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Abstract

High-precision “autofarming”, or precise agricultural vehicle guidance, is rapidly be-

coming a reality thanks to increasing computing power and carrier-phase differential

GPS (“CPDGPS”) position and attitude sensors. Realistic farm trajectories will in-

clude not only rows but also arcs created by smoothly joining rows or by path-planning

algorithms, spirals for farming center-pivot irrigated fields, and curved trajectories

dictated by nonlinear field boundaries. In addition, fields are often sloped, and accu-

rate control may be required either on linear trajectories or on curved contours.

A three-dimensional vehicle model which adapts to changing vehicle and ground

conditions was created, and a low-order model for controller synthesis was extracted

based on nominal conditions. The model was extended to include a towed implement.

Experimentation showed that an extended Kalman filter could identify the vehicle’s

state in real-time. An approximation was derived for the additional positional un-

certainty introduced by the noisy “lever-arm correction” necessary to translate the

GPS position measurement at the roof antenna to the vehicle’s control point on the

ground; this approximation was then used to support the assertion that attitude mea-

surement accuracy was as important to control point position measurement as the

original position measurement accuracy at the GPS antenna.

The low-order vehicle control model was transformed to polar coordinates for

control on arcs and spirals. Experimental data showed that the tractor’s control

point tracked an arc to within a -0.3 cm mean and a 3.4 cm standard deviation and

a spiral to within a -0.2 cm mean and a 5.3 cm standard deviation.

Cubic splines were used to describe curve trajectories, and a general expression

for the time-rate-of-change of curve-related parameters was derived. Four vehicle

v



control algorithms were derived for curve tracking: linear local-error control based

on linearizing the vehicle about the curve’s radius of curvature, linear finite-preview

control using discrete linear quadratic tracking, nonlinear local error control based

on feedback linearization, and nonlinear finite-preview control using nonlinear opti-

mization techniques. The first three algorithms experimentally demonstrated mean

tracking errors between zero and four centimeters and standard deviations of roughly

four to ten centimeters. The fourth algorithm was computationally too expensive to

implement with current technology. In experiment, the feedback linearization algo-

rithm outperformed the other two control algorithms and also used the most control

effort.

For control on sloped terrain, a variation on bias estimation (termed slope-adjusted

bias estimation) was created, based on the terrain slope information calculated from

vehicle attitude measurements. Slope-adjusted bias estimation demonstrated a 25%

improvement in the standard deviation of the tractor’s row-tracking error over “nor-

mal” bias estimation on terrain sloped at grades up to 28%. The CPDGPS attitude

information was also used to develop a contour-tracking controller that tracked a

contour to within a mean height error of 0.5 cm and a standard deviation of 4.3 cm

without any prior knowledge of the terrain.

These real-time vehicle control results, applicable to any front-wheel-steered ve-

hicle, demonstrate that accurate real-time control is possible over a variety of trajec-

tories needed in a commercial autofarming system. This research is a significant step

towards completely automating tractor control because farmers can now build global

trajectories composed of the different types of trajectory “building blocks” developed

here. Experimental results demonstrate that farmers can expect precision tracking

down to the limit of the GPS position and attitude sensors.
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Nomenclature

Explanation of Notation

Fig. (1) shows a variable and its associated qualifiers. The qualifiers’ roles are ex-

plained below. Subsequent sections explain the possible values variables and their

qualifiers may have.

Variable The variable itself. May be a scalar or a vector.

Subscript Specifies what object or location the variable corresponds to. For exam-

ple, the subscript c on the velocity variable V denotes the velocity of the control

point.

Superscript Specifies whether the variable corresponds to the vehicle or to the towed

implement.

Underset The reference frame that the variable is coordinatized in.

Overset Denotes differentiation with respect to time taken in the (overset) frame.

This notation is used only when there are multiple frames (i.e., in three dimen-

sions). Repeated overset frames denotes multiple time derivatives. For example,

the overset iii denotes the third time derivative taken in the inertial frame.

xxiii



VVariable c
Underset

Overset

v Subscript

i
t

Superscript

Figure 1: Diagram of a variable and its associated qualifiers.

Variables

Roman Variables

bi Byte value i in the steering look-up table.

b̂ Temporary vector used in the modified Gaussian second-order filter.

d Tracking error of the control point from the reference trajectory.

e East.

f(x) The vector set of equations describing the vehicle motion.

h Height error.
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h(x) The measurement or observation vector as a function of the vehicle’s

state x.

ki Temporary vector number i used in Runge-Kutta integration.

l Scalar distance. Defined positive forward.

n North.

p Unit vector along the desired trajectory.

q Unit vector out of the roof of the vehicle (i.e., along the vertical axis

in the vehicle’s coordinate frame.).

r The radial distance of vehicle’s control point from the curve center or

a general position vector.

s Independent parameter used to specify cubic splines. Also used to

denote unit vector pointing in direction of steepest terrain descent.

u Control signal (units of angular rate).

w Implement width.

x State vector.

y Measurement vector.

Ak Coefficient in cubic spline for interval k.

Bk Coefficient in cubic spline for interval k.

B̂m Temporary matrix used in the modified Gaussian second-order filter.

Ck Coefficient in cubic spline for interval k.

Dk Coefficient in cubic spline for interval k.

E Expected value operator.

F Force.

G The Jacobian of the disturbance vector in the equations of motion.

H The Jacobian of the measurement vector (i.e., the observation matrix).

Also used to denote the Hamiltonian matrix.

I Identity matrix.

J Cost function.

K Control gain vector or proportionality constant.
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L Curve length.

Lc Estimator gain matrix.

N Normal force or the number of look-ahead intervals for finite-horizon

control.

P Estimator inertia matrix.

R Radius of curvature.

Rv Measurement noise covariance matrix.

Q Process noise covariance matrix.

Ts Sample time.

T Transformation matrix.

V Velocity.

Greek Variables

α Angle swept out by the vehicle when traveling on arcs, spirals, or

curves.

β Ratio used in specifying spiral trajectories.

δ Front-wheel angle relative to the vehicle’s centerline.

ζ Terrain slope angle along the trajectory.

η Yaw angle incurred by the spiral’s changing radius of curvature.

θ Pitch angle.

λ Eigenvalue.

µ Crab angle of vehicle required to maintain tracking on sloped terrain.

νi Disturbance with zero mean and Gaussian distribution affecting state

i.

ξ Vehicle yaw angle relative to a trajectory incurred by non-collocated

pivot and control points.

ρ Distance from the spiral’s center to a point along the spiral.

τ Time constant.

φ Roll angle.
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ψ Yaw angle.

ω Attitude rate vector.

Γ Discrete control input matrix in the linearized vehicle model.

Θ Attitude vector.∑
Covariance matrix.

Φ Discrete state transition matrix in the linearized vehicle model.

Frames

i Inertial frame.

r2 Coordinate frame with x-axis aligned with the r2 vector and y-axis

aligned with the implement’s y-axis.

t Towed implement frame.

v Vehicle frame.

Superscripts

t Towed implement.

v Vehicle.

Subscripts

a Point on the ground beneath the axle center.

b Bias.

c Control point, closest point, or commanded value.

d Discrete.

e Error.

m Measured value.

max Maximum value.
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p Tow pin.

r Reference value.

s Variable is a function of the independent curve parameter s.

x X direction (north).

y Y direction (east).

z Z direction (down).

δ Steer angle.

ρ Lever arm.

φ Roll.

θ Pitch.

ψ Yaw.

ζ Steepest descent.

Θ Attitude.

∞ Steady-state value.

Acronyms

CPDGPS Carrier-Phase Differential GPS. A high-precision variant of differen-

tial GPS that uses phase measurements of the GPS carrier signal for

position and attitude calculation.

DLQ Discrete Linear Quadratic.

GPS The Global Positioning System. A constellation of satellites operated

by the U.S. Department of Defense used for determining a user’s loca-

tion.

LQR Linear Quadratic Regulator. A type of [linear] regulator derived from

the optimal solution of a quadratic cost function for a linear system.

NASA The National Aeronautics and Space Administration.

NED North-East-Down coordinate frame.

RTK Real-Time Kinematic. A form of differential GPS positioning.
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Chapter 1

The Autofarming Concept

1.1 Autofarming

Automatic guidance of wheeled vehicles has a wide variety of applications including

minefield clearing, hazardous chemical clean-up, transportation of nuclear material,

agricultural tractor guidance, automated highways, and delivery vehicles inside fac-

tories or hospitals. Autonomous vehicles require high-precision control, continuous

operation, increased efficiency, and the removal of a human operator from an unsafe

environment. Although autonomous vehicles have long been the subject of research,

only recently has sensor and computer technology made autonomous vehicles practi-

cal. The advent of Carrier-Phase Differential Global Positioning System (CPDGPS)

[PS96] sensors for both position and attitude (roll, pitch, and yaw) sensing has offered

engineers the high precision necessary for accurate vehicle control at a fraction of the

cost of comparable inertial sensors. Relatively inexpensive computers are now avail-

able that are capable of running control and estimation algorithms at rates practical

for real-time control, algorithms that would have been computationally too demand-

ing only a few years ago.

With all the tools necessary for economical real-time land-vehicle control, specific

commercial applications are stimulating research into effective vehicle control sys-

tems. Agriculture has emerged as one of the first potential applications of real-time

vehicle control. CPDGPS has several constraints: a clear view of the sky1, proximity

1Unless one uses pseudo-satellite transmitters (“pseudolites”) to replace or augment the GPS
satellite signals.

1
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to a fixed reference station, and radio contact with the reference station’s radio trans-

mitter. Agricultural tractors almost always meet these constraints. Additionally, the

high precision possible with an autonomous tractor guidance system has numerous

benefits to farmers:

• Certain types of farming applications such as row-crop applications could benefit

from high-precision control, control which is available in all visibility conditions.

As an example, inaccurate tractor steering is estimated to cause roughly 13%

of total losses during sugar beet harvesting [Bot82]. Another example of an

application that could benefit from high-precision control is drip-tape irriga-

tion. In drip-tape irrigation, perforated hose or “tape” is buried beneath the

crop’s roots. Water pumped through the tapes irrigates the crop roots directly,

avoiding irrigation water loss through evaporation. In certain arid regions of the

world, such as the U.S. southwest, where water availability is a deciding factor

in whether or not to farm available land, farmers are very interested in applying

drip-tape irrigation. Unfortunately, once buried, the tapes are very susceptible

to being cut by farm implements. Once cut, a tape section must be replaced.

Unfortunately, a farmer may not realize the tape has been cut until the sec-

tion of crop “downstream” from the cut has died. Despite the costs resulting

from crop losses and labor for tape repair,2 tape irrigation techniques are still

economically viable for some farmers. An autonomous tractor guidance system

could significantly reduce damage to a tape irrigation system, not only because

the tractor could be controlled precisely, but because the high repeatability of

the CPDGPS sensors would allow the tractor to drive the same trajectories year

after year.

• In operations such as spraying, drivers deliberately overlap previous rows, es-

pecially in low-visibility conditions such as during the night, to avoid missing

areas. Eliminating overlap decreases work time and material requirements, and

reduces chemical run-off.

• Hardware, such as marker arms used to assist the driver in offsetting rows evenly,

2One farmer running a large farm expressed a figure on the order of $100,000 per year.



1.1. AUTOFARMING 3

would not be necessary. These marker arms, which may extend laterally 10 m

or more, are often damaged on fences or telephone poles during U-turns.

• Fine-scale topographic field maps could be generated from position data col-

lected while the tractor operates autonomously. High accuracy topographic data

is vital even on flat fields because of the cumulative effects of poor drainage.

Currently, code-phase differential GPS systems, accurate only to one to two me-

ters, are usually used to collect such data in tractors. Centimeter-level CPDGPS

surveying systems are also used, but the amount of data collected is two to three

orders of magnitude less than what an autonomous tractor could collect. The

high-resolution maps resulting from real-time CPDGPS data could help farmers

manage irrigation better.

• Tasks requiring high-level steering accuracy could be accomplished faster. Farm-

ers have noted that vehicle speed and hence productivity is often limited by the

user’s ability to control the tractor, not by mechanical factors such as engine

power. The limitation of the human driver’s ability to process information is

one of the major hindrances to increasing work rates [Bot82].

With these practical benefits in mind and the sensor and computer hardware

available, research on applying CPDGPS to farming systems led to the development

of a high-accuracy control algorithm that steered a large farm tractor along straight

rows on level terrain [O’C97]. In April 1996, Dr. M. O’Connor demonstrated the first

automatically steered farm tractor that used only CPDGPS for both position and

attitude sensing. By not including lasers, cameras/pattern recognition, buried wires,

or inertial components as additional sensors, Dr. O’Connor developed a system which

is flexible, accurate, and inexpensive enough to be practical.

This research begins where Dr. O’Connor’s research finished. Realistic farm

trajectories that an automatic tractor would be expected to follow are frequently

nonlinear, fields are often sloped, and changing ground conditions and forward speeds

mean tractor models are time-varying and nonlinear. This research attempts to solve

these and other issues by developing and experimentally demonstrating algorithms

that may one day become essential components in a practical system.
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The term autofarming was created to embody the new possibilities offered by

CPDGPS-based autonomous tractor guidance. The term encompasses not only au-

tomatic tractor guidance, but the entire range of possible developments that could

arise from such a system. For example, human factors such as the driver’s ability to

see the ground, driver comfort, and operator safety are major constraints that tractor

engineers have to incorporate when designing tractors. Without a human operator on

board, the engine could be redesigned so that the cylinders are horizontally opposed

to improve cooling and lower the center of gravity. Air conditioning, suspended seats,

or even an enclosed cab would no longer be necessary. Larger radiators could of-

fer improved engine cooling while reducing the engine power siphoned off to spin the

cooling fan. Finally, tractors could be run at speeds constrained not by the operator’s

comfort but by the steering controller’s accuracy.

1.2 Previous Research

Previous research on autonomous farm vehicles centered on sonar or vision-based

guidance [T+85, RS87]. One or more cameras were used along with pattern-recognition

techniques to “recognize” the edge of the crop row and adjust the steering accord-

ingly. With the advent of GPS, research focused on using GPS to augment other

sensors. Some research efforts, including this one, used GPS exclusively. There are

at least eight other efforts aimed at automating farm vehicles:

1. Dr. O’Connor at Stanford University. As a graduate student at Stanford Uni-

versity, Dr. M. O’Connor demonstrated that tractors could track rows to high

precision using only GPS to measure the tractor’s position and attitude. He de-

veloped a low-order model of the tractor’s dynamics that performed well at low

speeds and on flat terrain. He showed how ground disturbances could destabi-

lize the compensator if the tractor’s roll motion was not accounted for. He used

a video camera mounted beneath the tractor and a rope placed along a row to

verify the accuracy of the GPS tracking error measurements. Dr. O’Connor’s

work was constrained to tracking straight rows on flat terrain. His research
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was a significant step towards a viable commercial autofarming system not only

because of the row-tracking accuracies he demonstrated, but because the posi-

tion and attitude sensors did not depend on field-based cues such as markers or

buried wires [O’C97]. This lack of dependence on field-specific hardware meant

that his system could be used with no advance preparation on any field.

2. New-Holland/Carnegie-Mellon/NASA. A cooperative effort between the Na-

tional Robotics Engineering Consortium at Carnegie Mellon University, tractor

manufacturer New Holland, and NASA has led to the development of an au-

tonomous windrower. The Model 2550 Speed Rower uses inertial sensors and

“dead-reckoning”3 for measuring attitude and differential GPS for sensing po-

sition at 5 Hz. Cameras and pattern recognition software “recognize” the edge

of the crop row at 2 Hz. In the Fall of 1997, the windrower cut 40 hectares

(99 acres) of alfalfa without a human operator. The transmission can vary the

speed of each wheel independently; therefore, researchers were able to control

the steering as well as the forward velocity. The system incorporates path plan-

ning algorithms for covering the work area as well as avoiding obstacles. The

researchers hope that the primary benefit to farmers will come from increased

productivity through higher operating speeds [PF97, Rid98, Vyn98].

3. Trimble Navigation. Trimble Navigation mounted a code-phase differential GPS

system on a large spray rig. Tracking error was used to direct the human driver

through a light bar mounted on the windshield of the sprayer. The driver

attempted to keep the left/right error light on the light bar centered for accurate

tracking. No measure of attitude was used [WB98].

4. Holland. A Dutch research effort recently demonstrated low-speed closed-loop

control along straight lines on smooth ground. Unlike most other research

efforts, the controller did not steer the tractor. Rather, the hitched implement

was hydraulically actuated from side to side to track the desired trajectory.

The Real-Time Kinematic (RTK) GPS position sensor was mounted on the

implement, and a human driver was used to roughly track the row [vZ98].

3Estimating heading based on position measurements and a vehicle model.
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5. Japan’s IAM-BRAIN. At the Institute of AgriculturalMachinery Department

of Japan’s Bio-oriented Technology Research Advancement INstitution, re-

searchers use a geomagnetic direction sensor in conjunction with a modified

optoelectric surveying system in an autonomous tractor control system. The

sophisticated system uses a combination of buried wires, lasers, and cameras to

guide a tractor over a small field. The system controlled speed, the transmission,

the hitch, and steering [N+97b, N+97a].

6. Ohio State University. Researchers at Ohio State University outfitted a Case-

International Harvester Model 7220 tractor with RTK-GPS and conducted a

series of system identification tests aimed at verifying a proposed dynamic model

for higher ground speeds. They then used their model to demonstrate tractor

control at speeds realistic in spraying applications [S+].

7. Finland’s Modulaire. In Turenki, Finland, the Modulaire Oy company started

out with a video-assisted remotely piloted tracked vehicle designed not only for

farming, but also for other applications such as explosive ordinance disposal,

surveying, and firefighting. The company plans on outfitting production ver-

sions of the 1,200 kg (2,650 lb) vehicle with a GPS-based positioning system,

and the company has demonstrated automatic control using RTK-GPS coupled

with fiber-optic gyros [N+96, M+95].

8. Australia’s Mailer family and AgSystems Pty Ltd. In Wonga South, Boggabilla,

New South Wales, Australia, the Mailer family is using CPDGPS for automatic

tractor guidance along straight rows. Although initially installed as a driver-

assist system, they recently installed a steering controller and demonstrated

automatic closed-loop control in August 1997. The terrain farmed is flat, and

lines are specified by way points at each end. U-turns are done manually.

Tracking ability for straight rows is specified at 8-10 cm. Unlike research efforts

previously mentioned, the AgSystems effort is a commercial endeavor aimed at

increasing farming efficiency [Mai97, Joh97, Nas97].
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1.3 Objectives

This research sought to develop practical vehicle estimation and control algorithms

enabling a wheeled vehicle to accurately track nonlinear trajectories. Although this

research had agricultural applications in mind, the algorithms developed are general

enough to be applied to any front-wheel-steered robotic vehicle. Four different types

of nonlinear trajectories were identified as important “building blocks” for realistic

global paths: arcs, spirals, curves, and contours. Mathematical models of these paths

were developed. The models had to be simple enough that locating the vehicle along

the trajectory was fast and reliable in real-time. Once each type of path had been

specified, tracking control algorithms were developed for a generic robotic vehicle.

Because of the computational expense involved in generating the control signal, al-

gorithms with a low computational expense were sought that did not sacrifice too

much performance. Controllers were also developed for vehicles operating on sloped

terrain.

1.4 Organization

This research is organized as follows:

1. Problem statement. Ch. 2 explains the fundamental problem to be solved and

the approach taken.

2. Modeling.

(a) Vehicle. In Ch. 3, a nonlinear tractor model based on vehicle geometry

was derived which accommodated time-varying conditions such as terrain

slope, traction, and vehicle configuration changes.

(b) Towed implement. In Ch. 4, a three-dimensional nonlinear model of a

towed implement was derived based on implement and tractor geometry.

The model was linearized so that linear control algorithms could be applied.

3. Estimation.



8 CHAPTER 1. THE AUTOFARMING CONCEPT

(a) Vehicle state estimation. In Ch. 5, a nonlinear real-time estimator was

created that successfully estimated not only the vehicle’s position and atti-

tude, but also other parameters crucial to accurate control. The first-order

filter was compared in simulation against a second-order filter.

(b) Accounting for the lever arm correction. Since the control point on the

vehicle was not collocated with the position measurement point, a vector

lever arm correction, which was a nonlinear function of the noisy attitude

measurements, had to be added to the original position measurement to

calculate the control point position. In Ch. 6, an approximation was de-

rived that showed how the uncertainty in both the measured attitude and

the lever arm itself added uncertainty to the position estimate at the con-

trol point. The approximation was verified with a Monte Carlo simulation

and used to illustrate the adverse effects of poor attitude measurements

on control point position uncertainty.

4. Control.

(a) Tractor control on arcs. In Ch. 7, a control algorithm was presented for

control along arc trajectories. The vehicle model presented in Ch. 3 was

rederived in polar coordinates, and experimental results showed accurate

tracking control. Some of the material in this chapter as well as in Chs. 8–

11 was originally published by the author at the International Association

of the Institutes of Navigation’s 1997 Conference [B+97] and republished

by invitation in the Journal of Navigation [B+98b].

(b) Tractor control on spirals. Spirals could be used as part of circular irri-

gation patterns found in arid farm regions such as the southwest United

States. In Ch. 8, research from the previous chapter on arcs was extended

to spiral trajectories. Reference state information was derived, and exper-

imental results were presented that showed accurate tractor control along

spirals.

(c) Tractor control on curves. In Chs. 9–11, cubic splines were used to smooth

through discrete position data collected during a human-controlled pass.
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Several control algorithms were compared in simulation. Real-time ex-

perimental results demonstrated accurate vehicle control. These chapters

could be called the heart of this thesis: curved trajectories were the most

general trajectories possible, and accurately controlling the tractor along

them was the most difficult control problem encountered.

(d) Tractor control on sloped terrain. In Ch. 12, a modified form of bias esti-

mation was presented and experimentally shown to improve row tracking

on steep terrain. Some of the material in this chapter as well as in Ch. 13

was originally published by the author at the 1998 Precision Agriculture

Conference [B+98a].

(e) Tractor control on contours. In Ch. 13, a new algorithm was developed

that used the attitude information from the GPS attitude sensor to track

a specified contour height. Experimental results verified the algorithm’s

performance. This research is noteworthy in that no terrain map or other

prior knowledge of the terrain was required for accurate control.

1.5 Contributions

This research is the first to present a systems-level solution to steering a wheeled vehi-

cle along different types of non-linear trajectories identified as possible components of

realistic global farming trajectories. By using GPS position and attitude sensors, this

research offers farmers a system that can track global trajectories to centimeter-level

precision in all visibility conditions and without advance field preparation. Because

the objective of this research was to demonstrate tracking precision at the limit of the

sensors’ accuracies, sophisticated regulators were derived that were tailored to each

trajectory type. The contributions required to develop these high-accuracy controllers

were:

• Developed a wheeled tractor model that could adapt to different vehicle config-

urations and changing ground conditions. Developed controllers and estimators

based on that model, then experimentally demonstrated that the revised model
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developed here and a first-order extended Kalman filter yielded improved con-

troller performance by estimating time-varying nonlinear parameters in real-

time. An example of typical controller performance along a straight line was

0.9 cm mean and 2.8 cm standard deviation (one-sigma) in row tracking error.

• Expanded the vehicle model to include a three-dimensional model of a generic

towed implement.

• Performed a generalized error analysis of the additional uncertainty introduced

by a noisy vector correction necessary to translate the vehicle’s position mea-

surement to the control point. Showed that for a typical tractor configuration,

an attitude uncertainty greater than 0.4◦ (one-sigma) meant that the additional

uncertainty introduced by the lever arm eclipsed the nominal CPDGPS mea-

surement uncertainty of 2.5 cm (one-sigma). Supported the assertion that pre-

cise attitude measurements were as valuable in CPDGPS-based vehicle control

as precise position measurements.

• Developed basic “building-block” controllers for arcs and spirals. Experimen-

tally demonstrated arc tracking performance of -0.3 cm mean and 3.4 cm stan-

dard deviation. Spiral tracking performance was -0.2 cm mean and 5.3 cm

standard deviation.

• Developed basic building-block controllers for arbitrary curve trajectories. Cre-

ated a method for generating curved trajectories based on discrete position data

using cubic splines. Showed how the spline parameterization could provide data

necessary for control algorithms. Developed three real-time tracking control al-

gorithms. Formulated the problem as a nonlinear optimization problem, and

derived analytic expressions for the Jacobian and Hessian of the sum of the

squares of the tracking error as a function of the curve and control signal se-

quence. Experimentally demonstrated three tracking control algorithms with

an average curve tracking performance of zero to four centimeters mean and

four to ten centimeters standard deviation.
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• Developed a new bias estimation technique that improved row tracking perfor-

mance on steeply sloped terrain by 25% over a compensator that used “stan-

dard” bias estimation. Despite slopes of up to 15◦, tracking was maintained to

within -0.8 cm mean and 6.4 cm standard deviation in tracking error under full

engine load.

• Developed a general technique to automatically guide a vehicle along the ter-

rain’s contours without prior knowledge of the terrain. Experimentally demon-

strated contour tracking to within 0.5 cm mean and 4.3 cm standard deviation

in vertical error under realistic operating conditions.
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Chapter 2

Problem Statement

The ultimate goal of this research was to demonstrate practical limits on tractor

control using GPS as a sensor. While a variety of control algorithms may be able to

demonstrate stable control on linear trajectories, the non-linear trajectories explored

here required relatively sophisticated algorithms to achieve high precision. These

algorithms steered a wheeled vehicle so that a specified point, termed the “control

point”, on the vehicle tracked one of several different trajectory types. Since the

reference trajectories were specified on the ground, the control point was always

located on the ground. Because the vehicle was left-right symmetric, the control point

was assumed to lie along the centerline of the vehicle. Analysis is also presented for

a control point located on a towed implement.

2.1 Approach

A three-dimensional wheeled vehicle model was first developed without regard for

real-time computational constraints. The model accurately describes vehicle motion

at the relatively low forward speeds typical in farming applications requiring high

precision control. Similar analysis was then extended to develop a model for a towed

implement attached to the vehicle at a tow pin. Simple examples were used to compare

the relative difficulty of steering the vehicle or the towed implement along a linear

trajectory.

