in Section 6.2.3 are inexact
and contain substantial parameter uncertainty, they represent the best knowledge available
to us with the current set of experimental data. The plots that follow show the results of
simulations using these models, allowing us to compare and contrast differing DGPS
ionospheric correction methods. All the results in this chapter come from simulations of
2000-5000 user position samples, then 100 GPS geometry samples (over approximately 24
hours) for each user position, then 100-200 spatial decorrelation samples for each
spacecraft in view. In other words, 100-200 separate error samples were taken for each

user-GPS geometry combination, and each error sample led to a position fix error
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computation. Overall, 20 to 80
million error samples were
conducted, and the entire process
took 12-18 hours of CPU time on a
Sparc-20.

Figure 6.4 is a semi-log plot
of the density function of slant
ionospheric delay for LADGPS, in
which only the nearest ARTCC
reference monitor is used for
ionospheric corrections. The outer
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plot represents samples of summed jonospheric and tropospheric errors for a given

spacecraft. The dashed line inside that represents samples of ionospheric errors only.

Clearly, the ionospheric errors have much larger magnitudes. Also note that a Gaussian 1-

meter-sigma error distribution has tails which fall off much more rapidly than does the

distribution of Figure 6.4. This illustrates the extent to which the tail distributions of

ionospheric errors have been magnified by our model.

Figure 6.5 is a similar
semi-log plot for the WAAS case
in which the MITRE grid
algorithm is simulated with 10°
(solid line) and 5° (dashed line)
cells. The 10° case result is
generally 2-10 times better than
the LADGPS result in Figure 6.4,
as expected, although the tail-
distribution expansion pattern is
not much improved. Substantial

further improvement in both error
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magnitude and rare-event spread is
gained by wusing a 5° grid.
However, a 5° grid multiplies the
number of needed ionosphere
correction points by 4; thus it may
overstress the current 250-bps
WAAS  communications  signal
format [8-8].

6.3.2 Position Error Results
The same simulations that
generated the above spatial-

decorrelation distributions were
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Figure 6.6: VDOP Cumulative Distributions

used to compute 3-D and vertical DGPS position errors. As mentioned before, vertical

position errors dominate this picture and are the most troubling errors for precision aircraft

landings. Figure 6.6 shows the observed cumulative distribution of user VDOP from the

Inmarsat-augmented and unaugmented GPS geometries sampled. For the basic 24-
satellite GPS constellation, VDOP is below 3.2 about 99% of the time. With the extra

geosynchronous ranging sources,
VDOP < 3.2 occurs 99.87% of the
time, and 6 or more satellites are
visible 99.9% of the time (using a
7.5° user mask angle). These results
suggest that very high system
availability for precision landings,
approaching the desired figure of
99.9% set by RTCA, may be possible
[6-15,8-7]). In our simulations, a
preliminary availability limit of
VDOP = 3.2 was set; i.e. all GPS

Probebility

L I A
Vertical Position Brror (m)
Figure 67: LADGPS Position Ervor Distribution
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geometries with higher VDOP would 10°

be counted as non-available for the 107 \\
precision landing application. The 107 N
N
application of RAIM in the following > 107 \\
. \
section will be used to confirm this E 10% "X
AY
VDOP availability threshold. 107 \\N
Figures 6.7 and 6.8 plot the 1097 - ¥a .‘L:fr .
7 /I WMAI 'A'AI\’
density of vertical position errors for 10° Y ‘-J AL
the three cases discussed above: 10% 5 10 15 20 25 30
LADGPS (in Fig. 6.7), 10°grid Vertical Pusition Error (m)

WAAS (Fig. 6.8, solid), and 5°-grid AAS

WAAS (Fig. 6.8, dashed). The LADGPS plot in Figure 6.5 uses the VDOP = 3.2 limit,
which helps limit the position-error effects of rare-event ionospheric errors. However, the
two WAAS curves shown in Figure 6.8, which are generally superior to those for
LADGPS for errors under 25 m, do not use this limit for this illustrative simulation run
(Figure 6.11 will show the result with the VDOP limit). Without that availability limit, the
probabilities of vertical errors stop decreasing past 20 m. From this, it seems that this
VDOP limit is the key to limiting the propagations of rare-event spatial decorrelations into
unacceptable position errors. Substantial improvements are gained with availability and
other RAIM checks, and these will be demonstrated in the following section on RAIM
optimization.

Despite being based on a highly uncertain ionosphere error model, the overall
results obtained for WAAS from these stations are about 30-35% better than those
obtained experimentally by MITRE and Stanford from their 3-station systems [8-5,181,
demonstrating the potential of this 20-station monitor configuration. Furthermore, WAAS
is not limited to the configuration under study, as further improvements could be obtained
from denser monitor networks and/or more geosynchronous satellites. The effects of

hardware augmentations will be discussed in the following two chapters.
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6.4  WAAS Integrity Methods and Results

6.4.1 Residuals Threshold Test Algorithm

Given the basic WAAS configuration represented by these simulations, it is
possible to apply various integrity algorithms to the simulations in an attempt to further
improve the system's accuracy and to warn users of conditions where accuracy risks are
unacceptable. This includes availability problems (produced by poor DOP, which is
known a priori) and continuity and integrity concerns, which result from detected and
undetected system faults that occur during a precision approach.

As noted in Section 5.2.2, the standard RAIM algorithm that has been applied to
both uncorrected GPS and DGPS consists of a DOP availability check and a residuals
threshold test. For WAAS, in order to reduce the number of separate geometry bins, the
residuals statistic Dy, is normalized by the number of spacecraft in view. The calculation of
this statistic, revised from equation (5.15), is done as follows:

D} = 2"[1,-GG ]z [ (n-4) ©69)
As before, the user compares D,, at each position fix step to a preset threshold 7 for each
VDOP bin, and an integrity alarm is issued if D, > T. Analytical methods for calculating
desirable thresholds described in Section 5.2.2 can be applied here, but this research uses
the more general user cost optimization developed in Section 5.2.3. In this approach, a
full set of WAAS simulations is conducted, and each resulting set (x, D,) is stored as a
function of VDOP (only). Afterward, a simple optimal threshold search is conducted for

each VDOP cell to find the threshold that minimizes the expected user cost.

6.4.2 WAAS User Cost Model

For a precision approach, integrity decisions must be made closer to the ground.
The maximum allowable vertical position error for Cat. I precision approach is set at RPE
= 15 m, which is still quite conservative. The user costs listed in Table 6.3 below for false

alarms (D > T but error < RPE), detected errors (D > T and error > RPE), and missed
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RAIM Result Base Cost Variable Cost
good position 0 0
detected error 1 0
missed detection 300 10
false alarm 1.025 0
RAIM non-available 0.025 0

Table 6.3: WAAS User RAIM Cost Parameters

detections (D < T but error > RPE) are derived from the allowed risks of an aircraft
accident as developed in Section 5.3.4. For Category I precision approach, we assume
that a fatal accident, given a position error exceeding RPE, has about the same likelihood
as for the non-precision approach case; thus the risk multiplier Rc = 5 x 10°. The non-
availability cost remains more or less the same because the inconvenience of not being able
to use the system is also assumed to be similar. Therefore, only the missed detection cost
has changed from the SPS RAIM costs listed in Table 5.3.

Note that the variable cost of a missed detection means that in addition to the base
cost of any MD, an additional cost is paid for each "bin" (of width 0.5 m) beyond the RPE
limit that the missed position error is located. Optimal thresholds for each VDOP bin are
determined using the cost optimization procedure explained in Section 5.3.5. This cost

minimization will determine what VDOP should be chosen as the availability limit.

6.4.3 WAAS User Integrity Results
Running this threshold search on the WAAS simulation results in Section 6.3 gives

the set of optimal thresholds shown in Figure 6.9. The discontinuities in the optimal
thresholds for adjacent VDOP cells indicate that the statistical significance of the WAAS
Monte Carlo simulation is still limited. We expect the best thresholds to uniformly
decrease for increasing VDOP, since higher VDOP gives a greater probability of position
errors exceeding RPE and thus should lead to more integrity alerts. This result would be
realized from an infinite number of simulation trials. Instead of this, simply fitting a line to
the optimal thresholds in Figure 6.9 (as suggested in Section 5.4.3) should be adequate,

and the resulting thresholds can then be tested on a longer set of simulation trials. Note
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that the threshold curves shown 1

here are somewhat smoother solict dptimal thresh.
than in the SPS case (Figures _ A (0= non-available)
E
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Table 6.4 shows the
overall results for this RAIM method. For a VDOP limit of 3.0, availability is still very
high (although not quite up to the desired 99.9%). VDOP serves as a reasonable
availability criterion, although some improvement is obtained for the European WAAS
case using maximum Vgo. as described in Section 8.3.5. False alarms are relatively
infrequent, but they occur about 50 times more often than the MOPS number of 107, One
reason for this is that the calculation done here assumes that any position error does not
exceed RPE but is flagged by RAIM is a false alarm, but traditional RAIM tends to
assume linearly-growing failures, so that what are “false alarms” in the simulations would
be treated as “early detections” of a soon-to-violate-RPE failure. Thus, to the degree that
real failures behave predictably, the MOPS requirement may make sense, but without such
an assumption, it appears difficult to meet this arbitrary number under current WAAS

performance uncertainty.

Pr(WAAS available) 0.9958
Pr(false alarm) 0.0005
Pr(vertical error > 15 m) 1.0x 10°
Pr(missed detection | error > 15 m) 0.2691
Overall User Cost 0.00067

Table 6.4: WAAS RAIM Results Summary
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The overall user cost for the optimized RAIM parameters is reasonably low, and

we see that the probability of an undetected penetration of the outer precision-landing
tunnel is simply Pr(vert. error > 15 m) Pr(MD | vertical error > 15 m) =2.7 x 107, This

result is very close to the desired probability of 1 x 10-7 as specified in the RNP tunnel
concept [6-10], although it does not necessarily include the effects of all possible ranging
errors. With Rc = 5 x 107, the corresponding fatal accident risk per approach (from the
ionospheric integrity threat alone) is 3.35 x 10, This is still about 30 times higher than
what would be desirable for a fully certified system, which points out the need to gather
more complete data from which to reduce the underlying rare-event uncertainty that drives
the final risk estimate. Also, the use of RPE = 15 meters seems overly conservative for
approaches that are not supposed to get closer than 200 feet to the ground. The risk

multiplier used here most likely suits a considerably higher error limit.
6.5  WAAS Isolation/Correction Algorithms

Another RAIM approach that may be especially suitable for WAAS is based on the
very probability models we have built to describe spatial decorrelation errors. Since an
airborne WAAS user could possess a similar model, he or she could use it to determine the
“believability" of the ionospheric grid corrections received from WAAS. Knowing the
positions of visible satellite pierce points within grid cells, the user could potentially flag a
satellite whose ionospheric correction looks highly uncertain. Satellites whose corrections
have a sufficient uncertainty could be isolated, or dropped, from the observation matrix
used to compute a position fix, or they could be de-emphasized as part of a weighted least
squares position computation. A preliminary version of this idea has been tested and is
outlined in this section.

Recall that the user will interpolate an ionospheric correction (call it I;) for each
satellite pierce point from the broadcast grid corrections using equation (6.2) and then
multiplying by the obliquity factor OF from (6.3). From this, an "uncertainty variance"

Guw? is computed from the four grid point estimates Iy as follows:
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4 I? - J?
o = $oF (7 2,k) drdirdivd, |
k=1 RMk dk (6.10)

where SF, RM, and o, are defined in equations (6.3, 6.5, 6.8). Note that the interpolation
function (6.2) has been used to combine the likelihoods of the estimates between the PP
and each grid point. A limiting threshold could be set on this statistic, or one could project
this spatial decorrelation variance from the pseudorange into the vertical position error
domain by using:

.]

6,;, = G0, = [(GTG)_lGT],, C.s (6.11)

where the [3,j] entry of matrix G* is the scalar projection of ranging error into vertical
position error. Once we have this statistic for each satellite in view, we perform the

following process of checks:

Spatial Decorrelation Isolation Algorithm (SDIA)

(1) RAIM non-availeble if VDOP > 3.2
(2) fori=1,..,n, compute G,5; from (6.11) and compare to threshold T

(3) if o,; > T for any i and n > 6, remove row i from observation matrix G to get
G,
(4) use G, to compute position fix unless:
a) VDOP for G, > 3.2, or
b) Oy, >0.75 T for any otheri=1,...,n
(5) if a) or b) holds, situation is non-available

Unlike the residuals RAIM algorithm, it is difficult to choose an optimal threshold
T from cost-based search because T is internal to the position-fix computation and must be
set before WAAS simulations are run. The results shown in Figures 6.10 and 6.11 below
are for T = 4.5 m, which is 30% of the vertical RPE of 15 meters.
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Figure 6.10 shows the
ionospheric slant delay distributions
for a 10-degree WAAS grid. The
solid line includes all samples, while
the dashed line excludes slant
ionospheric errors for satellites that
are isolated by the SDIA algorithm.
Note that the only visible difference
is at the rare-event tails of the
distribution (beyond errors of + 8
m), where the isolated case
probabilities decrease by a factor of
2-10 from the non-isolation
distribution.

Figure 6.11 shows the
resulting vertical position error
distribution densities. In this case,
performance improvement due to
SDIA is difficult to see even for the
lowest probabilities. There is some
improvement, however, and the

trend of decreasing risk as error
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Figure 6.11: WAAS Position Errors with Isolation

increases continues longer for the SDIA case than for the no-isolation case.

Table 6.5 summarizes the results of WAAS simulations with SDIA. It appears

from these results that the improvements gained by using SDIA are noticeable but not

decisive. Both excessive position error probability and overall user cost decrease by about
40-50%, and note that SDIA does not hurt availability much at all despite isolating out

uncertain-looking satellites in 0.5% of all cases. This suggests that further reducing the

isolation threshold (searching for the minimal user cost value) would give better results.
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Attribute With SDIA Without SDIA
Pr(SV isolation) 0.0051 0 (N/A)
Pr(available) 0.9975 0.9983
Pr(position error > RPE) 1.3x 106 2.5x% 106
Overall User Cost 0.00071 0.00129

Table 6.5: SDIA Results Summary

In comparing these results to the optimal-RAIM results in Table 6.4, we note that
the probability of exceeding RPE using SDIA is 30% larger than when using optimal
WAAS due to the acceptance of more geometries as available. Also, when using SDIA,
no additional residuals-check exists to catch at least 75% of these events, as occurs for
optimal RAIM. Thus, the fatal accident risk for SDIA is five times greater than for
optimal RAIM. On the other hand, no false alarms can occur. Overall, SDIA gives a user
cost only 6% higher than optimal RAIM, while the control case cost is almost twice as
much. This suggests that the current user cost function has a relatively flat surface near
the optimum, given the design variables we can control. In other words, the nature and
level of uncertainty in the rare-event ionosphere model for WAAS (along with the fixed
WRS network) dominates the result, leaving little room for RAIM algorithms and
parameter adjustments to make a substantial difference. Reducing this uncertainty by
conducting extensive tests of the WAAS concept with prototype networks should lead to
a substantial improvement. Parameter optimization will then provide more improvement.

SDIA is but one concept of how satellite isolation could be attempted. It is really
only a starting point for the development of more sophisticated algorithms based on the
idea of checking observed errors against their prior-probability likelihoods. The WAAS
master station will have the role of checking the consistency of the current WAAS
corrections and possibly broadcasting an estimate of the variance in the ranging correction
for each satellite [8-12]. This should allow the WMS to warn users in areas whose
ionosphere delay error (as measured by individual WRS’s or independent monitor stations)
disagrees from what would be interpolated from the WMS grid. If the WMS estimate of
the gridpoint ionospheric vertical error (GIVE) is broadcast, users could include it in their

own estimate of the error in their interpolated pierce point corrections in (6.11).
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Error models and distributions can also be combined into the user's uncertainty
estimates. In addition to updating a prior model for real-time RAIM decisions, the user
can use such information in a weighted-least-squares position solution which, instead of
choosing whether or not to use visible satellites, simply adjusts a Gaussian model of
ranging error to give different weights to each satellite measurement It follows that
uncertainty models form an important basis for ground-user cooperation in future WAAS
RAIM procedures, since the full picture of system performance can be incorporated into

position calculations and integrity assurance.

6.6  Rare-Event Ionosphere: Conclusions

This chapter began with the goal of extrapolating experimental measurements of
95%-bounded ionospheric errors to model uncertain rare-event probabilities for DGPS
ionospheric decorrelation errors. The method of estimating the uncertain degree to which
tail-probability errors are worse than predicted by a Normal distribution has allowed
reasonably efficient Monte Carlo computer sampling of rare-event ionospheric errors, and
combining these with samples of other ranging errors has resulted in simulations of vertical
position error and other key performance measures for the proposed WAAS network.
These simulations take into account the uncertainty of these extrapolations of experimental
data; thus they provide the best possible model of WAAS performance as defined by the
decision criteria in Chapter 1.

Our results show that this provisional 20-station WAAS network and
geosynchronous satellite-augmented GPS constellation provide substantially better
correction of spatial decorrelation errors for users scattered throughout the Continental
U.S. than do local-area corrections. Along with the improved availability of the
augmented constellation, user position fix error distributions are much improved, making
possible the use of WAAS for Category I aircraft precision landing. The combination of
ground integrity information and user RAIM further reduces integrity and continuity errors

that could lead to penetrations of the outer tunnel proposed by the RNP [6-10].
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Given the prevailing uncertainty in our error model, a definitive word regarding
WAAS integrity, continuity, and availability performance is not yet possible. Spatial
decorrelation experiments using more reference stations will provide better and more
useful experimental bases for our predictions in the future. As of mid-1996, results from
larger WADGPS networks, such as the FAA NSTB and the DCI EAGLE network, are
becoming available. Data from these networks should help fill in the gaps in our current
knowledge. Simulations and flight tests which consider other error modes (such as
communications, software, and other non-physical integrity threats) also need to be
conducted. The simulation model developed in this research should be expanded to
consider other error sources that are unavoidably built into the WAAS architecture. In
addition, a better picture of the relationship between RPE and fatal accident probability for
Category I approaches needs to be developed to make RAIM optimization more realistic.

The most important question remaining in the practical design of an operational
WAAS is the marginal utility of (1) improved ground and/or user RAIM software, (2)
additional remote monitors, and (3) additional satellites to augment ranging and/or
communication. A combination of these should be sufficient to meet all requirements for
Category I aircraft precision approach. Improved RAIM algorithms are being formulated
along with new ideas for ground/user RAIM cooperation. This capability may allow the
currently proposed 20-station WAAS network to meet the precision landing requirement
for integrity without further hardware augmentation.

The development of a flexible tool for analysis of the overall performance of
WAAS system architectures cannot depend solely on the limited integrity-based studies
shown here. Performance as defined by PICA includes so-called “normal” situation
performance, in which the system is operating under normal conditions with no system
failures. Under these conditions, it is possible to evaluate user performance over a wide
area without extensive Monte Carlo simulation. The development of such a method is
described in the next chapter, and it will provide a normal-case model from which to carry

out RAIM optimization using the methods developed here.
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Chapter 7: Wide Area Augmentation System
Coverage Prediction

If on the other hand he went to pay his respects to The Door and it wasn't there . . . what
then? The answer, of course, was very simple. He had a whole board of circuits for
dealing with exactly this problem, in fact this was the very heart of his function. He
would continue to believe in it whatever the facts turned out to be, what else was the
meaning of Belief? The Door would still be there, even if the Door was not.

-- Douglas Adams, spoken by Dirk Gently, Dirk Gently: Holistic Detective Agency

7.1 Introduction

As mentioned in the last chapter, studies of corrected pseudorange accuracy and
satellite availability for WAAS prototypes have demonstrated the potential to achieve
vertical position accuracies of 2-3 meters at specific user sites [8-7,18]. However, it
remains unclear how results achieved at specified user locations can be extended to predict
user accuracies across a wide geographic area, which is the purpose of WAAS.
Therefore, while it is apparent that WAAS has the potential to provide Category I
accuracy for aircraft approach and that baselines of hundreds of kilometers are possible, it
is not clear just how many wide-area reference stations (WRS’s) are needed to meet
accuracy requirements over the entire geographic spread of users.