13
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The following measurements were assumed available: (a) the position of the ve-

hicle’s master GPS antenna1 relative to the reference station GPS antenna, (b) the

vehicle’s attitude, (c) the steer angle of the front wheels, and (d) the relative yaw

angle between the vehicle and the implement. Estimators were needed to estimate

unmeasurable states, and two non-linear filters were explored as possible solutions.

Complete information about the reference trajectory was assumed known. Anal-

ysis showed how to merge geometric information from the different trajectories and

the vehicle model to create tracking control algorithms. For all controllers developed,

the vehicle was assumed to pivot about the center of its rear axle and lateral slip was

assumed to be negligible. Based on observation, these assumptions were valid at low

speed and on flat terrain.

2.2 System Overview

A photograph of the first experimental system used in this research, a Deere and Co.

Model 7800 tractor, is shown in Fig. (2.1). The same tractor with a towed implement

attached is shown in Fig. (2.2). The chisel plow implement was sized for tractors

larger than the Model 7800. A physical description of the Model 7800 test tractor is

in App. A. Fig. (2.3) shows a block diagram of the complete experimental system.

Although various control techniques such as robust control could have been applied

to stabilize the tractor along a trajectory, using these techniques meant sacrificing

tracking performance for robustness. Because this research sought to develop high

performance controllers that could track trajectories to within the limits of the GPS

sensors, robust controllers were neglected in favor of algorithms tailored to the differ-

ent trajectory types. Many of the difficulties encountered in developing algorithms

that delivered high performance over a range of operating conditions arose from the

tractor model’s inability to quantify factors such as ballast and soil conditions. These

two factors as well as others that had a strong influence on the tractor’s dynamic

1The GPS attitude system required four GPS antennas. One of these four antennas was des-
ignated as the “master” antenna and was used to measure the vehicle’s position relative to the
reference station antenna.
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Figure 2.1: Deere and Co. Model 7800 farm tractor.

Figure 2.2: Chisel plow used for testing on the Model 7800. This particular towed imple-
ment was considered too large for the 7800.
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response are listed in the upper left corner of Fig. (2.3). Although various sensors

could have been installed to measure some of these factors and the user could have

specified others through an interface, this research sought to create a practical and

relatively inexpensive autofarming system; adding sensors and requirements on user

input increase system cost and complexity.

Another complication was limited computational power available to the estimation

and control software, which was written by the author in the C programming language.

Therefore, the non-linear vehicle model and filter could be used only on the simplest

linear trajectories. For more complicated trajectories, the number of states in the

model had to be significantly reduced and a linear filter was used to reduce the

computational cost. If greater computer power becomes available, the more accurate

models, developed here, could be used if warranted. Once vehicle states had been

estimated, linear control techniques were usually applied to generate a control signal

that steered the vehicle along the trajectory.

2.3 Verification

Regulator performance was judged by the mean and standard deviation of the control

point’s tracking error, measured by the GPS sensors at 5 Hz, along the trajectory.

Although no alternative sensors were available to verify the GPS system’s measure-

ments, observation showed that the tractor’s path along any trajectory was repeatable

to sub-centimeter levels. In addition, previous flight test research has verified the in-

tegrity and accuracy of the GPS sensors used in this research [Per96]. Results are

presented for real-time control of the vehicle along several different types of trajec-

tories. In all tests, the control point location was the same: a point on the ground

directly beneath the center of the rear axle.
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Chapter 3

Vehicle Modeling

The vehicle model previously developed in [O’C97] assumed various factors such as

surface friction and vehicle configuration were constant. Although these and other

factors could vary, the model was calibrated for nominal conditions and performed

well under those conditions. This chapter develops a model that is applicable over

a much wider range of conditions by accounting for terrain and vehicle configuration

changes. By developing a model that is accurate over a wider range, high-precision

tracking could be maintained in spite of varying conditions.

A rainy morning in March 1998 showed how rapidly surface friction could change.

At that time, the Model 7800 tractor detailed in Sec. A.1 of App. A was being tested

on dry ground on a farm in the southwest along curved trajectories. At the end of

each curve, the vehicle executed an automatic U-turn with a radius of five meters.

A sudden rain storm changed the ground conditions to slippery mud within thirty

minutes. The tractor’s U-turn radius increased to no less than approximately twenty

meters in that time period.1 Along the curves, the controller did not account for

the change in traction, and tracking performance suffered significantly. Had surface

friction information been available, tracking degradation could have been minimized.

However, other vehicle models that included friction information were found to be

relatively high-order in the number of friction coefficients [Won93] which were difficult

to identify in real-time using limited sensor information. Most of these models were

1This increase was brought on in part by the heavy hitched implement attached to the back of the
tractor, which significantly decreased the down-force on the front wheels. Also note that a tractor
operator would have used the tractor’s differential braking capability to turn the tractor under these
conditions; the computer could not. A more sophisticated controller might employ such techniques.

19



20 CHAPTER 3. VEHICLE MODELING

developed to describe vehicle behavior on paved highways where friction properties

were relatively constant. A low-order model that incorporated time-varying friction

information was needed because the linearized model would subsequently be used to

compute control gains in real-time.

Research has shown that no one model of an off-road vehicle is widely accepted

[Owe82]. The tractor handling study published in [Owe82] showed that at low speeds,

steady-state yaw response was governed by vehicle geometry and was roughly linear,

with forward velocity up to approximately 3.5 m/s. Factors such as ground surface,

tires, axle load ratio, and ground slope significantly affected the steady-state yaw rate.

Researchers showed in [CS84] that a more complicated model than the one developed

in [O’C97] was required to account for vehicle side-slip, and that the model depended

on time-varying parameters such as the friction coefficient(s) between the tractor

tires and the ground. Nonetheless, a number of other researchers have shown that

a highly simplified vehicle model can remain reasonably accurate at relatively low

speeds [Bot82, DW97].

3.1 Factors Influencing Tractor Dynamics

A number of factors were observed to have a strong effect on the tractor dynamics,

particularly on the relationship between the front-wheel angle and the yaw rate.

These factors are grouped below by the two possible control/estimation techniques

that could minimize these factors’ adverse effects on tracking performance.

1. Lateral slip or “crabbing”. Various effects forced the tractor to slip sideways, and

steady-state tracking errors resulted unless the controller accounted for lateral

slip. Lateral slip appeared as a “crab” angle between the tractor heading and the

desired heading.2 In aviation and shipping, the direction of actual vehicle travel

(i.e., the direction of the vehicle’s velocity vector) is called the “course”. The

difference between the vehicle’s course and its heading is known as the “drift”

angle. In agriculture, the drift angle is more commonly known as the crab

2Note that this crabbing effect is analogous to an airplane landing in the presence of a cross-wind
[HJ77].
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angle. In the estimator/controller architecture, lateral slip could be handled by

estimating yaw and steering angle “biases” or by estimating the vehicle’s lateral

slip velocity. Lateral slip could be induced by factors such as:

(a) Sloped terrain. On sloped terrain, the tractor tended to slip downhill.

The amount of slip depended on the tires used, soil conditions, and the

implement load. Each of these factors could vary widely, and soil conditions

and implement load were time-varying. Implement load was observed to

vary the most, changing significantly with the terrain slope. Therefore,

without prior knowledge of the terrain, the effect of sloped terrain on the

tractor dynamics could not be predicted ahead of time.

(b) Uneven implement load. Occasionally, a hitched or towed implement would

pull the tractor to one side. This usually happened when soil resistance

differed between the two outer edges of the implement. Frequently, a small

ridge of soil less than six inches in height remained from the previous pass,

and one side of the implement encountered increased resistance from it.

(c) Previous field tracks. The tractor might drive in a direction almost parallel

to old paths. In such conditions, the tractor would have a tendency to

slide in and out of old tracks or grooves in the ground. This effect was

most pronounced when traveling over old furrows. Farmers prepare their

fields for precise operations like bedding by smoothing the soil surface

with an implement like a disk. If an unprepared field could be accurately

bedded through precise tractor control, the farmer could save time and

fuel. Therefore, there is an economic incentive to be able to identify and

compensate for the tractor’s lateral slip rate.

2. Front-wheel slip while turning. The yaw response of the tractor to a steer

angle input was affected by a wide variety of factors, most of which were time-

varying. Later in this chapter, an improved vehicle model was developed which

introduced a proportional relationship between steer angle and yaw rate, a

relationship which was variable but could be identified in real-time.
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(a) Ballasting.3 Tractor ballast influenced the tractor’s yaw response to a steer

angle input. This response depended on the front-axle load. If the tractor

was ballasted too lightly at the front, there was less vertical load on the

front wheels and hence less traction. Front-axle loading also decreased

if a hitched implement was in the raised position. Although front-wheel

traction could be improved by changing the ballast, a realistic control

system had to be able to deal with improper ballasting as well as changes

in the effective ballast due to the changing operating conditions mentioned

above.

(b) Dual rear wheels. Attaching a second set of rear wheels (see Fig. 2.1 in

App. A) for additional traction and less surface pressure (i.e., less “soil

compaction”) affected yaw response. The inside and outside rear wheels

on each axle were forced to rotate at the same rate during a turn even

though their radial distance from the center of the turn was different. The

resulting ground-slip between the dual rear wheels and the ground opposed

large yaw rates, resulting in a reduction of the steering effectiveness.

(c) Differential lock. If the rear differential was locked so that both rear axles

turned as a unit, rear-wheel ground friction opposed yaw changes because

of the different turning radii. Note that the differential was supposed to be

unlocked when turning; however, an operator might lock the differential

over a gentle curve if the ground was soft and bogging down was a threat.

(d) Lowered hitched implement. If a hitched implement was being used during

a turn, the velocity gradient along the implement created a large torque

opposing yaw changes. Although hitched implements were not supposed

to be in the lowered position during turns, they can be used along gentle

curves.

(e) Soil conditions. As previously mentioned, soil conditions affected yaw

response. Rain could rapidly change dry soil to slippery mud and increase

front-wheel slippage.

3“Ballasting” refers to adding weight to the tractor to increase traction. Weight is usually either
cast iron added to axles on a rack on the front of the tractor, or water introduced inside the tires.
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3.2 Previous Model

Previous research [O’C97] detailed a general vehicle model based on five states. As

shown in Fig. (3.1), vehicle coordinates were described in the Forward-Right-Down

frame (vehicle-referenced) or the North-East-Down frame (Earth-referenced). There-

fore, yaw and steer angles were defined positive clockwise when viewed from above.

The model’s states and dynamics were:

• Yaw error between the vehicle’s course and the desired trajectory ψe.

• Yaw error rate ψ̇e. The equation governing yaw response was

ψ̈e =
1

τψ

(
ψ̇c − ψ̇e

)
(3.1)

The lag state in yaw captured the effect of the vehicle’s rotational inertia. If the

front-wheel angle changed suddenly, the yaw rate would not change instantly,

but behave as a first-order lag system: the front wheels would skid laterally,

then slowly take hold and begin to yaw the vehicle. The variable ψ̇c was the

yaw rate “commanded” by the steer angle. From vehicle geometry and a no-slip

assumption [O’C97]:

ψ̇c =
1

l1
Vx tan δ (3.2)

The variable l1 was the distance between the front and rear axles (see Fig. 3.1).

In this chapter, the velocity of the point on the ground beneath the center of

the vehicle’s (superscript v) rear axle (subscript a) expressed in the vehicle’s

coordinate frame (underset v) was denoted by

V va
v

≡


Vx

Vy

Vz

 (3.3)

The time constant τψ in Eqn. (3.1) was identified from experimental data.

• The angle of the front wheels relative to the centerline of the vehicle δ. The

model assumed the front wheels effectively acted as one [Won93]. The front

wheels could not turn beyond roughly ±35◦.
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Figure 3.1: Variable definitions for vehicle model. Note that dimension arrows indicate
direction of positive value except for l2, which is drawn with a negative value.
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• The front-wheel angle rate δ̇. The dynamics of the front-wheels were described

by

δ̈ =
1

τu

(
δ̇c − δ̇

)
(3.4)

The lag state modeled the dynamics of the hydraulic steering valve. The com-

manded wheel rate δ̇c was the control signal u, which drove a hydraulic pump

that turned the front wheels.4 Conceptually, u would correspond to how fast

the driver was turning the steering wheel. The time constant τu was identified

from experimental data.

• The tracking error of the vehicle’s control point from the desired trajectory d.

The tracking error dynamics were described by

ḋ = Vx sinψe +
(
Vy + l2ψ̇e

)
cosψe (3.5)

This model was created with linear filtering and control algorithms in mind.

Therefore, several assumptions were made which could have lead to modeling errors:

1. Equation (3.1) expressed vehicle yaw rate in the inertial frame based on the

assumption that the ground was close to level. Vehicle yaw rate should actu-

ally be expressed in the vehicle frame. If the vehicle was on level ground, the

vehicle and inertial frames’ yaw axes were aligned. If, however, the terrain was

sloped, the axes were no longer aligned and Eqn. (3.1) was no longer an accurate

description of yaw dynamics.

2. Factors outlined in Sec. 3.1 could change both the rate of yaw response and

the steady-state yaw rate, which may never reach the commanded value in

Eqn. (3.2) because of changes in the vehicle’s yaw resistance.

3. Because Eqns. (3.2) and (3.5) were a function of forward velocity, the velocity

was estimated separately in real-time. Forward velocity was estimated by finite-

differencing position measurements based on the assumption that lateral and

4The tractor’s front wheels were not mechanically actuated or even power-assisted as in most
passenger cars, but rather hydraulically actuated.
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vertical velocities were negligible (i.e., Vy = 0 and Vz = 0), frequently a false

assumption on steep or slippery terrain.

4. The parameters τψ and τu were calibrated off-line and assumed constant. How-

ever, based on the factors mentioned in Sec. 3.1, yaw response (and hence τψ)

was time-varying.

While this simple model was adequate for earlier phases of Stanford’s research, a

model which accounted for the more general three-dimensional vehicle motion was

needed because this simple model was developed for specific tractor and field condi-

tions, conditions which often changed rapidly. Although the simpler model would have

still been able to control the tractor under different conditions, improved controller

performance could be achieved with a model that adapted to changing conditions.

The remainder of this chapter details the derivation of this new, more accurate model.

3.3 New, More Accurate Model

3.3.1 Effective Steer Angle, Steering Proportionality

Constant, and Steering Bias Angle

Steer angle, the proportionality constant Kδ, and the steering bias angle δb were

included as states in the improved vehicle model. The steer angle was assumed

biased to account for vehicle crabbing and for calibration errors so that the effective

steer angle was the measured steer angle δm minus the bias:

δ = δm − δb (3.6)

The electro-hydraulic valve installed in the newer Model 8400 test tractor (see Sec. A.2

in App. A) had a significantly faster response time than the older valve installed on

the Model 7800, and the lag state in steer rate in Eqn. (3.4) was unnecessary for this

class of valve. Instead, steer angle rate is described by

δ̇ = u (3.7)
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3.3.2 Attitude

Vehicle attitude Θv was required to transform vectors to and from the vehicle and

inertial frames. Vehicle yaw rate was redefined to be in the vehicle frame. The lag

state in yaw rate was omitted because changes in the vehicle’s resistance to yaw

maneuvers invalidated Eqn. (3.1). For example, a lowered hitched implement or a

locked differential created torques opposing yaw changes. This meant that the vehi-

cle’s steady-state yaw rate never reached the value commanded by the front wheels.

Mismodeling yaw response as a lag state led to divergent estimates of τψ when ex-

perimental data was post-processed through a first-order filter. Instead of modeling

the yaw response with a lag state, a proportional relationship was assumed between

commanded yaw rate and actual yaw rate. In addition, the lateral slip at the rear

wheels had to be accounted for:

ω v
i
,z

v

=
1

l1
Kδ (Vx tan δ − Vy) (3.8)

where ωv/i,z
v

is the yaw component of the vehicle’s angular rate ωv/i
v

relative to the

inertial frame, and Kδ is a proportionality constant. The mean values of the angular

rates in roll and pitch were assumed negligible so that

ω v
i

v

=


0

0
1
l1
Kδ (Vx tan δ − Vy)

 (3.9)

The angular acceleration ω̇v/i
v

can be derived by differentiating Eqn. (3.9) using

Eqn. (3.7). Assuming that the nominal acceleration of the vehicle about the ground

point beneath the center of the rear axle was zero,5

i

V va
v

= V̇ = 0 (3.10)

5This assumption was false when the operator changed gears or the throttle setting, or when the
vehicle’s rear wheels had significant side-slip. However, when the implement is in the ground, both
the gear setting and throttle position are rarely changed.
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Therefore, the angular acceleration vector was

ω̇ v
i

v

=


0

0
1
l1
KδVxu (1 + tan2 δ)

 (3.11)

Note that the angular acceleration ω̇v/i
v

is the same for both coordinate frames since

i
ω v

i

v

=
v
ω v

i

v

+ ω v
i

v

× ω v
i

v

(3.12)

=
v
ω v

i

v

(3.13)

Therefore, the “dot” notation is used instead of oversetting a frame label.

3.3.3 Position, Velocity, and Crab Angle

To adequately describe the vehicle’s position, the three-dimensional position of the

vehicle’s control point in the inertial coordinate frame rvc
i

and the control point velocity

in the vehicle coordinate frame V vc
v

were necessary. If the control point were not

located beneath the center of the rear axle,6 a vector correction r0
v

had to be applied

to account for the relative movement of the control point. From dynamics [Par95]:

i

rvc
v

=
i

rva
v

+ ω v
i

v

× r0
v

(3.14)

= V va
v

+ ω v
i

v

× r0
v

= V vc
v

(3.15)

ii

rvc
v

=
ii

rva
v

+ ω̇ v
i

v

× r0
v

+ 2ω v
i

v

× v
r0
v

+ ω v
i

v

× ω v
i

v

× r0
v

=
i

V vc
v

(3.16)

The control point could have been located some distance l2 forward or behind

the rear axle, but was always assumed to be on the ground and along the vehicle’s

6The distance l2 is not usually equal to zero in Fig. (3.1).
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centerline so that

r0
v

=


l2

0

0

 (3.17)

The distance l2 was assumed constant, and

v
r0
v

= 0 (3.18)

The acceleration of the ground point beneath the rear axle was also zero by Eqn. (3.10).

Finally, the first-order differential equations describing the control point motion

were

i

rvc
i

= T i
v
V vc
v

(3.19)

i

V vc
v

= ω̇ v
i

v

× r0
v

+ ω v
i

v

× ω v
i

v

× r0
v

(3.20)

where the nonlinear transformation matrix for a 3-2-1 (ψ, θ, φ) Euler angle sequence7

from the vehicle frame to the inertial frame was [Gre88]

T i
v
=


cosφ cos θ cosψ sin θ sinφ−sinψ cosφ sinψ sinφ+cosψ sin θ cos φ

sinψ cos θ cosψ cosφ+sinψ sin θ sinφ sinψ sin θ cosφ−cosψ sinφ

− sin θ cos θ sinφ cos θ cosφ

 (3.21)

where ψ, θ, and φ represent yaw, pitch, and roll, respectively.

The vehicle’s yaw bias or crab angle ψb, shown in Fig. (3.1), could be estimated

from the forward and lateral components of the velocity beneath the rear axle center:

ψb = tan−1

V
v
a,y

v

V va,x
v

 (3.22)

7Although the Euler angle parameterization has a well-known singularity at pitch angles of ±90◦
[Jun97], if the tractor is pitched straight up or down, most likely the operator has more pressing
concerns than whether or not his attitude parameterization has become singular.
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where V va
v

could be calculated from Eqn. (3.15) using estimates of ω v
i

v

and V vc
v

. Since

the yaw bias angle could be expressed in terms of V va
v

and V va
v

was related to V vc
v

through Eqn. (3.15), estimating both V vc
v

and ψb was redundant. In experiment, the

yaw bias was estimated instead of the lateral velocity because estimating the yaw bias

was linear while estimating the lateral velocity was not: evaluating the y-component

of Eqn. (3.20) using Eqns. (3.9), (3.11), and (3.17),

i

V vc,y
v

=
l1
l2
VxKδ u

(
1 + tan2 δ

)
(3.23)

The dynamics of the control point’s lateral velocity were therefore computationally

more expensive to implement in a filter.

3.3.4 Equations of Motion

The revised state vector is:

x ≡



rvc
i

V vc
v

Θv

δ

Kδ

δb


(3.24)

Neglecting disturbances, the improved equations of motion are

i

rvc
i

= T i
v
V vc
v

(3.25)

i

V vc
v

= ω̇ v
i

v

× r0
v

+ ω v
i

v

× ω v
i

v

× r0
v

(3.26)

Θ̇v = TΘv ω v
i

v

(3.27)

δ̇ = u (3.28)

K̇δ = 0 (3.29)

δ̇b = 0 (3.30)
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where the attitude rate transformation matrix used in Eqn. (3.27) is [Gre88]

TΘv =


1 tan θ sinφ tan θ cosφ

0 cosφ − sin φ

0 sinφ
cos θ

cos φ
cos θ

 (3.31)

3.3.5 Linearized Model

A simplified version of Eqns.(3.25–3.30) can be used when generating control sig-

nals. States such as velocity, roll, and pitch were recognized as uncontrollable. This

helped create a low-order model that sped up the computationally intensive control

algorithms. Assuming zero roll and pitch:8

ψ̇ =
1

l1
Kδ (Vx tan δ − Vy) (3.32)

δ̇ = u (3.33)

ṅ = Vx cosψ −
(
Vy + l2ψ̇

)
sinψ (3.34)

ė = Vx sinψ +
(
Vy + l2ψ̇

)
cosψ (3.35)

On flat terrain, Vy was usually negligible, and the equations of motion simplified to

ψ̇ =
1

l1
KδVx tan δ (3.36)

δ̇ = u (3.37)

ṅ = Vx cosψ − l2ψ̇ sinψ (3.38)

ė = Vx sinψ + l2ψ̇ cosψ (3.39)

About a linear trajectory, the model reduced to

ψ̇e =
1

l1
KδVx tan δ (3.40)

δ̇ = u (3.41)

ḋ = Vx sinψe + l2ψ̇e cosψe (3.42)

8Note that the model could be reduced for non-zero roll and pitch as well.
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Linearized about zero steer angle and zero yaw error, the model became

ψ̇e ∼=
[
KδVx
l1

]
δ (3.43)

δ̇ = u (3.44)

ḋ ∼= Vxψe +

[
Vx
l2
l1
Kδ

]
δ (3.45)

Note that if Vy was not negligible, linear control and estimation techniques could still

have been used: a linear filter could have incorporated the effects of lateral slip by

estimating the crab angle as a yaw measurement bias.

3.3.6 Model Analysis

To illustrate how various parameters such as control point location and Kδ could

affect controller performance, a LQR controller was created based on the model in

Eqns. (3.43–3.45). All states were assumed to be available for feedback and were

known perfectly (i.e., no estimator was used). For nominal values of Vx = 1.0 m/s,

Kδ = 1.0, l1 = 2.8 m, and l2 = 0.0 m, the locus of the discrete system’s poles at 5 Hz

are shown in Fig. (3.2). Open-loop poles reside at 1.0, reflecting the triple-integrator

nature of the control-signal-to-tracking-error plant. As full-state LQR feedback gain

is introduced, the poles move inside the unit circle. With the gain values used in

experiment, the discrete poles were located at roughly 0.88±0.17i and 0.80. Discrete

LQR gains were computed with control effort weighted by 1/u2
max and tracking error

weighted by 1/d2
max [F+90]. No other states were penalized. In Fig. (3.3), the norm

of the dominant eigenvalue pair is plotted as a function of dmax (umax was held

constant at 0.38 rad). The dashed vertical line represents the experimental value of

dmax that was used. Even as the penalty on tracking error is increased (i.e., dmax is

decreased), the performance of the system does not improve dramatically. Modeling

error and limits on control authority and steer angle prevented increasing the penalty

on tracking error too much in experiment.

If the control point was moved to the center of a hitched implement, then a

reasonable value for l2 would be -2.0 m. The continuous linearized system is now

non-minimum phase with a zero at 0.5 and three poles at the origin. The system
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Figure 3.3: Norm of the dominant eigenvalue λ as a function of the tracking error penalty
term dmax. Vertical dashed line represents the dmax value used in experiment.
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Figure 3.4: Pole locations for 5 Hz discrete closed-loop vehicle model for a hitch control
point at l2 = −2.0 m assuming full-state feedback and perfect state measurements. Circle(s)
at 1.0 are the three open-loop poles.

also shows greater error: in Fig. (3.5), the distance of the dominant pole to the origin

is shown for the discrete root locus in Fig. (3.4). Even as the penalty on error is

increased, the dominant pole(s) remain 0.905 away from the origin and represent an

upper bound on how fast tracking error could be attenuated.

As the ground conditions deteriorate and front-wheel slip increases, Kδ decreases.

Figs. (3.6–3.7) show how Kδ affects the controller’s ability to track a trajectory.

In Fig. (3.7), a decreasing Kδ increases the norm of the dominant eigenvalues. A

realistic range for Kδ was roughly 0.35 to 1.2. Fig. (3.6) shows how the closed-loop

poles change as a function of Kδ for a dmax of 10 cm. These results match intuition:

controller performance will deteriorate as the front wheels lose their ability to yaw

the tractor.

At 5 Hz, the LQR controller’s bandwidth was wide enough that increasing the

sampling rate offered little performance improvement. Fig. (3.8) shows the locus of

the 20 Hz discrete system’s poles for Vx = 1.0 m/s, Kδ = 1.0, and l2 = 0.0 m. The

locus is indistinguishable from the 5 Hz system’s locus in Fig. (3.2). Therefore, even
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Figure 3.5: Norm of the dominant eigenvalue λ as a function of the tracking error penalty
term dmax for a hitch control point at l2 = −2.0 m assuming full-state feedback and perfect
state measurements.
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wheel traction as a function of Kδ assuming full-state feedback and perfect measurements.
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and maximum expected values for Kδ.
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if the computational power was available to increase the sampling rate from 5 Hz to

20 Hz, the difference in the controller’s tracking ability would be negligible.9

3.4 Disturbance Model

The constantly changing ground conditions and the absence of a suspension system on

the tractor made an accurate disturbance model difficult to create for all situations.

Ground disturbances varied widely depending on how the field had been prepared.

A field that had been “disked” smooth was virtually free of significant disturbances,

while a field that had been “bedded” had saw-tooth ridges roughly 20 cm in height

that could create violent disturbances when the tractor’s forward velocity was above

8 km/h.

Disturbances could affect the tractor through forces in all three axes. In addition

9Note that this analysis does not imply that increasing the sampling rate would not improve
the compensator’s tracking performance. If measurements were available at rates above 5 Hz, the
estimator’s state estimate could be improved by faster sampling.
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Figure 3.8: Pole locations for 20 Hz discrete closed-loop vehicle model with LQR control
gains and full state feedback.

to ground disturbances, the front-wheel angle could also be disturbed by changes in

hydraulic pressure.10 Based on observation, the disturbance forces increased approx-

imately linearly with forward velocity. The assumption of white disturbances was

considered relatively accurate under normal conditions.11 An accurate description of

ground disturbances’ effect on position was therefore

i

V vc
v

= ω̇ v
i

v

× r0
v

+ ω v
i

v

× ω v
i

v

× r0
v

+ V vc,x
v

νV v (3.46)

Disturbance torques also were observed to increased roughly linearly with velocity.

Since the model included attitude but not attitude rate, angular rate had to be

added into the state vector to model rotational disturbances accurately. However,

10Not only the implement but the brakes as well were hydraulically actuated.
11Old tracks or beds on an unprepared field created periodic disturbances that could no longer

be deemed white. However, high-precision tractor control would not normally be expected in such
conditions.
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the assumption was made that

Θ̇v = T i
v
ω v

i

v

+ V vc,x
v

νΘv (3.47)

could approximate actual conditions with the caveat that νvΘ was no longer white

but colored. Steer angle and wheel slippage, accounted for in Kδ, also varied with

velocity:

δ̇ = u+ V vc,x
v

νδ (3.48)

K̇δ = V vc,x
v

νKδ
(3.49)

Only the steering bias was observed to be relatively independent of the tractor’s

forward speed:

δ̇b = νδb (3.50)

Disturbance covariances were estimated empirically. “Fictitious” process noise

[F+90] was added in the time update to prevent the filter from “going to sleep”. Since

disturbance strength often changed rapidly, off-line identification of disturbance co-

variances was of limited value. Instead, nominal values shown in Tbl. 3.1 based on

empirical observation were used in lieu of a real-time disturbance covariance identifi-

cation algorithm. The large variance in forward velocity was created because shifting

the transmission caused large changes in forward speed.

Note that the vehicle model presented in this chapter changed only slightly when

the human operator was in control. In this situation, control effort was zero, and the

disturbance variance in steer angle was significantly higher. The fact that the model

developed in this chapter worked under both control scenarios meant a nonlinear filter

could estimate the vehicle’s state regardless of how the vehicle was being controlled.

The vehicle model created in this chapter also could describe the motion of the tractor

in reverse; only the sign of the forward velocity changed.

The twelve-state nonlinear model in Eqns. (3.25–3.30) could be used to estimate

the vehicle state and also account for changing ground conditions. The linearized

model in Eqns. (3.43–3.45) could then use the information from the nonlinear filter
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Standard
Variable Dev (one-σ) Name
νVx 0.05 s−1 Velocity
νVy 0.005 s−1 disturbances
νVz 0.005 s−1

νφ 0.2 deg-m−1 Angular
νθ 0.2 deg-m−1 disturbances
νψ 0.5 deg-m−1

νδ 0.5 deg-m−1 Steering-
νKδ

0.001 m−1 related
νδb 0.03 deg-s−1 disturbances

Table 3.1: Estimated disturbance variances for the tractor model.

to form a low-order linearized model to compute linear control gains rapidly in real-

time.
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Chapter 4

Towed Implement Modeling

Agricultural implements commonly come in two forms: hitched and towed. A hitched

implement is mounted to a hitch on the tractor usually located on the back of the

tractor. The hydraulically powered hitch raises and lowers the implement into the

soil and can sway approximately 5◦ from side to side. Hitched implements are usually

used in “row-crop” applications such as listing (“bedding”) or cultivating where high

precision control is needed. The disadvantage of a hitched implement is that signifi-

cant yaw rates or side-slip can impart strong lateral forces on the lowered implement

as the implement resists lateral movement through the soil. These lateral forces can

damage the implement or significantly increase component wear. Hitched implement

size is partly limited by the hitch power available to lift the implement and by the

tractor’s weight. A raised hitched implement decreases the available down-force on

the tractor’s front wheels. In cases where a hitched implement is too heavy for a

tractor, the front wheels have little traction and the yaw response to steering input

is so poor that changing the vehicle’s direction requires either advance planning or

differential braking.

A towed implement attaches to a tow pin mounted on a drawbar at the rear of the

tractor. Towed implements can be heavier than hitched implements because they do

not have to be lifted completely off the ground. Towed implements are usually used in

less-precise agricultural applications. If a towed implement could be controlled as pre-

cisely as a hitched implement, farmers might be able to use larger towed implements

in some applications previously reserved for lighter hitched implements, decreasing

41
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the work time. Additionally, towed implements can easily be used on curved trajec-

tories while hitched implements can not. With this in mind, this research derived the

equations of motion for a specified control point on a towed agricultural implement

with a goal of real-time accurate control.

Although control of a towed trailer is a well-known problem, previous research on

modeling trailers assumed no significant roll and pitch of the tractor. These research

efforts were aimed at either controlling tractor-trailer robots in factories or offices

[H+97] or on highways [SF89, Bra91, B+96]; in both scenarios, the terrain can safely

be assumed flat. In [H+97], a fuzzy controller looked ahead a finite number of steps

along the desired trajectory and generated a control signal that forced the simulated

tractor to track the trajectory and avoid obstacles inside a factory. In [S+95], the

equations of motion for the tractor-trailer were derived based on the assumptions of

flat ground for path planning purposes. These researchers assumed the steering wheel

angle was constant and were able to obtain a closed-form solution for the system state

as a function of time. Unfortunately, they also found that the equations of motion

could not be integrated if the steering wheel angle wass time-varying, as is the case

for the test platforms used in this research.

4.1 Dynamic Model

4.1.1 Overview

To derive the motion of a control point on a towed implement, the motion of the tow

pin in the vehicle coordinate frame was transformed into the implement frame. The

non-holonomic constraint that the implement move about some pivot point was used

to calculate the pivot point’s angular and linear rates and accelerations. Finally, the

motion of the control point about the pivot point was calculated.

In experiment, it was observed that the working portion of the implement that was

buried in the ground resisted lateral motion. Although the resistance to lateral motion

varied between implements, there typically was enough resistance to lateral slip that,

to first order, a towed implement could be assumed to pivot about some “center of
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Figure 4.1: Variable definitions for towed implement model.

force” in the middle of the implement’s tools. For simplicity, this center of force was

assumed constant and located on the ground directly beneath the implement’s axle

at a distance l3 behind the attachment point (see Fig. 4.1).1

4.1.2 Equations of Motion

The velocity Vp
v

and acceleration
i

Vp
v

of the vehicle’s tow pin were derived in an identical

manner as the expression for the velocity and acceleration of the vehicle’s control point

except that the vector r0
v

in Eqn. (3.17) was replaced by a vector r1
v

extending from

the ground point beneath the center of the rear axle to the tow pin as shown in

Fig. (4.1):

1Another incentive to assume the axle is located at the center of force is that the equations of
motion developed in this chapter then extend to any towed trailer as long as there is no lateral slip
at the trailer’s wheels.
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r1
v

=


l2

0

l4

 (4.1)

Therefore,

Vp
t

= T t
v
Vp
v

(4.2)

= T t
v

[
V va
v

+ ω v
i

v

× r1
v

]
(4.3)

Using Eqn. (3.20),

i

Vp
t

= T t
v

i

Vp
v

(4.4)

= T t
v

[
ω̇ v

i

v

× r1
v

+ ω v
i

v

× ω v
i

v

× r1
v

]
(4.5)

The angular rates and accelerations of the implement about its pivot point can

be calculated from the non-holonomic constraint that the implement pivots about

its pivot point. The situation is slightly more complicated when the height of the

tow pin above the ground (l5) is non-zero. In this case, calculating the angular rates

imparted on the implement by the tow pin’s velocity requires transforming the tow

pin’s velocity vector yet again so that the vector is aligned with a line between the

implement’s pivot point and the tow pin. In Fig. (4.1), this line is shown as the vector

r2. Once the tow pin velocity vector has been coordinatized in the implement frame

from Eqn. (4.3), performing the second transformation to align the vector with r2

is relatively simple. The vector r2 is pitched downward at an angle tan−1(−l5/l3).
Therefore, the transformed velocity is

Vp
r2

=
1√
l23 + l25


l3 0 −l5
0 1 0

l5 0 l3

Vp
t

(4.6)

where underset r2 denotes the r2 coordinate frame. Now that the tow pin velocity

vector has been transformed into the r2 coordinate frame, the angular rate of the
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implement can be calculated (also in the r2 frame):

ω t
i

r2

=
1

‖r2‖


0

−Vp,z
r2

Vp,y
r2

 (4.7)

Transforming the angular velocity vector back into the implement frame and simpli-

fying terms,

ω t
i

t

=
1

l23 + l25


0 l5 0

−l5 0 −l3
0 l3 0

Vp
t

(4.8)

ω̇ t
i

t

=
1

l23 + l25


0 l5 0

−l5 0 −l3
0 l3 0

 i

Vp
t

(4.9)

Only the x-component of the tow pin’s velocity contributes to the implement’s pivot

point velocity V ta
r2

, since only the forward velocity along the r2 axis affects the imple-

ment velocity:

V ta
r2

= Vp,x
r2

(4.10)

=
1√
l23 + l25


l3 0 −l5
0 0 0

0 0 0

Vp
t

(4.11)

Transforming Eqn. (4.11) into the implement frame,

V ta
t

=
1

l23 + l25


l23 0 −l3l5
0 0 0

l3l5 0 −l25

Vp
t

(4.12)
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Similarly, Eqn. (4.5) can be transformed so that the acceleration of the implement’s

pivot point is

i

V ta
t

=
1

l23 + l25


l23 0 −l3l5
0 0 0

l3l5 0 −l25

 i

Vp
t

(4.13)

If r3
t

is the (constant) vector from the implement’s pivot point to its control point,

the velocity and acceleration vectors of the implement control point in the implement

frame were

V tc
t

= V ta
t

+ ω t
i

t

× r3
t

(4.14)

i

V tc
t

=
i

V ta
t

+ ω̇ t
i

t

× r3
t

+ ω t
i

t

× ω t
i

t

× r3
t

(4.15)

Implement Control Point Position and Velocity

The implement model now augments the vehicle’s state vector by nine additional

states for a total of 21 states: the position of the implement in the inertial frame, the

velocity of the implement in the implement frame, and the implement attitude. The

equations of motion for the implement’s control point were

i

rtc
i

= T i
t
V tc
t

(4.16)

i

V tc
t

=
i

V ta
t

+ ω̇ t
i

t

× r3
t

+ ω t
i

t

× ω t
i

t

× r3
t

(4.17)
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Using Eqns. (4.13) and (4.5), Eqn. (4.17) becomes

i

V tc
t

=
1

l23 + l25


l23 0 −l3l5
0 0 0

l3l5 0 −l25

 i

Vp
t

+ ω̇ t
i

t

× r3
t

+ ω t
i

t

× ω t
i

t

× r3
t

(4.18)

=
1

l23 + l25


l23 0 −l3l5
0 0 0

l3l5 0 −l25

T t
v

[
ω̇ v

i

v

× r1
v

+ ω v
i

v

× ω v
i

v

× r1
v

]

+ ω̇ t
i

t

× r3
t

+ ω t
i

t

× ω t
i

t

× r3
t

(4.19)

Vehicle “Axle Point” Position and Velocity

Instead of estimating the position and velocity of the vehicle’s control point, the

position and velocity of the ground point beneath the vehicle’s rear axle center are

estimated instead:

i

rva
i

= T i
v
V va
v

(4.20)

From Eqn. (3.10),

i

V va
v

= 0 (4.21)

Vehicle Attitude

Vehicle attitude dynamics were given in Eqn. (3.27) as

Θ̇v = TΘvω v
i

v

(4.22)
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Implement Attitude

Implement attitude dynamics can be expressed using Eqns. (4.8) and (4.3) as

Θ̇t = TΘtω t
i

t

(4.23)

=
TΘt

l23 + l25


0 l5 0

−l5 0 −l3
0 l3 0

Vp
t

(4.24)

=
TΘt

l23 + l25


0 l5 0

−l5 0 −l3
0 l3 0

T t
v

[
V va
v

+ ω v
i

v

× r1
v

]
(4.25)

Effective Steer Angle, Steering Proportionality Constant, and Steering

Bias Angle

Finally, Eqns. (3.28–3.30) for the dynamics of the steering angle, proportionality

constant, and steering bias are unchanged:

δ̇ = u (4.26)

K̇δ = 0 (4.27)

δ̇b = 0 (4.28)

4.1.3 Linearized Model

As in Ch. 3, several states were recognized as uncontrollable and could not be included

in a model used for controlling the implement. In addition, a simpler lower-order

model was needed to calculate the control signal in real-time. Therefore, the towed

implement model was reduced to four states: vehicle yaw error ψe, effective steer

angle δ, implement yaw angle ψte, and the tracking error of the implement control

point dt. For zero roll and pitch in both vehicle and implement, expressions for ψ̇
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and δ̇ were given in Eqns. (3.36) and (3.37). Expressions for ψ̇t, ṅt, and ėt are

ψ̇t =
l3

l23 + l25

 cos (ψt − ψ)
(
Vy +

l2
l1
Kδ (Vx tan δ − Vy)

)
− Vx sin (ψ

t − ψ)

 (4.29)

ṅt =
l3

l23 + l25
cosψt

 l3 sin (ψ
t − ψ)

(
Vy +

l2
l1
Kδ (Vx tan δ − Vy)

)
+ l3Vx cos (ψ

t − ψ)− l5Vz


− l3l6
l23 + l25

sinψt

 cos (ψt − ψ)
(
Vy +

l2
l1
Kδ (Vx tan δ − Vy)

)
− Vx sin (ψ

t − ψ)

 (4.30)

ėt =
l3

l23 + l25
sinψt

 l3 sin (ψ
t − ψ)

(
Vy +

l2
l1
Kδ (Vx tan δ − Vy)

)
+ l3Vx cos (ψ

t − ψ)− l5Vz


+

l3l6
l23 + l25

cosψt

 cos (ψt − ψ)
(
Vy +

l2
l1
Kδ (Vx tan δ − Vy)

)
− Vx sin (ψ

t − ψ)

 (4.31)

On flat terrain, Vy and Vz are usually negligible, simplifying Eqns. (4.29–4.31) to

ψ̇t =
l3

l23 + l25

[
cos

(
ψt − ψ

) l2
l1
KδVx tan δ − Vx sin

(
ψt − ψ

)]
(4.32)

ṅt =
l3

l23 + l25
cosψt

[
l3 sin

(
ψt − ψ

) l2
l1
KδVx tan δ + l3Vx cos

(
ψt − ψ

)]
− l3l6
l23 + l25

sinψt
[
cos

(
ψt − ψ

) l2
l1
KδVx tan δ − Vx sin

(
ψt − ψ

)]
(4.33)

ėt =
l3

l23 + l25
sinψt

[
l3 sin

(
ψt − ψ

) l2
l1
KδVx tan δ + l3Vx cos

(
ψt − ψ

)]
+

l3l6
l23 + l25

cosψt
[
cos

(
ψt − ψ

) l2
l1
KδVx tan δ − Vx sin

(
ψt − ψ

)]
(4.34)

Along a linear trajectory, the model reduced to

ψ̇te =
l3

l23 + l25

[
cos

(
ψte − ψe

) l2
l1
KδVx tan δ − Vx sin

(
ψte − ψe

)]
(4.35)

ḋt =
l3

l23 + l25
sinψte

[
l3 sin

(
ψte − ψe

) l2
l1
KδVx tan δ + l3Vx cos

(
ψte − ψe

)]
+

l3l6
l23 + l25

cosψte

[
cos

(
ψte − ψe

) l2
l1
KδVx tan δ − Vx sin

(
ψte − ψe

)]
(4.36)
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Linearizing the model about zero vehicle yaw error, zero steer angle, and zero imple-

ment yaw error, the linearized equations of motion are

ψ̇e =

[
1

l1
VxKδ

]
δ (4.37)

δ̇ = u (4.38)

ψ̇te =

[
l3

l23 + l25
Vx

]
ψe −

[
l3

l23 + l25
Vx

]
ψte +

[
l2l3

l1 (l23 + l25)
KδVx

]
δ (4.39)

ḋt =

[
l3l6
l23 + l25

Vx

]
ψe +

[
l3 (l3 − l6)

l23 + l25
Vx

]
ψte +

[
l2l3l6

l1 (l
2
3 + l25)

KδVx

]
δ (4.40)

4.1.4 Model Analysis

To illustrate controller performance, a LQR controller was created based on the

linearized model. All states were assumed to be available for feedback and were

known perfectly (i.e., no estimator was used). For nominal values of Vx = 1.0 m/s,

Vx = Vy = 0.0 m/s, Kδ = 1.0, l1 = 2.8 m, l2 = −1.5 m, l3 = 3.0 m, l4 = 0.5 m,

l5 = 0.4 m, and l6 = −0.5 m, Fig. (4.2) shows the root locus for the continuous-time

linearized model. The open-loop continuous linearized model of Eqns. (4.37–4.40) has

three poles at the origin and the fourth at -0.33, showing how the implement will tend

to straighten itself when pulled forward. The continuous-time transfer function for

the tracking error shows two zeros in the right-half plane, one at 1.97 and the other

at 0.67. These two zeros stem from the fact that both the tow pin and the implement

control point are located behind the axles of the vehicle and implement respectively

in this example model.

In Figs. (4.3–4.4), the tracking error and steering history are plotted as solid lines

for the linearized vehicle/implement system under the relatively mild initial conditions

ψ0 = 5.3◦, δ0 = 0.1◦, ψte,0 = 8.9◦, and d0 = 2.5 cm.2 Note that d0 is the initial tracking

error of the implement. In the same figures, the dashed lines are the response of the

vehicle alone with no implement attached given the same initial conditions. Here, d0

2The eigenvector (from the solution of the discrete control Riccati equation) corresponding to the
largest closed-loop eigenvalue represents the ratio of the worst initial conditions for the closed-loop
system. These initial conditions were chosen using that eigenvector to highlight the differences in
system performance.
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Figure 4.2: Continuous-time root locus of the linearized vehicle/implement model. Note
the two right-half plane zeros.

was the initial tracking error of the vehicle’s control point with l2 now set to zero.

Both controllers used in the simulation used the same penalty functions umax and

dmax when generating the LQR control gain vector.

Analysis of the two plots shows that although both controllers manage to zero

out the tracking error relatively quickly, the implement controller had to use a signifi-

cantly greater amount of steering to do so and violated the steering angle constraints

shown as two horizontal dashed lines (see Fig. 4.4). In the actual nonlinear system,

encountering the steering limits would have degraded performance.

Another problem associated with towed implement control is that without an

attitude sensor on the implement, the implement attitude must be estimated. Im-

plement attitude is required in the transformation matrix T i
t
to measure the control

point position:

rtc
i

= rm
i

+ T i
v
rp
v

+ T i
t

(
r2
t

+ r3
t

)
(4.41)

where rp
v

is a vector from the vehicle’s master GPS antenna to the tow pin. One

possible estimate of the implement’s roll and pitch could come from the knowledge
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Figure 4.3: Tracking error response for both the vehicle (dashed line) and vehi-
cle/implement (solid line) for the same initial conditions.
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Figure 4.4: Steering response for both the vehicle (dashed line) and vehicle/implement
(solid line) for the same initial conditions.
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that the implement will travel the path of the tractor a prescribed distance later.

Therefore, if the roll and pitch angles of the tractor were temporarily stored, they

could be later reused as “pseudo-measurements” for the implement but with higher

measurement noise to account for the higher uncertainty. Since the implement pivot

point is a distance l3 − l2 behind the vehicle’s rear axle, the past (l3 − l2)/Vx seconds

worth of roll and pitch information would have to be stored. Vehicle yaw information

could similarly be stored and later retrieved, but the yaw dynamics of the implement

would have to be accounted for. Of course, this second problem of estimating the

implement’s attitude disappears with an implement attitude sensor.

These problems associated with towed implement control mean that developing a

towed implement controller that can deliver the same level of tracking performance

as a vehicle controller would be very difficult without altering the vehicle/implement

configuration. Nonetheless, the accuracy such an implement control system could de-

liver still may be good enough to open up new farming techniques previously believed

impractical because the human driver could not control the implement accurately

enough.

4.2 Disturbance Model

As was the case in the vehicle model, towed implement disturbances were found to

increase with velocity. However, the smoothness of the soil was observed to have the

largest impact on implement disturbance variances. Without a real-time estimate of

the disturbance variances, only nominal values can be estimated. A realistic model

for implement disturbances therefore was

i

V tc
t

=
i

V ta
t

+ ω̇ t
i

t

× r3
t

+ ω t
i

t

× ω t
i

t

× r3
t

+ V ta,x
t

νV t (4.42)

Θ̇t = TΘt ω t
i

t

+ V ta,x
t

νΘt (4.43)

Estimates of the disturbance variances are given in Tbl. 4.1. Compared to the vehicle

disturbance variances, the implement disturbance variances are the same in forward

speed because the tractor and the implement are linked together and are usually
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Standard
Variable Dev (one-σ) Name
νV t

x
0.05 s−1 Velocity

νV t
y

0.03 s−1 disturbances

νV t
z

0.01 s−1

νφt 0.5 deg-m−1 Angular
νθt 0.5 deg-m−1 disturbances
νψt 1.0 deg-m−1

Table 4.1: Estimated disturbance variances for the implement model.

nearly lined up. The lateral velocity variance is significantly higher than for the

vehicle because the towed implement is lighter and is subject to greater disturbances.

For the same reason, the variances in vertical velocity and attitude are also slightly

higher than the corresponding variances for the vehicle.



Chapter 5

Nonlinear Real-Time Estimation

As was shown in Chs. 3 and 4, the vehicle model was nonlinear in states such as

velocity and the steering constant because they involved products and transcendental

functions. These states had to be known when developing a locally linear model for

a linear controller. These states were not measured and thus had to be estimated in

real-time. One possible solution was to break the estimation problem up into pieces:

a locally linear model could be used to create a linear filter, and nonlinear states such

as velocity could be filtered by “measuring” the velocity through finite-differenced

position data. This approach, though used in previous research on flat terrain, had

several shortfalls:

• Lateral velocity from side-slip could not be estimated, and a new yaw-bias state

had to be created.

• Because the filter was linearized about the local trajectory, the filter had to be

restarted at the beginning of each trajectory. This meant that valuable bias

information was lost at the end of the previous trajectory. Some states, such

as Kδ, required a significant amount of time to form a reasonably accurate

estimate. Also, certain important states such as Kδ and lateral velocity did

not depend on whether the driver or the computer was controlling the vehicle,

yet the linear filter did not use the information available when the driver had

control to estimate those states.

55
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• Measuring the control point’s position required either a measurement or es-

timate of the vehicle’s attitude: the lever arm vector needed to “move” the

position measurement from the GPS antenna to the control point had to be

transformed from the vehicle frame to the inertial frame. If the attitude sensor

experienced intermittent outages or sampled at a lower rate than the position

sensor, position measurements could not be completed with a linear filter’s state

estimate since the attitude dynamics were nonlinear.

A second possible solution was a nonlinear filter which would run constantly, re-

gardless of the nature of vehicle control. At each point along the trajectory, the filter

would build a linearized controllable model based on the state estimate and then

hand that model off to the control algorithm. The net result would be more accurate

trajectory tracking through improved modeling. One disadvantage of a nonlinear

filter was that the higher number of states meant an increased computational cost.

However, computational cost was only a concern if the computer was unable to finish

the required calculations by the end of the sample period. Any computational task

that finished in less time than the sample interval length was considered acceptable.

The second issue with a nonlinear filter was divergence. Poor modeling could lead

to state estimate divergence. This threat was minimized with what was believed to

be a reasonably accurate vehicle model. Therefore, because of a nonlinear filter’s ad-

vantages, this type of algorithm was sought to estimate the vehicle state in real-time.

The assumption that model disturbances were zero-mean with Gaussian distributions

was believed to be reasonable, so extended Kalman filters of first and second-order

were examined as possible real-time filtering algorithms. This chapter explains the

measurements available during the filtering process and details some of the measure-

ment issues specific to the experimental platforms used in this research. This chapter

then identifies two possible filtering algorithms and compares their performance in

simulation. Finally, experimental results are presented for real-time filtering.

Extended Kalman filters have been used for real-time estimation of system param-

eters in a wide variety of systems. In [GS93], researchers estimated the time-varying

inertial parameters of a nonlinear robot model in simulation. In [A+97], the authors

estimated a wheeled mobile robot’s state, sensor biases, and slip characteristics. In
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[SC87], a variant of the extended Kalman filter, the modified-gain extended Kalman

filter, was used in simulation to estimate the stability derivatives of an aircraft similar

to the F-111. Researchers in [BDW95] demonstrated that the extended Kalman filter

could be used in inertially-guided mobile robot applications to accurately estimate

the position, orientation, and sensor biases of a mobile robot.

5.1 Measurements

In experiment, position measurements were available at 5 Hz, attitude measurements

were available at 10 Hz and steering measurements at 20 Hz. To take advantage of

the higher measurement rates, the filter could be run at 20 Hz. At every measure-

ment epoch (50 msec), the latest measurements could be used to update the filter.

By incorporating the extra attitude measurement and the three extra steering mea-

surements available between position measurements, state estimate accuracy could

be improved.

The vehicle measurement vector was

y =


rvc
i

Θv

δm

 =


rm
i

+ T i
v
rρ
v

Θv

δ + δb

 (5.1)

where rm
i

was the measured position of the vehicle’s master GPS antenna and rρ
v

was a “lever arm” vector from the master GPS antenna to the vehicle control point.

Because the transformation matrix from the vehicle frame to the inertial frame T i
v
was

a nonlinear function of vehicle attitude Θv, the measurement update was nonlinear.