The experimental results obtained to date suggest designing networks of WRS’s
that are both numerous enough and in close-enough proximity to ensure that users are
“close enough” to the nearest WRS with near-certainty. WAAS networks are currently
laid out with the help of only these preliminary guidelines. This chapter develops a method
for expanding on our current understanding of WAAS performance capability by
projecting linear least-squares error covariance matrices from WRS's through the master
station (WMS) to users. Although this approach approximates the detailed workings of
the WRS’s and WMS, it succeeds in modeling the underlying error uncertainties; thus the
results are indicative of the performance that can be achieved by a canonical WAAS
architecture. It allows user accuracy predictions over a wide geographic area for any
proposed network of WRS's and geosynchronous satellites (which communicate WAAS

corrections and serve as redundant ranging sources).
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Section 7.2 describes this new “coverage prediction” methodology in detail,
including the assumed ranging error variances and least-squares covariance equations.
Section 7.3 gives accuracy predictions for the Stanford network of three WRS’s in
California and Nevada, along with variations which examine the effects of adding a WRS
in Hawaii. Results for a much larger network, the proposed FAA WAAS testbed
(NSTB), are then shown in Section 7.4, along with studies of variations of the baseline
NSTB network. User coverage predictions (under normal conditions) can also be used as
a basis for failure-event extrapolation in Monte Carlo simulations. Section 7.5 merges
these predictions with the simulation-based optimal RAIM approach of the previous two
chapters to produce system-wide integrity predictions for a proposed WAAS in Europe.

Overall, the results demonstrate the utility of WAAS accuracy predictions over
large areas, and they point out possible weaknesses in the coverage provided by the
WAAS networks mentioned above. This allows sensitivity studies to be conducted that
promise to greatly aid the process of designing future wide-area systems. The tools
developed here will be used in the following chapter to evaluate the system-level utility of
proposed WAAS architectures and to make possible the optimal design of WAAS

network augmentations.
7.2  Covariance Analysis of Normal WAAS Performance

7.2.1 Overview of WAAS Simulation Approach

The coverage prediction approach used here is based on the solution of least-
squares covariance equations for given GPS and WRS geometries. Accuracy predictions
for large geographic areas are generated by a simulation which samples a large number N,
(from 1,440 to 10,000) of separate satellite geometries using the GPS orbit model
introduced in Section 5.1. The orbit model includes three of the proposed Inmarsat
geosynchronous satellites located over the Equator at longitudes 178° E (POR), 18° W
(AOR-E), and 55° W (AOR-W) respectively, all of which can be seen by at least some
users in the Continental U.S. Spacecraft are assumed to always be failure-free, and

geometries are sampled using both random Uniform and constant-interval time updates as
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explained in Section 5.1.1.  The former approach (with 10-minute mean updates) provides
a non-repetitive collection of geometries. In the latter case, one day (1436 trials) of
satellite orbits is cycled through, and it is possible to keep track of the maximum outage
duration at each user site, which is the longest period in which the predicted vertical
position accuracy does not meet a specified vertical position accuracy requirement. The
ILS requirement of 4.1 m (95%) for Category I precision approach is considered to be
ambitious for WAAS by many, but a more flexible requirement of 7.6 m has been selected
for the WAAS Category I requirement based on the RNP Tunnel methodology [6-10].

For each satellite geometry, the matrix of direction cosines to each visible satellite
G.' is computed for each WRS location i (using a 5° mask angle). At this stage, the
ranging observation errors for each satellite visible at each WRS are computed from the
RMTSA model in Section 7.2.3, and the large WRS ionosphere covariance matrix P* can
be computed element-by-element. The program then cycles through a pre-specified grid of
user locations separated by 1-3° in latitude and longitude which comprises the coverage
area or “service volume” to be examined. For each user location in this grid, the geometry
matrix G, is computed, and two separate processes of covariance propagation are carried
out in parallel. The first is the clock/ephemeris error for satellites in view of the user
(using a 7.5° mask angle) based on the WRS’s that can see that satellite and can thus
provide clock/ephemeris corrections. The second is ionospheric spatial decorrelation
projected from the pierce points observed by each WRS to the WMS, which fits a set of
predictions to a grid, and finally to each user.

Covariance projections from ionosphere and RMTSA error sources are brought
together into a single pseudorange error covariance matrix PV' for each user. Using the
matrix P% of clock/ephemeris errors for each satellite, the weighted least-squares position
error covariance 13, is computed, and the vertical position error variance (assumed to be
Gaussian) is given by the [3,3] (3™ row, 3" col.) entry of this final matrix. The vertical
error result for each geometry is stored in a histogram for that user, as is the Vertical DOP
for the satellite geometry visible to that user. “Availability” in this case is defined as the

percentage of geometries for which a given user’s vertical one-sigma error (given by

192



\/ f'x [3,3]) is within the ILS one-sigma requirement of 2.05 meters (or one can use the 3.8-
m WAAS requirement from the RNP). Geometries for which this requirement is exceeded
are deemed “non-available”, and if this state persists over more than a few minutes, a
measurable outage period for Category I approaches results.

Figure 7.1 gives a conceptual flow chart for this covariance propagation method.
Sections 7.2.3 and 7.2.4 describe the algorithms for computing clock/ephemeris and
ionosphere covariances, and Section 7.2.2 gives the receiver-specific RMTSA ranging
error model used. The relevant equation numbers used at each step in the procedure are

referenced in the figure.

SV
geometry WRS

RMTSA noise
+ interf. bias

Clock/Ephemeris: lonosphere:
compute G,,’s (7.10) PP+ 3P = p*

te PO (7.18
compute P (79-12)| wms | o P (R19)

arrange PSV (7.8)

compute PYC (7.19)

compute P°  (7.21)

compute G, (7.5)

U
P V* = Pe + l)vuSer
User Position Covariance: P(G 2, 6,206,262 (1.7)
Figure 7.1: WAAS Covariance Overview
7.2.2 RMTSA Ranging Error Model

As described in Section 6.1, WAAS employs GPS corrections computed by a

network of reference stations to remove most of the satellite-based errors that exist
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without differential corrections. This process is modeled by the propagation of
clock/ephemeris and ionosphere covariances described here. However, it is corrupted by
receiver and location-specific errors at each WRS and at the user. These errors are
collectively labeled RMTSA, representing (R)eceiver noise, (M)ultipath, (T)roposphere,
and remaining (S)elective (A)vailability errors. In this analysis, these errors are assumed
to be independent; thus their combined variance can be obtained by taking the sum of the
individual noise variances. The assumption that the error components are Gaussian is not

strictly required here, but that assumption is also normally made [7-13].

Noise Source WRS Error (m) User Error (m)
receiver noise 0.33 0.50
SA latency not applicable 0.20
multipath 0.20 / tan(e) 0.30 / tan(e)
troposphere 0.07 / sin(g) 0.20 / sin(g)

Table 7.1: One-Sigma RMTSA Errors

Table 7.1 gives the individual error standard deviations for each individual RMTSA
error source. These models are more detailed than the simple user model numbers in
Table 6.1, and they incorporate estimates of the accuracies obtained from the Stanford
WAAS network. In general, WRS errors are assumed to be of smaller magnitude
compared to a generic single-frequency user receiver. In the tropospheric case, each WRS
is assumed to have its own weather station, whereas users will have to apply a
tropospheric correction model. User SA latency error assumes a fast-correction average
age of 10 seconds [8-5,7). Note that both multipath and troposphere errors are functions
of the elevation angle € from the user to the satellite in question. This represents the
additional “slant” delay due to atmospheric effects and the greater GPS signal reflection
magnitude for lower satellite elevations. RMTSA error terms are introduced into the
covariance equations as diagonal n x n matrices (where n satellites are in view) in which

each diagonal element contains the combined RMTSA variance for that satellite.

194



With the exception of receiver noise, the error sizes in Table 7.1 are not meant to
be especially conservative. Instead, they represent a reasonable estimation of the errors
that will be experienced by WAAS-certifiable equipment. More conservative noise
distributions have been examined in other studies to show the position accuracy
degradation that might result from “looser” hardware standards [7-13].

Although the RMTSA distributions assume “snapshot” (one point in time) WAAS
corrections and position solutions, some representation of the carrier smoothing
conducted by each reference station (but not necessarily by a user) is desirable. The
Stanford WAAS network implements carrier smoothing to reduce WRS observation
errors. A Hatch/Eshenbach filter is used to average code psuedorange observations with
much more precise carrier information (which has only 1-2 mm of noise) [6-7). When a
WRS first sees a given GPS satellite, the averaging process begins, leading to a reduction
in the magnitude of receiver and multipath noise as a function of the time that satellite has
been observed (without a cycle slip). Receiver noise has a short correlation time, but
multipath takes much longer to average out. We now use an abstract exponential-decay

model which gives a combined noise reduction factor NRF defined as follows:

NRF = exp(—’ﬂJ .1y
T

s

where the decorrelation time constant for receiver noise and multipath, T, is
conservatively estimated to be 60 minutes. This single-pole estimate is based on overall
WRS noise reduction observed from the Stanford WAAS. Identification of this noise with
a two-pole model (one decorrelation time for receiver noise and another longer one for
multipath) is now being considered tc give a more detailed representation of carrier
smoothing, but (7.1) suffices for the level of detail modeled in the covariance propagation
algorithm. In the simulation code, the cumulative time fus is tallied as the satellite
geometry is updated. The receiver and (elevation-dependent) multipath standard
deviations (from the RMTSA) are then reduced by multiplying by NRF computed from
(7.1).
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7.2.3 Clock/Ephemeris Covariance Prediction

7.2.3.1 Covariance Prediction Equations: The covariance model developed here

separates clock/ephemeris errors from all other ranging error sources. In practice, clock
and ephemeris corrections can be handled separately by the master station, which uses a
single difference to separate fast-changing clock error from slowly-varying satellite
position errors in order to keep up with the Selective Availability error within the satellite
clock [8-7]. However, from a snapshot perspective, it is more convenient to combine
them into a single problem within the system covariance model and to treat SA error as
the error remaining after WAAS fast corrections are applied. As a result, both residual
ionosphere errors (Section 7.2.4) and RMTSA errors (Section 7.2.2) appear as external
error inputs (v,) to the clock/ephemeris prediction equations (see (7.7)). In this
formulation, user pseudorange error Ap is expressed as a combination of user ephemeris

error (Ar), user clock error (Ab), and errors in the WAAS correction (Ax"") as follows:
Ar, ~
Ap=G,| "|-G,AxS +v 7.2
p u[ Abu] u u ( )

where G, is the user direction-cosine satellite geometry matrix (size K x 4, where X is the

number of satellites in view) and v is a term representing a Gaussian white-noise model of
the other error sources. The WAAS clock/ephemeris correction error vector Ax®Y of size

2K x 1 has the following elements:

_Ar"'
ABS
AxSY = : (7.3)
Ark
ABX

where Ar represents the (unknown) error in the 3-dimensional (x,y,z) WAAS ephemeris

correction for satellite k, and AB* represents the error in the (scalar) clock correction for
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that satellite. The augmented matrix éuof size K x 4K is constructed by placing each row

of G, along a diagonal pattern as follows:

-1 1 0o o0 0 0

_ _1k2 e 0 0

G, = (.) (.) l.“ 1 S (7.4)
0 0 0 0 - -If 1

Since (7.2) conceptually includes all GPS error sources, we can proceed to find position
error covariance from it. Covariance propagation automatically incorporates a form of
measurement weighting based on measurement error and prior-estimate covariance
matrices. Since weighting the position fix calculation by numbers which represent the
relative quality of each input measurement will by definition improve user accuracy, a
weighted-least-squares user computation is assumed in this chapter and the next. This
modifies the unweighted solution (5.9) in a straightforward way. The “weighted”
pseudoinverse definition for an overdetermined system (more satellites in view than

unknowns) is [8-17]:
G, =(GIw"'G,) ' cIw" (71.5)
The user position fix error is then calculated as in (5.9):
%, =Giap = (GIW'G,) ' GIW'ap (7.6)
The weighting matrix W is given by the user pseudorange error covariance matrix P, to

be defined next. Using the definition of covariance, the final user position error covariance

P. is given by:
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T

P, = G,G,PVGI(G;) + G,P;(G}) (1.7)
where P, is the K x K diagonal matrix of user noise variances for each satellite due to

ionosphere and RMTSA errors. It is calculated from the combined results of the
ionosphere covariance model (Section 7.2.4) and the RMTSA model (Section 7.2.2). The
use of this matrix as W in (7.6) above should give a minimum-variance estimate of the
true user position, but in this model, we assume that W cannot be known perfectly by the
user. Instead, each entry of W is calculated by sampling from a Normal distribution
whose mean is the corresponding entry of P, and whose standard deviation is a fixed ratio
of that mean (usually 25%). We have found that the WAAS accuracy results are not very

sensitive to this “uncertainty ratio” if it is below 75%.

P in (7.7) is a user-specific block diagonal matrix of K separate 4 x 4 covariance

matrices constructed as follows:

P" 0 O
PY=[0 . 0 (7.8)
0 0 P¥

These separate covariance matrices P“, ..., P* each represent the post-correction
covariance in x, y, and z components of spacecraft ephemeris, as well as the clock error in
t. If no WAAS corrections are available (because this satellite is not visible to any WRS),
this matrix has diagonal terms representing uncorrected errors in GPS ephemeris messages

(the first three entries) and uncorrected SA error (the fourth entry) as follows [8-17]:
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leal* 0 0 0
? [ 900 0
P, = ° 3 o0 - 2200 (m?) (7.9)
" o o ™5 0 009 0 ‘
3 , 0 0 0 100
o o o &
i 3

If WAAS corrections are available from at least one WRS (assume M >0 WRS's can see a

given satellite), we form the matrix G, as follows for each satellite k, where k = 1,2,....K;

m=12,.M:

1, -l
1 -1

G, =T . (7.10)
1, -1

where 1} is the direction-cosine vector from WRS m to satellite k. Note that the

clock/ephemeris error can be estimated directly by weighted least squares. However, a
direct solution (such as in equaticn (7.6)) tends to be too sensitive to measurement errors
for underdetermined (M < 4) and exactly-determined (M = 4) cases. Instead, we include a
prior state covariance matrix A and solve the problem as a Kalman-filtered measurement
update to the prior covariance. The inclusion of prior information helps ensure that a
wildly unlikely solution is not force-fit by “naive” least squares [8-17].

Although normally the matrix A would be the same as the prior (no corrections)
covariance in (7.9), we have the freedom to vary the diagonal-entry “weights” of the
matrix. We do this by multiplying the x, y, and z variances by a factor of 10, which
effectively increases the weight we assign to the WRS measurements. Further, we make

the prior clock variance very large since it will in practice be estimated separately from
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ephemeris, and we wish to avoid having the prior clock variance significantly affect the

ephemeris estimates. Our final choice for the state prior covariance is:

9% 0 0 O

A_|0 %0 0 o , o1
“lo 000 o | ™) '

0 0 0 1x10°

The measurement-update equation for the WAAS-corrected clock/ephemeris covariance
P! is given by:
P! = A-AG.(G,AG] + WY)' G, A (7.12)

where the measurement-error weighting matrix WY is equal to the M x M matrix of

RMTSA error variances for each WRS that can see satellite k [8-17].

7.2.3.2 Computer Implementation Procedure: In our computer code, for each updated

GPS satellite geometry, the satellite visibility for each WRS is computed and formatted as
shown by the matrix Gw in (7.10). At this point, the algorithm loops through the grid of

user locations that are affected by the WAAS corrections. For each user, ﬁu and G, are

computed from G, using (7.4) and (7.5). P for each satellite in view of this user is then
computed using (7.9) or (7.12) as required; thus giving the block-diagonal matrix PSV
(7.8).

At the same time, the parallel computation of the user pseudorange error
covariance matrix X, for ionospheric errors is computed using the algorithm in Section
7.2.4. The effects of RMTSA user ranging errors are computed (see Section 7.2.2),
arranged into 2 K x K diagonal matrix, and summed with X, to get the final user error

covariance P,. Finally, the user position covariance P; for this geometry is computed

using (7.7). This process is repeated for each user location. We store the resulting
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vertical position error variance cﬁ » given by the third diagonal element of P, for each

user in a histogram unique to that user location for post-sampling analysis. We also
compare the vertical error variance at a given user for each sample geometry to the ILS
and RNP tunnel accuracy requirements to compute the overall probability that the

resulting vertical position error is within the specified accuracy.

7.2.4 Ionospheric Grid Error Propagation Model

The ionospheric grid covariance propagation model, run in parallel with the
clock/ephemeris model detailed above, directly propagates ionospheric uncertainty from
the WRS's to the WMS, which projects the combined corrections onto an artificial "grid"”
of ionospheric pierce points separated by 5, 10, or 15 degrees of latitude and longitude
(depending on the size of the coverage area). This covariance is then propagated to each
user depending on the location of his pierce points within the grid structure. Note that this
grid concept is similar to that originally proposed by MITRE [8-6], but it uses weighted
least-squares fits to interpolate corrections within the grid rather than simple linear
inverse-weighted interpolation, in which users compute a weighted average of the
corrections of the four surrounding grid points based on the distance to each of them.

It is basically assumed by this model that the vertical ionospheric delay (i.e. not

affected by satellite elevation) observed by a GPS receiver through a given pierce point,
denoted as I’ , can be expressed as the sum of two independent random variables: the true
delay (denoted as Ip) and the observation error (denoted as Zp(€)). This basic relation
holds for the WRS's, the WMS, and the user (with the appropriate subscripts). Note that
Ep(e) is elevation-dependent because it represents the RMTSA error terms discussed in
Section 7.2.2.

The propagation of ionosphere error covariance is executed in several distinct

steps as follows:
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7.2.4.1 _WRS Covariance: The vector I’ contains the measured (via dual-frequency

receivers at each WRS) vertical ionospheric delay at each pierce point observed by all

WRS's:

Il‘?

m=1

. p
1P = | Imeo (7.13)

P
Im=M

where If, represents the observed delays for each satellite visible to WRS m, m = 1,...,

Mmms (the total number of WRS's). The vector o is a sample of the RMTSA noise

distribution. Its covariance, denoted as EP, is a diagonal matrix whose variances are
computed by summing the RMTSA numbers in Section 7.2.2 with a constant
interfrequency bias. This bias represents miscalibrations between the L1 and L2
broadcast frequencies on each GPS satellite as well as between WAAS reference

receivers. Based on current bias estimates for prototype networks, we add the square of a

. . .. . . P
conservative bias deviation estimate of Gyies = 0.75 m to each diagonal entry of T .

Operational WAAS systems should be able to reduce this by as much as 50% [8-2].

The true ionospheric delay covariance, denoted as P¥, is a function of the
geographic separation between the WRS pierce points and the assumed “base” delay
variation at a given point over time. The base delay standard deviation oy, is taken to be
2.8 meters, which represents the long-term variation (after correction by the Klobuchar
model [6-14]) in vertical ionospheric delay at a given mid-latitude location. This estimate
is conservative; it represents a near-peak activity time in the 1 1-year solar cycle. Based on
curve fits to the absolute and relative ionospheric delay data used in Chapter 6 [8-6,10],
the following covariance formulas are used for each entry in P* (which will consequently

have no zeros in it):
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o(d)= Do Lo Roowe , (7.14)
OF, mean Rbase

where:

d = distance between reference and observed PP’s (km)

Ryase = base separation in Klobuchar data =348 km
Ryope = linear slope with distance in data fit = 0.542
I = base ionosphere decorrelation for (d = 0) =0417m
Inun = ionosphere decorrelation multiplier =20

OF nean = mean obliquity factor in data =1.763.

If d > D, where D = 1200 km, the effective 6(d) is modified by an exponential curve such
that o(d) < o,, where 6 is the “base” ionospheric variance over time for a given pierce
point. This normally varies with time and geomagnetic position, but we use the

conservative value Oy = Iy Grom = 2.8 m. The resulting equation is:

-lo(d),, —o(D
6(d > D)= 0(D) + O | 1-€XP [ @), 0 )] (7.15)
O marg
where Gmay = Op - 6(D), and o(d),, is the variance given by (7.14) for d > D. Figure 7.2
shows a plot of 6(d) for 0 < d < 3000 km. This variance from one PP to another is
converted to a covariance entry G, in matrix P’ using the Gaussian bivariate relation,

which assumes probabilistic independence between the spatial decorrelation and the long-

term point variation expressed by oy:

o} = of,\/l - (cri'j(d)/csb)2 (7.16)
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Summing the covariances P* and X° 25 ‘ : : : :
gives P? , the final WRS ionospheric : E ; : f
measurement covariance matrix. S E ______ J: ------ ? ----- : ------ .' -------

Ionospheric decorrelation g 15b--n-- :: II.E ______ E _______
results observed from (7.16) indicate : ! : linear slope ends

; : ' atD=1200km

that the bivariate gaussian assumption % 1p------ mfe - 1o SliEh RREEEE R
provides very high correlation of E
ionospheric delay over the baselines g A ------ J ----- J ————— L _____ """"""
typical of WAAS networks. As a 0 ; l ; ; l
result, this assumption has been 0 1000 2000 Dism (km;‘m 500 6000

relaxed by simply increasing the Figure 7.2: lonosphere Error Spatial Decorrelation

exponent of the term which multiplies 6,* on the right-hand-side of (7.16) from 0.5 to 1.0.
Although this is an arbitrary change, the spatial decorrelations resulting from it look more
reasonable (and more conservative). For example, the amount of correlation for an 800-
km pierce-point separation decreases from 97.7% to 95.5% of the base (no separation)

correlation once this change is made.

7.2.42 WMS Covariance: The Wide Area Master Station (WMS) is where the pierce-

point measurements of the individual WRS's are collected to form P’. The WMS then

relates the pierce point delay measurements I® to those that would exist at the WMS grid

points by solving for the optimal choice of mapping matrix A using least-squares:
a1
AT = P¥[p] (7.17)

where P = P is the "true" covariance (computed using (7.14-16) between the fixed
WMS ionosphere grid points (G) and the set of WRS pierce points (P). From the
definition of covariance, we can simplify the application of the mapping matrix to get the

final grid point covariance:
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Pé = AT[PG"’]T = PG's(P'B)_l [PG"’]T (7.18)

where P is the resulting covariance of the WMS ionosphere grid points. Note that WRS

ionosphere measurement errors are represented in P* and get propagated into PC

through this calculation.

1.2.4.3 User Covariance: WAAS users (located on a grid of predetermined points

covering a wide geographic area) use the transmitted WMS estimates of vertical

ionosphere delay at each ionosphere grid point I¢ to project ionosphere errors at their
pierce points to the satellites they can see. As with WMS propagation, we use least-

squares optimal mapping. From the mapping matrix A in the previous section, we can find

the user-to-grid covariance P,
R . s an-lp T
PY = PPA = P (pF) [PGP] (7.19)

where P is the user-to-WRS pierce point covariance, computed (as with PG'.’) using
the spatial decorrelation equations (7.14-16). The definition of covariance and a second
mapping matrix B allows us to project the error in the WMS grid to the user's pierce

points as follows:

BT = pUé [PG]"
) ) r T (7.20)
Pl —BTPCRB = PUG[PG] (Pué)
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where PU is the user ionosphere error covariance due to the WAAS fitting algorithm. By

our previous assumptions, the basic equation for user ionosphere vertical error covariance

U
P is:

PU = pU_pl - pU -PUG[PG]" (PUG)T (7.21)

€

where PY is the overall covariance, which can be computed from the underlying
decorrelation between the user's pierce points using (7.14). The last step is to multiply the
covariances in the final result, PEU, by obliquity factors to convert from vertical to slant
pierce point delay. The obliquity factor OF for a given satellite observation is computed
from equation (6.3) of the last chapter, where € is the elevation angle from user to
satellite. To get the final user slant ionosphere error covariance, Xy, terms on the diagonal
([i,i]) of P, are multiplied by (OF; *, while off-diagonal ([i,j]) terms are multiplied by the
obliquity factor product (OF; OF)). This final WAAS user error matrix Xy is added to the

user RMTSA covariance P, to get the “external noise covariance” matrix P, in (/.7).

From this, the user position error covariance P; is computed.

7.2.4.4 Numerical Challenges: Because the matrix operations in (7.17-21) imply the
numerical calculation of inverses of large matrices, numerical difficulties can arise even

though the C code does not need to explicitly calculate each inverse. The WRS pierce-

point covariance P’ is usually the most difficult to work with, as it is of size Mp x Mp,
where Mp is the total number of pierce points observed by all WRS’s. The C code uses

double-precision floating-point representation (16 digits), but cases arise where the
condition number of Pi’, which is the ratio of the largest to the smallest of the

eigenvalues, or singular values, of P, increases above 10'2, meaning that the covariance

matrix approaches singularity to double precision. Since singular matrices are not
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permitted in the covariance- propagation equations, a numerical breakdown in the
calculations may result [3-12].

The source of near-singularity is the fact that most of the pierce points are located
in a relatively small area. Their correlation to each other is thus quite high relative to the
underlying ionospheric variation and observation errors (that is, the diagonal terms). The
covariance matrix thus becomes closer to singular (i.e. invalid) as the spatial decorrelation
in the off-diagonal terms decreases. We have found that the matrix condition deteriorates
as more pierce points are included, since more observations reduce the effective
decorrelation. For WAAS architectures (such as the FAA NSTB) where Mp generally
exceeds 100, a parsing procedure must be employed to ensure adequate numerical
conditioning.

Parsing refers to the reduction of the size of P by merging pierce points that are
close together into a single observation (for ionosphere purposes only). P’ is computed
normally using (7.14-16) for all pierce points (PP’s), then a loop goes through the list of

pierce points backward: j = Mp,...., 1. If PP is within a certain threshold distance T, from

another PP i, where i < j, PP j is parsed out of PF and PP i is moved to a new location:

- ax,, + bx,,
at+b

(7.22)

where x is the relevant PP location in x,y,z Earth-centered, Earth-fixed coordinates; while
a and b are integer weighting factors which count the number of PP’s that have been
“parsed” into the current PP locations i and j. The effect of a and b in (7.22) is to amplify

the importance of “pierce points” that have resulted from previous “mergings”. The base

error variance of the new PP (entry [j,j] of Pp) is reduced by:

("i.ew )2 = (Gi)ld )2 Ny = (C:nd )2 ';‘_:: (7.23)
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This simply models the noise “averaging” which takes place as more and more WRS’s

observe a PP in the same general area. The off-diagonal terms of PP are not reduced.
7.3  WAAS Coverage Prediction Results

7.3.1 Output Histograms and Computed Results

The covariance propagation method described here has been applied to a variety of
existing and planned WAAS networks. Much of the algorithm development was done
with variations of the 3-WRS Stanford WAAS (including some with one or two additional
WRS’s). The RMTSA and ionosphere covariance parameters were derived with results
from the Stanford setup in mind. The algorithm is the same (with the exception of adding
parsing from Section 7.2.4.4) for the much larger FAA WAAS testbed networks, and we
have been able to obtain projections for hypothesized WAAS systems located anywhere in
the world.

Using MATLARB to plot the results of our C programs, the results can be presented
as 2-D contours or 3-D surface plots. The program outputs any or all the following data

for each user, and the overall results are plotted over a map of the relevant user

geography:

® 95% and 99% vertical position error

® 95% and 99% values for one-sigma vertical position error
® 95% and 99% vertical dilution of precision (VDOP)

® Availability = Pr(vertical error 6 < 1G requirement)

e Maximum outage duration (in minutes)

® 95% and 99% vertical ionosphere delay error (UIVE)

® 95% and 99% WMS grid ionosphere vertical error (GIVE)
®  95% and 99% user differential range error (UDRE)
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Note that vertical ionosphere delay error corresponds to “User Ionosphere Vertical
Error” (UIVE) in the FAA’s terminology [8-5] and is contained in the elements of P”
from (7.21) (before adjusting for obliquity). “User Differential Ranging Error” (UDRE)
for each satellite in view is given by the diagonal elements of the matrix product
éuPSV é: contained in (7.7) which projects the clock/ephemeris correction error
covariance into the user’s geometry.

To compute the above results, histograms of vertical position error, non-
availability (1 if o, > 6, 0 otherwise), and outages (add time elapsed since last geometry
if in a continuing outage state) are updated at each site in the user location grid for each
sample geometry. For each geometry, UIVE and UDRE are incremented K times at each
user site with the computed UIVE or UDRE for each of the K satellites visible to that user
for that geometry. GIVE is stored for each geometry at each point in the WMS
ionosphere grid.

Computation of overall 95% and 99% position error cutoffs requires convolving
the outer-loop histogram of error variance (over all satellite geometries) with the Normal
distributions implied by the relevant variances. Specifically, for each 6, bin in the position
error histogram for a given user, a new distribution of convolved position error 6, is
incremented by the number of increments in the original o, bin times the following

cumulative Gaussian probability for each G, :

P (o)) = 05 [l—erf(ovT/;VJJ (1.24)

where erf(e) denotes a numerical approximation of the error function defined in [3-12).
The resulting new histogram on @, is normalized by the number of increments in the
original one as the final step. The 95% and 99% vertical error sigma cutoffs are taken
from the histograms before convolution with the underlying Gaussian errors. All of the

95% and 99% results are computed for each grid location which has its own (original or
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95% Vertical POSITION Error Cortours: Stanford 3-WRS WAAS

convolved) histogram simply by 48 N — N
summing the cases from the worst 461 ‘ 1
result on down until 1% or 5% of the “
observations have been accounted A::
for. gas
i
7.3.2  Results for Stanford WAAS 3t
Network 2
As introduced in Section 6.1, ) ‘ . ) .
the current Stanford experimental ” 125 -&m(@;w 110

WAAS network consists of a master Figure 7.3: Stanford WAAS 95% Position Accuracy
station in the Durand building at

Stanford University and three reference stations located in San Diego, CA., Arcadia, CA.,
and Elko, NV. An additional reference receiver exists at Stanford but is used in a
“passive” mode to evaluate the quality of the position solution provided by the three
WRS’s [8-18]. Plans for additional WRS’s in Hawaii and Alaska and possible relocations
of the three existing WRS’s have been discussed, motivating us to compute predictions for
some of these variations as well. The results shown here for the basic Stanford network
do not use WRS carrier smoothing, but they also use a slightly more conservative RMTSA
model (Section 7.2.2) and use the ionosphere covariance equation (7.16) without
modification. These changes tend to cancel out, giving similar results for the small
Stanford WAAS network.

Figure 7.3 shows a 2-D contour plot of 95% (convolved) vertical position
accuracy over a user area bounded by 18° to 48° North latitude and 108° to 128° West
longitude, divided into onc-degree increments. A 10-degree WMS ionosphere grid is
used, extending from 20° to 50° N latitude and 105° to 135° W longitude. The WRS
locations are denoted on the map surface by an ‘x’ in all plots.

The results for 95% user accuracy show that the optimal performance region is
relatively flat and encloses an area considerably wider than the area between the three

WRS’s. Vertical accuracy degrades gracefully as one gets farther away from this zone,
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although the falloff becomes substantial 99% Vertical POSIION Error Contows: Starford 3-WRS WAAS

o
-\'----

if one gets far enough away, because

the WRS observations have little

A2 & &

leverage to correct the (probably

“.‘40_
different set of) satellites a far-away S
user can see. However, accuracy %36-

sufficient to meet the 4.1-meter 95% 34r
ILS requirement is provided for users %5
30.
as far away as the Oregon-Washington 28 ) , ,
. -125 -120 -115 -110
border and Phoenix, AZ. Note that all Longitude (deg.)

users use weighted least-squares to get  Figure 7.4: Stanford WAAS 99% Position Accuracy
their position fixes; thus far-away users
will optimally de-emphasize the satellites for which good WAAS corrections are not
available in their position solutions. These results agree with preliminary flight-test data
collected from flight tests using the Stanford WAAS at Palo Alto Airport, Livermore, CA.,
and Truckee (near Lake Tahoe) [8-18]. In the Palo Alto tests, 16 RMS vertical error was
observed to be 1.7 meters, which agrees well with a 95% prediction of 3.4 m.

Figure 7.4 gives the 99% vertical position accuracy results for the same system,

Note that if the underlying overall
Unavailabikity Probability Cortours: Starford 3-WRS WAAS

distribution were Gaussian, 95% cutoffs 48 7
46.

would represent 26 and 99% would “
result in approximately 30, giving an a2}
expected multiplication of 1.5. In these g,ao
results, while the contour shapes are ﬁas

w6t
similar, the apparent 99% performance 3 aal
for most user locations is better than 1.5 x|
times the 95% performance shown in of
Figure 7.3. The same phenomenon is 2 125 120 -115 10

Longitude (deg.)

also observed for the 95% and 99%

Figure 7.5: Stanford WAAS User Availability wrt
UIVE contour plots, where in the 4.1-m ILS Cat. I Requirement
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majority of cases the 99% results are only 95% Vert. IONOSPHERE Error Contours: Stanford 3-WRS WAAS

10-20% worse. These results suggest a z

non-Gaussian or truncated-Gaussian 44

underlying distribution, but given that our :2'

method is based on a concatenation of g::

“Normal” conditions only, we are not g 36t

confident that this is a fair representation 34

of reality. Rather, we believe that a ®

Gaussian distribution is valid out to 95% ::\ ) ) ) )
and that a projection of performance from e -llsrt:gnwe (deg-.;ﬁ e
206 to 30 (i.e., multiplying by 1.5) would Figure 7.6: Stanford WAAS 95% UIVE

be more reasonable than using the 99% histogram results.

Figure 7.5 gives a 2-D contour plot of availability, relative to the 4.1-meter ILS
Category I requirement, for the Stanford WAAS. Recall that “availability” here is
different from that produced by geometry parsing in GPS integrity monitoring in Chapters
4-5; it is now simply a measure of how often (over time) the ILS accuracy requirement is
met for a given user. Availability of the required accuracy at the beginning of an
operation is thus shown. Clearly, for the ILS requirement, a small 3-WRS network cannot
provide 4.1-m 95% accuracy more than 90% of the time even in the optimal coverage
area, but the proposed 7.6-m limit for WAAS Cat. I approaches gives 100% availability
over a region larger than that enclosed by the three WRS’s.

Figure 7.6 gives a 2-D contour plot of 95% UIVE, or user vertical ionosphere
delay error. These contours conform very well to the shape of the WRS geographic
distribution, and once again, the degradation as one moves away from CA-NV is well-
behaved and gradual. At Stanford, the predicted 95% error of under 0.6 meters is difficult
to verify using our current database of observed ionospheric errors, but it seems
reasonable. We are devising a new method for storing ionosphere errors so that a better
comparison can be made. As mentioned above, the 9% UIVE plot gives only slightly
higher errors, suggesting that the use of only “normal” conditions may lead to overly

optimistic predictions for rare-event ionospheric decorrelations.
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7.3.3 Stanford WAAS and Hawaii
Various augmentations to the
Stanford WAAS have been proposed. It
is now expected that some of these will
be incorporated into the FAA WAAS
testbed (NSTB) as it is built. One key
augmentation we have studied (not

planned for NSTB) would be the

95% Vertical Error Contours: Stanford WAAS + Honoluu WRS

)

Latitude (

/\—/

addition of a fourth reference station in ) ] )
-160 450 140 130 120

Honolulu, Hawaii. It would attempt to Longitude (deg.)
both provide Category I accuracy to the Figure 7.7: Stanford/Hawaii Position Error
(unsmoothed)

Hawaiian Islands and augment the
quality corrections for users in the western part of CONUS. Note that the implementation
of WRS carrier smoothing can make a substantial difference here, as most GPS satellites
will be visible to the Hawaii WRS first. Once these satellites are visible to users in
CONUS, the Hawaii WRS will have had sufficient time to filter its own observations, and
the WMS would then give the Hawaii measurements more weight in its determination of
the corrections to be sent to all users. Thus, carrier smoothing is implemented for this
case, along with the RMTSA in Table 7.1 and the relaxed ionosphere correlation discussed
in Section 7.2.4.1. The results of these model changes can then be compared to results
from the older model to help determine the cumulative effect of these changes.

Figure 7.7 is a plot of 95% vertical position errors for this 4-WRS network over an
enlarged user area from 16° to 50° N latitude and 112° to 162° W longitude, divided into
2° increments. A 15-degree ionosphere grid from the Equator to 60° N and from 105° to
165° W was used for the WMS. This figure shows the results under the old model (no
smoothing) used for the Stanford WAAS network. Given the lack of carrier smoothing
and the advantages it provides, the considerable distance between Honolulu and the other
three WRS's (over 4000 km) is why the Hawaii WRS only slightly improves CONUS
performance (compared to Figure 7.2). The Hawaii WRS is not quite able to provide ILS

Category I accuracy for the area encircling the Hawaiian Islands, but the 95% error is still
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95% Vertical Error: Starford + Honoluiu WAAS wSmoothing

under 5 meters, which would easily meet 50— <
the relaxed RNP requirement [6-10]. i

Significant improvement is attainable by

improving the ionosphere calibration “F

(i.e., reducing Ous in Section 6.1) [8-2]. 335

Note that the degradation of position %ao-

accuracy over the Pacific between

8
T

CONUS and Hawaii is graceful enough

g

to support very precise enroute

R

navigation for commercial air routes IS A e gy Y 1B TR M8

between the two. Figure 7.8: Stanford/Hawaii Position Error
Figure 7.8 shows the same (WRS carrier smoothing)

position error results for the case where the new WRS error models are used as described
above. The improvement is substantial; notice the much larger area included in the 5.0-
meter contour relative to Figure 7.6. Also note the area around the Hawaiian Islands
which is now within a 4.1-meter contour and thus meets the ILS requirement at least 95%
of the time. Because Hawaii is so far from CONUS, the issue of WRS service redundancy
arises, since Category I accuracy would be lost if the Honolulu WRS had to shut down. If
the amount of WRS internal hardware redundancy is not deemed adequate to give near-
100% availability over time, a second WRS would be needed in Hawaii. The result would

be better nominal accuracy in the Hawaiian Islands region when all WRS's are operational.

7.3.4 FAA National Satellite Test Bed (NSTB) Results

In advance of the planned introduction of an operational WAAS in the late 1990’s,
the FAA plans to build a testbed of about WRS’s spread throughout CONUS. As
introduced in Section 6.1, this testbed, known as NSTB, is designed to experimentally
evaluate WAAS user performance and to provide guidance to the development of the
operational system [8-11]. Stanford University is participating in developing, testing, and
installing WRS and WMS hardware and software for the NSTB. The covariance methods
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95% Vertical POSITION Error Cortours: FAA 18-WRS Testbed

detailed here can also be used to predict

55
NSTB user accuracies over the entire 39

S0, 33m
CONUS region. . 27m\ *

The WRS network design of the % 2

40 x

NSTB has evolved in several directions in ‘g cal 291) Day
5 X
the past year. Section 7.3.4.1 presents §%
X
results for the 18-WRS network proposed %
originally. Holes in this network over the 25
Eastern half of the U.S., along with Mo 20 a0 900 w0 s 30
Longitude (deg.)

logistical problems in setting up reference
stations at specific sites, have motivated Figure 7.9: FAA 18-WRS NSTB 95% Accuracy
several changes in the CONUS network. Section 7.3.4.2 presents results, focused on
users in CONUS, for the latest revision (as of October 1995) to the CONUS network. At
the same time, Canadian and Mexican participation in the NSTB is being pursued, and at
least one Canadian WRS is already operational. Section 7.3.4.3 thus expands the
coverage area to include most of Mexico and the southern provinces of Canada while
presenting results for a network of 24 WRS's, where 3 each are placed in Mexico and
southern Canada.

Because each of the WRS’s in the NSTB sees an average of 8-10 satellites at a
time, parsing of the ionosphere covariance matrix P? (see Section 7.2.4.4) is necessary.
Using a separation threshold of Ty = 500 km, the number of rows and columns in P for
the 18-WRS NSTB to be presented in Section 7.3.4.1 decreases from an average of 160 to
54. With this level of parsing, no numerical matrix singularity problems have been
observed in any of the proposed NSTB networks (although Ty is increased to 600 km for

networks with more than 20 WRS’s).

7.3.4.1 Original NSTB Network Results: Figure 7.9 shows a 2-D contour plot of 95%

vertical position errors for a 3% user grid from 20° to 56° North latitude and 65° to 131°
West longitude. The WMS ionosphere grid goes from the Equator to 75° North and from

215



50° to 140° West in 15° increments.
These original results were derived
from the older error models without
carrier smoothing or ionospheric
decorrelation adjustment.

From this plot, it is clear that
18 WRS’s are fully capable of
providing approach accuracy close to
the ILS Category I requirement
throughout CONUS. A WAAS 95%
“accuracy floor” of about 2.5 m is

evident in the Western U.S., where the

Latitude (deg.) 2 -120

95% User Vertical Accuracy: FAA 18-WRSNSTB

Longitude {deg.)

Figure 7.10: FAA NSTB 3-D 95% Accuracy Plot

density of WRS locations is highest. WRS density in the Eastern U.S. is much lower,

however, giving 95% errors of around 3.5 m. Nevertheless, all of the Eastern U.S.

coastline still achieves 95% vertical accuracy of four meters or better; so it can be

considered to be acceptable.