The attitude measurement was very accurate, and the raw attitude measurement

could have been used in the transformation matrix to make the measurement update

linear. Although this approach worked well in experiment, it relied on having an

attitude measurement available every time a position measurement was processed.

This approach also assumed little error was introduced by attitude measurement

noise. Because of the constraints imposed by these assumptions, the measurement
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update remained nonlinear to create a filtering system robust enough to withstand

intermittent attitude outages1 and degradations in attitude measurement accuracy.

5.1.1 Position Measurement

Position measurements were available every 200 msec. Position was measured at the

master GPS antenna (one of the four antennas mounted to the vehicle roof). The GPS

positioning software output a position measurement and a measurement covariance

matrix that expressed the uncertainty in the position measurement. Two important

issues were encountered when measuring the vehicle’s position: (1) additional un-

certainty introduced by the noisy lever arm correction, and (2) antenna movement

relative to the vehicle frame through cab sway or antenna vibration.

As will be shown in Ch. 6, an approximation for the additional uncertainty in-

troduced by the lever arm correction can be calculated at every measurement epoch

and added to the position measurement covariance matrix at the antenna to create a

position uncertainty matrix at the control point. The additional uncertainty approx-

imation typically added 4 mm (one-sigma) to the position uncertainty at the control

point as long as the attitude measurements were of nominal accuracy.

The cab of both test platforms was only semi-rigidly mounted to the tractors’

frames, and cab sway could have been a significant source of measurement error. At

each bottom corner of the cab, large rubber mounts held the cab to the frame and

insulated the cab from engine and transmission noise. See Fig. (5.1). Although the

cab was observed even in very dynamic environments to be virtually rigid relative

to the tractor frame, a rough test was devised to measure cab movement: modeling

clay was wedged between the cab and the frame, the tractor driven over a rough field

at high speed, and the clay compression measured. Although the measurement was

rough (approximate tolerance 1 mm), there was no noticeable deformation. Therefore,

cab sway was considered negligible.2

Static position data collected over a ten-minute period showed that high-frequency

1Or possibly a slower attitude sample rate than position sample rate.
2Note also that the rack mounting the GPS antennas to the roof of the cab was very stiff and

was therefore assumed to be rigid.
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Figure 5.1: Photo of rubber mounts between tractor cab and frame. The camera is at the
rear of the tractor looking forward. The inside of the left rear wheel can be seen on the left.

position measurement variations were roughly 30% of the measurement uncertainty

predicted by the GPS positioning software (see Tbl. 5.1). The discrepancy stemmed

mainly from (slowly varying) uncertainty in the CPDGPS cycle ambiguities. Be-

cause the additional uncertainty varied much more slowly compared to the control

bandwidth, the additional uncertainty could be considered negligible, and the GPS

position measurement noise was considered white.

Axis Std. Dev. (one-σ)
Measured Measurement
High-frequency Uncertainty
Variations Estimate

North 0.8 cm 3.0 cm
East 0.8 cm 2.9 cm

Table 5.1: Static horizontal precision of GPS position measurements. The left column
shows the high-frequency variations for static data collected over a ten-minute period. The
right column is the GPS positioning software’s estimate of position measurement uncer-
tainty.
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Variable one-σ
φ 0.05◦

θ 0.08◦

ψ 0.06◦

Table 5.2: High-frequency variations in GPS attitude measurements. Static data was
collected over a ten-minute period.

5.1.2 GPS Attitude Measurement

Attitude measurements, available at 10 Hz, contained little noise. Analysis of static

data showed the measurement standard deviations were all less that 0.1◦ as summa-

rized in Tbl. 5.2. Attitude measurement accuracy also could suffer from cab motion

and movement of one antenna relative to another. As previously discussed, both

factors were considered negligible.

5.1.3 Steer Angle Measurement

The front wheel angle was measured at 20 Hz by a linear potentiometer. Measure-

ments ranged between -0.7 and 0.7 rad. Although the eight-bit steer angle data packet

received at the computer had values that ranged between 0 and 255, the potentiome-

ter mounting limited the range to 6–180. In addition, measurement resolution varied

from left to right. A look-up table was used to translate the steer angle byte to

a steering angle in the range of ±0.7 rad. The table was created by allowing the

computer to hold the front wheels at a specific potentiometer reading while recording

the yaw angle and forward speed of the tractor under dry relatively skid-free condi-

tions. The relationship ∆ψ/Ts = (Vx/l1) tan δ was then used to obtain a “best-fit”

value of δ for that particular potentiometer reading. In Fig. (5.2), yaw rate is plotted

against the potentiometer reading for a forward velocity of 1.0 m/s and a wheelbase of

2.80 m. Note that this calibration procedure implicitly assumed a nominal Kδ value

of 1.0. The look-up table also gave the “width” or “bin-size” of the steering angle for

each byte value. This “width” was used to establish a measurement variance for a
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Figure 5.2: Yaw rate as a function of the steering potentiometer reading.

particular byte value bi [F
+90]:

Rv(bi) =
(bi+1 − bi)

2

12
(5.2)

Since the measurement variance changed as a function of the measured angle as shown

in Fig. (5.3), another look-up table could have been generated to obtain the steer

angle measurement variance for a given steer angle. However, as seen in Fig. (5.3),

the measurement variance changed smoothly, and the third-order polynomial

Rv(δ) = −9.5014×10−6 δ3 + 1.3853×10−5 δ2

− 1.0436×10−5 δ + 5.5109×10−6 (5.3)

provided a close approximation. At every steer angle measurement, the measurement

variance was calculated using Eqn. (5.3) and was then incorporated into the estimator.
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Figure 5.3: Steer angle measurement variance as a function of steering angle.

5.2 The Kalman Filter

Previous research [O’C97] used the well-known Kalman filter linearized along the

reference trajectory to filter the measurements and estimate the vehicle state. The

time update was [Ste86]

x̂k+1 = Φkx̂k + Γkuk (5.4)

Pk+1 = ΦkPkΦ
T
k +Qd (5.5)

where x̂k was the estimated state, Φk was the discretized state transition matrix,

Γk was the discretized control input matrix for the control signal uk, Pk was the

estimator’s covariance matrix, and Qd was the discretized process noise covariance

matrix [vL78]. If the measurement vector at epoch k was given by

yk = h(xk) (5.6)
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then the measurement update is

Lc = PkH
T
k

(
HkPkH

T
k +Rv

)−1
(5.7)

x̂k = x̂k + Lc (yk − ŷk) (5.8)

Pk = (I − LcHk)Pk (5.9)

where Hk is the observation matrix (i.e., the Jacobian of the observation vector) and

Rv is the measurement noise covariance matrix.

Although a discrete square root filter [K+71] would have offered improved numer-

ical stability over the standard filter implementation detailed above, square root fil-

tering techniques use a linear time update, and the equations of motion derived above

were nonlinear. A first order approximation to the equations of motion could have

been used to linearize the system’s time update. However, concerns over loss of accu-

racy in approximating the non-linear dynamics as linear and the good performance

of the non-linear filter in experiment precluded a square root filter implementation.

5.3 The Extended Kalman Filter

Since the equations of motion and measurements are nonlinear, a nonlinear filter was

used to estimate the vehicle state.

5.3.1 First-Order Filter

The time update for the first-order filter involved integrating the equations of motion

outlined in Ch. 3. The fourth-order Runge-Kutta integration scheme was used for

the time update [Kre93]. The same integration scheme could also have been used to

time-update the covariance matrix using the differential equation for the covariance

matrix [Kas95]

Ṗ =

(
∂f(x̂)

∂x

)
P + P

(
∂f(x̂)

∂x

)T
+GQGT (5.10)

ẋ = f(x) (5.11)
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However, simulation showed that forming

Φk = eTs( ∂f(x)
∂x ) (5.12)

and updating the covariance matrix using Eqn. (5.5) incurred little performance

penalty because the dynamics of the vehicle changed little within one discretization

interval.

The measurement update was linearized using the Jacobian of the measurement

vector [BH75]:

Lc = P−
k

(
∂h(x̂−k )
∂x

)T [ (
∂h(x̂−k )

∂x

)
P−
k

(
∂h(x̂−k )

∂x

)T
+Rv

]−1

(5.13)

x̂+
k = x̂−k + Lc [yk − h(x̂k)] (5.14)

P+
k =

[
I − Lc

(
∂h(x̂−k )
∂x

)]
P−
k (5.15)

5.3.2 Second-Order Filter

Higher-order nonlinear filters can be generated by retaining higher-order terms in

the time and measurement updates. Although a variety of higher-order filters exist

[May82], the modified Gaussian second-order filter was chosen as a possible alternative

to the first-order extended Kalman filter because the modified Gaussian filter’s as-

sumptions were considered more realistic: the filter assumed that the conditional den-

sity was nearly Gaussian, leading to the assumptions that third and higher-order odd

moments were zero, and higher-order even moments could be expressed in terms of

the covariance [May82]. The differential equations for the modified Gaussian second-

order filter’s time update are [May82]

˙̂x = f(x̂) + b̂p (5.16)

b̂p(i) =
1

2
tr

[(
∂2fi(x̂

−
k )

∂x2

)
P

]
(5.17)

Ṗ =

(
∂f(x̂)

∂x

)
P + P

(
∂f(x̂)

∂x

)T
+ ̂GQGT (5.18)
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[ ̂GQGT ] (i, j) = s∑
l=1
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(5.19)

where G ∈ �n×s and

G′ ≡ GQ1/2 (5.20)

The measurement update equations are

Lc = P−
k

(
∂h(x̂−k )
∂x

)T  (
∂h(x̂−k )

∂x

)
P−
k

(
∂h(x̂−k )

∂x

)T
+ B̂m +Rv

−1

(5.21)

x̂+
k = x̂−k + Lc

[
yk − h(x̂−k )− b̂m

]
(5.22)

P+
k =

[
I − Lc

(
∂h(x̂−k )
∂x

)]
P−
k (5.23)

B̂m(i, j) =
1

2
tr

[(
∂2hi(x̂

−
k )

∂x2

)
P−
k

(
∂2hj(x̂

−
k )

∂x2

)
P−
k

]
(5.24)

b̂m(i) =
1

2
tr

[(
∂2hi(x̂

−
k )

∂x2

)
P−
k

]
(5.25)

5.4 Simulation Results

The first- and second-order filters were compared in a noise- and disturbance-free

simulation to highlight performance differences. A vehicle model was simulated with

a randomly varying control input for ten minutes. The two filters were run at 20 Hz.

Differences in estimated position, velocity, attitude, and steer angle were insignificant.

The most noticeable differences in performance was in the estimates of the steering

proportionality constant and steering bias. Fig. (5.4) shows the two filters’ estimates

of Kδ (dashed line and dash-dot line) converging from their initial guesses of 0.8 to
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Figure 5.4: Comparison of first- and second-order filtering algorithms for estimating Kδ.

the actual value of 1.0 (solid line). Fig. (5.5) shows the filters’ estimates of δb (dashed

line and dash-dot line, respectively) converging from their initial guesses of 0.0◦ to the

actual value of −2.0◦ (solid line). These results demonstrate that the performance

difference between the first- and second-order filters was relatively small. Both filters

effectively estimated the two most important unmeasured states, Kδ and δb, in a

reasonable amount of time. Although the second-order filter converged more rapidly,

the computational cost prevented real-time implementation.

5.5 Experimental Results

In experiment, the first-order filter could not be run faster than 5 Hz because of

the computational load.3 The Model 8400 tractor was used as a test platform. The

tractor was controlled along a row using a linear (LQR) control law based on the

simple linearized model in Eqns. (3.43–3.45). No implement was used. The outside

3The real-time filter also shared the computer’s processing power with the GPS positioning and
attitude software.
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Figure 5.5: Comparison of first- and second-order filtering algorithms for estimating δb.

set of dual rear wheels had been removed for shipment, and thus ground disturbances

had a pronounced effect on the tractor’s roll angle.

The filter’s estimate(s) of Kδ are used to illustrate the filter’s performance for two

reasons. First, as previously mentioned, one of the most important benefits of using

a nonlinear filter is the filter’s ability to estimate the key parameter Kδ. Second,

the potentiometer used to measure the front-wheel angle was calibrated using the

procedure outline in Sec. 5.1.3 with the second set of dual rear wheels removed.

Therefore, the actual value of Kδ was known to be very close to 1.0.4 Fig. (5.6)

shows how the filter’s estimate of Kδ routinely converged in eleven experiments from

initial guesses of either 0.5, 1.0, or 1.5 to the correct value of 1.0. Note that an initial

guess beneath the actual value could have destabilized the estimator/controller since

the controller would have believed a larger steer angle than necessary was required

to turn the tractor. Note also that the process noise variance for Kδ was turned up

artificially high to speed up convergence on this short test field. Despite these two

4The tractor configuration was identical to its configuration during the steering calibration tests.
Soil conditions were also approximately equal.
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Figure 5.6: Filter estimates of Kδ for eleven experimental runs.

destabilizing factors, convergence to the actual Kδ value was reliable.

In Fig. (5.7), the estimated tracking error once the tractor had acquired the row

is shown for a typical experiment. The mean tracking error was 0.86 cm and the

standard deviation 2.84 cm at a nominal forward speed of 1.1 m/s. The significant

effects of the ground disturbances can be seen at several points along the row.
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Figure 5.7: Extended Kalman filter’s tracking error estimate for control along a straight
row. Mean tracking error was 0.86 cm, and the standard deviation was 2.84 cm (one-sigma).
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Chapter 6

The Lever Arm Correction

To accurately filter the control point position, an estimate of the position measure-

ment uncertainty was required. Although the position software provided an estimate

of the position measurement covariance, that covariance was valid at the measure-

ment point, not the control point. The point on the vehicle to be controlled was

not collocated with the GPS position antenna, and the position measurement at the

antenna had to be moved or corrected through the addition of a lever arm vector

from the antenna to the control point (see Eqn. 5.1). This lever arm vector was

a nonlinear function of uncertain attitude and lever arm measurements. Therefore,

the noise-corrupted lever arm correction introduced additional uncertainty into the

control point position measurement. In this chapter, error analysis was used to show

that control point position measurement uncertainty can be expressed as the sum

of the uncertainty of the original measurement at the antenna and an additional

uncertainty stemming from the lever arm correction. Error analysis was then used

to derive an approximation for that additional uncertainty. The approximation was

verified through a Monte Carlo simulation and was then used to show that, above a

certain sensor noise level, attitude uncertainty could become the dominant source of

position measurement uncertainty at the vehicle control point.

In [Jun97], Junkins used the first two statistical moments of an orbiting body to

show how its positional uncertainty can evolve over time. He showed that although a

first-order expression could approximate the evolving uncertainty, significant nonlin-

earities in the equations of motion meant that the approximation’s fidelity depended

on the coordinate system used. Junkins’ work focused on propagating the uncertainty

71
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forward in time through the nonlinear equations of motion; this research focused in-

stead on propagating the uncertainty through nonlinear measurements.

6.1 Approximating the Additional Uncertainty

The GPS antennas were mounted on the roof of the vehicle because they required an

unrestricted view of the GPS satellites overhead. The lever arm vector from the mas-

ter GPS antenna to the vehicle control point was added to the position measurement

vector:

rvc
i

= rm
i

+ T i
v
rρ
v

(6.1)

where T i
v
is the nonlinear transformation matrix from the vehicle coordinate frame

to the inertial coordinate frame (see Eqn. 3.21).

The uncertainty in the control point position measurement can be expressed as

∑
c

i

≡ E

(rvc
i

− r̄vc
i

)(
rvc
i

− r̄vc
i

)T ∣∣∣∣∣∣Θv, rmi , rvρv
 (6.2)

where Θv is the vehicle’s attitude vector,
∑
c
i

is the variance/covariance matrix (coor-

dinatized in the inertial frame) of the position measurement at the control point, r̄vc
i

is the mean, or expected, value of the vehicle control point position, and E denotes
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taking the expected value. Substituting Eqn. (6.1) into (6.2),

∑
c

i

= E


 rm

i

− r̄m
i

+ T i
v
rρ
v

− T̄ i
v
r̄ρ
v


 rm

i

− r̄m
i

+ T i
v
rρ
v

− T̄ i
v
r̄ρ
v


T
∣∣∣∣∣∣∣∣Θ

v, rm
i

, rvρ
v

 (6.3)

= E



(
rm
i

− r̄m
i

)(
rm
i

− r̄m
i

)T
+

(
rm
i

− r̄m
i

)(
T i

v
rρ
v

− T̄ i
v
r̄ρ
v

)T
+

(
T i

v
rρ
v

− T̄ i
v
r̄ρ
v

)(
r
i

m − r̄
i

m

)T
+

(
T i

v
rρ
v

− T̄ i
v
r̄ρ
v

)(
T i

v
rρ
v

− T̄ i
v
r̄ρ
v

)T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θv, rm
i

, rvρ
v


(6.4)

Expressions involving

T i
v
rρ
v

− T̄ i
v
r̄ρ
v

are nonlinear in attitude and lever arm measurements and can not be evaluated

directly in terms of the known statistical properties of the attitude and lever arm

measurements. A multivariate Taylor series expansion [Hil76] can approximate the

transformed lever arm by expanding T i
v
rρ
v

about T̄ i
v
r̄ρ
v

[Tay82]:

T i
v
rρ
v

∼= T̄ i
v
r̄ρ
v

+ ∇
(
T i

v
rρ
v

)∣∣∣∣∣
x̄

(x− x̄) + · · · (6.5)

x ≡
 Θv

rρ
v

 (6.6)

where the gradient operator ∇ is taken with respect to attitude and the lever arm.

This is because unmodeled high-frequency vibration of the cab relative to the tractor

frame and vibration of the antenna mounts could be approximated as lever arm

measurement noise. If Eqn. (6.5) is rewritten as

T i
v
rρ
v

− T̄ i
v
r̄ρ
v

∼= ∇
(
T i

v
rρ
v

)∣∣∣∣∣
x̄

(x− x̄) (6.7)
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then Eqn. (6.4) becomes

E



(
rm
i

− r̄m
i

)(
rm
i

− r̄m
i

)T
+

(
rm
i

− r̄m
i

)
(x− x̄)T ∇

(
T i

v
rρ
v

)T ∣∣∣∣∣∣
x̄

+∇
(
T i

v
rρ
v

)∣∣∣∣∣
x̄

(x− x̄)

(
rm
i

− r̄m
i

)T
+∇

(
T i

v
rρ
v

)∣∣∣∣∣
x̄

(x− x̄) (x− x̄)T ∇
(
T i

v
rρ
v

)T ∣∣∣∣∣∣
x̄

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x̄, rm

i


(6.8)

If the effects of satellite geometry on both attitude and position measurement

noises are ignored,1 the measurement noises in attitude, lever arm, and position are

uncorrelated. The mean measurement error in both attitude and position is assumed

to be zero, and the expected values of(
rm
i

− r̄m
i

)
(x− x̄)T ∇

(
T i

v
rρ
v

)T

∇
(
T i

v
rρ
v

)
(x− x̄)

(
rm
i

− r̄m
i

)T
are therefore zero. The expected value of(

rm
i

− r̄m
i

)(
rm
i

− r̄m
i

)T
is known from the position sensor and is denoted by

∑
m
i

. Eqn. (6.8) reduces to

∑
c

i

=
∑

m
i

+

[
∇
(
T i

v
rρ
v

)]∑
Θv,ρ
v

[
∇
(
T i

v
rρ
v

)]T
(6.9)

Eqn. (6.9) shows how, to first order, uncertainty in the lever arm correction adds

uncertainty to the original GPS position measurement. If the noise in attitude and

1If these effects can not be ignored, then the expected values of cross-terms involving both
position and attitude will be non-zero. Expressions for these cross-terms could be derived based on
an error analysis of the algorithms used to generate position and attitude measurements using the
GPS carrier-phase measurements.



6.2. VERIFYING THE ADDITIONAL UNCERTAINTY APPROXIMATION 75

lever arm are uncorrelated,
∑

Θv,ρ
v

is block-diagonal:

∑
Θv,ρ
v

=

 ∑
Θv 0

0
∑
ρ
v

 (6.10)

If the vehicle’s attitude was measured and used to transform the lever arm, then∑
Θv is the attitude measurement noise. If an attitude measurement is not available

when the position measurement is taken, an estimate of the vehicle’s attitude from a

nonlinear filter could be used. In this case,
∑

Θv could be extracted from the filter’s

inertia matrix.
∑
ρ
v

could be estimated from a model of the vehicle/cab dynamics.

6.2 Verifying the Additional Uncertainty

Approximation

A Monte Carlo simulation was conducted to show that Eqn. (6.9) represented a

reasonable approximation to the additional uncertainty introduced by the lever arm

correction. For a medium-sized farm tractor, a reasonable lever arm in forward-right-

down coordinates from a control point on the ground directly beneath the center of

the rear axle to a GPS antenna mounted on the upper right side of the cab is (in

meters)

rρ
v

≡


0.5

1.0

−3.3

 (6.11)

The lever arm was assumed to have zero measurement noise.2 A randomly chosen

measured attitude of 
φ

θ

ψ

 =


−1.1◦

0.8◦

283.0◦

 (6.12)

2Note that lever arm noise, which could come from high-frequency antenna vibration, would add
uncertainty.
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Figure 6.1: Projection of 500 noisy lever arm corrections onto the North-East plane for
the assumed attitude of −1.1◦ in roll, 0.8◦ pitch, and 283.0◦ yaw. One-sigma ellipsoids
(predicted as solid line, experimental as dashed) shown. Note that the approximation is
good enough that the difference between the two ellipsoids is hard to distinguish.

σ1 σ2 σ3

Predicted 0.371 0.368 1.10×10−17

Experimental 0.390 0.373 1.15×10−6

Table 6.1: Comparison of singular values for predicted and experimental covariance ma-
trices.

was assumed with measurement noise variances of 0.1◦ in roll, pitch, and yaw. Five

hundred noise-corrupted lever arm corrections were calculated using Eqn. (6.1). One-

sigma ellipsoids of the resulting 500 corrected positions are plotted against the uncer-

tainty ellipsoid predicted by Eqn. (6.9) in Figures (6.1–6.3). Note that the additional

uncertainty primarily shows up in the North-East plane, the plane most crucial for

precise control measurements. The small difference between the predicted and Monte

Carlo uncertainty ellipsoids indicates that not only do the magnitudes of the singular

values closely approximate each other, but the predicted directions of uncertainty are

closely aligned as well. In Tbl. 6.1, the predicted versus experimental singular values

are shown. The maximum predicted uncertainty in any direction (the square root

of the covariance matrix’s largest singular value) was 0.61 cm, while the maximum
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Figure 6.2: Projection of 500 noisy lever arm corrections onto the East-Down plane for
the assumed attitude of −1.1◦ in roll, 0.8◦ pitch, and 283.0◦ yaw. One-sigma ellipsoids
(predicted as solid line, experimental as dashed) shown.
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Figure 6.3: Projection of 500 noisy lever arm corrections onto the North-Down plane
for the assumed attitude of −1.1◦ in roll, 0.8◦ pitch, and 283.0◦ yaw. One-sigma ellip-
soids (predicted as solid line, experimental as dashed) shown, but barely visible from this
viewpoint.
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Figure 6.4: Maximum position uncertainty vs. attitude measurement noise (predicted as
solid line, experimental as dashed). GPS positioning system nominal measurement uncer-
tainty of 2.5 cm shown as dashed horizontal line.

experimental uncertainty in any direction was 0.62 cm. The square root of the norm

of the difference between the predicted and experimental uncertainty ellipsoids was

0.15 cm. Therefore, Eqn. (6.7) represents a reasonably accurate approximation to the

additional uncertainty introduced by the lever arm correction.

6.3 Effects of Attitude Noise and Lever Arm Length

To quantify the effect of various attitude noise levels, attitude measurement noise was

allowed to vary between 0.01◦ and 10◦ (one-sigma). Fig. (6.4) shows the maximum

additional control point position uncertainty introduced by the lever arm as a function

of increasing attitude noise using the same lever arm and attitude measurements

specified in Eqns. (6.11-6.12). The horizontal dashed line at 2.5 cm represents the

nominal measurement noise that can be expected from the positioning system. From

Fig. (6.4), it is clear that as attitude measurement noise increases above approximately
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Figure 6.5: Maximum position uncertainty vs. attitude measurement noise (predicted as
solid line, experimental as dashed) for 3.5 m lever arm length. GPS positioning system
nominal measurement uncertainty of 2.5 cm shown as dashed horizontal line.

0.4◦ (one-sigma), the dominant source of positional uncertainty at the control point is

not the GPS position sensor, but the GPS attitude sensor.

Maximum position uncertainty introduced by the lever arm versus attitude mea-

surement noise for lever arms of varying lengths are shown in Fig. (6.5). The lever

arm used in the previous simulations was scaled by 30%, 75%, and 120%. Clearly,

as the lever arm becomes longer, the adverse effect of attitude measurement noise

becomes more pronounced. Tbl. 6.2 lists lever arm lengths against the level of atti-

tude measurement noise at which the lever arm uncertainty eclipses the nominal GPS

positional uncertainty of 2.5 cm (one-sigma).

Some researchers have proposed using a rough heading measurement from a com-

pass and terrain knowledge to estimate vehicle attitude. This rougher estimate of

the vehicle’s attitude implies a degradation in the position uncertainty. Under the

following assumptions,
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Lever arm Attitude measurement
length noise for 2.5 cm uncertainty
1.1 m 1.4◦

2.6 m 0.6◦

3.5 m 0.4◦

4.2 m 0.3◦

Table 6.2: Attitude measurement noise level yielding 2.5-cm positional uncertainty for
various lever arm lengths

1. No attitude measurement beyond a rough yaw measurement with a measure-

ment uncertainty of 1.0◦ was available.

2. The tractor was being used on a flat field at low speed.

3. Roll and pitch measurements ranges up to ±3◦.

4. Roll and pitch disturbances had one-sigma standard deviations of 2.0◦.

it can be shown that the largest uncertainty in any direction was 12.2 cm (one-

sigma). With a nominal position uncertainty of 2.5 cm, the poor attitude measure-

ment became the dominant source of positional uncertainty by incurring additional

uncertainty of almost five times the original uncertainty. Therefore, some measure of

attitude, even on flat terrain, is vital if attitude uncertainty is not to dominate the

measurement noise.



Chapter 7

Vehicle Control on Arcs

Realistic farm trajectories will most likely contain circular arcs for two reasons. First,

farmers prefer to minimize the amount of time the implement spends out of the

ground. Therefore, if discontinuous linear path segments could be smoothly joined

by gentle arcs while keeping the implement in the ground,1 this wasted time could be

minimized. Second, some path-planning algorithms use arcs to satisfy non-holonomic

constraints [Lat91]. Some sort of path-planning algorithm will almost certainly be

required in a practical automatic vehicle controller, and the resulting paths generated

by the planner might include arcs. Therefore, a control algorithm was sought that

could control a wheeled vehicle accurately on circular arcs. Controller performance

was measured by the mean and standard deviation of the radial tracking error.

7.1 Specifying Arc Trajectories

An arc trajectory was specified by a center, start point, and an interior turning angle

(see Fig. 7.1). The arc radius was assumed to be larger than the minimum turning

radius of the vehicle. The current location of the vehicle along the arc was calculated

by finding the intersection of a line between the vehicle’s control point and the arc

center. The vehicle’s yaw angle relative to the arc could then be calculated. Arcs

could be specified as either clockwise or counter-clockwise.

1As opposed to lifting the implement out of the ground and reorienting the vehicle.
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7.2 Modeling the Vehicle in Polar Coordinates

To track an arc accurately, the linearized vehicle model in Eqns. (3.43–3.45) had to be

transformed into polar coordinates. Attempts to linearize the model along straight

rows would lead to significant (at our control levels) steady-state radial tracking

errors.

7.2.1 Vehicle Yaw Error

From Fig. (7.1), the angle of the curve tangent is α+ α0 ± π/2, where α is the angle

swept out by the vehicle, and α0 is the “start angle” of the arc. A control point not

collocated with the vehicle’s pivot point meant that, in steady-state, a small heading

angle correction ξ had to be accounted for. From geometry,

ξ = ∓ sin−1

(
l2
R0

)
(7.1)

where R0 is the arc radius. Since ξ is positive clockwise in keeping with the NED

coordinate frame, ξ will be less than zero if the arc is turning clockwise and l2 is

positive. Note that in Fig. (7.1), the vehicle’s control point is located to the rear

of the pivot point and l2 would be negative in this case. Therefore, the vehicle yaw

angle in the inertial frame could be expressed as

ψ = α+ α0 ± π

2
+ ξ + ψe (7.2)

where ψe is the vehicle’s yaw error from the steady state yaw angle required to track

the arc. The π/2 correction stems from the fact that the vehicle travels nearly tangent

to the arc (+π/2 for clockwise arcs). Solving for ψe and taking the time derivative,

ψ̇e = ψ̇ − α̇− ξ̇ (7.3)

Since the radius of the arc remains constant, ξ̇ is zero. An expression for α̇ can be

derived by transforming the north and east components of the vehicle’s velocity in

the body frame

ṅ = Vx (7.4)

ė = l2ψ̇ (7.5)
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Figure 7.1: Diagram of vehicle moving along arc.
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into a polar coordinate frame aligned with the arc’s center. The forward velocity of

the vehicle will then be tangential to the arc and will be equal to rα̇ where r is defined

as the distance of the vehicle’s control point from the arc’s center. The angle needed

to transform the control point velocity vector will be the angle between the vehicle’s

centerline and the arc tangent: ψe+ξ. In polar coordinates, the tangential and radial

velocities are

rα̇ = Vx cos(ψe + ξ)− l2ψ̇ sin(ψe + ξ) (7.6)

ṙ = Vx sin(ψe + ξ) + l2ψ̇ cos(ψe + ξ) (7.7)

The expressions for α̇ in Eqn. (7.6) and ψ̇ in Eqn. (3.36) can be substituted into

Eqn. (7.3) to solve for ψ̇e:

ψ̇e = ψ̇ − 1

r

[
Vx cos(ψe + ξ)− l2ψ̇ sin(ψe + ξ)

]
(7.8)

=
1

l1
KδVx tan δ

[
1 +

l2
r
sin(ψe + ξ)

]
+

1

r
Vx cos(ψe + ξ) (7.9)

Note that as r approaches infinity, ψ̇e approaches ψ̇.

7.2.2 Vehicle Steer Angle

The vehicle’s steady-state steer angle can be computed from the steady-state yaw

rate. Since ξ̇ is zero,

ψ̇∞ = α̇∞ (7.10)

An expression for α̇∞ can be derived from Eqn. (7.6) for zero error in yaw, steering,

and tracking:

α̇∞ =
1

R0

[
Vx cos ξ − l2ψ̇∞ sin ξ

]
= ψ̇∞ (7.11)

Solving for ψ̇∞ and using Eqn. (3.36),

ψ̇∞ =
Vx cos ξ

R0 + l2 sin ξ
=

1

l1
VxKδ tan δ∞ (7.12)

δ∞ = ± tan−1

(
l1

Kδ
√
R2

0 − l22

)
(7.13)
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where the sign of δ∞ is defined as positive for clockwise arcs. Note that Eqn. (7.13)

could also have been derived from geometry. Clearly, Eqn. (7.13) becomes singular as

l2 approaches R0. However, tracking an arc with radius less than reasonable values

of l2 would be unrealistic.

Steer angle could be linearized about some (nominally zero) steer angle δe:

δ = δe + δ∞ (7.14)

so that

δ̇e = δ̇ − δ̇∞ (7.15)

Since the arc radius is constant, δ̇∞ is zero. Therefore, as in the linear case,

δ̇e = u (7.16)

7.2.3 Vehicle Tracking Error

The distance of the vehicle control point from the center of the arc can be expressed

as

r = re +R(α) (7.17)

= re +R0 (7.18)

Since the radius of the arc is constant, the expression for ṙe is the same as for ṙ in

Eqn. (7.7).

7.2.4 Equations of Motion

Eqns. (7.9), (7.16), and (7.7) can be combined to form the equations describing the

motion of a vehicle tracking an arc. The three states in the model, ψe, δe, and re, are
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zero when the arc is being tracked perfectly:

ψ̇e =
1

l1
KδVx tan (δe + δ∞)

[
1 +

l2
re +R0

sin(ψe + ξ)

]
+

1

re +R0
Vx cos(ψe + ξ) (7.19)

δ̇e = u (7.20)

ṙe = Vx sin(ψe + ξ) +
l2
l1
KδVx tan (δe + δ∞) cos(ψe + ξ) (7.21)

7.3 Tracking Control Algorithm

Simulations showed that a linear control algorithm created by linearizing Eqns. (7.19–

7.21) yielded good tracking performance. Therefore, Eqns. (7.19–7.21) were linearized

about the nominally zero operating conditions:

ψ̇e ∼=
[
l2
l1R0

KδVx tan δ∞ cos ξ − 1

R0
Vx sin ξ

]
ψe

+

[
1

l1
KδVx

(
1 + tan2 δ∞

)(
1 +

l2
R0

sin ξ

)]
δe (7.22)

δ̇e = u (7.23)

ṙe ∼=
[
Vx cos ξ − l2

l1
KδVx tan δ∞ sin ξ

]
ψe

+

[
l2
l1
KδVx

(
1 + tan2 δ∞

)
cos ξ

]
δe (7.24)

As the arc approaches infinite radius, Eqns. (7.22) and (7.24) approach the linearized

equations for a straight line given in Eqns. (3.43) and (3.45).

The discrete root locus for the linearized system with a nominal arc radius of ten

meters was indistinguishable from the discrete root locus shown in Fig. (3.2) for the

model linearized about a straight line.

7.4 Experimental Results

The vehicle model varied with velocity, the steering proportionality constant Kδ,

and the control point’s longitudonal position (through l2). Therefore, scheduling the
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Figure 7.2: Overhead view of experimental arc trajectory. Coordinates are relative to the
reference station antenna.

control gains against these factors was impractical. Instead, LQR control gains were

solved for in real-time. Although MatLab’s dlqr.m function can be translated into an

executable file for many computer operating systems, no such translator existed for

this project’s operating system (LynxOS). Therefore, software was sought that could

solve for the control gains by finding the solution of the control discrete algebraic

Riccati equation. The freeware Fortran 77 library, SLICOT, provided a subroutine

SB02MD,2 which successfully solved the Riccati equation in less than 5% of a 200 ms

sample interval.

For the experimental trajectory shown in Fig. (7.2), the radius was 30.0 m. The

experiment was performed using the Model 8400 test platform. The measured track-

ing error is shown in Fig. (7.3). A single set of rear wheels was used on a rough field;

therefore, ground disturbances were significantly larger than what could normally

be expected. No implement was allowed on this particular field. The mean of the

2SB02MD used the Schur vector method proposed by Laub. Interested readers are
referred to [Lau79, Sim96]. Software is available at http://www.win.tue.nl/wgs/ and
ftp://wgs.esat.kuleuven.ac.be/pub/WGS/SLICOT/
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Figure 7.3: Tracking error along experimental arc trajectory. Mean tracking error was
-0.28 cm, and the standard deviation was 3.43 cm one-sigma.

control point’s tracking error was -0.28 cm and the standard deviation was 3.43 cm

(one-sigma). Bias states in yaw and steering were used to compensate for modeling

errors. Vehicle velocity was 1.1 m/s. Tracking performance did degrade with higher

velocities, but the amount of deterioration for a given velocity increase depended

strongly on the ground conditions. Because most tractors (including the two used

in this research), had no suspension, even relatively small ground disturbances were

significant. In a field that had not been smoothed,3 forward velocities of over ap-

proximately 2-3 m/s meant disturbances were intolerably large. In a smoothed field,

velocities all the way up to the maximum forward velocity of 10.0 m/s were possible.

3Usually with an implement such as a disk.



Chapter 8

Vehicle Control on Spirals

In arid and semi-arid regions of the world, “center-pivot” irrigation systems are often

used. In such systems, a central water source feeds water to a long pipe with sprinklers

mounted on six to seven mobile towers. Center-pivot irrigation systems, patented in

1952, offer farmers automatic operation, reduced labor, control of application rate,

and precise application of herbicides and fertilizers. A satellite study conducted in

the summer of 1976 revealed that 1.3 million acres of Nebraska farm land were being

irrigated by center-pivot irrigation [Spl76, M+92]. The resulting crop area is circular,

and though the area may be farmed in rows, the area could be more efficiently farmed

if the tractor could operate continuously without removing the implement from the

ground during U-turns. A spiral trajectory would allow the operator to drive without

stopping, decreasing the time required to farm the area. Although the spiral pattern

could be broken up into sequential arcs, the junctions would be discontinuous, and

a spiral pattern would be more efficient. Therefore, an algorithm was sought which

could control the tractor accurately on a spiral trajectory. The algorithm had to be

flexible enough so that the tractor could spiral either inward or outward, traveling

either clockwise or counter-clockwise.

8.1 Specifying Spiral Trajectories

A spiral trajectory was specified by a center, start point, interior angle, and “width”,

denoted w. The spiral decreased or increased, depending on the sign of w, one width

89
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Figure 8.1: Center-pivot irrigation systems measuring almost a mile in diameter in the
Kufra oasis in the Libyan Desert [Spl76].

per revolution. Therefore, the distance from the center to a point on the spiral, called

the spiral radius and denoted by ρ, as a function of the swept angle α was

ρ = ρ0 + βα (8.1)

where

β = ± w

2π
(8.2)

The initial spiral radius ρ0 was the distance between the center and start points, and

α could range from zero to 2πn where n was the number of revolutions completed.

8.1.1 Radius of Curvature

The radius of curvature R of the spiral did not equal the spiral radius ρ because ρ

changed as a function of the swept angle. Any coordinate on the spiral can be written
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as

x(α) =

[
(ρ0 + βα) cos(α + α0)

(ρ0 + βα) sin(α + α0)

]
(8.3)

The radius of curvature was [Kre93]

R(α) =

(
dx
dα

· dx
dα

)3/2√(
dx
dα

· dx
dα

) (
d2x
dα2 · d2x

dα2

)− (
dx
dα

· d2x
dα2

)2 (8.4)

With

dx

dα
=

[
β cos(α + α0)− (ρ0 + βα) sin(α+ α0)

β sin(α + α0) + (ρ0 + βα) cos(α + α0)

]
(8.5)

d2x

dα2
=

[
−2β sin(α+ α0)− (ρ0 + βα) cos(α + α0)

2β cos(α+ α0)− (ρ0 + βα) sin(α + α0)

]
(8.6)

the radius of curvature reduced to

R =
[ρ2 + β2]

3/2

ρ2 + 2β2
(8.7)

The maximum angle that the vehicle’s front wheels were capable of turning specified

the minimum radius of curvature possible. Equating yaw rate in Eqn. (3.36) with

Vx/R,

1

Rmin
Vx =

1

l1
VxKδ tan δmax (8.8)

Rmin =
l1

Kδ tan δmax
(8.9)

Eqn. (8.7) was equated with Eqn. (8.9) to determine how close the spiral could have

wound into its center by calculating ρ given β.

8.2 Modeling the Vehicle in Polar Coordinates

The polar analysis developed for arcs in Ch. 7 was adapted to spiral trajectories. The

time-varying radius of curvature meant that several time derivatives in the equations

of motion were no longer zero, as was the case for arcs.
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8.2.1 Vehicle Yaw Error

The yaw angle of any point along the spiral was no longer given by Eqn. (7.2). Instead,

because the spiral curved either inward or outward, a small angle η resulting from

the changing radius had to be accounted for:

ψ = α + α0 ± π

2
+ ξ + η + ψe (8.10)

The yaw error dynamics were described by

ψ̇e = ψ̇ − α̇− ξ̇ − η̇ (8.11)

where ξ was specified in Eqn. (7.1) and ψ̇ in Eqn. (3.36).

If α was changed by a small amount dα, then the arc length along the arc of radius

ρ will be ρ dα and the radius would have changed by ρ(α)− ρ(α + dα). Therefore,

tan η =
ρ(α)− ρ(α + dα)

ρ(α) dα
(8.12)

= − β dα

ρ(α) dα
(8.13)

= −β
ρ

(8.14)

The rate of change of the swept angle α̇ was calculated from Eqn. (7.6) with the slight

change that the yaw angle of the vehicle relative to the spiral tangent now included

the angle η:

rα̇ = Vx cos(ψe + ξ + η)− l2ψ̇ sin(ψe + ξ + η) (8.15)

α̇ =
1

re + ρ

[
Vx cos(ψe + ξ + η)− l2ψ̇ sin(ψe + ξ + η)

]
(8.16)

The rate of change of η can be derived by differentiating Eqn. (8.14):

η̇ = − β2α̇

β2 + ρ2
(8.17)

Similarly, the rate of change of ξ was found by differentiating Eqn. (7.1):

ξ̇ = ± l2Ṙ

R
√
R2 − l22

(8.18)

= ± l2
dR
dα
α̇

R
√
R2 − l22

(8.19)
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From Eqn. (8.7),

dR

dα
=

3ρ
√
ρ2 + β2

ρ2 + 2β2
− 2ρ (ρ2 + β2)

3/2

(ρ2 + 2β2)2
(8.20)

Finally,

ψ̇e =
1

l1
VxKδ tan δ − α̇

[
1− β2

β2 + ρ2
± l2

dR
dα

R
√
R2 − l22

]
(8.21)

8.2.2 Vehicle Steer Angle

As for control on arcs, steer angle was broken apart into a steady-state value δ∞ and

an error value δe so that

δe = δ − δ∞ (8.22)

δ̇e = δ̇ − δ̇∞ (8.23)

The steady-state value was determined by solving Eqn. (8.21) for δ = δ∞ given zero

error in yaw, steering, and tracking:

ψ̇∞ = α̇∞

[
1− β2

β2 + ρ2
± l2

dR
dα

R
√
R2 − l22

]
(8.24)

ψ̇∞ =
Vx cos(ξ + η)

ρ+ l2 sin(ξ + η)

 1− β2

β2+ρ2

± l2
dR
dα

R
√
R2−l22

 (8.25)

tan δ∞ =
l1 cos(ξ + η)

Kδ [ρ+ l2 sin(ξ + η)]

 1− β2

β2+ρ2

± l2
dR
dα

R
√
R2−l22

 (8.26)

An expression for δ̇∞ was derived by manipulating Eqn. (8.26) to solve for δ∞ and

then differentiating with respect to time.



94 CHAPTER 8. CONTROL ON SPIRALS

8.2.3 Vehicle Tracking Error

As for control on arcs, tracking error was broken apart into a steady-state value and

an error value so that

re = r − ρ (8.27)

ṙe = ṙ − ρ̇ (8.28)

= Vx sin(ψe + ξ + η) + l2ψ̇ cos(ψe + ξ + η)− βα̇ (8.29)

8.2.4 Equations of Motion

The equations of motion are given by Eqn. (8.21), differentiating Eqn. (8.26), and

Eqn. (8.29). These equations can then be linearized to form a simple three-state

model for computing linear control gains.

8.2.5 Analysis

To show the effect of spiral radius on reference states, a spiral was created with

representative parameter values w = 5.0 m, ρ0 = 4.0 m, Vx = 1.0 m/s, l2 = 0.0 m,

l1 = 2.80 m, and Kδ = 1.0. An overhead view of the spiral is shown in Fig. (8.2).

Fig. (8.3) shows the reference steer angle as a function of radius. As the distance

between the front axle and rear pivot point decreased, the required steer angle also

decreased. The fundamental limit on how small the spiral could become was the

vehicle’s turning radius, although spirals of radius less than 5-6 meters could safely

be considered unrealistic.

8.3 Experimental Results

Fig. (8.4) shows an overhead view of an actual spiral trajectory completed in early

December 1997 using the Model 7800 test platform detailed in App. A. The trajectory

was completed in under 35 minutes with a towed implement attached and the tractor

operating under full throttle and full engine load. Fig. (8.5) shows the tracking error

as a function of time. A small portion of the test area had been bedded, and the
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Figure 8.2: Overhead view of simulated spiral trajectory.

4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

Radius (m)

R
ef

er
en

ce
 S

te
er

 A
ng

le
 (

de
g)

L
1
 = 2.8 m

L
1
 = 2.0 m/s

Figure 8.3: Reference steer angle as a function of spiral radius.
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Figure 8.4: Overhead view of experimental spiral trajectory. Coordinates are relative to
the reference station antenna.
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Figure 8.5: Tracking error along experimental spiral trajectory. Mean error was -0.22 cm
and standard deviation (one-sigma) was 5.27 cm.
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sawtooth-shaped beds caused the tractor to slide sideways down into the furrows.

The disturbances were compounded by the large towing force required to pull the

implement. The disturbances from the beds are visible as spikes near the end of the

tracking error history. In general, as the spiral radius decreased, disturbances’ effects

on tracking error became more pronounced. Nonetheless, the mean tracking error

was -0.22 cm and the standard deviation 5.27 cm (one-sigma) at a forward velocity

of 2.1 m/s. A small amount of integral control was used to compensate for modeling

errors, and the LQR control gains were computed in real-time using the real-time

discrete algebraic Riccati equation solver mentioned in Ch. 7. These quantitative

results were typical of other spiral trajectories completed.

Control along spirals was typically very stable for reasonable radii, even at higher

forward speeds. Hitched implements tend to resist a yaw change, while towed im-

plements tend to pull the back end of the tractor inward. Integral control helped

compensate for both effects. Factors affecting yaw response to front-wheel angle had

a greater detrimental impact on spiral controller performance than when the tractor

tracked straight lines.
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Chapter 9

Vehicle Control on Curves:

Specifying Curve Trajectories

This chapter will create or adapt algorithms that could generate curve trajectories

from discrete position data. These trajectories must closely match input data, yet

filter out measurement and disturbance noise that corrupted the data. Control on

curves has many applications in a variety of areas including missile guidance [K+98],

aircraft guidance, satellite control, computer-aided machining [Tom93], and ship con-

trol [God98]. In agriculture, curved trajectories may arise when a river or a road

defines a field boundary. Avoiding in-field obstacles such as telephone poles may also

require nonlinear trajectories. Curved trajectories could be specified by topographic

map data or by position data collected during a human-controlled trajectory. Since a

trajectory could be derived from either topographic data or real-time position data, a

flexible trajectory generation algorithm was needed that could generate a smooth tra-

jectory from both types of inputs without affecting controller performance. Control

on curve trajectories revealed several issues: vehicle location on the curve had to be

calculated, time-derivatives of curve parameters had to be estimated, and previewing

future curve information in the control algorithm required predicting the vehicle’s

future location(s) on the curve.
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9.1 Generating Curve Trajectories from

Position Data

There were at least four possible approaches to generating a trajectory given position

data. The first approach was to treat the trajectory as a series of “waypoints” and

control the vehicle from one waypoint to the next. Although there was no compu-

tational cost in generating the trajectory, the resulting vehicle trajectory would not

match the original trajectory if the distance between waypoints was large. In the

second approach, line segments interconnect trajectory points, and the vehicle tracks

each line as it moves on the trajectory. This second approach suffers from the same

poor fidelity as the first if points are located far apart. The third approach and the

one taken in this research was to use cubic splines to interpolate smooth continu-

ous curves between the data points. The fourth, and “optimal approach”, created a

trajectory which passed as close as possible to the data points while satisfying the

vehicle’s non-holonomic constraints. This approach had a high computational cost

and could diverge with a poor initial guess.

Various curves could specify parts of or entire trajectories: clothoids, polar splines,

B-splines, and splines [Nel89, SO95]. A variety of spline interpolants exist including

polynomials of degree two and higher, rational spline interpolants, and exponential

spline interpolants [Spa95]. Third-order polynomial spline interpolants were chosen

because the resulting curves appeared the most “natural”, and generating cubic spline

interpolants also had a relatively low computational cost.

Splines have been used to generate smooth trajectories for ships [God98]. In

[God98], a series of arcs and lines were used to prescribe the shortest trajectory for a

ship given a minimum turning radius. Discrete points on the trajectory were chosen,

and seventh-order polynomial splines1 were used to fit the discrete data.

1The splines were seventh-order because they had to satisfy dynamic constraints based on the
ship’s equations of motion.
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9.2 Cubic Splines

Given a series of N ≥ 3 data points (xk, yk) and xk strictly increasing, cubic polyno-

mials interpolate between the data points:

yk(x) = Ak +Bk(x− xk) + Ck(x− xk)
2 +Dk(x− xk)

3 (9.1)

where xk ≤ x ≤ xk+1. The endpoints as well as the first and second derivatives of

adjoining splines are required to match, yielding the boundary conditions for each

spline. The equations in the unknown spline coefficients Ak, Bk, Ck, and Dk can be

easily solved using linear algebra. Cubic spline interpolants could be forced to be

periodic, which might be required when working on a field boundary, for example

[Spa95].

Though the requirement that xk be strictly increasing seemed to present a problem

for curves that “doubled back”, the north and east coordinates could actually be

parameterized by an independent parameter s. If (nk, ek) represented a north-east

coordinate pair, one choice of an independent parameter was the sum of the Euclidean

distances between points up to number k was:

sk = sk−1 +

√
(nk − nk−1)

2 + (ek − ek−1)
2 (9.2)

s1 = 0 (9.3)

Trajectory coordinates were

n(s) = An,k +Bn,k(s− sk) + Cn,k(s− sk)
2 +Dn,k(s− sk)

3 (9.4)

e(s) = Ae,k +Be,k(s− sk) + Ce,k(s− sk)
2 +De,k(s− sk)

3 (9.5)

Therefore, any point on the trajectory was uniquely determined by a value of s.

The cubic spline trajectory passed through all data points. To smooth through

noisy input data, the condition that the interpolated trajectory pass through each

data point could be relaxed by specifying a positive “fit” or “tightness” parameter

pk for each point. The interested reader is referred to [Spa95]. To demonstrate

how splines could be used to smooth through noisy input data, a simulated vehicle

trajectory is shown in Fig. (9.1) as a dashed line. Position data was created at 1 Hz,
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Figure 9.1: Overhead view of spline interpolation of discrete noisy position data.

but was corrupted by measurement noise with a large standard deviation of 50 cm.

The interpolated trajectory (solid line) closely approximated the original trajectory

in spite of the high measurement noise. Note that the fidelity of the interpolated

trajectory increased as the number of points on the trajectory increased.

9.3 Locating the Vehicle on the Curve

The location of the vehicle on the curve had to be determined to calculate tracking

error. If the vehicle were tracking the curve perfectly, the distance between the

vehicle’s control point position rc and the closest point on the curve rs was zero. Such

a condition rarely existed, and the closest point on the curve minimized ‖rc − rs‖.2
Specifically, the value of the independent parameter ss was sought which minimized

‖rc− rs‖. Some empirical knowledge had to be incorporated when solving for ss. For

example, if the vehicle was progressing forward on the curve, the closest point would

2The ‖ · ‖ will denote the 2-norm unless otherwise specified.
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probably lie forward of the previous point. Further constraints were derived based on

the maximum distance the vehicle could travel in the time since the last point was

calculated.

The first and second-order necessary conditions on the solution were [Ber95]

d

ds

[‖rc − rs‖2
]

= 0 (9.6)

d2

ds2

[‖rc − rs‖2
] ≥ 0 (9.7)

Eqn. (9.6) expanded and simplified was:

0 = (ns − ni)n
′
s + (es − ei) e

′
s (9.8)

where (ns, es) were the north and east components of rs, (ni, ei) was the vehicle’s con-

trol point position, and the ′ operator denoted d(·)/ds. Several constraints narrowed
down solution candidates:

• Roots had to be real.

• Roots had to be positive since s was positive throughout the curve.

• Roots had to lie within the interval sk to sk+1.

Although there could have been two or more equidistant points within [sk, sk+1], this

situation was never encountered in practice. Logic was incorporated that accepted

the most likely solution based on the distance traveled on the curve from the last

known point. A situation could have arisen where the vehicle was progressing on

the curve and suddenly left the curve entirely. In Fig. (9.2), the solid curved line is

the desired trajectory, the series of solid straight lines are normals to the curve, the

asterisks are the data points defining the curve, and the U-shaped line is an actual

simulated trajectory. If the vehicle is just to the right of region “A”, the closest

point on the curve is somewhere near “B” since the normal line passing through the

vehicle’s location will also pass through the closest point on the curve. If the vehicle

moves into region “A” because of poor control decisions, the vehicle will suddenly

leave the curve entirely! The closest point now lies on a line leading into the start
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Figure 9.2: Curve with normal lines shown to illustrate a potential locating problem: if
the vehicle’s closest point on the curve lies near “B”, but the vehicle moves into region “A”,
the vehicle will have left the curve entirely.

of the curve, and the vehicle’s location on the curve is discontinuous. Although this

situation was encountered in simulation, it was never encountered in experiment.