Figure 7.10 is a 3-D representation of the same position accuracy results. This plot

gives a nice overview of the shape of the 95% accuracy surface, or “bowl”, over CONUS.

As would be expected from the lack of
WRS’s outside CONUS, the gradient
of this surface gets worse near the
edges of the user grid. Users off to the
southeast or southwest of CONUS
have the worst 95% accuracy, but it is
still within 7 m.

Figure 7.11 is a similar 3-D
plot of the 95% user VDOP surface. It
is shown to display the effect on user
geometry of the added geosynchronous

sateilites. Note that users in the

85% User Vertical DOP: FAA 18-WRS NSTB

-100
Longitude (deg.)

20 -120

Figure 7.11: FAA NSTB 3-D 95% VDOP Plot



Western “valley” of this surface (where 95% VDOP = 1.5) can see two of the
geosynchronous satellites (POR and AOR-W), whereas most of the other user locations
can only see one of them. This is another reason why the best accuracy for CONUS is
obtained in the Rocky Mountain region. Outside of this area, 95% VDOP surface is
relatively flat at about 2.0, which is still quite good. Accuracy variations through the rest
of CONUS are mostly due to variations in NSTB WAAS coverage.

Since WAAS users are dependent on receiving corrections broadcast from
geosynchronous satellites, those that can see only one such satellite have their WAAS
availability limited by the percentage of the time that satellite is healthy. This probability is
estimated to be about 99% by [6-15]. Since this upper bound is probably insufficient to
meet availability or continuity requirements for the missions that use WAAS, a basic
requirement under consideration is that each user see at least two geosynchronous
satellites [8-13]. Thus, it is possible that more of these satellites will be needed for the
operational WAAS. An alternative would be to provide backup terrestrial radio
transmission of WAAS corrections only (no extra ranging sources) in areas where higher
user availability is desirable. The proposed European WAAS introduced in Chapter 8
assumes a 90%-available radiobeacon correction to achieve sufficient availability for users

who can only see one INMARSAT satellite. This service might even be provided outside

the NSTB architecture, as users could 5% Vert. IONOSPHERE Error Cortours: FAA 18WRS Testbed
potentially receive commercial FM- % 1
. . 10
subcarrier corrections broadcast by m
X
o7m

commercial services such as Differential

Communications, Inc. (DCI) in regions

(
88 5 &

where such broadcasts can be received.

Latinde

Figure 7.12 is a 2-D contour plot
of 95% UIVE for the original NSTB.

Despite the conservative underlying

\ ,_4/
0D 120 110 -100 90 80 -0

Figure 7.12: FAA NSTB 95% UIVE

B B8

ionosphere parameters, UIVE errors are
quite small. Since UIVE accumulated at a

specific user site is primarily dependent on
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the number of WRS-observed pierce points on all sides of the user pierce points, the
contours on this plot are quite regularly-shaped ovals which tend to mirror the layout of
the outermost WRS locations. In the center of CONUS, the presence of WRS
observations on all sides improves 95% UIVE to below 0.4 m. UIVE increases gradually
and predictably as one moves away from the center, but all of CONUS is under 0.8 m.
This demonstrates how well a nationwide WAAS can fit the underlying ionosphere states
under “normal” ionospheric conditions. In solar maximum years, these errors should be, at

worst, no more than twice that shown here [8-10].

7.3.4.2 Revised CONUS NSTB Results: Several revisions have been made to the NSTB

WRS network within CONUS since the original layout shown in the last section was
proposed. Some of the WRS locations in the interior of CONUS have moved a few
hundred miles from their former locations when alternate sites proved more convenient
places to “set up shop.” But many of the changes have been motivated by coverage
analyses (including the results of the last section) which indicated the unbalanced nature of
the WRS layout and the undesirable preponderance of WRS’s in the Western U.S. As a
result, the redundant-looking WRS in Casper, WY. has been removed, and a WRS has
been added at the FAA Technical Center in Atlantic City, N.J. As of October 1995, the

location of one WRS (Onglﬂally in Dayton, 95% Veertical POSITION Exor: NSTB WRS Revision2

Ohio) is in limbo -- both Lansing, MI. and  g[fx '] o
Terre Haute, IN. are being considered. The ' ‘
total number of WRS’s inside CONUS

remains at 18.

Figure 7.13 shows contours of 95%
vertical position error for this revised WRS
network, where the Dayton WRS has been
placed in Terre Haute. The revised WAAS

error models (including carrier smoothing)
are used here, and the user grid is tightened
to focus on CONUS. Note first that the  Figure 7.13: Revised NSTB 95% Accuracy
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Figure 7.14: Revised NSTB 95% UIVE Figure 7.15: Revised NSTB 95% UDRE

WRS network is now more evenly spread throughout CONUS, and the Eastern Seaboard
is more densely represented by the addition of the WRS in Atlantic City. The revised
noise model helps improve user performance, but this improved WRS layout is the primary
reason why contours of 3.2-meter accuracy stretch much further east than in the original
layout shown in Figure 7.9. Now all of CONUS is enclosed within a 95% vertical error
contour of about 3.7 meters, which is an improvement of 7.5% from Figure 7.9.

Figure 7.14 shows contours of 95% UIVE for this revised network. Once again,
contours of UIVE are regular and predictable, but the equivalent-error contours of this
plot enclose slightly more territory than those in Figure 7.12 for the original network.
Note that in Figure 7.12, the 0.7-meter UIVE contour, while otherwise very similar to that
in Figure 7.14, extends only to the Florida panhandle. Moving the Gainesville, FL. WRS
down to Miami, as shown in Figure 7.14, extends this 0.7-meter contour to include all of
Florida. Also note that this WRS relocation does not hurt UIVE over the Southeastern
U.S., as the 0.5-meter contour has in fact extended further southeast in Figure 7.14.

Figure 7.15 shows, for the first time in this chapter, contours of 95% UDRE for
the revised network. We see that for most of CONUS, 95% UDRE is similar to 95%
UIVE as shown in Figure 7.13. However, the deterioration of UDRE as one moves
further away from CONUS is somewhat more rapid than it is for UIVE. This is a
tendency that is more evident for smaller WAAS networks, such as the European WAAS



to be introduced in Chapter 8. Users outside the optimal coverage area of a given WAAS
network will experience worsened UIVE due to fewer WRS pierce points being available
to fit the jonosphere gridpoint estimates from which these users interpolate their
corrections. Worsened UDRE, on the other hand, is due to (1) the fact that geometric
cancellation of the relatively high ephemeris variances in PV in (7.7) is less effective as
users move further away from the nearest WRS, and (2) the relatively poor WRS visibility
of satellites near the edge of the network. WRS carrier smoothing also will have less of an
effect, since an “edge” user will not have access to highly-smoothed satellite corrections as
often.

The apparent variation between UIVE and UDRE spatial degradation points out
the limits of the coverage prediction methodology. We have less reason to be confident
that the error models developed here will hold as predictably for far-away users. Most
testing of WAAS networks to date has focused on users in the primary coverage area; thus
little data exists for users outside this area. The results shown here for normal conditions
do make sense, but there is more statistical uncertainty for distant regions as a result. In
addition, the effects on far-away users of unfavorable rare-normal or failure conditions

could be magnified further than they would be for users in the primary coverage area.

Further testing from networks such 95% Vertical POSINON Error Cortours: FAA 22WRS Variart
as the NSTB should improve our 550 T~ ' \/\/
understanding of far-away WAAS sol >7m 29 32m |
behavior by supplying more data for X X
. 457
future error analysis. %’g Coim
- X
Faol gen
~ é
7.3.4.3 NSTB Plus “Four Corner” gm xC And
X
Arrangement: The rapid worsening 3 én 32m
0 4
of the user accuracy performance at <
the edges in Figures 7.9, 7.10, and 251
36
7.13, along with the greater error ol N . A
_ ) ) 130 120 110 -100 90 80 -7
uncertainty in these regions, Longitude (deg)
motivates a study of adding Figure 7.16: 22-WRS Variant 95% Accuracy
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additional WRS’s outside CONUS to improve WAAS performance near the borders and
to provide coverage of a broader subset of North America. This might also include
coverage of Alaska and Hawaii. In theory, performance near the borders of CONUS
would be improved most by adding stations well outside CONUS in a “four-corners”
arrangement. Figure 7.16 shows 95% user vertical accuracy for a proposed NSTB variant
in which the original 18-WRS CONUS network is augmented by four additional WRS’s in
Honolulu, HI., Anchorage, AK., Puerto Rico, and Gander, Newfoundland. In addition,
the Casper WRS shown in Figure 7.9 has been moved to Atlantic City, N.J. as shown in
Figure 7.13. Note that the user and ionosphere grids are not changed; i.e., they remain
limited to CONUS and environs. The original (non-smoothed) error model was used for
this study.

Comparing the accuracy contours in Figure 7.16 to those in Figure 7.9 (for the
original CONUS-only NSTB) shows that substantial improvement has indeed been gained
near the borders. In Figure 7.16, all of CONUS is within a 95% vertical error of 3.5
meters, and only Florida is outside of 3.2 meters. This represents a 12.5% improvement
over the CONUS-only network. Also note that very little was lost by the removal of the
Casper WRS, while much was gained along the East Coast by the addition of a WRS in
Adlantic City. 95%Vertical POSITION Exror Surtaos: FAA 22-WRS Variart

Figure 7.17 shows this
improvement more clearly by
providing a 3-D surface plot of 95%
vertical accuracy. This surface is
much flatter than the one in Figure

7.10; thus we can see that the

accuracy gradient near the edges of
the user grid has been lessened con-

siderably. The worst degradation in

Figure 7.17 can be seen in the Lande(deg) 20 120 -‘1(!)
southwesterly direction, since the Longide (deg)

Hawaii WRS is far from CONUS. Figure 7.17: 22-WRS Variant 3-D Accuracy Plot
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1.3.44 NSTB Plus Canada/Mexico: The FAA Satellite Program Office has recognized

the desirability of augmenting its WAAS networks with WRS’s outside of CONUS, but
instead of the “four-corners™ approach, the NSTB has considered adding stations within
both Canada and Mexico to the CONUS network shown in Figure 7.13. Canada has set
up NSTB-compatible WRS’s in Ottawa and Winnipeg that are already supplying
observations to the FAA Technical Center. A third Canadian WRS in Gander,
Newfoundland (one of the “four-corners” sites) is also in the works. Similarly, inquiries
have been made to authorities in Mexico as to whether they would also want to
participate. Three WRS locations in Mexico have been proposed: Mexico City, Merida (in
the Yucatan), and Mazatlan.

Figure 7.18 shows 95% vertical accuracy contours for a combined 24-WRS
network which combines the latest CONUS distribution from Figure 7.13 with these six
additional WRS locations. The WRS-carrier-smoothing error model has been used here.
Note that the user grid has been extended to 12-60° N latitude and 54-142° W longitude,
divided into 4° increments. Figure 7.19 emphasizes the vertical accuracy gradients at the
edges of the extended coverage area by plotting the same user accuracy on a 3-D surface.

In Figure 7.18, the addition of three Canadian WRS’s has extended sub-3.2-meter

95%  vertical accuracy  well 95% Verical POSITION Error: Revision 2 + Canada/Meico
northward into the southem & /N
' | Z ,
provinces of Canada and has
sol H Win 29
commensurably improved accuracy ( X
451 | 27mG:'k
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(when compared to Figure 7.13). §f’° [ B % Com %p30 /
3Bt : Y f 4
The presence of two of these g \\ :' &n 36
o} ', '
WRS’s in Eastern Canada has also 1\ 32m’ \Wa
extended this level of coverage to 1 N T /
20 41 A
all of the Eastern Seaboard from " "\ /
South Carolina northward.  The L . e : - :
-140 -130 -120 -110 -100 90 80 -70 60
three WRS’s in Mexico extend the Longituds (deg))

3.2-meter contour well south of the

Figure 7.18: NSTB+Canada/Mexico 95% Accuracy
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U.S.-Mexico border, and most of 95% Vertical POSIMCN Ermor: NSTB Rew. 2 + CanMix
Mexico proper is enclosed within a LTl

95% vertical error of 3.6 meters.
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restricted breadth of the country). O o 2 Lativde (deg)
The Gander WRS is a considerable Longios (deg)
help, as shown in Figure 7.16 (where Figure 7.19: Canada/Mexico 3-D Accuracy Plot
it is part of the four-corners variant). The Ottawa WRS, on the other hand, is clearly
redundant, being quite close to the WRS in Burlington, VT. (which was moved from
Bangor, ME. in the revision shown in Figure 7.13). The Winnipeg WRS is also within 300
km of the one in Grand Forks, N.D., and there is a gaping lack of coverage of Northern
British Columbia and Alberta since Winnipeg is the westernmost Canadian WRS. In
Figure 7.19, it is clear that the negative accuracy gradients in the direction of Hawaii and
Puerto Rico are unavoidable without placing additional WRS's in those locations. The
similar degradation over BC and Alberta could be reduced by simply moving the Ottawa
and Winnipeg WRS’s to Timmins (northern Ontario) and Edmonton, giving considerably
better coverage of Canada (south of 60° N latitude) with no additional cost. The location
of the Canadian WRS’s shown in Figure 7.18 was decided by the Canadian aviation
authorities based on existing sites with the necessary infrastructure; thus optimal coverage
is not really the goal.

Regarding West Coast coverage, it is important to note that even for regions which
have WRS’s on the coastline, user accuracy degrades rather rapidly just offshore. This
holds true for all of the cases studied which do not have additional WRS’s in Alaska and

Hawaii, and it is noticeably different from what is observed on the East Coast. Since most
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GPS satellites rise in a general west-to-east direction, WRS carrier smoothing is of limited
help to West Coast users, as the nearby WRS’s do not have much time to “filter” their
corrections for newly-arisen satellites before users see them as well. Thus, one does not
have to move too far offshore before the only WAAS corrections available are corrupted

by significant WRS error.

7.3.5 Summary of Results

The results presented in this section demonstrate that the covariance propagation
methods developed in this chapter produce useful and sensible predictions of WAAS
performance. The Stanford WAAS predictions meet our performance expectations and
agree quite closely with our limited flight-test data base. The geographic performance
degradation observed for the Stanford WAAS network is gradual enough to verify that the
underlying concept can provide useful corrections across a very large area. The addition
of a WRS in Hawaii has a limited effect on performance over CONUS since it is far away,
but it provides improved accuracy to Hawaii and helps calibrate the error surface over the
region of the Pacific in between.

Predictions for the FAA NSTB suggest that a WRS network of this density is able
to meet the ILS Category I approach requirement throughout CONUS. A combination of
nearby WRS density, geosynchronous satellite visibility, and a bias toward the best-error-
fit middle of the WRS region influence a given user’s performance in a logical way.
Although the NSTB is not designed to provide optimal coverage, the results from early
versions of the NSTB have motivated changes in the WRS layout that noticeably improve
performance near the edges of the user grid. The data collected from NSTB starting in
late 1996 should be the first opportunity to verify these predictions on a nationwide scale.

Several key points should be raised here regarding the limitations of this
methodology for predicting WAAS utility. First, the covariance propagation steps use
batch least squares fits to the GPS error surfaces. Given the assumed “white” Gaussian
behavior of GPS performance in non-failure cases, a least-squares solution is generally
seen to be optimal. However, execution time constraints and the numerical problems

mentioned in Section 7.2.4.4 make this approach probably infeasible for a real-time
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WAAS. Instead, numerically easier data fits will be used in the WMS [8-7]. Thus, our
covariance method represents the assumed underlying behavior of GPS errors in a WAAS
context. It could therefore be viewed as an algorithmic “best case bound” on WAAS
performance. Instead, it should be noted that the parameters of our current error models
with improve as more data is collected. Furthermore, the process of design-and-test
should produce real-time algorithms that are tuned to non-ideal error performance as
observed from test results. As a result, it is possible that operational WAAS systems

might be able to improve on the predictions contained in this chapter.

7.4 Conclusions and Further Work

Despite the assumptions and limitations of the best GPS/WAAS error models
available, it is possible to use least-squares covariance propagation to predict the
performance that widely-spread-out users will be able to achieve from any candidate
WAAS network. This approach has produced reasonable, internally consistent accuracy
predictions for both current prototype WAAS systems and a full-scale NSTB designed to
cover all of CONUS (along with parts of Canada and Mexico). It thus serves as a very
useful “end-to-end” computer analysis tool to aid the layout, design, and development of
future networks.

Currently, we are using this method to predict WAAS performance while varying
the proposed FAA network layouts and some of the key error parameters that go into the
covariance model. Predictions are also being generated for conceptual WAAS networks
covering other parts of the world. In addition to being useful for development, more
detailed covariance algorithms of this type could be used as part of the WMS monitoring
software in “semi-real-time”. Given up-to-date GPS satellite almanacs and recent
ionosphere/troposphere conditions, they could independently predict expected user
accuracies over the next several hours, providing a basis for comparison to the real-time
accuracy being measured at WRS's or monitor sites. A sizable divergence between the
two could serve as a warning of unusual GPS error behavior, and these warnings could be

monitored by the WMS and then sent to users as needed.
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A complete analysis of WAAS network performance requires integrating accuracy
and integrity predictions into a unified system evaluation. The building blocks of integrity
prediction and RAIM optimization were constructed in Chapters 5 and 6, and a
comprehensive accuracy prediction methodology has been developed in this chapter. In
the next chapter, these two algorithms are merged and fed into a new WAAS user “value
model” to derive a single “bottom-line” numerical evaluation of overall network
acceptability. Chapter 8 also illustrates the use of the combined evaluation method for a
proposed European WAAS network. It also demonstrates that given sufficient computing
power, a genetic algorithm (discussed in Chapter 4) can automatically vary the elements of
a WAAS network and run the evaluation algorithms to search for and converge on an
optimal system for Category I precision-approach capability in an assigned user coverage

area.
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Chapter 8: WAAS Overall System Evaluation:
A European Example

Probabilities direct the conduct of the wise man.(Probabilia...sapientis vita regeretur.)
-- Cicero, De Natura Deorum, Bk. i, Ch 5, Sec. 12.

Insisting on perfect safety is for people who don't have the balls to live in the real

world.
-- Mary Shafer, NASA Ames Dryden

In every work of genius we recognize our own rejected thoughts: they come back to us

with a certain alienated majesty.
-- Ralph Waldo Emerson, Essays, First Series: Self-Reliance.

8.1 Introduction

Chapters 6 and 7 have demonstrated that methods exist to predict vertical position
accuracy and integrity/continuity/availability (“PICA”) for a large WAAS user region. It
should thus be possible to link these separate analyses to perform a unified evaluation of
the acceptability of a given WAAS network. As mentioned before, standards are now
being developed which specify acceptable performance in all four PICA parameters [8-16],
and the results of a unified PICA analysis can be compared to these requirements to
determine acceptability. However, given that WAAS development is in an early state, it
may be too early to come up with a uniform set of requirements that can be agreed upon
by authorities in different regions who must operate under widely varying economic,
political, and meteorological contexts.

In this chapter, an approach for complete top-level analysis and optimization of
wide-area augmented GPS networks is developed by uniting accuracy and integrity
prediction with a system value model focused on the benefits and costs of supplying
Category I precision approach capability via WAAS. An example application not yet
mentioned in this thesis is the use of WAAS to provide this coverage to Europe. Section
8.2 introduces a baseline WAAS with only four reference stations and demonstrates, using
the coverage prediction algorithm, that this minimalist network is sufficient to meet the

Category I ILS vertical accuracy requirement for most of continental Europe.
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Experimental flight-test results obtained to date can only suggest designing
networks of WRS’s that are both numerous enough and in close-enough proximity to
ensure that users are “close enough” to the nearest WRS with near-certainty. WAAS
networks are currently laid out with the help of only these preliminary guidelines. The
user accuracy prediction algorithm developed in Chapter 7 provides a system-wide
evaluation of 95% performance for a given WAAS network design. As demonstrated in
Section 7.3, it is a very useful tool for studying the effects of moving reference stations
and/or geosynchronous satellite locations. In fact, the NSTB results shown there strongly
suggest that acceptable 95% user vertical position accuracy (good enough to meet the 4.1-
meter ILS-derived Category I requirement) can be achieved with a network of as few as
10-12 optimally-located WRS’s in CONUS.