The discontinuity of the closest point along the curve can be predicted at every

epoch by noting that this discontinuity will occur if the vehicle is traveling on the

inside of the curve and has a tracking error larger than the curve’s radius of curvature.

There are two possible approaches to this discontinuity problem. In the first approach,

the algorithm used to search for the vehicle’s closest point can check to see if the

tracking error is greater than the radius of curvature. If so, the algorithm expands

its search for the closest point. The second approach involves realizing that since the

vehicle drove the original trajectory, no section of the curve should have a radius of

curvature below the vehicle’s turning radius. The tractors used in this research had

turning radii on the order of 3.5 to 4 m. With an accurate control algorithm and

realistic vehicle speeds, the tracking error should remain well below this radius. In

row-crop applications, the minimum turn-radius is further limited by the fact that

the front wheels should not drive over any crops. Since the front wheels can not leave
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the narrow gap between the crops, their maximum angle is relatively shallow and the

corresponding turning radius is large.

9.4 Differentiating Curve Parameters

As will be seen in subsequent chapters, time derivatives of various curve parameters

were required for some control algorithms. Since any curve parameter x(s) was a

function of s only, time-differentiation led to

ẋ(s) =
∂x

∂s

ds

dt
(9.9)

= x′ṡ (9.10)

The time rate-of-change of s was broken apart into

ṡ =
∂s

∂L

dL

dt
(9.11)

where L represents the curve length. In general [Kre93],

dL

ds
= ‖r′s(s)‖ =

1
∂s
∂L

(9.12)

=
√
n′2
s + e′2s (9.13)

The rate of the change of the curve length was the projection of the vehicle’s velocity

onto the curve tangent. For the control model developed earlier,

L̇ = Vx cos(ψ − ψs)− l2ψ̇ sin(ψ − ψs) (9.14)

where ψs was the angle of the curve’s tangent:

tanψs =
e′s
n′s

(9.15)

Finally,

ẋ(s) =
x′(s)√

n′2
s (s) + e′2s (s)

[
Vx cos(ψ − ψs(s))− l2ψ̇ sin(ψ − ψs(s))

]
(9.16)

This differentiation process was repeated for higher-order derivatives and soon led to

lengthy expressions for derivatives third-order and above.
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9.5 Predicting Future Vehicle Locations on a Curve

Control algorithms that previewed the curve ahead required predicting N future ve-

hicle locations on the curve. The argument was circular: future state information

was needed to calculate the vehicle’s location on the curve and subsequently generate

the control signal sequence, but the control signal sequence was needed to predict

future states. To circumvent this problem, the [necessary] assumption could be made

that the yaw deviation from the curve was small, and L̇ in Eqn. (9.14) could be

approximated by

L̇ ∼= Vx (9.17)

Under this assumption, the vehicle traveled Vx∆t of the curve every epoch where

each epoch lasted ∆t seconds. The problem of predicting a future vehicle location

therefore involved finding the value of s which satisfied

L(s− s0) =

∫ t0+∆t

t0

L̇ dt =

∫ s

s0

‖r′s(s)‖ ds (9.18)

VxTs ∼=
∫ s

s0

‖r′s(s)‖ ds (9.19)

Eqn. (9.19) had no exact solution, and a numerical solution was required. Note that

if the curve could have been parameterized by its own arc length, solving for the N

future values of s would have been trivial. Unfortunately, an analytical solution for

such a parameterization was either difficult or impossible to find [ST82, HJ80] since

the relationship

‖r′s(s)‖ = 1 (9.20)

had to hold true for all s in each splined interval.

Solving for the independent parameter value giving a particular arc length is

a problem encountered in computer graphics. Graphic engineers found that certain

problems in animation such as generating smooth motion and warping objects become

easier when curves are parameterized by their arc length. The research in this thesis

used a fourth-order Runge-Kutta integration technique to integrate Eqn. (9.19); other
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Figure 9.3: Diagram showing current vehicle location (r0) on a curve and three predicted
future locations (r1–r3).

researchers have used the Romberg technique [ST82] as well as Gaussian quadrature

[GP90]. In [GP90], researchers tabulated the resulting curve length data and then

interpolated to solve for a particular s given an arc length to speed up the computa-

tional process.

9.6 Predicting Future Reference State

Information

Information about future vehicle states could be calculated once future locations had

been predicted. In particular, if a local coordinate frame was constructed tangent

to the curve at the vehicle’s current position, then the relative position of predicted

vehicle locations could be calculated. One of the control algorithms explored required

the relative lateral components of predicted vehicle locations. To calculate the relative

lateral components, a local coordinate frame was constructed tangent to the curve as

shown in Fig. (9.3). The reference lateral deviation three epochs into the future was
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d3 = ‖r3 − r0‖ sin(∆ψ) (9.21)

where r0 was the position at the current epoch and r3 was the vehicle’s predicted

location on the curve three epochs into the future. Predicted relative yaw angles

could also be calculated and used to linearize the equations of motion:

∆ψ = tan−1

[
(r3 − r0)east
(r3 − r0)north

]
− ψ0 (9.22)



Chapter 10

Vehicle Control on Curves:

Control Algorithms

This chapter presents four possible solutions for curve tracking control: linear control

based only on the current error, linear control which incorporated future curve in-

formation, nonlinear control based on the current error, and nonlinear control which

incorporated future curve information. Each of the four algorithms was developed

for the low-order vehicle model in Ch. 3 and could be applied to any wheeled vehicle.

Simulation and experimental results are presented in Ch. 11.

As will be shown, a wealth of information about changing curve conditions could

be inferred from the cubic spline interpolation. Each of the control algorithms used

this information in different ways:

1. The linear local-error control algorithm was based on the idea that curve control

may be viewed as control on an arc whose radius was time-varying.

2. The linear look-ahead controller used information about future curve conditions.

3. The nonlinear local-error controller used feedback linearization to linearize the

system exactly about the current curve conditions.

4. The nonlinear look-ahead controller posed the control problem as an optimiza-

tion problem. This last control algorithm is presented, not as a viable option

for real-time control (because of its prohibitive computational cost), but to

demonstrate how curve information could be input into an optimization routine
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to generate a control signal sequence satisfying various nonlinear system con-

straints such as limits on actuator authority and front-wheel angle. Given the

current rate of advancement in computer technology, this last algorithm may

be feasible in the near future.

10.1 Linear Local-Error Control

Control based only on local errors would be faster to compute than control incorporat-

ing future information since calculating future state information was computationally

expensive. Since curve control may be viewed as control on a time-varying arc, the

polar analysis developed for arcs was extended to the more general case of a time-

varying radius to create a low-cost curve control law based only on local errors in

yaw, steering, and tracking.

10.1.1 Vehicle Yaw Error

Vehicle yaw angle was expressed as

ψ = ψs(s) + ξ(s) + ψe(s) (10.1)

From Eqn. (7.1), the required vehicle yaw angle was

ξ(s) = ∓ sin−1

[
l2
R(s)

]
(10.2)

where R(s) represented the curve’s radius of curvature, denoted by R for the remain-

der of this chapter. Differentiating Eqn. (10.1),

ψ̇e = ψ̇ − ψ̇s − ξ̇ (10.3)

An expression for ψ̇ was given by Eqn. (3.38), and ψs and ξ were differentiated

according to the chain rule established in Sec. 9.4 for curve-dependent variables:

ψ̇s = ψ′
s

L̇

‖r′s‖
(10.4)
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An expression for ψ′
s could be derived by differentiating ψs(s) in Eqn. (9.15) with

respect to s:

ψ′
s =

n′se
′′
s − n′′se

′
s

n′2
s + e′2s

(10.5)

Similarly, ξ could be differentiated (done here for clockwise rotation):

ξ̇ =
l2Ṙ

R
√
R2 − l22

(10.6)

where the radius of curvature for any point along the curve was given by Eqn. (8.4):

R =

[
n

′2
s + e

′2
s

]3/2√
(n′2
s + e′2s ) (n

′′2
s + e′′2s )− (n′sn′′s + e′se′′s)

2
(10.7)

and

Ṙ = R′ L̇
‖r′s‖

(10.8)

R′ =
3 (n′sn

′′
s + e′se

′′
s)
√
n′2
s + e′2s√

(n′2
s + e′2s ) (n

′′2
s + e′′2s )− (n′sn′′s + e′se′′s)

2

−

[
n

′2
s + e

′2
s

]3/2


(n′sn
′′
s + e′se

′′
s)
(
n

′′2
s + e

′′2
s

)
+
(
n

′2
s + e

′2
s

)
(n′′sn

′′′
s + e′′se

′′′
s )

− (n′sn
′′
s + e′se

′′
s)

(
n

′′2
s + e

′′2
s

+ n′sn
′′′
s + e′se

′′′
s

)


[
(n′2
s + e′2s ) (n

′′2
s + e′′2s )− (n′sn′′s + e′se′′s)

2]3/2 (10.9)

10.1.2 Vehicle Steer Error

The dynamics of the front-wheel angle error were expressed from Eqn. (7.15) as

δ̇e = δ̇ − δ̇∞ (10.10)

= u− δ̇∞ (10.11)

where, from Eqn. (7.13),

δ∞ = ± tan−1

(
l1

Kδ
√
R2 − l22

)
(10.12)
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For clockwise vehicle rotation,

δ̇∞ =

 − l1
Kδ
RṘ

1 +
l21

K2
δ(R2−l22)

(
R2 − l22

)−3/2
(10.13)

10.1.3 Vehicle Tracking Error

The dynamics of the vehicle tracking error were

re = r − R (10.14)

ṙe = ṙ − Ṙ (10.15)

Eqn. (7.7) specified ṙ, and Eqn. (10.8) specified Ṙ.

10.1.4 Equations of Motion

Consolidating the expressions for the time-rate-of-change of the three state variables

ψe, δe, and re, the equations of motion were

ψ̇e =
1

l1
VxKδ tan(δe + δ∞)

− 1

‖r′s‖
ψ′
s

[
Vx cos(ψe + ξ)− l2

l1
VxKδ tan(δe + δ∞) sin(ψe + ξ)

]

−
l2R

′
[
Vx cos(ψe + ξ)− l2

l1
VxKδ tan(δe + δ∞) sin(ψe + ξ)

]
R2‖r′s‖

√
1− (

l2
R

)2 (10.16)

δ̇e = u+ l1RR
′

[
Vx cos(ψe + ξ)− l2

l1
VxKδ tan(δe + δ∞) sin(ψe + ξ)

]
Kδ‖r′s‖ [R2 − l22]

3/2

[
1 +

l21
K2

δ(R2−l22)

] (10.17)

ṙe = Vx sin(ψe + ξ) +
l2
l1
VxKδ tan(δe + δ∞) cos(ψe + ξ)

− 1

‖r′s‖
R′
[
Vx cos(ψe + ξ)− l2

l1
VxKδ tan(δe + δ∞) sin(ψe + ξ)

]
(10.18)
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Linearized about zero yaw, steering, and tracking error, Eqns. (10.16–10.18) became

ψ̇e ∼=


 1

‖r′s‖ψ
′
s

+ l2R′

R2‖r′s‖
r

1−( l2
R )

2

(
Vx sin ξ

+ l2
l1
VxKδ tan δ∞ cos ξ

) ψe

+


1
l1
VxKδ (1 + tan2 δ∞)

+ 1
‖r′s‖

l2
l1
ψ′
sVxKδ sin ξ (1 + tan2 δ∞)

+
l22R

′VxKδ(1+tan2 δ∞) sin ξ

l1‖r′s‖R2

r
1−( l2

R )
2

 δe (10.19)

δ̇e ∼=

−l1RR′
(
Vx sin ξ +

l2
l1
VxKδ tan δ∞ cos ξ

)
Kδ‖r′s‖ [R2 − l22]

3/2

(
1 +

l21
K2

δ(R2−l22)

)
ψe

+

− RR′l2Vx (1 + tan2 δ∞) sin ξ

‖r′s‖ [R2 − l22]
3/2

(
1 +

l21
K2

δ(R2−l22)

)
 δe + u (10.20)

ṙe ∼=
 Vx cos ξ − l2

l1
VxKδ tan δ∞ sin ξ

+ 1
‖r′s‖R

′
(
Vx sin ξ +

l2
l1
VxKδ tan δ∞ cos ξ

) ψe
+

[
l2
l1
VxKδ (1 + tan2 δ∞) cos ξ

1
‖r′s‖

l2
l1
R′VxKδ (1 + tan2 δ∞) sin ξ

]
δe (10.21)

Eqns. (10.19–10.21) approximated the dynamics of the vehicle’s yaw, steering, and

tracking errors on curve trajectories. At every control epoch, local curve information

was calculated. The linearized equations of motion were formed, discretized, and then

fed into a linear quadratic control algorithm.

10.2 Linear Finite-Horizon Control

A well-known linear control algorithm which offered good performance at a reasonable

computational cost was the discrete linear quadratic tracker (“DLQ tracker”) [LS95].

This algorithm, outlined below, used information about future curve conditions when

calculating the control signal. Therefore, this algorithm was explored because the
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untraveled curve contained information which, if used when computing the control

signal, might have allowed the controller to improve tracking.

In [K+98], the authors showed how a receding horizon predictive control law sim-

ilar to the DLQ tracker could be used to guide a bank-to-turn missile to its target.

Tomizuka showed in [Tom93] how future reference information may be of less and less

value depending on the linearized equations of motion. Once the dependency of the

control signal on future information was sufficiently small, future information could

be neglected. In [DW97], a quarter-scale car-trailer system was used as a test-bed for

path planning, trajectory generation, and real-time control tests. Researchers used a

control algorithm based on a feedforward term and a feedback term to track difficult

paths despite tight steering angle constraints. As will be shown below, their control

algorithm could not be applied here because feedforward control for the vehicle used

in this research was time-varying in forward velocity and could not be precomputed.

On the test platforms used in this research, forward velocity could range between

0.3 m/s and 10 m/s.

If the system could be linearized and discretized to the form

xk+1 = Φkxk + Γkuk (10.22)

then there existed a unique control signal sequence uk that minimized the performance

index

J =
1

2

N∑
k=i

[
(xk − xr,k)

TQk(xk − xr,k) + uTkRkuk
]

(10.23)

provided the system was controllable, Qk was symmetric and positive semi-definite,

and Rk was symmetric and positive definite. The reference state vector at epoch k

was denoted by xr,k. Briefly, the Hamiltonian function could be defined as

Hk =
1

2

[
(xk − xr,k)

TQk(xk − xr,k) + uTkRkuk
]

+ λTk+1 (Φkxk + Γkuk) (10.24)
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The state and costate equations were

xk+1 =
∂Hk
∂λk+1

= Φkxk + Γkuk (10.25)

λk =
∂Hk
∂xk

= Qk(xk − xr,k) + ΦTk λk+1 (10.26)

and the stationarity condition

0 =
∂Hk
∂uk

= Rkuk + ΓTk λk+1 (10.27)

After some lengthy manipulation, the optimal control signal that minimized J was

Kk = − (ΓTk Sk+1Γk +Rk+1

)−1
ΓTk Sk+1Φk (10.28)

bk =
(
ΦTk +KT

k Γ
T
k

)
bk+1 −Qkxr,k (10.29)

Sk = ΦTk

[
Sk+1 − Sk+1Γk

(
ΓTk Sk+1Γk +Rk+1

)−1
ΓTk Sk+1

]
Φk +Qk (10.30)

uk = − (ΓTk Sk+1Γk +Rk+1

)−1
ΓTk [Sk+1Φkxk + bk+1] (10.31)

with boundary conditions

SN+1 = QN+1 (10.32)

bN+1 = QN+1xr,N+1 (10.33)

The interested reader is referred to [LS95, AM91].

This linear algorithm looked ahead on the curve and incorporated information

about the changing curve into the control signal. At every epoch, the vehicle’s N +1

future locations on the curve were predicted, and reference states were calculated.1

The algorithm began at epoch N and traveled backwards in time to the current

epoch. The control signal was then computed using Eqn. (10.31). The N future

control signals resulting from the “back-propagation” were ignored, and the process

reinitialized at the next control epoch.

10.3 Feedback Linearization

A nonlinear control algorithm based only on local-error and fast enough to run in real-

time was feedback linearization. In feedback linearization, the nonlinear system model

1Note that only the reference states penalized in the state cost matrix Q had to be calculated.
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could be linearized exactly and linear control techniques applied [SL91]. Specifically,

if the tracking error d as a function of the system’s state x was expressed as

d = h(x) (10.34)

where x was some known vehicle state vector, then h(x) could be differentiated until

the control signal appeared. One of the difficulties in feedback linearization is that

the “leftover dynamics” associated with a non-minimum phase system are unstable

since the right-half-plane zero in the original system becomes an unstable pole in the

inverted dynamics. Though approximation techniques exist which can stabilize these

unstable dynamics, this research was confined to minimum-phase systems. A wheeled

vehicle was non-minimum phase if the control point was located behind the vehicle’s

pivot point. Therefore, the control point was assumed collocated with the pivot point

when using feedback linearization.

Since the low-order model developed for control was order three and the system

was minimum phase if the control and pivot points were collocated, h(x) had to be

differentiated three times before u would appear in the differentiation. The result

was an expression of the form

...
d = f(ψ, ψs, rs, x, y, δ) + b(ψ, ψs, rs, x, y, δ)u (10.35)

To linearize the system exactly by cancelling the nonlinearities, u was of the form

u =
1

b
(v − f) (10.36)

where v was a feedback control signal for the linear system with equations of motion

d

dt


d

ḋ

d̈

 =


0 1 0

0 0 1

0 0 0



d

ḋ

d̈

+


0

0

1

 v (10.37)

The feedforward control signal uff could be calculated by solving
...
d = 0.

10.3.1 Feedforward Control Signal

For the model in Eqns.(3.36–3.39), the vehicle’s tracking error was

d = − sinψs (n− ns) + cosψs (e− es) (10.38)
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Differentiating,

ḋ = −ψ̇s cosψs (n− ns)− sinψs (ṅ− ṅs)

− ψ̇s sinψs (e− es) + cosψs (ė− ės) (10.39)

d̈ = −ψ̈s cosψs (n− ns) + ψ̇2
s sinψs (n− ns)

− 2ψ̇s cosψs (ṅ− ṅs)− sinψs (n̈− n̈s)

− ψ̈s sinψs (e− es)− ψ̇2
s cosψs (e− es)

− 2ψ̇s sinψs (ė− ės) + cosψs (ë− ës) (10.40)
...
d = −...

ψ s cosψs (n− ns) + 3ψ̇sψ̈s sinψs (n− ns)

− 3ψ̈s cosψs (ṅ− ṅs) + ψ̇3
s cosψs (n− ns)

+ 3ψ̇2
s sinψs (ṅ− ṅs)− 3ψ̇s cosψs (n̈− n̈s)

− sinψs (
...
n − ...

n s)−
...
ψ s sinψs (e− es)

− 3ψ̇sψ̈s cosψs (e− es)− 3ψ̈s sinψs (ė− ės)

+ ψ̇3
s sinψs (e− es)− 3ψ̇2

s cosψs (ė− ės)

− 3ψ̇s sinψs (ë− ës) + cosψs (
...
e − ...

e s) (10.41)

The control signal appeared in the third derivatives of the vehicle’s position and the

closest curve point, though if the assumption was made that L̇ = Vx cos (ψ − ψs) ∼= Vx,

then u appeared only in
...
n and

...
e :

...
n = −V

2
xKδ
l1

[
VxKδ
l1

cosψ tan2 δ + sinψ
(
1 + tan2 δ

)
u

]
(10.42)

...
e = −V

2
xKδ
l1

[
VxKδ
l1

sinψ tan2 δ − cosψ
(
1 + tan2 δ

)
u

]
(10.43)

Other time-derivatives of curve variables were differentiated using the chain rule de-

scribed in Sec. 9.4. The reference value of d was zero, and Eqn. (10.41) was used to

solve for the feedforward control signal.

Eqns. (10.37) and (10.41) represent the feedback linearization algorithm applied

to a general minimum-phase wheeled vehicle. Since the linearized system is velocity

independent, feedback control gains may be solved for off-line, precluding the need

for a possibly expensive real-time solution. The feedforward signal, based only on
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local curve information, was continuous. The discrete feedforward signal2 would not

generally be the same as the continuous signal. However, if the control algorithm were

run fast enough, the difference between the continuous and discrete signals would be

beneath the noise level of vehicle disturbances and safely could be assumed negligible.

This development of the feedback linearization algorithm for wheeled vehicles on curve

trajectories is general: the above results can be applied to simpler trajectories such as

straight rows by computing the appropriate values and derivatives of the trajectory

variables.

10.4 Control as a Nonlinear Optimization

Problem

Since the vehicle model and trajectory were nonlinear with bounds on both actuator

authority and front-wheel angle, nonlinear optimization techniques could be applied

to create a control signal sequence satisfying these constraints. The disadvantages

of a nonlinear optimizer were possible divergence and high computational cost. Al-

though simulation revealed that a good initial guess solved the divergence problem,

the computational cost was prohibitive with today’s affordable computers (Pentium

200 MHz). Nonetheless, the development below illustrates how the splined trajecto-

ries could be used in the optimization problem with the hope that increasing com-

puter power will eventually make real-time nonlinear optimization a viable control

algorithm. Briefly stated, the optimization problem for N epochs was

min
u

J =
1

2

N∑
i=1

d2
i (10.44)

subject to ẋ(t) = f(x, u) (10.45)

umin ≤ u ≤ umax (10.46)

δmin ≤ δ ≤ δmax (10.47)

2Discrete feedback linearization is a subject of active research in nonlinear control.
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Although the equations of motion were nonlinear, the control signal was held constant

over every epoch, and the constraint in Eqn. (10.47) could be rewritten in linear form:

δmin ≤ δ0 + Tsu0 ≤ δmax (10.48)

δmin ≤ δ0 + Ts(u0 + u1) ≤ δmax (10.49)
...

δmin ≤ δ0 + Ts
∑i=N−1
i=0 ui ≤ δmax (10.50)

Note that the optimization problem has been posed using the single-shooting method

[G+81]. Although the multiple-shooting and collocation methods [G+81] are consid-

ered more desirable because of their increased stability, the single-shooting method

was derived here because the two other methods are simpler variations of the same

derivation.

10.4.1 Calculating the Cost Function Jacobian

Although control signal sequence optimization could be accomplished without know-

ing the Jacobian of the cost function in Eqn. (10.44) with respect to the control signal

sequence, the Jacobian dJ/du could speed up the optimization process significantly.

The square of the tracking error at any epoch i was

d2
i = (ns − ni)

2 + (es − ei)
2 (10.51)

where (ns, es) was the closest point on the curve to the vehicle control point location

(ni, ei). Differentiating with respect to uk with k < i (because future control signals

had no effect on previous tracking errors),

d

duj

[
1

2
d2
i

]
= (ns − ni)

(
dns
duj

− dni
duj

)
+ (es − ei)

(
des
duj

− dei
duj

)
(10.52)

Since the location of the closest point on the curve to the vehicle depended only on

the vehicle’s position, the change in the closest point on the curve with respect to a

change in a control signal was

dns
duj

=
∂ns
∂ni

dni
duj

+
∂ns
∂ei

dei
duj

(10.53)

des
duj

=
∂es
∂ei

dei
duj

+
∂es
∂ni

dni
duj

(10.54)
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The derivatives in Eqns. (10.53–10.54) could be broken down into

∂ns
∂ni

=
∂ns
∂ss

(
∂ni
∂ss

)−1

(10.55)

∂ns
∂ei

=
∂ns
∂ss

(
∂ei
∂ss

)−1

(10.56)

∂es
∂ni

=
∂es
∂ss

(
∂ni
∂ss

)−1

(10.57)

∂es
∂ei

=
∂es
∂ss

(
∂ei
∂ss

)−1

(10.58)

where ss was the value of s at the closest point on the curve. Expressions for ∂ns/∂ss

and ∂es/∂ss came from differentiating Eqns. (9.4) and (9.5). Expressions for ∂ss/∂ni

and ∂ss/∂ei could be derived from the first-order necessary conditions for the location

of the closest point by solving for ni or ei in Eqn. (9.8) and differentiating with respect

to ss so that

∂ni
∂ss

= (es − ei)

 ∂2es
∂s2s
∂ns

∂ss

−
∂es
∂ss

∂2ns

∂s2s(
∂ns

∂ss

)2

+

(
∂es
∂ss

)2

∂ns

∂ss

+
∂ns
∂ss

(10.59)

∂ei
∂ss

= (ns − ni)

 ∂2ns

∂s2s
∂es
∂ss

−
∂ns

∂ss
∂2es
∂s2s(

∂es
∂ss

)2

+

(
∂ns

∂ss

)2

∂es
∂ss

+
∂es
∂ss

(10.60)

Eqns. (10.55–10.58) become

∂ns
∂ni

=

(
∂ns

∂ss

)3

(es − ei)
(
∂ns

∂ss
∂2es
∂s2s

− ∂es
∂ss

∂2ns

∂s2s

)
+
(
∂es
∂ss

)2
∂ns

∂ss
+
(
∂ns

∂ss

)3 (10.61)

∂es
∂ni

=

(
∂ns

∂ss

)2
∂es
∂ss

(es − ei)
(
∂ns

∂ss
∂2es
∂s2s

− ∂es
∂ss

∂2ns

∂s2s

)
+
(
∂es
∂ss

)2
∂ns

∂ss
+
(
∂ns

∂ss

)3 (10.62)



10.4. CONTROL AS A NONLINEAR OPTIMIZATION PROBLEM 121

∂es
∂ni

=

∂ns

∂ss

(
∂es
∂ss

)2

(ns − ni)
(
∂es
∂ss

∂2ns

∂s2s
− ∂ns

∂ss
∂2es
∂s2s

)
+
(
∂ns

∂ss

)2
∂es
∂ss

+
(
∂es
∂ss

)3 (10.63)

∂es
∂ei

=

(
∂es
∂ss

)3

(ns − ni)
(
∂es
∂ss

∂2ns

∂s2s
− ∂ns

∂ss
∂2es
∂s2s

)
+
(
∂ns

∂ss

)2
∂es
∂ss

+
(
∂es
∂ss

)3 (10.64)

If ∂ns/∂ss and ∂es/∂ss were zero (and hence ∂2es/∂s
2
s and ∂2es/∂s

2
s were zero as

well), Eqns. (10.61–10.64) would be singular. However, though ∂ns/∂ss or ∂es/∂ss

could be zero, both could not be zero at the same point on the curve. By Eqn. (9.13),

dL

ds
=

√(
∂ns
∂ss

)2

+

(
∂es
∂ss

)2

(10.65)

where L is the curve length. If both ∂ns/∂ss and ∂es/∂ss were zero, then the curve

length does not change with s. This implies at least two values of s specify the same

point on the curve, a violation of the spline specification.