However, the key limiting factor in WAAS network design is not so much meeting
a specified 95% error requirement but instead providing sufficient integrity to users who
rely on WRS observations and WMS corrections. In order to catch locally-correlated
spurious events in the WAAS error parameters, a denser net of WRS’s and/or passive
monitors (which check user accuracy but do not contribute to the WMS corrections) is
probably desirable. Given the uncertainty about rare-event WAAS error magnitudes
discussed in Chapter 6, however, it is quite difficult to determine just how dense a net
would be required. Operational (or testbed) WAAS network design will need to be
completed before a complete model of such events is available.

In Chapter 6, a prior uncertainty model of WAAS ionospheric delay correction
error was constructed, and its effect on user integrity and RAIM threshold selection was
simulated for a specific user location. But the results in Chapter 7 make it clear that
position accuracy (and hence integrity) will vary depending on a given user’s location
within the WRS network distribution. Integrity prediction and optimization along the lines
of Chapter 6 requires many simulation trials to fully sample the set of possible failures;
thus it is not possible to make numerical predictions throughout a dense user grid, as done
for coverage prediction. Instead, a reasonably comprehensive prediction can be produced

from a statistically representative set of locations within the user coverage area.
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Section 8.3 expands on the simulation methodology used in Chapter 6 by sampling
failures from tail expansion of normal-condition Gaussian distributions produced by the
coverage model of Chapter 7. It also adds new categories of failures to the models for
ionospheric correction error developed in Section 6.2.3 to provide a more complete
“failure space” representation. The results of this integrity-prediction approach are
included for the baseline European WAAS introduced in Section 8.2. This result
demonstrates that a WAAS network with acceptable accuracy may not be able to meet
integrity requirements for Category I airborne users.

Section 8.4 formulates a genetic algorithm (GA) to search for the optimal
combination of GPS augmentation systems for a given WAAS application. Unlike the
integer encoding and GA operators developed in Section 4.3.2 for spacecraft redundancy
allocation, the application of a variable list of augmentations can be encoded as a simple
binary (0-1) string. This allows canonical GA operators (designed for binary solution
vectors) to be used, giving more confidence that convergence will eventually be obtained.
Section 8.5 develops the top-level user value model that would be used to compute GA
fitness for the Category I precision approach application and a European user coverage
area. This is a simple, provisional benefit-minus-cost function that incorporates the
benefits of Category I service, the costs of imperfect accuracy and integrity performance,
and the life-cycle costs of installing a given WAAS network.

Although it has not yet been possible to run a GA to convergence on the WAAS
optimal design problem due to limited computing resources, the first few generations of a
typical GA search produce network combinations that give a much higher “fitness” than
the 4-WRS baseline design. The results of both accuracy and integrity analyses for two of
these proposed designs are given in Section 8.6. While the bascline network did not
appear to provide sufficient integrity (after inner-loop RAIM optimization), the integrity
picture improves considerably with the addition of a single WRS in a predictable spot, and
it improves much more with the addition of one more WRS and a third geosynchronous
satellite over Central Europe. Finally, Section 8.7 summarizes the progress made thus far
on WAAS network optimization and discusses the steps remaining to make it a practical

reality. The key step will be to recompile the WAAS prediction codes to run on a multi-
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processor workstation to be procured as a high-speed simulation facility. This step should

allow GA search to convergence for the European WAAS application.
8.2  Preliminary Design for a European WAAS

8.2.1 European WAAS Developments

As noted in Chapter 6, the concept of wide-area GPS augmentation networks lends
itself readily to international cooperation, as GPS corrections broadcast from
geosynchronous satellites will reach a footprint that covers a significant portion of the
Earth. Users who can receive and apply these corrections will need to be supported by
WRS’s in their own geographic region to gain the full benefits of WAAS. Thus, there is a
strong incentive for aviation authorities the world over to work toward a common
message framework and a globally-acceptable sharing of responsibilities. FAA plans for
future international cooperation on WAAS are outlined in [8-11]. However, the WAAS
concept itself is still in the experimental stage, and it appears that developments over the
next decade will focus on semi-independent development of separate WAAS-like networks
in other parts of the world.

While European states appear to hesitate to cooperate with FAA initiatives to
spread its own WAAS concept, sufficient motivation exists for a “Tri-Partite Group” of
European Space and Transport authorities to have developed a concept called European
Geostationary Navigation Overlay Service (EGNOS) which is aimed at an 10C in 1999
and an FOC in 2002. EGNOS includes a set of 13 wide-area reference stations, at least
two geosynchronous ranging satellites and ground stations for their control and
maintenance, and a single WMS. Beyond that, the similarities between it and the FAA
WAAS concept depend on how EGNOS is tied into other European plans for civil GPS,
including the possibility of a proposed new civilian satellite constellation called GNSS-2.
Also, research into radiobeacon broadcast of DGPS corrections in Europe suggests that
much of the Continent can be covered from a single transmitting site [6-16]. However, it

is expected that if NSTB can clearly demonstrate the feasibility and practicality of the

230



95% Vertical Position Ermor: 4 WRS European WAAS

FAA’s concept, EGNOS may become — — =
more similar to the FAA operational 65} 37 Z '
WAAS so as to facilitate future ol e > P P
transatlantic cooperation. g5l -

(deg)
%
3

=)
P
'
-
L
[
)
’

8.2.2 Results for Baseline European :
WAAS 5 T

While the FAA has already ’
more or less defined the system
architecture for the NSTB and the -10 0 10 20 % 40

. .. Longitude (deg))
operational WAAS, EGNOS is in an
Figure 8.1: European WAAS 95% Accuracy

earlier stage of development. Depending

on one’s geographic definition of “Europe,” it should be possible to provide sufficient

Latitude
&
d
¢
.
Jd t

s

accuracy to meet the current ILS Category I requirement with fewer than 13 WRS’s, since
very good coverage predictions have been obtained for 18 WRS’s over a larger area in
Section 7.3. A European WAAS application probably requires a smaller network, then,
and the precise locations of reference stations and geostationary satellites have yet to be
finalized. Thus, it is a good design problem for the end-to-end network optimization
methodology to be developed in this chapter.

Figure 8.1 shows 95% vertical position error results, using the latest normal-
condition error model, for a WAAS that could provide precision DGPS corrections to
Europe. It has a “four corner” arrangement of WRS’s in Scotland, Spain, Northern
Russia, and Turkey. The AOR-E and IOR Inmarsat geosynchronous satellites mentioned
in Section 5.1.1 are also presumed to be present, providing (when healthy) two additional
ranging sources. Note that this minimal WRS arrangement provides sufficient accuracy to
exceed the 4.1-meter vertical 95% ILS Category I precision approach requirement over
almost all of Europe (The Asia Minor part of Turkey is formally in Asia but is presumed to
be part of the European coverage area). Furthermore, the northern tip of Scandinavia
(where the geosynchronous satellites are at low elevation and hard to receive) and the

region just west of the Ural Mountains in Russia are the only places where this error
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exceeds 5 m. Since Europe, unlike North America, is contiguous with other continents on
a broad front, this minimal network also provides sub-5-meter coverage to the entire
Mediterranean coast of North Africa.

Figures 8.2 and 8.3 show contours of 95% UIVE and 95% UDRE, as defined in
Section 7.3.1, for this baseline European WAAS network. There is an interesting contrast
in these two plots that is not apparent when UIVE and UDRE are plotted for a much
larger network such as the NSTB. The regular, oval shape of the UIVE contours in
Figure 8.2 is similar to that seen in Figures 7.11 and 7.13 for the NSTB. The ideal four-
corners WRS arrangement provides a relatively flat UIVE noise floor of under 0.7 m (20)
over the area contained in an oval running through the four WRS sites. This is quite good
for such a sparse network, suggesting once again that normal-condition ionospheric
behavior is highly spatially-correlated. Outside of this, UIVE slowly begins to fall off in a
predictable manner.

Figure 8.3, on the other hand, has quite irregular contours that are surprising at
first glance. The area enclosed by the four WRS locations is comfortably within a 1.5-
meter 95% UDRE contour, but the lowest error (of about 1 meter) is obtained in regions
close to the two southern WRS’s and in the region between (and including) the two

northern ones. Note that the two northern WRS's are much closer together than the two
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southern ones, a fact that is somewhat obscured by the Mercator map projection in these
figures. A small region in the center of Europe seems to occupy a UDRE “hole” with
errors as high as 1.7 m. It is the sparsity of WRS locations that leads to this result, as
UDRE under such conditions decorrelates more rapidly than does UIVE -- a result that is
not necessarily intuitive. Remember that only normal conditions are simulated here, and
these have been shown to provide relatively benign UIVE. In contrast, only users close to
one of the four WRS sites have confidence that they will receive good corrections for all
satellites they can see. In the middle of the network, far from any single WRS, users can
see satellites only visible to a subset of the four WRS’s, and these users lie outside the
space spanned by those WRS’s often enough to give significantly poorer 95% ranging
errors. This UDRE degradation is also caused by the fact that users far from the nearest

WRS do not achieve the same level of “geometry cancellation” of the high ephemeris
variances in the ﬁuPSV é: term in (7.7) as do users close to a WRS. This suggests that

despite the good overall position accuracy displayed in Figure 8.1, good reason exists to
further augment this network with at least one centrally-located reference station.

These results show the potential of WAAS to provide high accuracy in a very cost-
effective way, but the next question is whether such an arrangement also provides
sufficient integrity, or user safety. Section 8.3 addresses this issue by building upon the
RAIM optimization approach of Chapter 6 while utilizing the coverage prediction results

to describe “normal-case” conditions.

8.2.3 Single-Frequency WRS Option

One more issue needs addressing for the case of a European WAAS. Recall that
the separation of clock/ephemeris and ionosphere covariance propagation tracks in Section
7.2 relies on having dual-frequency receivers at each reference station to make
measurements of ionospheric delay at their pierce points. However, because dual-
frequency measurements by definition require the use of L2, which is not part of the SPS
service guaranteed to civilian users, WAAS networks deployed by non-NATO agencies

may choose to restrict themselves to the use of L1 measurements only [8-19]. As a result,
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the possibility of using only single-frequency ionosphere observations should be
considered when designing a wide-area network for non-U.S. users.

It is possible to extract a measurement of ionospheric delay from the code-carrier
divergence on a single broadcast frequency, as described in [6-2,8-1]. But this approach
takes significant time to sequentially compute an estimate, and the lack of an independent
ionosphere measurement prevents the separation of ionosphere and clock/ephemeris that is
key to the coverage prediction method. Thus, a rework of the coverage prediction
algorithm to handle this possibility would be needed. Such a revision is feasible, but the
lack of separation would make coverage prediction much more cumbersome.

For now, we can only predict how much less accurate UIVE would be in the
single-frequency WRS case (compared to the UIVE dual-frequency predictions). From
comparisons of single-frequency measurements to more accurate dual-frequency ones, our
best current estimate is that the use of single-frequency observations would add a one-
sigma vertical error of around 0.8 meters to the WRS ionosphere delay measurement [6-
2]. However, since single-frequency receivers cannot directly separate ionosphere from
other error sources, the covariance propagation method used here must be re-worked to
combine the clock/ephemeris and ionosphere into one larger estimator for this case. We
now expect this change to reduce 95% accuracy by about 15-30%, but the effect on

integrity could be much worse.

8.3  Coverage-Based Integrity Simulations

8.3.1 Background and User Cost Model

Unlike the “normal conditions™ assumed by the WAAS coverage prediction model,
integrity threats are hazardous events that are presumed to occur rarely but have the
potential to put the user in serious danger if he or she is not promptly warned. Since
WAAS includes both ground-station and user elements, detecting these events is a shared
responsibility of the augmentation network and of each user. Individual users can use
Receiver Autonomous Integrity Monitoring (RAIM) to provide a warning from their

overdetermined set of ranging measurements if they can see more than four satellites. This
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process, described in detail in Chapters 5 and 6, uses the magnitude of a residual vector as
the decision statistic; when it exceeds a pre-set threshold, the user is warned that
conditions are unsafe. In addition, WAAS ground stations can also monitor statistics that
compare primary and redundant system measurements to each other. Warnings of
unreliable satellites can then be included in the WAAS message to warn all affected users
(note that corrections deemed unreliable would not be sent) [8-12,7-13].

In Section 5.3, a method of setting WAAS RAIM residual thresholds based on a
user cost model was developed and demonstrated. This cost model measures the expected
likelihood of a fatal aircraft accident based on hazardous outcomes such as aborted
approaches and missed integrity threats. Section 6.4.2 contains the cost model used for
WAAS that is given in Table 6.3. This relative measure of RAIM event costs allows us to
optimize the detection thresholds rather than relying on the chi-square probability
assumption used in [7-13]. The same optimization approach explained in Section 5.3.5
and used in Section 6.4.2 is applied here as well. The WAAS MOPS [8-13] has specified
a required protection error (RPE) of 19.2 meters instead of the 15-meter number used in
Section 6.4.2. The risk multiplier for approaches in Europe is twice that used in Chapter
6, or R. = 10*. In order to maintain consistency between economic cost and passenger
risk (also see Section 8.5.4), the non-availability cost is then reduced to half that of
Chapter 6 (Cna = 0.0125). However, a key question that has been raised for the WAAS
Category I application is how well the risk multiplier of 10 applies to this protection
radius when (a) the approach is not supposed to get closer than 200 feet (about 61 m) to
the ground, and (b) few Category 1 approaches descend all the way to the 200-ft.
minimum ceiling before being able to see the runway. This will be discussed further in the

context of the baseline network integrity results contained in Section 8.3.4.

8.3.2 Revised WAAS Rare-Event Probability Models
The RAIM analyses in Chapter 6 focus on worse-than-Gaussian ionospheric spatial
decorrelations, which are assumed to be possible in the worst 10% of cases based on

previously published experimental data [8-10]. More severe decorrelations are possible in
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the worst 2% of cases. The effects of these “non-Normal” expanded-tail decorrelations
must be analyzed by Monte Carlo simulation.

The approach taken in Section 6.2.3 is to sample a standard Normal random
variable and then “expand” the effective variance in rare-event samples. The expansion
factors for the worst 2% of cases and the next-worst 8% of cases are given by (6.6). The
same sampling procedure is conducted here except that the “Normal-case” variances are
taken from coverage prediction UIVE results for each evaluated user location instead of
the generic variances listed (by season) in Table 6.2 and adjusted by (6.7). It samples
ionospheric delay using the Normal distribution implied by the UIVE for a given site. If a
sampled standard normal variable lzl < 1.645, the vertical ionosphere ranging error is
simply the sample z times one-half of the assumed 26 95% UIVE result. If the sample
exceeds 1.645 (the 90% cutoff), the UIVE-based standard deviation is multiplied by the
expansion factor TM computed from (6.6). This inflated deviation is multiplied by the
already-large sample z to give the vertical delay in this case. Finally, the vertical error is
multiplied by the appropriate obliquity factor (a function of the satellite elevation angle €)
from (6.3) to provide a sampled slant pseudorange error.

In the spacecraft orbital simulation, N; satellite geometries are updated in the same
way as in Section 7.2.1 (using the approach outlined in Section 5.1), but unlike the
coverage prediction simulation, all satellites are not assumed to be healthy. Instead, each
satellite is sampled to determine if it is “out of service” and is thus not usable. These

failure probabilities, derived from the Prior Probability Model of Section 5.3.1 [6-15], are:

0.014
0.010

Pr (GPS satellite unhealthy)
Pr (GEO satellite unhealthy)

Note that all users lose availability if they cannot receive WAAS corrections from
at least one working GEO satellite. Since some of the user locations in Europe will only
be able to see one GEO, the availability of those sites could not exceed 99%, the
probability of any given GEO being operational. Furthermore, users near or north of 60

deg. latitude will have trouble maintaining lock on GEO's since they would be low on the
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horizon. Availability higher than 99% is expected for Category I operations; thus either
more GEO’s would have to be added or, as a backup source of corrections, a radiobeacon
network along the lines of [6-16] would be necessary. In the simulations conducted here,
a radiobeacon network with a combined coverage and availability of 90% over all of
Europe is assumed to exist for this purpose.

In addition, it is assumed that a failure of the WAAS ground network could lead to
errors in the broadcast clock/ephemeris corrections that are much larger than the 95%
UDRE computed from the coverage prediction method. This could result from database
or computation errors that are not caught by the WRS and WMS monitor systems.
Because we are interested in sampling failure cases, the probability of having significantly
inflated UDRE is taken to be 0.001, which is at least 10 times higher than expected of an
operational WAAS [8-12]). If a given satellite experiences this type of failure, its predicted
(broadcast) UDRE is increased (multiplied) by one plus a factor sampled from an
exponential distribution with a mean p = 2.0 to get the effective (true) UDRE.

8.3.3 Integrity Simulation Procedure

For each of N; satellite geometries, N failure state trials are conducted. In each
failure trial, each satellite is sampled to see if it is functioning normally, and unhealthy ones
are removed from the user geometries. Each satellite next has the state of its ground
correction (UDRE) sampled. The overall ionosphere decorrelation state, which applies to
all users, is then sampled. A failure bias Izl = 1.645 is applied to this sample to insure that
all cases at least have this amount of non-standard conditions. Note that for both UIVE
and UDRE tail expansion, the random system state is biased to artificially enhance the
likelihood of failures in the simulated trials. This is done because the coverage analysis has
already provided normal-case results, and we want as much sampling of the failure space
as possible. Using a bias of 1.645 for ionospheric sampling automatically limits the
sampled failure space to the worst 10% of cases. When the simulation results are
evaluated, these biases can be taken out to return to the “true” output probability
distribution. This is a simple form of importance sampling as a means of variance

reduction in simulation results. Importance sampling is further explained in [2-4,3-9].
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Rather than attempting to run simulations for each user in the coverage prediction
grid of Section 8.2, the user population is melded into a much smaller number Ny of user
locations. For each sampled failure state, a weighted position fix is carried out for each
user location using (7.6). This position fix is based on the normal UIVE and UDRE for
that location (plus sampled tail expansions) given by the coverage prediction method.
Each user constructs a diagonal weighting matrix W from the root-sum-square (rss) of
his RMTSA, UIVE, and UDRE variances (from Section 8.2), but a 25% random factor is
applied to prevent the use of perfect weighting information. Because weighting matrices
are used in the position solution, an adaptation to the RAIM residual statistic computed in
(6.9) incorporates these relative measurement weights. Introduced as “weighted RAIM”
in [7-13], the weighted residual statistic D, is now given by:

D} = Z'W'(I,-GG’)z/(n-4) (8.1)
where I, is a n x n identity matrix (n is the number of functioning satellites in view), G is
the (n x 4) user geometry matrix, and z is the (n x 1) vector of pseudorange measurements.

After all failure simulations are completed, the 90% of cases that would exist under
normal DGPS conditions are added to the dx vs. D matrix stored for each discrete VDOP
bin. Under ideal conditions, dx and D are independent, with (vector) dx being Normally
distributed with a covariance given by the vertical position error result from coverage
prediction and D? having a chi-square distribution with variance parameter D*/c.* and n-4
degrees of freedom (see Section 5.2). The revised matrix is then searched to find the
RAIM detection threshold T that minimizes the overall weighted RAIM cost (see Table
6.3) over all Ny user locations (each with a separate dx vs. D matrix). Note that only one
set of thresholds is chosen for all users. If this optimal threshold T* gives a cost that is
lower than the non-availability cost in Table 6.3, RAIM is available for that VDOP and
the system is usable. Otherwise, RAIM is unavailable, and the system incurs the non-

availability inconvenience cost for those trials (see Section 5.3.4).
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8.3.4 Integrity Results for 4-WRS European WAAS

Integrity evaluation for the European WAAS is done at 11 user locations shown as
‘o’ in Figure 8.4 (discussed in Section 8.4.1). These locations receive different weights as
explained in Section 8.5. For these locations and the basic 4-WRS network of Figure 8.1,
1 million failure states and position fixes were simulated from 1000 satellite geometries for
each of the 11 user locations. Table 8.1 contains the results in terms of the overall
weighted RAIM cost and also probabilities of various hazardous events. As mentioned
before, for WAAS Category I approaches, the RPE or “required (vertical) protected
error” is chosen to be 19.2 m at the 200-foot decision height. The definitions of false

alarm and missed detection probabilities were given in Section 5.2.2.

Overall RAIM user cost 0. 0019
Prob(RAIM available) 0.983
VDOP availability limit 29
Prob(position error > RPE) 33x10°
Prob(missed detection | error > RPE) 0.111
Prob(false alarm) 0.0007
Fatal Accident Prob. per approach 1.7x 107

Table 8.1: Baseline European WAAS User Integrity

Although it is clear from Figures 8.1 and 8.4 that this 4-WRS network meets the
WAAS Category I accuracy requirements at all 11 selected user locations, it is equally
clear here that this network does not provide adequate integrity given the failure
uncertainty models from Section 8.3.2. Auvailability is not bad at 98.3%, but the
probability of exceeding the RPE is too high. RAIM catches 89% of these events, but the
remaining 11% that become “missed detections” translate into an unacceptably high fatal
accident risk, which is computed by multiplying the part of the RAIM cost due to integrity
risk (0.0017) by the risk multiplier ( 10%). Note from this value that it implies that 2.5% of
all missed detections (average cost of about 250) lead to fatal crashes. While current
Category I requirements do not specify a maximum acceptable fatal accident risk, the

implied requirement from the RNP and the Category III requirements is 10°. This
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network has considerably higher risk; so additional augmentations will be required. Note
again, however, that the risk multiplier used here may be quite conservative for approaches

that should not require WAAS navigation below the 200-foot decision height.

8.3.5 Integrity Simulation “Max Slope” Geometry Variant

The integrity simulation approach developed in this thesis deliberately avoids
making many of the assumptions of traditional RAIM, as discussed in Section 5.2.3. One
of these is limiting the integrity analysis to single-channel (i.e., single satellite) failures
only. In traditional RAIM, since failures on more than one channel are deemed to be
exceedingly unlikely, the cause-and-effect study focuses on “worst case” bias errors on a
particular “worst-case” satellite. Since these are the failures that most threaten user
integrity, traditional RAIM sets availability limits to “ensure” that these worst-case events
are detectable by the residual thresholds set for that case. Two relevant geometry
statistics can be monitored for this purpose. One is simply maximum subset DOP, in
which the relevant DOP that would result from eliminating each of the n satellites in view
is computed, and the highest of these indicates which satellite is most critical. This
calculation is related to &Hx in (5.19) of Section 5.2.2, which is given by (HDOP is used
here) [7-11]:

8H;, = max{3HDOP? - HDOP?} (8.2)

where SHDOP; represents HDOP with the " (i = 1, ..., n) satellite removed.
In [7-11], it has been shown that 8H,,,, as an availability statistic is mathematically
equivalent to the second geometry measure, which is know as maximum (satellite) slope.

This latter statistic is given by (again for HDOP):

HSlopel,, = max{(G? +G; 7)/si} (8.3)

i
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where the subscript “1:” refers to the [1,{] element of matrix G as defined in (5.9), and the
matrix S is computed from (5.14). Since we are concerned with vertical error here, the

corresponding maximum slope parameter is calculated by:

VSloper,, = max{G3/S;} (8.4)

To transform these last two equations into the “weighted-RAIM” domain as described in
Section 8.3.3, the numerators inside the max{e} term are muitiplied by the relevant
(elevation-dependent) ranging error standard deviation o; (taken from the square roots of
the diagonal elements of the n x n weighting matrix inverse W) for satellite i [7-13].
Also note that the definition of G” changes in the weighted position fix calculation as
shown in (7.5).

A physical interpretation of the maximum slope parameter is visible in the &x vs. &r
(same as D) plots in Figure 5.2. In this plane, each satellite has a “failure line” with a slope
given by (8.3) or (8.4). Higher bias errors on a given single satellite move the ellipse of
normal &x vs. 8 performance further up the relevant failure line. Lines that have the
highest slope will violate the missed detection region of Figure 5.2 with the smallest bias
error. Thus, failures on the “max slope” satellite are the hardest to detect via traditional
RAIM. A maximum-slope limit for availability is set in the context of Figure 5.2 by
eliminating geometries that have a satellite with a failure slope large enough to prevent the
integrity and continuity requirements from both being achieved for the worst possible
failure bias. Using single-channel failure assumptions and the very-accurate IBLS carrier-
phase landing system, a detailed illustration of the application of maximum slope to RAIM
availability and threshold selection is given in [7-9] for the LAAS Category III precision
landing application.

As discussed in Section 5.3, this whole edifice of RAIM thresholds and limits rests
on tenuous “worst-case” single-failure assumptions. Thus, the availability limits set by the
minimal user cost approach are referenced to DOP by itself instead of these single-failure

parameters. However, since for the failure probability models constructed in this thesis, it
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is still likely that most failures will be of the single-channel type, it would be interesting to
see if the use of maximum slope as given by (8.4) as the availability variable instead of
VDOP makes an appreciable difference.

Table 8.2 gives integrity results for the same WAAS failure model and baseline
European WAAS network using maximum slope from (8.4) instead of VDOP. The basic
event being simulated (WAAS-corrected GPS position fixes) is the same; thus we would
expect no difference between the base probabilities of exceeding RPE for different RAIM
simulations (since these are independent of integrity monitoring). The difference of 3%
seen between Tables 8.1 and 8.2 is thus due to noise in the simulation results. However, it
is apparent that the Max slope geometry criterion does give slightly better results. Note
that both the false alarm rate (0.0006) and the missed detection probability (0.0865)
improve over the values in Table 8.1 (0.0007 and 0.111 respectively). The “bottom line”
integrity cost improvement of about 15% is significant but not decisive; the overall efficacy
of RAIM is still limited by the uncertainty in the WAAS failure models. Since the
maximum slope criterion (or, by inference, maximum subset VDOP) appears to be better
than plain VDOP, it seems that RAIM effectiveness is helped by the relative predominance
of single-channel failures in the prior failure space. Nevertheless, the results here still fall

short of those predicted by weighted RAIM with traditional assumptions [7-13].

Overall RAIM user cost 0.0016
Prob(RAIM available) 0.982
Max Slope availability limit 55
Prob(position error > RPE) 3.4x10°
Prob(missed detect. | error > RPE) 0.0865
Prob(false alarm) 0.0006
Fatal Accident Prob. per approach 1.4x 107

Table 8.2: Baseline User Integrity using Max Slope

This exercise illustrates a key distinction mentioned in Chapter 1 between top-
down and bottom-up design approaches. Traditional RAIM follows the “bottom-up”
philosophy of systems engineering: a relatively detailed problem is studied by making
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assumptions as needed, then an algorithm or set of hardware is crafted to handle this
specific model. As noted before in this thesis, this conventional approach often neglects
much of the uncertainty surrounding the “true” problem and focuses the solution too
narrowly on a small part of the problem space. In contrast, the top-down simulation-based
design heuristic builds an uncertainty model of the problem space as broadly as possible
and samples from it to represent the effects of the “problem”. Broad-based intelligent
search then takes selected monitoring statistics and fits them to the failure space as best as
possible. As discussed in Chapter 1, this has the feature of being optimal in a decision-
theoretic sense.

In addition, top-down design can be pursued further into the domain of details
used by traditional design approaches. In the optimal RAIM case, the next step is to store
the sampled failure-space parameters for all cases where a bad position (especially a
missed detection) results. It will then be possible to examine the sets of failures that pose
the greatest risk to user integrity (i.e., those with the highest product of occurrence

probability and dependent likelihood of integrity failure) to determine:

(1) Specific detection strategies - Once the most threatening sets of failures are
known, detailed design of detection algorithms targeted on these events can be done. This
level of design is analogous to what is done in traditional RAIM as described above.

(2) Value of failure probability information - System-level evaluation of the value
of more statistical certainty regarding failure source and effect probabilities is possible,
since the likelihood of the most threatening failure sets occurring will depend on the
uncertainty of the prior probability model. This comes from the “value of information”
concept discussed in Chapter 1. Once this is determined, a strategy for further
experimentation and data-collection can be devised that optimizes the cost/value tradeoff

for attaining better information in the future.
This illustrates the course of future research for the optimal RAIM application.

Both WAAS and LAAS augmentation architectures will be studied, and the different

failure set sensitivities for each can be determined to see which augmentation options best
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mitigate the respective failure spaces. Furthermore, it lays out the future development of
detailed integrity algorithm design while the optimization method simultaneously (in a

development sense) searches for the best top-level system architectures.
84  Genetic Algorithm Optimization Model

By combining the coverage prediction model and integrity simulations, it is
possible to generate overall evaluations for any GPS augmentation architecture. If the
user population (or government agency) can derive a function that computes a top-level
“figure of merit” based on the predicted geographic spread of accuracy and integrity
performance, optimization of entire networks becomes possible. However, the use of
complex covariance and simulation models to generate these evaluations requires a flexible
optimal-search approach that does not require well-defined, deterministic problem
formulations.

As introduced in Chapters 2 and 4, evolutionary algorithms now provide this
capability. ~ Several specific methods, including Simulated Annealing and Genetic
Algorithms, have been used to solve a wide variety of problems. In general, they attempt
to “evolve” better solutions over time by perturbing the best solutions found up to that
point using semi-random operators that can avoid being “trapped” by local maxima or
minima, although there is no guarantee of finding the global optimum in finite time [2-
2,5,17]. They can also tolerate the noisy evaluations given by complex simulation models.
Simulated Annealing has proven to be successful in handling both the aircraft control
problem in Chapter 2 and the spacecraft redundancy design problem in Chapter 4.
Because the selection of options from a list of possible augmentations fits nicely into a
binary solution format, a genetic algorithm is developed here for use in optimal WAAS

network design.
8.4.1 WAAS Network Design Encoding

Much of the work in designing an evolutionary search method for a specific

application lies in tailoring the search to fit a natural encoding of the design space. For

244



WAAS network optimization, the
design variables can be expressed in a
vector of binary (0/1) elements, or
genes, which makes it possible to apply
a standard genetic algorithm (GA) to
evolve toward the optimal solution.

A computer search alone
cannot design an optimal network --
the input of design engineers is crucial.
In this case, we rely on human
designers to provide a list of possible

WAAS augmentation elements for the

User Locations and WRS Network Options: European WAAS
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Figure 8.4: European WAAS Locations and Options

GA to consider. This list may include reference station sites, provision for independent

monitor sites, and additional geosynchronous spacecraft to broadcast corrections and add

redundant ranging measurements.

No. Augmentation Option Incremental Cost ($ K)

1 Inverness WRS (UK) 2000

2 Seville WRS (SP) 2000

3 St. Petersburg WRS (RU) 2000

4 Izmir WRS (TU) 2000

5 Padua WRS (IT) 2000

6 Trondheim WRS (NO) 2000

7 Saratov WRS (RU) 2000

8 Nantes WRS (FR) 2000

9 Frankfurt WRS (GE) 2000
10 Cracow WRS (PO) 2000
11 Single-Freq. WRS RCR’s. - 90 Nwgs
12 add’'l. GEOSV at 15°E 25,000

Table 8.3: European WAAS Augmentation Options
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Essentially, it can include any option that can be modeled in the GPS/WAAS accuracy and
safety prediction algorithms.

Table 8.3 lists the 12 augmentation options for the European WAAS application
that we shall consider in this chapter. Ten of these are potential WRS locations, which are
shown as ‘x’ in Figure 8.4. Next is the use of single-frequency ionosphere corrections (see
Section 8.2.3) instead of dual-frequency ones, and the last is a third geosynchronous
satellite placed over Central Europe at 15° E longitude (shown by a dashed line in Figure
8.4). Given this list of options, a design solution is simply a vector of Ny = 12 0-1 entries,
where a 1 represents the presence of the relevant option and a 0 represents its absence.
Note that the addition of new options thought up by the human designers can be handled
simply by increasing the length of the design vector. This flexibility is important, as the
results of early evaluations and optimization runs may motivate the designers to think of

new augmentation options.

8.4.2 GA Population Evolution Operators

A genetic algorithm evolves a population of N, design solutions (10 are used here)
from one generation to the next. The population is initialized by combining baseline
solutions chosen by the designers (such as the 4-WRS network shown in Figure 8.1) and
randomly generated solutions in a 50-50 ratio. This becomes the “zeroth” generation of
the GA search. An accuracy and integrity evaluation of each is then conducted to provide
an objective-function value for each initial network design.

The canonical GA used here evolves the next-generation design solutions based on
the current-generation members and objective values. As described in Section 4.3.2, three
operators are used. The first is reproduction, in which a percentage Py = 60% of the
current solution members are chosen as parents of the next generation according to their
objective value, or fitness. This is done by a variant of roulette-wheel selection, in which
the parents are randomly chosen with probabilities that are proportional to their linearly
normalized fitnesses. In addition, the best solution is automatically copied directly into the

next generation (elitism) [2-2). This is the same approach used for the spacecraft problem
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in Section 4.3.2. The following two operators will be different because, in this case,
canonical operators can be used on the binary solution encoding.

Parents selected by this process are “mated” together two at a time in the
crossover operator, which simulates sexual reproduction. In the basic one-point crossover
operator, a location between 1 and Ny is sampled from a Uniform distribution, and the two
parents swap their genes before and after that point to make up two child solutions for the
next generation:

00110164 110001 = 10611010 [0110101]

|1011100|'|0110101| one-point 11011100}' 1110001"
! crossover L—J' """"

Another possible choice is uniform crossover, in which two parents combine to
produce one child. In this case, for each gene location, if the two parents have the same
gene, the child gets that gene as well. If the two parents disagree, the child’s gene is
chosen by a 50-50 random sample [2-2]. One-point crossover is used here, but it is
possible to combine these different operators to yield a faster and more robust search.

Mutation is the final canonical GA operator. Once the N, solutions that make up
the next generation have been chosen by reproduction and crossover, a Uniform random
sample is made for each gene in each solution. If this sample is lower than a chosen
mutation probability Py, that gene (bit) is flipped to its binary complement (e.g., 0 -> 1, 1
->0). This process, akin to rare genetic mutations in biological organisms, helps maintain
the genetic diversity of the solution population, preventing a small set of apparently good
solutions from achieving premature dominance (i.e., a local optimum). Normally, Py is
chosen to be < 0.01 (we have chosen 0.01), but higher mutation rates (inducing more

diversity) have been successful for other problems [2-2).

001100111001 => 001101111001
one-bit mutation '

8.4.3 GA Optimization Procedure
Figure 8.5 gives a flow chart of the procedure by which the GA “breeds” new

generations of solutions and evaluates their fitnesses. This chart follows the same format
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as Figure 4.4 for the spacecraft redundancy problem. Generation O is initialized as
mentioned in Section 8.4.1, then a loop of generations begins. Given a generation n, the
fitnesses of each of its N;, solution members are evaluated using both coverage (Section
8.2) and integrity (Section 8.3) analyses fed into the cost model of Section 8.5.
Reproduction, crossover, and mutation are then applied to generate the new generation
n+l. The GA evolution can be stopped when the population (or the value of its best
solution) stops improving, or it can be ended after a set number of generations. Each re-
evaluation of a given network is added to those conducted previously; thus statistical
significance increases with each new evaluation. Once a given network evaluation
converges to within an uncertainty tolerance, no further accuracy/integrity evaluations are

needed. Therefore, later GA generations will run faster on the computer than earlier

ones.
rare-event WAAS
clock/ ionosphere ionosphere failure optimal
ephemeris grid model model thresholds
Generation 0 \ / /
— iterate
i simulation-based
o I et intogrity evaluation _*
value
model
GA GA Repro-
Crossover [ duction

Figure 8.5: Genetic Algorithm Optimization Procedure
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8.5  WAAS Network Objective Function

Each of the possible solutions generated by GA evolution needs a fitness
evaluation, or a measure of its relative “goodness”. Because GA optimization is very
flexible, there are no mathematical constraints on the form of this system objective
function. We can thus construct a “value model” that attempts to express the system’s
top-level utility for the total user population. This is a key driver of the optimization
process, as the GA evolution will tend to exploit any inconsistency or “hole” in the fitness
model. For this reason, the elements of the objective function should be carefully
considered, and the results of early GA runs may motivate changes in the value model.

The value model developed here is a provisional attempt to weigh user benefits
and system costs in as wide a framework as possible, knowing that substantial revisions
may be necessary as more designer and user input is received. Beyond its use as a fitness
measure for GA optimization, a coherent and consistent value model provides a
cost/benefit justification for investing resources in a new navigation infrastructure. As a
result, the assumptions which go into the tally of costs and benefits are likely to be
controversial at both the engineering and political decision-making levels. This fact
further emphasizes the need to see the following value model as a proposal which will be
subject to substantial updating at several levels of the decision hierarchy. However, the
form of the model is of quite general applicability and could also be modified to evaluate
the performance of a set of Local-Area Augmentation Systems (LAAS) over a similarly
diverse set of users.

The overall objective function F(n) to be maximized is given by:
11
Fous(m) = X PM,[BL fi. - fig] - LCoSt, (8.5)
u=1

where fu" and fiuee“ represent evaluations of coverage and integrity performance
respectively for user location u, B," is the Category I user benefit for a given user

location, PM, is a “population multiplier” which measures the size of the user population
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near that location, and LCost, is the acquisition cost of a given WAAS network solution n,
which includes the procurement cost and four years of OEM (operations and
maintenance). Note that (8.5) represents a (benefit - cost) evaluation instead of a
benefit/cost ratio. Either approach is acceptable, and (8.5) could easily be converted to

ratio representation of acceptability.

8.5.1 Population Multiplier

The basic definition for the population multiplier is:

PM,

_ { Vei/p.  where p,>p, 8.6)

1 otherwise

where p; is the user population (which could be total population, number of air passengers,
etc.) and p. is a “critical value” which insures that all areas covered by WAAS get a
minimum base priority. Locations which exceed this critical value do get a higher priority,
but it does not scale linearly. The values of PM for the 11 user locations selected for the
European WAAS is shown (in italics) in Figure 8.4. Note that the single location over the
North Sea is valued at 10% of the overland site values since precision approaches cannot
be done there. The maximum value of 2.5 given to the Leipzig, Germany user location

implies a critical value for overall population (p,) of about 8 million.

8.5.2 Network Acquisition Costs

The system acquisition cost for all WAAS networks assumes a well-equipped
triply-redundant hardware setup at all ground stations. It includes a WMS procurement
cost estimated at $6 million and four years of OEM at $2 million/year, giving a WMS
acquisition cost of around $14 million. The incremental WRS cost is estimated to be $1.1
million, which includes a $0.5 million procurement cost and a $150 thousand per-year
OEM cost. The cost saving obtained by using single-frequency receivers in the WRS’s is
estimated at 75% of the cost of a dual-frequency receiver set multiplied by the number of

WRS’s in a given solution. For all ground augmentations, an 80% administrative and
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indirect cost factor is added, giving conservative final life cycle costs of $25 million for a
WMS and $2 million for each WRS (as shown in Table 8.3). This is based on the high
overall cost estimates for the FAA WAAS given in [6-1]. Finally, the cost of providing an
additional geosynchronous satellite is assumed to be $25 million, the estimated cost of an
inexpensive satellite designed for just this purpose. As in the Inmarsat case, leasing a
GEO transponder may be an option, but the high value of the 15° E location suggests
even a lease cost will be much higher than the $2-5 million/year paid by the FAA. The

sensitivity of the optimal result to this cost will be examined further in Section 8.6.

8.5.3 User Benefit Estimates

The calculation of benefits provided by Category I to precision approach users
requires making significant assumptions. According to [6-5], WAAS is expected to
increase the number of Category I-equipped approaches in the U.S. from 765 (in 1994) to
over 5,000. It also suggests an overall user benefit for WAAS Cat. I to be $992 million,
or about $200,000 per approach. In Europe, we estimate that this life-cycle per-approach
benefit will be doubled due to the poorer weather there. In [6-8], Europe is estimated to
have 326 Category I ILS facilities (1994), and we conservatively assume that WAAS will
allow this to grow to 1200, giving a total user benefit of $480 million.

An estimate of the per-approach benefit of having Cat. I available is estimated by
[6-8] as saving 2 minutes. Converted to aircraft per-hour fuel and direct operating costs
of a weighted mix of passenger aircraft (about $4800), the benefit (conservatively)
becomes an average of $160 per approach. Given 1200 Cat. I approaches each providing
benefits of $400,000 on average over a four-year life cycle, approximately 3 million
Category I approaches in Europe are expected to result during this time frame.

A second user benefit to WAAS is removing the need to support and maintain the
326 current ILS facilities that now provide Category I capability. This cost is estimated by
[6-8] to be $400,000 per ILS facility (per life cycle), which, multiplied by 326, gives an
added benefit to WAAS of $130 million. While it can be argued [8-19] that the current
ILS network has been recently upgraded and represents a “sunk cost,” the continual

maintenance of it would no longer be necessary after WAAS becomes operational. Under
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this model, the total life-cycle benefit of WAAS Category I is $610 million, if it were to
perform perfectly in both the accuracy (i.e., 95% error approaching zero) and integrity

(i.e., availability approaching one and fatal accident risk approaching zero) domains.