Values for dni/duj and dei/duj could be extracted from the derivative of the state

vector with respect to the control input dxi/duj. Though this derivative could not be

calculated exactly, an approximation for dxi/duj could be derived from the standard

fourth-order Runge-Kutta integration scheme [Kre93]

k1 = Tsf (ti−1, xi−1) (10.66)

x̃2 = xi−1 +
1

2
k1 (10.67)

k2 = Tsf

(
ti−1 +

1

2
Ts, x̃2

)
(10.68)

x̃3 = xi−1 +
1

2
k2 (10.69)

k3 = Tsf

(
ti−1 +

1

2
Ts, x̃3

)
(10.70)

x̃4 = xi−1 + k3 (10.71)

k4 = Tsf (ti−1 + Ts, x̃4) (10.72)

xi = xi−1 +
1

6
(k1 + 2k2 + 2k3 + k4) (10.73)
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which lead to

dxi
duj

=
∂xi
∂uj

+
∂xi
∂xi−1

dxi−1

duj
(10.74)

If j = i− 1, then uj was in effect over the integration interval i − 1 to i and had no

effect on states prior to epoch i− 1 including xi−1. In this case, Eqn. (10.74) reduced

to

dxi
duj

=
∂xi
∂uj

(10.75)

∼= 1

6

∂k1

∂uj
+

1

3

∂k2

∂x̃2

(
∂x̃2

∂uj
+

1

2

∂k1

∂uj

)
+

1

3

∂k3

∂x̃3

(
∂x̃3

∂uj
+

1

2

∂k2

∂uj

)
+

1

6

∂k4

∂x̃4

(
∂x̃4

∂uj
+
∂k3

∂uj

)
(10.76)

∼= 1

6

(
∂k1

∂uj
+
∂k2

∂x̃2

∂k1

∂uj
+
∂k3

∂x̃3

∂k2

∂uj
+
∂k4

∂x̃4

∂k3

∂uj

)
(10.77)

Otherwise, the effect of uj on the previous state vector was propagated forward with

∂xi
∂xi−1

=
∂xi−1

∂xi−1
+

1

6

∂k1

∂xi−1
+

1

3

∂k2

∂x̃2

(
∂x̃2

∂xi−1
+
∂x̃2

∂k1

∂k1

∂xi−1

)
+

1

3

∂k3

∂x̃3

(
∂x̃3

∂xi−1
+
∂x̃3

∂k2

∂k2

∂xi−1

)
+

1

6

∂k4

∂x̃4

(
∂x̃4

∂xi−1

+
∂x̃4

∂k3

∂k3
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= I +
Ts
6
∇xf(xi−1) +

Ts
3
∇xf(x̃2)

[
I +

Ts
2
∇xf(xi−1)

]
+
Ts
3
∇xf(x̃3)

[
I +

Ts
2
∇xf(xi−1)

]
+
Ts
6
∇xf(x̃4) [I + Ts∇xf(xi−1)] (10.79)

Eqn. (10.74) was propagated forward through each state vector at every epoch for

a particular uj. Note that time-dependency was omitted in Eqn. (10.79) since the

equations of motion for the vehicle model used in this research were not a function

of time.
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Eqn. (10.52) then became

d
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[
1

2
d2
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]
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(10.80)

+ (es − ei)

(
∂es
∂ei

dei
duj

+
∂es
∂ni

dni
duj

− dei
duj

)
(10.81)

Eqn. (10.81) could be used in Eqn. (10.44) to solve for dJ/du.

10.4.2 Calculating the Cost Function Hessian

In a similar manner, the cost function Hessian could be calculated by differentiating

Eqns.(10.81), (10.77), and (10.79) again. Although evaluating the Hessian may be

too expensive during the optimization process, the Hessian could offer insight into

the nature of the optimization problem.

dJi
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2
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]
(10.82)
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The second-order derivatives of the closest north point on the curve were
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(10.88)

The second-order derivatives of the closest east point on the curve were similar. Ex-

pressions for ∂2ns/∂s
2
s and ∂2es/∂s

2
s could be found by differentiating Eqns. (9.4)

and (9.5) twice, and expressions for ∂2ni/∂s
2
s and ∂2ei/∂s

2
s could be found by dif-

ferentiating Eqns.(10.59) and (10.60) again. Eqn. (10.74) expanded to second-order

was

d2xi
duj duk

=

(
∂2xi
∂x2

i−1

dxi−1

duj

)T
dxi−1

duk
+

∂xi
∂xi−1

d2xi−1

duj duk
(10.89)

where the second-order expansion of the fourth-order Runge-Kutta method could be

found by differentiating Eqn. (10.79) again.

Once the cost function’s Jacobian and Hessian were calculated for a predetermined

curve window, optimization software could attempt to calculate a control signal se-

quence that minimized the sum of the squares of the tracking error while satisfying

the vehicle’s linear and nonlinear constraints. Any one of the previous control al-

gorithms could generate a control signal sequence as an initial solution guess. This

fourth and final control algorithm was not implemented in experiment because of its

computational cost, but served as a benchmark in simulation for comparing tracking

performance with other algorithms.



Chapter 11

Vehicle Control on Curves:

Simulation and Experimental

Results

To compare control algorithms, a gently varying curve typical of what might be

expected in realistic agricultural applications was selected. Each controller controlled

the vehicle in a noise- and disturbance-free environment so that the tracking results

might be compared. In all simulations and experiments, the control point was a point

on the ground directly beneath the center of the vehicle’s rear axle.

11.1 Simulation Results

The curve control algorithms in Ch. 10 were compared in simulation. The vehicle

state was assumed to be known exactly, and no vehicle disturbances were created.

Forward velocity was set to 1.0 m/s and the sample rate to 5 Hz. Fig. (11.1) shows an

overhead view of the trajectory. The vehicle was allowed to start on the curve at the

left, aligned directly on the curve with the wheels pointed straight ahead. The DLQ

tracker controller was allowed to look ahead fifteen epochs. In the optimized solution,

a linesearch algorithm using safe-guarded cubic approximations was used to calculate

the control signal sequence [G+81]. The optimization software NPSOL [G+86], which

was allowed to look ahead ten epochs with an initial guess of zero control, required
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Figure 11.1: Curved trajectory used for comparing control algorithms. Asterisks (*) mark
the data points used to create the curve.

Control Law d̄ (cm) one-σ (cm)
Local-error -1.06×10−2 0.655
DLQ tracker -0.457 4.11
Feedback lin 6.83×10−4 1.67×10−2

Optimized 1.03×10−6 1.14×10−5

Table 11.1: Summary of tracking error history for local-error, DLQ tracker, feedback
linearization, and optimized control algorithms.

two hours on a Sun Ultra60 workstation.

Fig. (11.2) shows a history of the tracking errors for the local-error, DLQ tracker,

feedback linearization, and optimized control algorithms. Tbl. 11.1 summarizes the

results. The DLQ tracker performed the worst, though if the tracking error penalty

in the quadratic cost function was increased above actual values used in experiment,

the tracking error decreased significantly.

One interesting side effect of interpolating trajectories with cubic splines was

that the optimal control signal was discontinuous because of the discontinuity in

the splines’ third derivatives at spline junctions. Enforcing continuity to third order
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Figure 11.2: Curve tracking error history for local-error, DLQ tracker, feedback lineariza-
tion, and optimized control algorithms. Note that feedback linearization and nonlinear
optimization results are close enough to zero to be virtually indistinguishable.

could not be done without creating more degrees of freedom through higher-order

splines. Fig. (11.3) shows the optimized control signal as a function of time. Note

the four discontinuous junctions that resulted from the four splined intervals.

11.2 Experimental Results

As shown in Fig. (11.4), any variety of curve is possible given discrete position data.

The leaping deer logo was copied from a Deere and Co. maintenance manual, en-

larged, then scanned in. A computer-aided design program was used to pick 169

points along the perimeter, which were then scaled and rotated to fit the test field.

The resulting actual vehicle position data is plotted on the North-East plane from the

December 1997 test. The slight overlap in the back of the front hoof is the starting

point of the curve, which took approximately 20 minutes to complete without an

implement.

Fig. (11.5) shows a more realistic application of tractor control along curves. The

northernmost curve was the original curve and was identical to the curve shown in
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Figure 11.3: Control signal history for optimized control algorithm.

Fig. (11.1). Three curves, offset at 3.0 m, were automatically generated prior to

starting real-time control. The vehicle began at the position marked with an asterisk

and took seven minutes to complete the entire trajectory. A small cultivator was

hitched to the tractor, and all U-turns and curve acquisition was done automatically.

All three control algorithms were compared along the same trajectory. Straight lines

were placed leading into the start of each curve to minimize initial transient errors.

11.2.1 Linear Local-Error Control

Fig. (11.6) shows the time history of the estimated tracking errors for all curves on one

plot. The linear-local error control algorithm had a low computational cost compared

to the DLQ tracking algorithm. Bias states in yaw and steering were estimated to

compensate for modeling and calibration errors.

11.2.2 DLQ Tracker Control

Fig. (11.7) shows the estimated tracking errors for the DLQ tracker control algorithm.
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Figure 11.4: Overhead view of actual position data for a not-so-typical vehicle trajectory
completed in December 1997. Coordinates are relative to the reference station antenna.

The controller’s computational cost was relatively high, and the number of look-ahead

intervals was constrained to be less than 40 when controlling at 5 Hz. Bias estimation

was used to reduce mean tracking errors.

11.2.3 Feedback Linearization Control

Fig. (11.8) shows the estimated tracking errors for the feedback linearization control

algorithm. Like the linear-local error controller, the feedback linearization controller

had a relatively low computational cost. Control on the integral of the tracking error

was added to the control algorithm.

11.2.4 Summary of Results

Tbl. 11.2 summarizes the average estimated tracking errors. The local-error controller

performed the worst, most likely because the radius of curvature along the curves

varied rapidly. Both the local-error and DLQ tracker controllers tended to swing
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Figure 11.5: Overhead view of actual position data for four curves completed in April
1999 in California’s San Joaquin Valley. Coordinates are relative to the reference station
antenna.
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Figure 11.6: Experimental curve tracking error using linear local-error controller for curves
shown in Fig. (11.5). Mean tracking error was 1.99 cm with a standard deviation of 9.07 cm.
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Figure 11.7: Experimental curve tracking error using DLQ tracker controller for curves
shown in Fig. (11.5). Mean tracking error was 3.44 cm with a standard deviation of 6.69 cm.
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Figure 11.8: Experimental curve tracking error using feedback linearization controller for
curves shown in Fig. (11.5). Mean tracking error was -0.01 cm with a standard deviation
of 4.12 cm.
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Control Law d̄ (cm) one-σ (cm) Vx (m/s)
Local-error 1.99 9.07 1.42
DLQ tracker 3.44 6.69 1.42
Feedback lin -0.01 4.12 1.40

Table 11.2: Experimental tracking performance for curves shown in Fig. (11.5). Tracking
error values listed are the average values over all four curves.

Control Law un
Local-error 1.94
DLQ tracker 2.97
Feedback lin 3.41

Table 11.3: Experimental tracking control effort for curves shown in Fig. (11.5). Units
are deg/sec/epoch.

towards the outside of the curves, possibly because of modeling errors. The feedback

linearization controller demonstrated the best performance.

To compare the amount of control effort each controller used, the sum of the

norms for each of the four curves was calculated. Each norm was normalized by the

number of control epochs. Mathematically, this sum of the control norms un can be

expressed as

un =
1

N1

√√√√ N1∑
i=1

u2
i + · · ·+ 1

N4

√√√√ N4∑
i=1

u2
i (11.1)

where N1–N4 represent the number of control epochs for curves one through four.

Tbl. 11.3 shows the normalized control effort for each control algorithm. Figs. (11.9–

11.11) show the time histories of the control effort along all four trajectories for each

of the control algorithms. The feedback linearization controller used the most control

effort, yet offered the best performance. Though the linear local-error controller

used the least control effort, the tracking error cost could not be increased without

destabilizing the system.

The linear-local error controller was computationally the cheapest control algo-

rithm as well as the simplest algorithm to implement. However, this controller per-

formed relatively poorly in experiment. Although it used less control effort than the

other two controllers, control gains could not be increased without destabilizing the
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Figure 11.9: Experimental curve tracking control effort using linear local-error controller
for curves shown in Fig. (11.5). The sum of the control effort norms for all four curves was
1.94 deg/sec/epoch.
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Figure 11.10: Experimental curve tracking control effort using DLQ tracker controller for
curves shown in Fig. (11.5). The sum of the control effort norms for all four curves was
2.97 deg/sec/epoch.
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Figure 11.11: Experimental curve tracking control effort using feedback linearization con-
troller for curves shown in Fig. (11.5). The sum of the control effort norms for all four
curves was 3.41 deg/sec/epoch.

system. The problem with the linear local-error controller was that it assumed that

the local curve conditions would exist indefinitely, and it created a control law based

on these false assumptions. Another drawback to this controller was that it required

solving the discrete algebraic Riccati equation in real-time at every epoch. This

solution process was relatively fast but required extensive linear algebra software.

The DLQ tracker controller exhibited the smoothest performance of all three con-

trollers. It used a medium amount of control effort and a great deal of computational

effort. The computer’s processing power limited the number of look-ahead intervals.

Although the algorithm did not require solving the discrete algebraic Riccati equation

in real-time, the linear algebra involved in solving the two-point boundary value prob-

lem made the control software reasonably complicated. This algorithm also required

predicting the vehicle’s future locations along the curve in the look-ahead interval,

an additional and expensive computational burden.

The feedback linearization controller used the most control effort and exhibited

the best tracking performance. The algorithm was fast since the control gains for
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the feedback portion of the control signal could be precomputed ahead of time.1

Although the equations for the time derivatives used by the algorithm were lengthy,

the fundamental algorithm was straightforward to implement and the software was

relatively simple. The controller’s main drawback was the restriction that the system

could not be non-minimum phase. If the control point was moved behind the center

of the rear axle, modifications to the algorithm would have been required to maintain

stability. Feedback linearization control of non-minimum phase systems is a topic of

ongoing research in the controls community.

In all three controllers, either bias estimation or integral control was used to

compensate for modeling and calibration errors. The gains on either the bias or

integral states were tuned to reduce tracking error means without destabilizing the

controller. Only the feedback linearization controller proved robust enough to allow

the integral control gain to be increased enough to zero out the mean tracking errors.

Increasing the gain on the bias states to eliminate the mean errors destabilized both

the local-error and DLQ tracker controllers.

Controller accuracy did degrade as forward speed increased, but the degradation

was smooth and roughly linear with forward speed. Disturbances significantly affected

controller performance because of the absence of a suspension; the field conditions for

these tests were not unusually rough. However, these tests were conducted without

dual rear wheels. The rear tires were mounted at a relatively narrow spacing, and, as a

result, ground disturbances created significant roll and tracking disturbances. Finally,

the “smoothness” of the curve also had a significant effect on controller performance.

Realistically, the tightness of curves shown in Fig. (11.5) show the worst that could

reasonably be expected when tracking a riverbank, for example.

1The state transition matrix in Eqn. (10.37) for the feedback-linearized equations of motion was
constant.
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Chapter 12

Vehicle Control on Sloped Terrain

The benefits of automatic vehicle control on flat terrain extend to sloped terrain. A

practical autofarming system should be able to accommodate sloped terrain since

virtually all fields have at least a slight slope angle. This chapter’s objective was

to improve row tracking performance by incorporating knowledge about how terrain

slope affected the yaw and steering biases that arose as the vehicle “crabbed” to main-

tain tracking. On steeply sloped terrain, only crops that do not require high-precision

tractor control are typically planted. If high-precision row tracking was possible on

steeply sloped terrain, additional types of crops could be planted, increasing the ways

in which a farmer could farm his land.

As an added benefit, the vehicle can produce contour maps of the field at a detail

level well beyond that available from a commercial survey. This data can be valuable

to farmers:

“By automatically processing this [three-dimensional position] data we can produce

a highly detailed contour map of the paddock [field] revealing all the high and low

spots and the direction of water flow across the paddock. While farmers will know

these things from observation over many years, we feel the precise map we can produce

just from cultivating a paddock is of great value. It can help to plan locations of

contour banks and the best direction for laying down permanent wheel-tracks after

considering the effects of water flow. This information can also be used to plan ground-

leveling operations. We take far more site readings than you could realistically expect

a surveyor to ever consider. With readings roughly once every two meters we pick up

details between points that may have otherwise been missed.”

–Robert Mailer, AgSystems Pty Ltd., Australia [Mai97]
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Tracking a trajectory when faced with a constant or slowly varying disturbance

force is frequently encountered in other applications. Aircraft landing in the presence

of cross-winds [HJ77] and ship navigation against a cross-current are two examples.

12.1 Standard Bias Estimation

Two common techniques in control/estimation theory will eliminate the steady-state

tracking error caused by tractor side-slip on hills: integral control and bias estimation

[F+90]. Bias estimation was chosen because it estimated two actual biases in the

system–the tractor’s yaw and steering biases–and it divided the burden of zeroing out

the steady-state tracking error into two variables (as opposed to only one variable in

integral control), allowing adjustment of the disturbance variances for steering and

yaw biases separately. The yaw bias can be thought of as the steady-state crab angle

induced by the incline, and the steering bias can be thought of as the steering angle

required to maintain the crab angle.

In this research, “standard” bias estimation is used to denote augmenting the state

with two bias states in yaw and steering. In the observation matrix, the coefficients of

the two bias states are simply set to one. This well-known technique will be referred

to as “standard bias estimation”. The state vector was defined by

x =
[
ψ δ d

]T
(12.1)

and the observation vector y without biases was defined by

y =


1 0 0

0 1 0

0 0 1



ψ

δ

d

 (12.2)

Standard bias estimation transforms the state vector into

x =
[
ψ δ d ψb δb

]T
(12.3)
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and the observation vector with biases becomes

y =


1 0 0 1 0

0 1 0 0 1

0 0 1 0 0




ψ

δ

d

ψb

δb


(12.4)

12.2 Slope-Adjusted Bias Estimation

Incorporating information about the tractor’s dynamics into the bias estimation

scheme could increase the estimator’s ability to estimate the biases more accurately. It

was observed that two rapidly varying parameters affect the yaw and steering biases:

implement load and terrain slope. Other factors such as soil conditions, ballast, and

tire configuration also affect these two biases but usually varied much more slowly.

The experimental tractor used in this research did not measure the force of the towed

implement; however, GPS attitude information could be used to incorporate some

knowledge of how the biases are expected to vary with slope.

A simplified force balance diagram is shown in Fig. (12.1). N represents the

downward force of the tractor, the force normal to the ground is F1, F2 is the side-

slip force tending to pull the tractor down-hill, and ζ is the slope angle of the hill as

seen from behind the tractor. From trigonometry,

F2 = N sin ζ (12.5)

This side-slip force is the same force that the tractor will have to cancel out to track

the trajectory. An overhead view of the forces exerted by a tractor tire on the ground

is also shown in Fig. (12.1). If the tractor is “crabbed” at the correct angle µ, then

the tire will exert a lateral force F2 to balance the side-slip tendency. Ft represents

the required traction force to pull both tractor and implement over the ground. Again
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Figure 12.1: Simplified force balance on tractor and tire. The left diagram shows a rear
view of the tractor looking forward, while the right diagram shows an overhead view of a
tractor tire.

from trigonometry,

F2

Ft
= sinµ (12.6)

∼= µ (12.7)

N sin ζ

Ft
∼= µ (12.8)

µ ∼= K sin ζ (12.9)

where K is a variable that incorporates the required traction force and weight of the

tractor. These expressions for the required crab angle are intuitive: as the available

traction force Ft increases, the required crab angle decreases. In other words, a tractor

with a lower towing capacity will be crabbed at a larger angle than a tractor with

a higher towing capacity for the same implement. Therefore, to first-order, yaw and

steering biases should be proportional to the sine of the slope angle.
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To incorporate this interdependency between slope and crab angle into the mea-

surement equation, the observation equation becomes

y =


1 0 0 sin ζ 0

0 1 0 0 sin ζ

0 0 1 0 0




ψ

δ

d

K1

K2


(12.10)

The proportionality constants K1 and K2 now become the estimated quantities. If

the tractor reaches the end of one row and turns around to start the next, the biases

should simply change in sign but not in magnitude; this estimation technique will

do that (since sin ζ changes sign with the slope) whereas standard bias estimation

will not. Estimating the bias coefficients will be referred to as “slope-adjusted bias

estimation”.

In calculating sin ζ , note that the slope of interest is not the slope of the terrain

but rather the slope of the terrain perpendicular to the trajectory.1 The cross-product

of a unit vector, located in the horizontal plane of the tractor and oriented along the

trajectory, with a unit vector out of the roof of the tractor was used to calculate this

slope. This cross-product will be orthogonal to the trajectory and in the plane of the

tractor. The unit vector q out of the roof of the tractor can be expressed in terms

of the Euler angles for roll, pitch, and yaw. The desired direction of the trajectory

yields the north and east components of the unit vector along the trajectory p. The

down component of p that places p in the horizontal plane of the tractor comes from

the fact that p and q should be orthogonal (i.e., their dot product should be zero).

Using this information,

q1p1 + q2p2 + q3p3 = 0 (12.11)

p3 = −q1p1 + q2p2

q3
(12.12)

with the subscripts 1, 2, and 3 used to denote north, east, and down respectively.

1These slopes are identical if the tractor is moving perpendicular to the slope (i.e., along a contour
line).
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Figure 12.2: Time history of typical terrain grade along path.

Although this solution becomes singular for q3 = 0, if q really has no vertical compo-

nent, then most likely other issues are more pressing since the tractor is laying on its

side.

The cross-product of p and q forms the slope vector s, which now forms a vector

perpendicular to the trajectory and tangential to the ground. Thus,

tan ζ =
s3√
s2
1 + s2

2

(12.13)

sin ζ = s3 (12.14)

12.3 Experimental Results

The test platform used in this chapter was the Model 7800 tractor detailed in App. A.

All data used in this chapter’s experimental results was gathered at a farm in Cali-

fornia’s San Joaquin Valley. Terrain varied from 2-3◦ in slope (3% grade) to 20◦ and

higher (36% grade). Fig. (12.2) shows a typical time-history of the terrain grade along

the trajectory. Note how the grade varied widely along the path. For safety reasons,
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Figure 12.3: Overhead view of typical trajectory used for row control tests.

testing was limited to slopes of less than 15◦ (27% grade). All tests were conducted

with a chisel plow in the lowered position and the engine under full load at 2,100

rpm and 8th gear. Ground speed was the same for all tests at roughly 1.6 m/s (3.3

mph). All driving, including U-turns and row acquisition, was done automatically.

The driver, who remained in the cab during all tests, raised and lowered the chisel

plow2. Fig. (12.3) shows an overhead view of a typical four-row trajectory for row

control tests. The start of the tractor’s automatically controlled trajectory (*) and

the row numbers are shown on the plot. Fig. (12.4) is a photo showing typical terrain

slope and vehicle crab angle. Note that all tracking data shown is the estimated po-

sition of the vehicle’s control point, which, in this set of experiments, was designated

as a point on the ground directly beneath the center of the rear axle.

As a benchmark, a trajectory on a near-flat portion of the test field was used to

test controller performance for comparison with sloped terrain row control. Standard

2This task could easily be automated.
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Figure 12.4: The tractor climbing over a sloped ridge. The tractor is actually approaching
the photographer with a significant crab angle and steering bias.

bias estimation was used to zero out the small biases introduced by the terrain, which

was sloped at an average of -2.1◦. Fig. (12.5) shows the tracking error as a function

of time for each of the four rows. Note that the initial large error for each of the four

rows stemmed from line acquisition after the previous U-turn. The periodic tracking

errors on the third row in Fig. (12.5) are a result of the tractor side-slipping into small

grooves from previous tests. In Fig. (12.6), the terrain slope for each of the four rows

is shown. Standard bias estimation easily absorbed the effects of the shallow slope.

For comparison between automatic control and human control on sloped terrain,

the author, not an experienced tractor driver, drove the tractor along the sloped row

trajectory while using the tracking error information from the GPS system to help

him judge his performance. Fig. (12.7) shows a time history of the tracking error

along the four rows, and Fig. (12.8) shows the terrain grade along the four rows.

To support the assertion that some form of bias estimation was required for accu-

rate control, a test was performed where the biases were not estimated. Fig. (12.9)

shows a strong mean tracking error that ranged between -18.6 and 36.5 cm and a
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Figure 12.5: Row guidance on near-flat terrain with standard bias estimation: 0.4 cm
mean, 4.0 cm standard deviation (one-sigma). Large initial spikes are from row acquisition.
Terrain slope for these tests is shown in Fig. (12.6).
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Figure 12.6: Terrain grade for row guidance results shown in Fig. (12.5).
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Figure 12.7: Human control on sloped terrain: 6.3 cm mean, 24.1 cm standard deviation
(one-sigma). Terrain slope for these tests is shown in Fig. (12.8).

0 100 200 300 400 500 600
−30

−20

−10

0

10

20

30

Time (sec)

T
er

ra
in

 G
ra

de
 A

lo
ng

 P
at

h 
(%

)

Figure 12.8: Terrain grade for row guidance results shown in Fig. (12.7).
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Figure 12.9: Row guidance on sloped terrain without bias estimation: 27.7 cm average
absolute mean, 13.0 cm standard deviation (one-sigma). The effects of left- and right-hand
slopes are obvious and can be correlated with the terrain grade along this path, shown in
Fig. (12.10).

standard deviation between 8.4 and 15.5 cm for all four rows. A time history of the

terrain grade along this path is shown in Fig. (12.10). Clearly, a control system with

such large tracking errors would be unacceptable to farmers. When standard bias

estimation was added to the control/estimation algorithm, controller performance

improved dramatically. Fig. (12.11) shows controller performance for row guidance

on sloped terrain while using standard bias estimation. Fig. (12.12) shows a time

history of the terrain slope for the four rows in Fig. (12.11).