8.5.4 Accuracy and Integrity Evaluation

The WAAS accuracy evaluation f,.." is simply a percentage of the benefit for each
user location, which is broken down from the $610 million total based on the population
multiplier for that site. Perfect navigation (i.e., zero position error) gets 100% credit, a 26
vertical error of 2.1 m gets 99%, 4.1 m (the ILS requirement) gets 90%, and 7.6 m (the
WAAS RNP requirement) gets only 20% (since it is at the outermost limit of

acceptability). A cubic polynomial fit gives, for a resulting 26 vertical accuracy a (m):

faee = 1-0.005a+0.00524* - 0.0024a° (8.7)

where f...“ is in decimal terms (i.e. from O to 1).

Converting the RAIM user cost of Section 8.3.1 to this value framework requires
two further assumptions. Recall that in Probabilistic Risk Assessment (PRA), it is
considered valid to assign cost values to fatalities if the underlying risk is sufficiently small
(below 10 - see [1-1]), which it is for the level of integrity provided by GPS. Assuming
an average (based on the breakdown of aircraft sizes for Cat. I approaches) of 100
fatalities per fatal incident and a conservative “value per life” of $10 million (which is
actually assessed as $10 per 10 mortality risk), each fatal accident incurs a loss of about
$1 billion. Since 3 million approaches are foreseen over a 4-year life cycle, and a fatal
accident implies a cost of 1/R. = 10,000 in the RAIM cost model of Section 6.4.2), we can

convert from RAIM cost (Cram) to overall value (fine,™):

($1x10°)(3x10°)
10

Soeg = Caamm = 3%10" Cpapm (8.8)
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Note that this calculation is also broken down by user location and population multiplier
within the RAIM user cost optimization (Section 8.3.3). Also note that the non-
availability cost per approach (0.0125) from Section 8.3.1, which is included in the
integrity evaluation, implies a nuisance equivalent to about an hour of added aircraft cost,

including all consequent delays.

8.5.5 Value of 4-WRS Baseline European WAAS

The accuracy of the baseline 4-WRS European WAAS network (shown in Figure
8.1) translates into a accuracy multiplier (weighted by PM) of 0.958, giving an overall user
benefit of $584 million. However, the RAIM user cost of 0.0019 from Table 8.1
translates (using (8.8)) into an integrity cost of $570 million, which is about equal to the
user benefit. Subtracting the acquisition cost of $33 million gives a final value of -$19
million; thus this network is clearly insufficient. Note that the acquisition cost is dwarfed
by the benefits and costs that result, indicating that additional augmentations would be
very cheap relative to the possible performance improvement. Also, the fact that a 4-WRS
WAAS network cannot provide sufficient integrity suggests that proposed augmented-
GPS systems for large regions of Europe that are based on one or two DGPS sites would
be insufficient as well, even though they may meet the Category I accuracy requirements

[6-16].

8.6  “First-Generation” WAAS Results

In attempting to run the GA optimization code on the European WAAS problem, it
was discovered that the software needs to be re-written for parallel processing and that a
computer with sufficient available processors will be needed to evolve a population of
networks toward optimal convergence. However, it is possible to conduct a first-
generation evolution using the GA operators and manually investigate some of the
networks that result. Results for two of these variants are shown here.

Figure 8.6 shows 95% vertical accuracy contours for a network coded
(111110000000], which is simply the base 4-WRS network plus a fifth WRS in Padua,
ltaly, in south-central Europe. Compared to Figure 8.1, accuracy over highly-populated
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central Europe is somewhat better, resulting in an accuracy benefit of $590.5 million. In
monetary terms, this benefit is small because the accuracy shown in Figure 8.1 is already
good enough to support Category I operations, at least in principle. More importantly,
integrity risk (see Table 8.4 below) has decreased by a factor of 5.6 to give a cost of
$134.7 million from (8.8). The acquisition cost is still only $35 million, giving a final user
value of $420.8 million. The addition of a single WRS in a beneficial location thus has
resulted in a design that appears feasible.

Figure 8.7 shows vertical accuracy for a network coded [111110000101]. This
adds a sixth WRS in Cracow, Poland, and it also uses the additional GEO at 15° E, giving
an acquisition cost of $62 million. Although the accuracy contours continue to improve,
the benefit has only slightly increased to $593 million. However, the addition of the GEO
satellite has made a further substantial improvement to integrity. All failure trials were
available, and the integrity cost from Table 8.4 and (8.8) has fallen to just $22.3 million.
The total value for this network is $508.7 million, which is $87.9 million higher than for
the 5-WRS system. This result demonstrates that the addition of the 15° E GEO satellite

is desirable even if (as is likely) its acquisition cost is much higher than $25 million. The
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“break-even” point between these two network designs would be reached if the additional
cost of the GEO and the sixth WRS together were $115 million instead of the $27 million
forecast here (this is obtained simply by adding $27 million and $88 million).

Figures 8.8 and 8.9 display 95% UIVE and UDRE, respectively, for this 6-WRS +
GEO network variant. In Figure 8.8, the addition of two WRS’s and a geostationary
ranging source toward the center of Europe (compared to Figure 8.2) has improved UIVE
in that region substantially -- a 95% UIVE floor of under 0.4 meters results, which is
about a 20% improvement. On the other hand, UIVE toward the fringes of the network
(e.g., north of Scotland) has improved hardly at all. In Figure 8.9, it is clear that the
additions in Central Europe have removed the strange UDRE “hump” over southern
Germany that appeared in Figure 8.3. Instead, the 95% UDRE contours have smoothed
out into a regular oval format as seen in the UIVE plots, and a wide swath of Central
Europe now has a 95% UDRE of under 0.75 meters. As in Figure 8.8, improvement
(relative to Figure 8.3) along the edges of the plotted user coverage area is minimal.

Due to both the UIVE and UDRE improvements shown in Figures 8.8 and 8.9,
overall user accuracy over Central Europe in Figure 8.7 is significantly better (about 10-

15%) than for the baseline design in Figure 8.1. The accuracy component of the user
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value function in Section 8.5.4 does not place great value on these improvements, but they
are definitely significant in the integrity evaluation, as evidenced by the dramatic integrity
cost reductions mentioned above. This points out the importance of designing networks
whose accuracy results are both sufficiently small and well-behaved (i.e. simple contour
shapes). Limited as we are to a tail-probability inflation way of simulating rare-normal and
failure events in Section 8.3, integrity acceptability depends on having good accuracy
(better than the 95% error requirements) throughout the areas of significant importance to
the value function.

As mentioned above, Table 8.4 gives the relevant integrity parameters for both of
these network designs. The results shown here are for the original simulation approach,
where user geometries are classified by VDOP. The integrity improvement as the
specified additional augmentations are added is both consistent and impressive. Note that
availability, bad position probability, false alarm rate, and missed detection probability all
improve from the baseline design (Table 8.1) to the 5-WRS design and from the 5-WRS
to 6-WRS + GEO design. Based on the discussion and results of Section 8.3.5, we may
expect these results to improve as much as 10-15% further if maximum slope were used as
the availability parameter.

This research will progress further as the computer capability necessary to run

more GA generations becomes available. Currently, more evaluations of the first and

Category 5-WRS 6-WRS + 15° GEO
RAIM user cost 0.000449 0.0000743
Prob(available) 0.9998 1.0
VDOP availability limit 4.6 N/A
Pr(error > RPE) 1.4x 10° 6x10°
Pr(MDlerror > RPE) 0.055 0.020
Pr(false alarm) 0.0002 3.2x 10"
Fatal Accident Prob/approach 45x 10* 7.4x 10°

Table 8.4: Integrity for European WAAS Variants
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second-generation GA designs are being run and compared to manually-designed
alternatives. The point of “diminishing returns” beyond which further augmentations are
not cost-effective has not yet been conclusively found. However, given that the GEO
(which is clearly a desirable addition) may actually cost $50-100 million, it seems that the
gap in accuracy-minus-integrity value of only $120 million between the two networks

evaluated here suggests that the 6-WRS + GEO network is approaching that point.

8.7 Conclusions and Further Work

Given the current state of information about augmented DGPS systems (WAAS in
particular), it is difficult to make predictions regarding WAAS system-level performance
from which network design decisions can be made. We have succeeded in doing so by
developing algorithms that combine covariance propagation to determine position
accuracy for large areas of potential users with failure-case simulations that incorporate
the best available current knowledge. Further improvements in these prediction methods
are possible, including fitting more detailed error models to the rapidly-growing Stanford
WAAS database. Better models of ground integrity can also be developed, allowing us to
add detailed ground integrity monitor optimization to our current optimal-RAIM integrity
prediction algorithm. Finally, the wealth of data to be collected by the FAA’s NSTB
starting in 1997 should dramatically reduce our uncertainty about potential failure sources,
most notably including ionospheric spatial decorrelation.

The augmented-GPS network optimization results we have achieved to date are
impressive. We have demonstrated the policy-level feasibility and desirability of using
WAAS to provide Category I precision approach capability to Europe with the network
designs of Section 8.6, and we are continuing to search for the best possible combination
of WRS’s and geosynchronous satellites to accomplish this. The 6-WRS+GEO (3 GEO's
total) combination looks very promising, as it meets all Category I requirements and
provides a value benefit of over $500 million, depending on the cost of the GEO.

It is of interest to compare the “bottom-line” results achieved through value

optimization to what is expected by WAAS requirements published to date. Table 8.5
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compares the predicted performance of the 6 WRS + GEO network to the relevant
accuracy and integrity requirements chosen by the FAA in the WAAS Specification [8-16].
The “service volume” defined there is taken to include an oval that passes through the
outermost of the 11 evaluation sites plus a 10% additional area on the edges of this oval.
Note that the requirements focus on GIVE rather than UIVE, which was plotted in Figure
8.8. GIVE can be extracted from the coverage prediction outputs, but this has not yet
been done for the European case. Since UIVE from Figure 8.8 (which includes user
gridpoint extrapolation error in addition to grid estimate error) would meet the GIVE
requirement, this is assumed to be met.

The key discrepancy between the requirements and the optimal network results
comes from the tri-axis integrity/continuity/availability tradeoff. The requirements listed in
the last three rows of Table 8.5 come from a combination of ILS heritage and augmented-
GPS performance expectations. They do not necessarily represent a well-thought-out
tradeoff between these three performance classes. In this case, the continuity requirement
can only be met if RAIM is used as a single snapshot check as the aircraft approaches the
ceiling height. RAIM will probably operate throughout the approach, however, and it is
not clear whether sufficient time correlation will be present to allow it to be met in
practice. What is clear is that the per-epoch HMI (“Hazardously Misleading Information”)
result, obtained by multiplying the bad position and missed detection probabilities from

Table 8.4, is three times the listed requirement for the entire approach.

Requirement Class WAAS Spec. | Europe Perform. | Req’t. Met?
vert. position accuracy (95%) 7.6m <£35m YES
UDRE (99.9%) 1.5m =15m YES
GIVE (99.9%) 1.5m = 1.3 m (UIVE) | YES (probably)
Prob{availability ) 99.9% 100% YES
Prob{continuity loss} 5.5x 10°/appch. | 3.8 x 103/ epoch YES*
Prob{HMI - hazardous info.} | 4x 10®/appch. | 1.2 x 107/ epoch NO |

* depends on number of RAIM decision points per 150-second approach
Table 8.5: European WAAS Requirements Comparison
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The allowed HMI probability in the WAAS specification is motivated by the risk
allocation done in the RNP [6-10] discussed in Section 5.3.4, but the allocation of 4 x 10°¢
for Category I WAAS (taken from the ORD [6-11]) assumes that the same risk applies as
when an approach is taken all the way to the ground (Cat. IIIB). It should once again be
noted that the definition of HMI as a vertical navigation error exceeding 19.2 meters does
not introduce as much consequent risk to the aircraft when it should not continue the
approach below the 200-ft decision height. Thus, the significance of not meeting the HMI
number is questionable. If the RAIM cost model for WAAS introduced in Section 6.4.2
and revised in Section 8.3.1 is a fair representation of the original RNP risk allocation, the
result obtained from the optimal-RAIM approach better captures the intent of the
requirement than the requirement itself does. Otherwise, if the FAA requirement is taken
as gospel, then the RAIM non-availability cost could be lowered (since it now gives 100%
availability) until the specified HMI probability is achieved. The overall requirement
would then be met if the resulting availability probability remains above 99.9%.

Current plans include expanding the applicability of our optimization approach by
revising the assumptions of European value model for networks in North America and the
rest of the world. Furthermore, the same basic approach will be used for optimal LAAS
architecture design beginning in 1996. The LAAS case will focus more on single-airport
operations, but the same fundamental cost-versus-performance tradeoffs will need to be
made. As noted before, our ability to make this vision of augmented-GPS evolutionary
optimization a reality requires implementing the coverage prediction and integrity
simulation software on a multi-processor computer. This is intuitively easy because the
evaluation of accuracy or integrity for each user location is a similar process that can be
done simultaneously for as many locations as there are available processors. Stanford’s
GPS research groups plan to acquire a workstation with at least 16 fast processors by
early 1996. This computer will be used for extensive simulations of both LAAS and
WAAS architectures, as Stanford is tasked by the FAA to evaluate the cost-benefit
performance and certifiability of various competing LAAS systems. This work will utilize
and further develop the GPS evaluation and optimization techniques reported in this

chapter.
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Chapter 9: Summary and Recommendations

We are in an age that assumes the narrowing trends of specialization to be logical,
natural, and desirable.... Advancing science has now discovered that all the known
cases of biological extinction have been caused by over-specialization, whose
concentration of only selected genes sacrifices general adaptability.... Specialization
has bred feelings of isolation, futility, and confusion in individuals. It has also resulted
in the individual's leaving responsibility for thinking and social action to others.
Specialization breeds biases that ultimately aggregate as international and ideological
discord, which, in turn, leads to war.
- R. Buckminster Fuller (1894-1983)

One machine can do the work of fifty ordinary men. No machine can do the work of one

extraordinary man.
- Elbert Green Hubbard (1856-1915)

9.1  Systems Design and the Decision Paradigm

Despite covering a lot of ground and jumping among several applications, this
thesis has at its center the goal of validating the use of decision-theoretic concepts on
practical aerospace design problems from a top-down perspective. In each application
studied, a probability model of performance and/or risk was developed at the mission
level, where the events can clearly be linked to gains and losses of the end-state user. This
model contained within it measures of the uncertainty present in the parameter values
applied to a given application. These uncertainties were given probability distributions of
their own. As a result, the same Monte Carlo simulation that evaluated system
performance could sample from this distribution as well, giving a reasonably complete
model of the total uncertainty picture.

Optimization techniques that allow system evaluation by Monte Carlo simulation
(with the consequent statistical uncertainty) make it possible to search the conceptual
“decision tree” of system and subsystem design options for the globally optimal solution.
While there is no guarantee of finding the global optimum, methods based on evolutionary
optimization provide this capability. In this thesis, algorithms based on Simulated
Annealing and Genetic Algorithms have been demonstrated to be effective in optimizing
both spacecraft redundancy design and GPS augmentation network design. Both methods
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can be applied to almost any design problem because they allow creative encoding of the
design solution space. This encoding is important because it can dramatically improve the
efficiency of the search process through its incorporation of problem-specific knowledge.

Performing design optimization based on Monte Carlo sampling of a complete
system risk model effectively results in the solution of the master “decision tree” illustrated
in Figure 1.4. In this way, an optimal decision (design choice) is made that satisfies all of
the requirements of the theory of decision making under uncertainty introduced in Chapter
1. In principle, this approach is superior to the conventional method of deterministic
worst-case engineering design. For both the spacecraft and GPS applications, it was
demonstrated that decision-theoretic solutions offer practical benefits over deterministic
approaches. Chapter 2 of this thesis introduced these concepts with a simplified control/
estimation problem utilizing WAAS as the primary position sensor. Even for this linear
model, the addition of non-ideal failure modes and non-quadratic cost terms changed the
optimal result significantly.

The key limiting factor in handling simulations of a large uncertainty space (in
addition to system performance simulations) and then using the results to perform optimal
solution search is the computer hardware and software now available. Modern
workstations and PC’s have made samples of millions of trials feasible. The next step is to
parallelize the top-level optimization code (and the simulation code where desirable) to
allow the search to utilize many independent processors either in an internally-parallel
machine or by farming out simulation tasks over a network. Software to ease the coding
of uncertainty and performance simulations continues to improve and become more user-
friendly, and intelligent compilers that parallelize code written for single processors are
now on the horizon. The end goal is a comprehensive simulation-based optimization
package that can be used by engineers who do not need to be familiar with its internal

workings.
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9.2  Reliability-Based Spacecraft Design Optimization

In Chapter 3, methods of modifying traditional reliability and FMEA assessment
techniques for spacecraft were developed. These provide a much better picture of the
global uncertainty picture for a given spacecraft mission by (1) representing the fact that
component failure rates change over the mission lifetime, (2) modeling tabulated failure
rates that contain significant statistical uncertainty as lognormal probability distributions
which are sampled in simulation-based reliability evaluation, (3) providing a means of
representing statistical dependence among components of the same type via uncertainty
sampling, and (4) allowing for reliability assessment for components without tabulated
failure rates using the probability distributions implied by FMEA analyses. Instead of
giving a single system failure probability (as a function of time), the simulation instead
gives a histogram of reliability uncertainty at each point in the mission timeline. While this
uncertainty picture may be harder to explain to the end user, it provides the capability to
make optimal design decisions without sacrificing design effort in a conservative worst-
case approach.

Chapter 4 illustrated that this potential is real by using simulation-based reliability
models and a variant of Simulated Annealing to perform optimal redundancy allocation for
the Gravity Probe-B (GP-B) spacecraft bus. Instead of merely maximizing mean reliability
at the end of the primary mission, the optimal design was tailored to value functions that
modeled the mission success priorities of both the spacecraft developer (LMSC) and the
“customer” (Stanford/NASA). The two optimal designs that resulted demonstrated that
many tenets of traditional spacecraft design theory, such as the avoidance of all single-
point failures, may be sub-optimal when evaluated within the context of a realistic
uncertainty model. For the Stanford value function, the optimal design found was able to
improve reliability slightly while reducing the total component cost by 10%.

The key difference between this optimization approach and spacecraft redundancy
design as currently practiced is that the traditional approach implicitly presumes a high
degree of risk aversion and a uniform level of reliability unceriainty (duc to the

inaccuracies of traditional reliability calculations) across all component classes. Under
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these conditions, it is evident that one should incorporate high minimum levels of
redundancy across-the-board. With value functions tailored to each user’s preferences
and a more discriminating uncertainty model, it becomes possible to do a superior design
job on a mission-by-mission basis. This is becoming more and more critical as pressure
builds on spacecraft developers to provide current (and future) on-orbit capabilities in
much less time and at a much lower cost.

Recall that the master decision tree in Figure 1.4 implied a tie-in between
spacecraft-level redundancy optimization and detailed design of each of the relevant
subsystems. This only requires linking the top-level optimization code with lower-level
performance simulations of each of the subsystems. For example, the guidance-and-
control subsystem performance could be simulated in the context of failures sampled at the
top level. The redundancy design vector could then be augmented by the key design
variables for each subsystem in a single global search, or a greater degree of autonomy
could be set up in which each subsystem simulation has its own failure sampling and
performs its own “inner-loop” optimization. This latter approach has the advantage of
more easily implementing already existing optimization codes, such as the MATLAB
optimal control toolbox for guidance-and-control design. This concept will be discussed

further in Section 9.4,
9.3  GPS Performance Prediction and Optimization

The concept of design optimization based on simulation of an uncertainty model
was easily extended to civilian applications of the Global Positioning System (GPS).
Chapter 5 considered the problem of navigation error integrity monitoring for users of the
uncorrected Standard Positioning Service (SPS). Receiver Autonomous Integrity
Monitoring (RAIM) works reasonably well for this application, since airborne SPS users
normally can tolerate errors of at least 550 meters horizontally (the 95% SPS horizontal
error specification is 100 m). Traditional RAIM usually assumes specific “worst-case”
single-channel failure modes and statistical independence, thereby allowing decision

thresholds to be set according to the chi-square distribution to meet specific requirements
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for “faise alarm” and “missed detection” probabilities. Chapter 5 addressed the adequacy
of this approach in a high-uncertainty environment by introducing a “prior probability
model” (PPM) for GPS satellite and receiver error performance. As in Chapter 3, the
PPM incorporated statistical dependence (and thus the increased likelihood of multiple
failures) by sampling from uncertain satellite failure rates which applied to all GPS
spacecraft for that trial. In addition, thresholds were set to minimize a mission-leve] user
cost function which, instead of enforcing arbitrary probabilities, allows for trade-offs to be
chosen to lower the overall risk of an accident. Monte Carlo simulation was used to
sample from both the PPM and the GPS satellite geometries for a fixed user position, and
the results were stored such that the optimal thresholds could be chosen by a simple line
search.

The results of this effort demonstrated that RAIM optimization based on a
complex value model was possible and that reasonably consistent output thresholds were
obtained. The optimized RAIM algorithm produced reasonable results for availability and
false alarm probability. However, they were higher than published SPS integrity
requirements in some cases, especially for the missed detection probability (given an error
exceeding the safe limit), which lies between 2-25% for all cases studied in this thesis.
This result illustrates that probabilities computed from the chi-square equations and
assumptions will likely be very optimistic when compared to those from a realistic failure
model. This conclusion was confirmed by a statistical test that demonstrated that the
predictions of traditional RAIM equations are unlikely to accurately describe the
consequences of the more realistic PPM failure model. However, it should be
remembered that, for a minimal-risk approach, the bottom line is that the overall accident
risk be within the system-level risk allocation taken from the RNP. This has been shown
to be feasible in the SPS RAIM case and to be within reach for applications that require
much greater accuracy.

Chapter 6 extended the minimal-cost RAIM approach to the Wide Area
Augmentation System (WAAS) Category I precision approach application. A simulation
of WAAS corrections and the resulting performance was constructed for a single user

location (randomly sampled within CONUS), and a “fault” model was built from
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ionospheric delay error data that suggested that the tails of this distribution are much
worse than Gaussian. With a revised risk (cost) model to minimize and after changing the
satellite geometry measure to VDOP alone, these two models were mated into a large
simulation, then optimal thresholds were selected using the line-search procedure used in
Chapter 5. The results indicated that published WAAS integrity requirements will be
difficult to meet given the current level of ionospheric uncertainty. Several years of
ionospheric data collected by experimental WAAS networks will help bring this
uncertainty into a manageable zone as the next solar cycle waxes toward a peak around
the year 2000.

Chapter 7 moves the focus away from failure uncertainty modeling in order to
build a comprehensive model of normal-condition accuracy for the wide geographic
distribution of users supported by large-scale WAAS networks. GPS satellite geometries
(augmented by geosynchronous communication and ranging satellites) were simulated as
before, but the assumption of ii.d. Gaussian error conditions made it possible to
propagate linear-quadratic error covariance matrices forward from reference station
(WRS) to master station (WMS) to a collection of user locations. This propagation can
be done separately for clock/ephemeris errors and ionosphere errors if the reference
stations have dual-frequency receivers.

Results of this “user coverage prediction” method were obtained for small
networks such as the Stanford experimental WAAS (and variations of it) and, with the
addition of matrix parsing algorithms, the much larger National Satellite Test Bed (NSTB)
network of 18-24 WRS’s spread throughout the Continental U.S. (and perhaps Canada
and Mexico). The results for 95% vertical accuracy demonstrate that current and
proposed Category I accuracy requirements can rather easily be met with relatively sparse
WRS networks. Results broken down into clock/ephemeris (UDRE) and ionosphere
(UIVE) error sources show UIVE degrades gracefully as users move farther away from
the WRS network (under normal conditions). UDRE, on the other hand, degrades more
quickly for sparse networks. The NSTB is relatively dense; so it provides very good

coverage for users over an area much larger than that spanned by the WRS layout itself.
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This coverage-prediction method has also shown itself to be applicable to
proposed WAAS networks anywhere on the globe. One particular non-U.S. application is
the focus of the combined accuracy/integrity WAAS network optimization developed in
Chapter 8. A sparse baseline WAAS network designed to cover Europe is proposed and
then studied by a combined coverage and integrity analysis, where the coverage accuracy
predictions are used to represent “normal conditions” in the tail-expansion failure sampling
done by the RAIM optimization code. A system-level user value model for Category I
precision approaches was then constructed that places a monetary value on supplying
Category 1 coverage over a wide area, subtracts the cost of the network, and then
penalizes the result by a cost based on post-RAIM accident risk. This value model was
utilized in a genetic algorithm-based search for the optimal combination of reference-
station and geostationary-satellite WAAS augmentations.

Although only a few generations of the GA could be completed in a reasonable
time, they resulted in at least two feasible designs. One of these, which included 6 WRS’s
and a third geostationary satellite at 15° E, gave the best result and appeared able to meet
the FAA WAAS specifications for accuracy, availability, and continuity. Once again, an
optimal-RAIM approach was not able to meet published integrity requirements, but the
risk implied by the minimized integrity cost fits well with the RNP risk allocation,
suggesting that the specified integrity numbers are simply too tight. They were chosen
partly because traditional RAIM calculations suggested that they could be met. As in
Chapter 5, the more generalized optimal-RAIM approach can point out where the
assumptions of traditional RAIM are partially invalid while making its own evaluation
based on more fundamental measures of risk.

The next step in pursuing GPS system evaluation and optimization under
uncertainty, in addition to improving the error and failure models, is to run the overall
operation on a multi-processor workstation (as discussed in Section 9.1). There are many
parts of the overall task which are easily separated and can run independently and
simultaneously if multiple processors are available. Two orders of magnitude of increase
in effective computing speed are expected from a state-of-the-art workstation with at least

16 floating-point-optimized processors. This would make it possible to run the GA search
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of Chapter 8 to convergence. At the same time, the error-propagation algorithms can be
modified to both evaluate LAAS performance and do a cost-benefit optimization of the

elements of such a system for Category IV/III aircraft precision approaches and landings.

9.4  The Future of Aerospace Design

In the foreseeable future, it is likely that the traditional systems design approach
will remain recognizable but will gradually be modified to take advantage of the spread of
high-powered computer analysis capabilities. For one, extensive simulation can now be
done on personal computers using the latest simulation software tools and powerful
Pentium® or PowerPC® processors. Another example is the use of network tools such as
Lotus Notes® to link distant engineers in an on-line environment where cooperative effort
is made to develop requirements (and later specifications) for new technology
development. Boeing Commercial Airplane Group is using such a system to link its
engineers with subcontractors who are working together on requirements for augmented-
GPS precision landing systems.

A key question for the future is whether these developments, taken together, will
allow aerospace technology development and actual hardware design to be undertaken by
small start-up companies. Firms of this type have revolutionized the electrical and
computer fields and produce a staggering array of new products despite very low cost
structures. In contrast, aerospace system development requires very costly effort by many
hundreds of engineers to handle detailed requirements and specification compliance at
many interlocking levels of detail in addition to the basic work needed to develop a new
product.

Figure 9.1 shows an outline for a start-up-sized company focusing on all levels of
aerospace design, either as an independent company with manufacturing subcontractors or
as the design branch of a larger company. It shows a set of personal computers
surrounding a core of multi-processor simulation workstations. The central computer
core not only runs simulations constantly on its own processors; it manages the flow of

information to the individuals responsible for intermediate and final decisions. Two key
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Figure 9.1: A Future Aerospace Design Firm

individuals are required to handle mission analysis (interfacing with customers and
defining the mission to design for) and system engineering architecture (connecting the
subsystem design elements into a unified whole). These individuals will have advanced
graphical PC’s (denoted as PCX) which will allow them to monitor the current status of
simulation-based evaluation and optimization in real-time. They will then have the
capability to inject new or revised value models and/or design constraints to help redirect
the search according to their own or their clients’ experience and qualitative preferences.
The mission analysis person can also prioritize the simulation jobs waiting to be run.

The computer network shown in Figure 9.1 aims to allow an unparalleled level of
second-by-second interaction between the work of several small design teams. The top-
level simulation will effectively budget varying amounts of performance and expenditure
to each of the subsystems based on the feedback of the application-specific optimizations
being run simultaneously for each one. This means that all of the project engineers will
have and be able to utilize up-to-date information about all of the systems with which their

design responsibility interacts. Furthermore, the computer network will be able to handle
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lower-level changes much more rapidly than teams of human engineers. Research on
combining dissimilar top-level and subsystem-specific optimization codes into a uniform
search process is reported in [2-3,18].

In addition, the workstation core, which has primary responsibility for the system-
level simulations, will be able to assign simulation jobs to any of the other networked
computers that is currently underutilized. By taking advantage of the processing power of
modern PC's sitting on everyone’s desk, the simulation controller will have the equivalent
of dozens of Pentium-class processors available for simulation tasks, especially at night
when most of these computers would otherwise sit idle.

It is believed that a company centered on an interactive simulation-based
optimization computer network will be able, by fully cvaluating the master decision tree of
Figure 1.4, to achieve with 10-20 people and 2-6 months what it takes hundreds of people
and 3-5 years to do today. This may be the critical factor in bringing the conservative
aerospace design establishment into the “modern age” so that price and time-competitive
aerospace products can be developed to compete with other areas of research.
Innovations that provide new capabilities to society in less than a year and at hundreds of
dollars per person are now capturing most of society’s allocation of money to new
technology development. Considering the time and money required to develop aerospace
systems today, many have argued that further development of aerospace technology will
not provide the same return to society as an equivalent investment in other enabling
technologies (i.e., computers, biotechnology). The challenge has thus been presented --
aerospace design must learn to adapt to a world with that insists on realistic risk/return
tradeoffs and that cannot provide a guarantee of safety, or else it will face an ever-growing

sense of obsolescence in the 21st Century.
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Appendix A
Axioms of Decision Theory and Required Assumptions

This section summarizes the background assumptions required by the theory of
Decision Analysis so that its methods produce the optimal decision for a given problem [1-
3). The following postulates and axioms form the structure of a decision-analysis
problem. In particular, the so-called “Rules of Actional Thought” that follow ensure that
the decision maker’s preferences among possible outcomes can be ordered in a logical
way. Decision theory tries to avoid value judgments regarding the “sanity” of the decision
maker’s preferences. For example, it allows for a person who prefers less money to more
so long as consistency is maintained. Decision makers may conceivably have preferences
that do not fit these rules. An “optimal decision” could still exist for such a person, but
the underlying inconsistencies prevent this optimal choice from being arrived at through

the decision-analysis procedures used in this thesis.

The Rules of Actional Thought

(1) Probability Rule: The decision maker is required to express his information and
judgment as to the possible future outcomes related to his decision in the form of
possibilities and probabilities. In other words, the outcome space within which the
decision will be made should be modeled as a realm of possible results, each having a
probability of occurrence assigned by the model to express the available information as
accurately as possible. We can illustrate this model by a canonical decision tree of
possibilities and probabilities, using a sports-event weather prediction problem as an
example (see Figure A.1).

In this case, the possibility of a game postponement is a function of the probability
of good weather. From this tree, it is easy to compute the marginal probability of

postponement:
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Pr(postpone) = (0.7)(0.05) + (0.3)(0.6) = 0.215

This framework is used to structure
our thinking about probabilities and
consequences as developed by the

ensuing methodology.

(2)  Order Rule: This rule simply
requires that a decision maker order

his or her preferences among the

possible outcomes in an unambiguous
way from best to worst. Continuing
with the game postponement problem, Figure A.1: Probability Tree for Weather Problem
let us suppose that the decision maker
must decide whether or not to go to the game (before finding out what the game-time
weather will be or whether the game will be postponed). Using postponement as the main

outcome variable, the decision maker may order his preferences as follows:

Best: attend game, no postponement
do not attend, postponement
do not attend, no postponement

Worst: attend game, postponement

This is all that is required to satisfy the order rule. Note that if one were indifferent to
whether or not the game was postponed assuming one did not attend, the two “do not
attend” cases would effectively merge into one, and the order rule would still be satisfied.
What is expressly forbidden by the order rule is a circular list of preferences. If a
person prefers outcome B to outcome A and outcome C to outcome B, his list of
preferences should be {C,B,A}. If he then stated that he preferred A to C, it would

become impossible to clearly distinguish which outcome is most preferred. This would
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make one a so-called “money pump,” since one would in principle be willing to trade
something to exchange A for B (since B is preferred over A), B for C, and C for A; thus
being susceptible to a never-ending series of payouts in exchange for no long-term benefit.
Since this fallacy is obvious, the order rule is usually satisfied by normal common sense.
Domains in which circular preferences may seem to be evident do exist, however. One
example is investment markets in which the same underlying asset exchanges hands
repeatedly at ever-higher prices due to the so-called “greater fool” theory, in which the
apparent upward trend in the value of the asset causes investors to steadily upgrade its
worth to them [1-2]. Even in this case, there is normally a set preference order at each
decision step. The apparent upward trend simply causes the investor to modify his
preferences, causing him to buy the asset back at a higher price than he sold it for. The

order rule is thus satisfied at each step, even though the overall trend of preference

changes may look questionable.

3) Equivalence Rule: This rule states that a decision maker should value his
preferences in a way that is consistent with the order rule. Specifically, given the
preference order {C,B,A}, the decision maker should be able to choose a preference
probability (p) such that he would be indifferent between (i) accepting the middle
outcome B with certainty and (ii) accepting a lottery in which he received C (the best
outcome) with probability p and A (the worst) with probability 1-p. Note that higher
values of p represent a lesser implied value of the best outcome (C) relative to the middle
outcome (B), as the decision maker is insisting on a higher probability of getting the best
outcome in return for foregoing a guarantee of receiving the middle one. This choice of a
preference probability thus specifies an outcome value model that can be used to evaluate
all alternatives.

For our game postponement example problem, let us suppose that the decision
maker’s preference for the “do not attend” outcome is independent of whether or not the
game is actually postponed. He thus has three separate outcome preferences, with “do not

attend” being in the middle. This preference situation is illustrated in Figure A.2.
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attend, clear

1-p

attend, rain

Figure A.2: Weather Problem Preference Probability Assignment

Let us suppose that our decision maker chooses p = 0.6 as his preference probability.
Thus, he would prefer to go to the game if the chance of no postponement were better
than 60%. If it were lower, he would prefer to stay home. Since the decision maker is
indifferent between the options on the left and right-hand sides of Figure A.2, we define
the middle outcome “do not attend” as the certain equivalent of the lottery shown on the
right side (with this user-chosen preference probability). Clearly, we can now compare
this preference probability to our uncertainty-model probabilities indicated in Figure A.l
(from which we can compute the marginal probability of the game being postponed) to
determine which course of action our decision maker should take. The following rule

formalizes this procedure.

(4)  Substitution Rule: This rule allows us to substitute the preference-probability
lottery shown on the right side of Figure A.2 for any representation of the decision “do
not attend” in a formal decision tree. In essence, this allows us to cast the outcome value
of this decision in terms of probabilities of the other two more extreme outcomes. The
optimal decision (either to go or not to go) can then be determined in “probability space”
from the resulting decision tree shown in Figure A.3 (in which Figure A.2 is substituted

into Figure A.1).
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Figure A.3: Completed Decision Tree for Weather Problem

(5) Choice Rule: In the situation represented by Figure A.3, we see that on the top
half (for the “attend game” decision), the probability of no game postponement (clear -- th
best outcome) is 70%. In the “do not attend” case on the bottom, preference probabilities
determined by the decision maker equate to a 60% chance of the best outcome. We now
compare the actual probability result on the top to the preference probability on the
bottom (substituted for the “do not attend” decision). The choice rule simply requires that
we accept the alternative with the higher probability of our ideal outcome as the preferred
decision. Since our assignment of preference probabilities directly implies a user “value
model” for this situation, this means that the decision maker must choose the alternative
that maximizes his value model (or minimizes his “cost model”) for the uncertainty model

he has constructed for this problem.
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This rule just requires the decision maker remain consistent and choose the best
alternative identified by our decision-under-uncertainty methodology. Of course, the
decision-maker may be surprised by the result and determine that his value function did
not properly model his preferences. He may thus revise his value model (and/or revise his
uncertainty model) and repeat the decision-tree analysis. This iterative process is key to
the practical application of decision analysis theory, but one must be careful not to fool
oneself by altering the model to justify a preconceived decision. These “rules of actional
thought” contain no protections against self-delusion. They simply represent a framework
of assumptions under which decisions can be shown to be optimal given the specified user

preferences and the best possible uncertainty model of the available information.
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Appendix B
Values and Tools for Longitudinal Aircraft Control Model

B.1  Matrix Values for 747 Longitudinal Control Problem

Section 2.2.1 introduced the problem of designing a linear feedback controller and
estimator for the longitudinal motion of a Boeing 747 near sea level based on a
linearization about steady level flight. This example is taken from [9-2,3]. The six states,
two control inputs, and three measurements (one of which has been altered to represent
the WAAS glideslope deviation signal) are described in that section. All units are
expressed in terms of feet, seconds, and centiradians (crad). Using the continuous state-

space format of (2.1), the plant and input parameter matrices are:

[-021 122 0 -32 0 1 (.mo 0
~209 -530 221 O 0 -.044 -064 0
017 -164 -412 0 0 .544 -378 0

= . = B.1)
A 0 0 1 o 0 o | B 0 0
0 -1 0 221 0 O 0 0
| o 0 0 0 0 -25] | o .25J

The wind vector has spectral density (covariance) W, = 0.9 ft*/sec. Note that for
wind gust disturbances, B. is the negative of the first two columns of A except By(5,2) =

0. The sensor error covariance is estimated to be the following diagonal matrix:

22 0 o
V = (0 22 0o (B.2)
0 0 8§

where the third entry is based on an assessment of mean WAAS 16 vertical position error
of 8 ft, or about 2.45 meters. This level of accuracy under normal conditions should be

achievable over a large area (see Chapter 7).
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The random state initial condition x(z = 0) has the following diagonal covariance

matrix under normal conditions:

[0232 0 o o
0 16> 0 0

0 0142 0 (B.3)

(=TT = A
(==~ - -]

0
0
0
0

) 32j

o
(=]
(=}
[=]
(4

The model in [9-2,3] can be discretized for a T, = 1 Hz sample rate using the

MATLAB “c2d” function [9-2,7]. The result is expressed in terms of (2.2):

(968 122 0 -322 0 1 ] 011 1147
~138 -530 221 0 0 -044 -346 .026
A, = 025 -164 —-412 0 0 544 . B, = -290 .054 (B.4)
0012 -058 .777 999 0 .217 -160 .019
0088 -779 152 220 1 .067 012 .004
| o 0 0 0 0 .779 | [ o .221j

In order to translate the covariance W, to the discrete model of (2.3), the discrete state
covariance at the sample times k = n T, (n = 0,1,2,3,...) must be the same as that given by
the underlying continuous Gauss-Markov process. The Van Loan algorithm is used in the

MATLARB function "cvrtq()" to give the following result for this case [9-3]:

[ 009 -042 -009 -005 0I5 O
-042 269 043 026 -113 0
-009 043 010 .004 -013 0
W = -005 026 004 .004 -013 O (B.5)
015 =113 -013 -013 065 0
0 0 0 0 0 0]

W, in this case incorporates B,, and affects five of the six states, and the 5 x 5 sub-matrix

W(1:5,1:5) is a valid positive-definite covariance matrix.
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B.2  LQR Cost Determination from Covariance Matrix Propagation
It is possible to evaluate the true cost of any stable design by propagating state and
estimate error covariance matrices forward in time as given by the step-ahead "prediction"

estimator in [9-3]:

X(k+1) = [A+B,K]X(k)[A,+B,K]" + A, [P(k)-P(W)]AT; X(0)=X, (B.6)
P(k) = B(k)-P(k)CT[V+CP(k)CT]" C,P(k) B.7)

P(k+1) = A P(Kk)A] + W, (B.8)

where W, and V are the constant discrete noise covariance matrices given above, X, is the
covariance of the initial state vector, and P and P are the state estimate error covariances
before and after the LQE Kalman filter measurement update, respectively. For each time
step, PxpP (i.e., the measurement z(k) always adds information) such that (B.6) is well-
posed. These covariance matrices tend to a steady-state for the time-invariant LQG
formulation, where the steady-state covariance X, can be obtained by solving the discrete
Lyapunov equation formed when X, is substituted for X(k) and X(k +1) in (B.6) (see [9-
3] for further details).

The expected-value LQR cost at each step can then be computed by plugging X(k)
into the following general equation for k = 1,... N;:

EJig] = letxmce{(q +K" RK)X(k)} (B.9)

t k=1

jLQR

where: X(k) = X(k) + P(k) (B.10)

This method of calculating cost is not used in Chapter 2 because the intent of that
chapter is to examine the capability of simulation-based optimization in the presence of

non-Gaussian system failures, for which the covariance approach will not work.
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