To compare slope-adjusted bias estimation against standard bias estimation, a

four-row trajectory was completed with slope-adjusted bias estimation. The con-

troller performance shown in Fig. (12.13) demonstrated roughly 25% improvement

over controller performance with the standard bias estimation scheme. The terrain

grade for the four rows in Fig. (12.13) is shown in Fig. (12.14). Note that the slope-

adjusted bias estimation tests were conducted under more challenging conditions than

the standard bias estimation tests since the terrain grade in Fig. (12.14) varied more

rapidly than the grade shown in Fig. (12.12).
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Figure 12.10: Terrain grade for row guidance results shown in Fig. (12.9). The correspon-
dence can be seen between the tracking errors in Fig. (12.9) and the terrain grade shown
here.
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Figure 12.11: Row guidance on sloped terrain with standard bias estimation: 0.9 cm
mean, 8.5 cm standard deviation (one-sigma). Note no effect of left- and right-hand bias.
Terrain slope for these tests is shown in Fig. (12.12).
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Figure 12.12: Terrain grade for row guidance results shown in Fig. (12.11).
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Figure 12.13: Row guidance on sloped terrain with slope-adjusted bias estimation: -
0.8 cm mean, 6.4 cm standard deviation (one-sigma). Terrain slope for these tests is shown
in Fig. (12.14).
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Figure 12.14: Terrain grade for row guidance results shown in Fig. (12.13).

The mean and standard deviation in tracking error for control on flat terrain, hu-

man control, control without bias estimation, control with standard bias estimation,

and control with slope-adjusted bias estimation are summarized in Tbl. 12.1. Slope-

adjusted bias estimation shows a slight improvement over standard bias estimation.

Both schemes essentially zero out the mean tracking error as expected. Interest-

ingly, the standard deviation on near-flat terrain is only roughly 50% lower than the

standard deviation on sloped terrain: using slope-adjusted bias estimation on steep

terrain yielded results almost at the level of those on flat terrain. The human driver

performed much worse than either bias estimation scheme. The accurate attitude

information available from the GPS attitude sensor made it possible to accurately

calculate the terrain’s slope; without the high accuracy offered by the GPS attitude

system, the results presented here might not have been realized.
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Auto, Auto, No Auto, Auto,
Row Flat Human Bias Standard Slope-Adjusted
No. Terrain Control Estimation Estimation Estimation
1 mean 0.4 5.9 -18.6 -1.0 -1.0

1-σ 3.4 16.2 8.4 5.0 4.8
2 mean 0.3 3.7 29.0 2.3 -0.6

1-σ 2.0 20.9 13.2 8.3 7.2
3 mean 0.7 10.2 -26.8 -0.1 -1.0

1-σ 7.3 30.4 14.9 9.4 7.1
4 mean 0.1 5.3 36.5 2.5 -0.6

1-σ 3.1 29.2 15.5 11.3 6.6
Avg mean 0.4 3.6 27.7 0.9 -0.8

1-σ 4.0 24.1 13.0 8.5 6.4

Table 12.1: Experimental row tracking performance on sloped terrain. The mean value
for the tests run without bias estimation is the average absolute mean. All results are in
centimeters.
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Chapter 13

Vehicle Control on Contours

Farming along a hill’s contours can reduce top soil erosion and improve irrigation

efficiency by reducing water run-off. Therefore, accurate contour farming may be

important on sloped terrain. When contour farming, most tractor drivers will drive

the first pass as close to the contour as they can. Every subsequent pass is then made

one implement width away from the previous one. If the slope of the terrain changes

along the trajectory, each successive pass will diverge from the true contour. Once

the driver has judged the divergence to be too much, a new contour pass is driven

and the process repeated. The gaps between batches of passes are filled in separately.

This research sought to create a control algorithm capable of accurately controlling

the tractor along that first contour pass. Accuracy was judged by the mean and

standard deviation of the height error of the vehicle’s control point.1

13.1 Control Algorithms

Accurate tractor control along straight rows on sloped terrain was experimentally

demonstrated in Ch. 12. If the tractor’s location along a desired contour could be

linearized about that contour, the same linear controller used for row control could

then be used to control the tractor along the contour. Although contours are usually

nonlinear, realistic contours were assumed to curve relatively slowly so that future

information about how the contour line was changing ahead would have little impact

1The control point was located on the ground directly beneath the center of the rear axle.
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on the current control signal. In other words, a controller based only on current error

information could be used. This assumption was important because it allowed contour

control without the use of a terrain map or other source of terrain information.

13.2 Specifying Contour Trajectories

Because user flexibility was important, contour trajectories were specified only by a

vertical distance above the reference station antenna. This meant that a controller

would attempt to track that particular contour indefinitely without regard for field

boundaries. Therefore, the control algorithms presented here are not a replacement for

a human operator, but rather a tool to assist the operator in accurate contour farming.

It was assumed that the human operator would want to offset the original automatic

contour manually; therefore, this chapter did not address contour offsetting.

For the vehicle model in Eqns. (3.43–3.45), accurate contour control involved

calculating the vehicle’s tracking error, yaw error, and steer angle error. Once the

vehicle’s linearized state had been estimated, the full-state linear control law

u = −K (x̂− xr) (13.1)

was used to generate the control signal where the gainsK were calculated using a LQR

control law. The difficult part of the contour control algorithm involved estimating

the vehicle’s state. To accomplish this task, vehicle attitude information was used

to calculate contour direction and subsequently yaw error. Height information from

the GPS position sensor was then used to calculate the contour tracking error. Even

on terrain considered steep for farming, the slope angle was relatively shallow, and

small measurement noises in attitude and position created large uncertainties in the

vehicle’s state. Bias estimation was used to zero out the tracking error that stemmed

from the inevitable crabbing of the vehicle necessary to track the contour.

13.2.1 Measuring Yaw Error

To calculate yaw error, the attitude information available from the GPS system was

used to generate a unit vector q out of the tractor’s roof. The direction of steepest
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descent ψζ of the projection of q onto the North-East plane could be calculated from

q’s horizontal components:

tanψζ =
q2
q1

(13.2)

where the subscripts 1 and 2 denote north and east, respectively. The vehicle’s actual

heading was then used to measure the yaw error:

ψe = ψ − tan−1

(
q2
q1

)
± π

2
(13.3)

where the factor π/2 was either added or subtracted depending on whether or not

the contour rotated clockwise or counter-clockwise.

13.2.2 Measuring Steering Error

The reference steer angle was assumed to be constant. Although this assumption

held true only if the terrain slope was constant, the slope was assumed to vary slowly

enough that the reference steer angle variations could be assumed small. Experiments

showed that the adjusting the process noise variance of the disturbances acting on

the steer angle bias absorbed what little error was introduced by this assumption.

13.2.3 Measuring Tracking Error

Once the unit vector q had been calculated, the terrain slope angle ζ could be calcu-

lated from

tan ζ =

√
q2
1 + q2

2

q3
(13.4)

Note that this slope direction is also orthogonal to the trajectory because, by defini-

tion, the contour is perpendicular to the direction of steepest descent.

This information was then used to translate height error h into tracking error d.

In a 3-2-1 coordinate frame

d =
h

sin ζ
(13.5)

=
h√

1− cos2 θ cos2 φ
(13.6)



156 CHAPTER 13. CONTROL ON CONTOURS

13.3 Measurement Variances

An accurate estimate of the yaw and tracking errors could improve controller perfor-

mance by filtering out measurement noise. Therefore, approximations were needed

for the measurement uncertainties in tracking error and desired yaw as a function of

known variances in height and attitude noise.

13.3.1 Tracking Error Measurement Variance

For tracking error, the above requirement translates into finding

E

[(
d− d̂

)2
∣∣∣∣ ĥ, Θ̂v] (13.7)

where d̂ is the estimated tracking error. A first-order multi-variable Taylor series

expansion [Hil76] of d about d̂ using values of φ̂, θ̂, and ĥ can be used to obtain an

approximation for d− d̂:

d ∼= ĥ√
1− cos2 θ̂ cos2 φ̂

+

[(
h− ĥ

) ∂

∂h
+
(
φ− φ̂

) ∂

∂φ

+
(
θ − θ̂

) ∂

∂θ

](
h√

1− cos2 θ cos2 φ

)
(13.8)

d− d̂ =
(
h− ĥ

) 1√
1− cos2 θ̂ cos2 φ̂

−
(
φ− φ̂

) ĥ cos2 θ̂ cos φ̂ sin φ̂[
1− cos2 θ̂ cos2 φ̂

]3/2

−
(
θ − θ̂

) ĥ cos θ̂ cos2 φ̂ sin θ̂[
1− cos2 θ̂ cos2 φ̂

]3/2
(13.9)
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Squaring Eqn. (13.9) and taking the expected values of the resulting terms with the

assumption that sensors are unbiased,

E

[(
d− d̂

)2
∣∣∣∣ d̂, Θ̂v] =

∑
h

1

1− cos2 θ̂ cos2 φ̂

+
∑
φ

ĥ2 cos4 θ̂ cos2 φ̂ sin2 φ̂[
1− cos2 θ̂ cos2 φ̂

]3

+
∑
θ

ĥ2 cos2 θ̂ cos4 φ̂ sin2 θ̂[
1− cos2 θ̂ cos2 φ̂

]3 (13.10)

where
∑
h,
∑
φ, and

∑
θ are the variances in the measurements of height, roll, and

pitch. This variance approximation shows how small angles in roll and pitch (i.e.,

terrain that is only slightly sloped) can lead to large measurement uncertainties. In

Fig. (13.1), the effect of terrain slope on tracking uncertainty can be seen for identical

height uncertainties. As predicted by Eqn. (13.10), on flat ground, any uncertainty

in height will lead to an infinite uncertainty in tracking error. However, this scenario

is unrealistic: if the terrain is flat, the farmer has no reason to use a contouring

algorithm.

13.3.2 Yaw Error Measurement Variance

An expression for the heading error measurement variance can be derived using the

same procedure:

E

[(
ψe − ψ̂e

)2
]

=
∑
φ

sin2 θ̂[
1− cos2 θ̂ cos2 φ̂

]2

+
∑
θ

cos2 θ̂ cos2 φ̂ sin2 φ̂[
1− cos2 θ̂ cos2 φ̂

]2 +
∑
ψ

(13.11)
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Figure 13.1: Effect of terrain slope angle on tracking uncertainty. The viewer is standing
on the ground looking at a cross-section of the tractor’s path.

13.4 Experimental Results

Tractor configuration, implement, and speed in the contour tests were identical to

conditions in the sloped-terrain tests detailed in Ch. 12. Slope-adjusted bias esti-

mation was used to zero out steady-state errors. Experimental results for the height

error for a contour 15 meters above the reference station are shown in Fig. (13.2). The

mean height error was 0.5 cm and the standard deviation 4.3 cm. Figs. (13.3–13.4)

show a time history of the estimated measurement variances in yaw and tracking er-

ror. Even though the attitude and position sensors were very accurate, the relatively

shallow slope angle (average about 7◦ (14% grade), maximum of 13◦ (23% grade)

for this contour) created large uncertainties in tracking error measurements of about

50 cm and in yaw error measurements of about 15◦ (one-sigma).
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Figure 13.2: Height error for automatic control along a contour: 0.5 cm mean, 4.3 cm
standard deviation (one-sigma). Dashed lines are one foot.
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Figure 13.3: Yaw error measurement variance for automatic control along a contour.
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Figure 13.4: Tracking error measurement variance for automatic control along a contour.



Chapter 14

Conclusions and Future Research

This research has expanded prior agricultural vehicle control results by developing

and demonstrating high-precision control algorithms that steer a general front-wheel-

steered vehicle along arcs, spirals, curves, and contours to sub-ten-centimeter pre-

cision. Farmers may use these non-linear trajectory “building blocks” to smoothly

join linear trajectories, creating a seamless global trajectory. These results facilitate

farming operations previously impossible to an automatic controller:

• Fields bordered by irregular boundaries such as streams or roads can now be

worked with curves that the farmer can easily specify.

• Non-linear trajectories that avoid in-field obstacles can be generated and tracked

so that precision farming operations can be continuous despite in-field telephone

poles or electrical towers.

• Fields irrigated with center-pivot irrigation systems can be farmed using the

spiral trajectory introduced in this research.

• Rows can be tracked on steep terrain without suffering a large performance

penalty thanks to an improved bias estimation algorithm that accounts for the

sloped terrain’s effects on the biases.

• Contours can be farmed automatically to centimeter-level precision without the

aid of a terrain database.
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The new model introduced in this research can adapt to a wide variety of factors

that can alter the vehicle’s response. With the model’s ability to identify the effects of

factors such as changing front-wheel traction, farmers will not need to specify changes

in ballast, tires, or implement. Instead, the model will be able to quickly adjust

based on the observed changes in performance so that the controller can maintain

high tracking precision.

This research has also forged tools for future researchers so that the envelope of

autofarming systems’ capabilities can be further expanded:

• The new three-dimensional towed implement model developed here would allow

engineers to develop towed implement controllers.

• With the ability to automatically control the tractor along non-linear trajec-

tories, engineers can incorporate paths created by path-planning algorithms,

algorithms which could help automate the task planning process.

Finally, the error analysis introduced here to describe the effects of poor attitude

measurements on control point position accuracy are general: they can be applied

anytime an engineer measures a point’s location in a rotating body based on a position

measurement taken elsewhere on the body. This analysis also demonstrated the need

for precise attitude measurements in autofarming.

14.1 Summary of Results

14.1.1 Vehicle Modeling

New three-dimensional nonlinear models of a tractor and a tractor-trailer have been

developed. A variety of time-varying factors influenced the dynamics, and these

factors were accommodated by additional states. In simulation, a first-order nonlinear

filter suffered little performance penalty compared to a computationally expensive

second-order filter. Experimental data revealed that the first-order filter converged

on an important parameter–the proportional relationship between steer angle and
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yaw rate–from a poor initial guess to the known value in under a minute with a

steady-state accuracy of approximately 10%.

14.1.2 Analysis of the Lever Arm Correction

The vector correction necessary to translate the GPS position measurement on the

roof of the tractor to the tractor’s control point on the ground beneath the center

of the rear axle was a nonlinear function of an uncertain tractor attitude. An ap-

proximation for the additional uncertainty introduced by the correction was derived

based on a first-order series expansion of the correction. Monte Carlo simulation

results showed that the additional uncertainty grew rapidly as attitude uncertainty

increased. These results were used to support the claim that an accurate attitude esti-

mate was as important to control point position measurement as an accurate position

measurement at the roof antenna.

14.1.3 Control on Arcs and Spirals

Several types of nonlinear trajectories were identified as necessary components for

a practical autofarming system: arcs, spirals, curves, and contours. The nonlinear

vehicle model was simplified for nominal conditions to a low-order model suitable

for use in a real-time control algorithm. The model was transformed into polar co-

ordinates. For arc trajectories, the model was linearized about nominal conditions,

and experimental data revealed that despite rough ground, the controller allowed the

Model 8400 tractor’s control point to track an arc to a mean of -0.28 cm and a stan-

dard deviation of 3.43 cm as measured by CPDGPS. Spiral trajectories increased or

decreased one implement width per revolution and could be applied to fields irrigated

by center-pivot irrigation. The polar analysis developed for arcs was extended to

spirals, whose radius of curvature was no longer constant. The Model 7800 tractor

tracked a large spiral trajectory while pulling a towed implement under full engine

load to a mean tracking error of -0.22 cm and a standard deviation of 5.27 cm.
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14.1.4 Control on Curves

Curve trajectories, which could arise from irregular field boundaries, were interpo-

lated from discrete input position data using cubic splines. Several issues such as

determining the vehicle’s location along the curve, calculating the rate of change of

curve-dependent parameters, and predicting future vehicle locations along the curve

were addressed. Four controllers were derived for vehicle curve tracking. The first

controller, a linear local-error controller, adapted the polar analysis to curve trajecto-

ries, linearizing the model about the current curve conditions. This controller tracked

curves to a mean of 1.99 cm and a standard deviation of 9.07 cm. The second con-

troller, though also linear, previewed a finite amount of the curve. The well-known

discrete linear quadratic tracking algorithm used this future state information to track

a curve to a mean of 3.44 cm and a standard deviation of 6.69 cm. The third con-

trol algorithm, a nonlinear algorithm based only on local information, used feedback

linearization to linearize the nonlinear vehicle dynamics exactly, splitting the control

signal into a feedforward term and a feedback term. This algorithm tracked a curve

to within -0.01 cm mean and 4.12 cm standard deviation. Finally, nonlinear opti-

mization techniques, though too computationally expensive to run in real-time, were

examined as a possible future control solution. This fourth and final curve control

algorithm was nonlinear and previewed a finite amount of future curve information,

which was used to derive general expressions for the Jacobian and Hessian of the

tracking error in terms of curve parameters. In simulation, this control algorithm

tracked a realistic curve under ideal conditions to within virtually zero tracking error.

14.1.5 Control on Sloped Terrain and Contours

To control the tractor accurately on sloped terrain, the GPS attitude information

was used to calculate slope information, which was then fed into a variant of bias

estimation termed “slope-adjusted bias estimation”. On steep slopes of up to 28%

grade, the tracking error along straight rows while pulling a heavy implement was

-0.8 cm mean and 6.4 cm standard deviation, a 25% improvement over control on the

same trajectory using standard bias estimation. The accurate attitude information
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Mean Tracking Standard
Trajectory Error (cm) Deviation (cm)
Arcs < 1 3− 4
Spirals < 1 5− 6
Curves 0− 4 4− 10
Rows on slopes < 1 6− 7
Contours < 1 4− 5

Table 14.1: Summary of experimental tracking performance for all trajectory types.

was also used to develop a tractor controller that could track a contour without prior

knowledge of the terrain. On steep terrain, the contour tracking control algorithm

held the contour to a mean error in height of 0.5 cm and a standard deviation of

4.3 cm.

Tbl. 14.1 summarizes experimental results for controller tracking performance

along all the trajectories introduced in this research. The values listed are represen-

tative of what a farmer might expect not under ideal conditions, but under realistic

conditions.

14.2 Future Research

One of the difficulties encountered in graduate school was deciding when to stop

researching and start writing. Each new avenue of research has revealed more avenues,

each more interesting than the last. This project has been especially interesting

because there is an immediate commercial need for automatically controlled tractors.

This need virtually guarantees that autofarming systems will be commercialized and

that industry and academia will address many of the research issues listed below:

1. Higher-order modeling. Higher-order vehicle dynamics were assumed negligible

when creating the tractor and implement models, and experiment showed that

these assumptions were valid at the relatively low operating speeds encountered

in high-precision agriculture. Preliminary control experiments at high speed,

however, showed that the neglected dynamics should no longer be assumed
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negligible, and that a tractor model that incorporates higher-order dynamics

would be a key component of a high-speed control algorithm. Members of the

farming community who have witnessed this research have often expressed a

desire not to increase the tracking ability of a tractor for a particular speed, but

to increase the tractor’s forward speed while achieving the same accuracy as a

good human operator would driving at “normal” speed. In other words, the

quality of the steering control will dominate the choice of tractor speed [Bot82].

In some high-precision applications, a tractor’s forward speed is now limited

by the operator’s driving ability, not the tractor’s ability to pull the implement

through the soil. Therefore, better control at high speeds will be a large benefit.

2. Real-time system identification and adaptive control. Real-time identification

of Kδ and various biases is just the beginning of real-time identification of

changing vehicle parameters. Tires, ballasting, and even the temperature of the

hydraulic fluid in the steering actuator all affect the vehicle model. Real-time

system identification techniques offer improved estimation and control through

more accurate identification of model parameters or even the model itself.

3. Real-time identification of disturbances. As mentioned in Ch. 3, the absence of

a tractor suspension system meant the tractor was very susceptible to ground

disturbances. Similarly, controllers could easily be driven unstable by a sudden

increase in ground disturbances. If the disturbance strength was known in

real-time, the controller could be tuned to maximize performance while still

maintaining stability. A real-time disturbance identification technique could

provide such information. This technique would be particularly valuable at

higher speeds where controller instability could even become dangerous.

4. Towed implement control on nonlinear trajectories. Time did not permit re-

search into controlling a point on the implement along nonlinear trajectories.

In practical applications where high accuracy is desired, arcs and spirals will

have large radii, and the difference in tracking performance between controlling

a point on the tractor vs. a point on the implement will be small. On curved

trajectories, however, rapidly changing curves will present a control challenge
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when controlling a towed implement. The problem is complicated by bounds

on control effort, steer angle, and the angle between the implement and the

tractor. Such a controller would be of significant value to farmers.

5. Collision avoidance. With the possibility of more than one automatic tractor

in the field at any given time, some sort of traffic management system is needed

to avoid collisions.

6. Formation driving. A completely autonomous tractor presents numerous safety

challenges such as obstacle detection and avoidance. An intermediate step to-

wards autonomous tractors could involve human oversight of driverless tractors.

A human driver, armed with a remote kill switch, could monitor several au-

tonomous tractors working nearby. Such a scenario would be practical if the

vehicles worked as a team in formation. The “master” vehicle could be either

human-controller or automatic. Therefore, control algorithms are needed that

would force a “slave” vehicle to maintain a prescribed offset from the master

vehicle.

7. Nonlinear optimization routines for real-time control. The rapid rise of inexpen-

sive desk-top computers means that engineers will have access to increased real-

time computing power. Nonlinear optimization algorithms previously thought

impractical for real-time control are becoming feasible, and research is needed

to develop these algorithms for real-time control.

8. Path optimization algorithm(s). Path optimization algorithms are needed to

optimize a tractor’s route across the field according to some user-specified per-

formance metric. The algorithm should take into account the vehicle’s dynamic

constraints as well as obstacles, field boundaries, and possibly other vehicles in

the field. Ideally, the user would specify costs or penalties on such factors as

overlap, underlap, total working time, and fuel usage. Once the desired vehicle

and implement combination has been specified, the path planning algorithm

would specify a global path that would minimize a cost function created from

the user-specified penalties. This global path would be composed of lines, arcs,
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spirals, and curves, and would be uploaded into the vehicle’s computer prior to

starting work.

14.3 Implications

CPDGPS offers researchers economical and precise position and attitude sensors.

The cost of desk-top computing power is falling rapidly, and researchers now have the

power to run sophisticated control algorithms in real-time. These two factors imply

several trends:

1. Commercial autonomous vehicles will soon be relatively common, beginning

first in agriculture.

2. Computationally intensive control algorithms will become practical real-time

control solutions.

3. Industry interest in key fields such as vehicle modeling, real-time system identi-

fication and adaptive control, nonlinear optimization, and path generation will

increase.

Eventually, vehicles may become fully autonomous. With the removal of the

driver, vehicles could be completely redesigned to omit driver-related constraints such

as a cab or good road visibility. Farms all over the world may one day see multiple

driverless tractors working a single field through the night, cooperating to efficiently

accomplish tasks. Tractors will communicate with each other and the farm man-

agement office, relaying back information such as yield data, fuel level, soil moisture

content, and work time remaining. Raw material usage will be significantly reduced as

overlap is eliminated. Specialized irrigation techniques will become more cost-efficient

and irrigation water usage will decrease. The computer and GPS hardware to facil-

itate all of this already exists. This research has provided some of the fundamental

algorithms needed to make this vision a reality.



Appendix A

Test Equipment

Two Deere and Co. tractors were used during the course of this research: a Model

7800 and a Model 8400. Both tractors used the same positioning and attitude hard-

ware and software. All controls software was written at Stanford.

A.1 Deere and Co. Model 7800

The first test platform used in this research was the Deere and Co. Model 7800 farm

tractor shown in Fig. (2.1). As tested, the 7800 had the following characteristics:

• 108 kW (145 hp, measured at power-take-off shaft) 7.6L turbocharged in-line

6-cylinder diesel engine.

• 19 forward gears with forward speed of up to 35 km/h (22 mph).

• Four-wheel drive.

• Air-filled row-crop tires.

• 1,000 kg front ballast, 1,000 kg rear-axle ballast.

• Unballasted weight of 6,500 kg (14,300 lbs).

• Length of 4.4 m (173 in), axle width of 2.8 m (110 in), and height of 3.0 m

(116 in).
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Figure A.1: Deere and Co. Model 8400 farm tractor.

A.2 Deere and Co. Model 8400

The second test platform used in this research was a Deere and Co. Model 8400 farm

tractor shown in Fig. (A.1). As tested, the 8400 had the following characteristics:

• 168 kW (225 hp, measured at power-take-off shaft) 8.1L turbocharged in-line

6-cylinder diesel engine.

• 16 forward gears with forward speed of up to 35 km/h (22 mph).

• Four-wheel drive.

• Air-filled row-crop tires.

• 1,000 kg front ballast, 1,000 kg rear-axle ballast.

• Unballasted weight of 8,500 kg (18,700 lbs).

• Length of 5.2 m (206 in), axle width of 3.0 m (118 in), and height of 3.0 m

(120 in).
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Figure A.2: Equipment mounted inside the 7800.

A.3 Sensor and Actuator Hardware

The IntegriNautics Corporation provided CPDGPS hardware and software to mea-

sure the master antenna’s location relative to the reference station antenna at 5 Hz.

Measurement noise was on the order of 1-1.5 cm (one-sigma) in horizontal and 2-

3 cm (one-sigma) in vertical position. The reference station, built by Stanford with

IntegriNautics’ GPS hardware and software, transmitted GPS corrections to the trac-

tor through Pacific Crest radio modems at 9,600 baud. Trimble Navigation’s TANS

Vector provided the tractor computer with attitude measurements at 10 Hz to a reso-

lution of 0.1 degrees (one-sigma) using an array of four single-frequency GPS antennas

mounted to the roof of the cab. Mounted inside the cab of the 7800 was a 100 MHz

PC using the Lynx real-time operating system. Fig. (A.2) shows the rack mounted

in the interior of the 7800’s cab. The flat-panel display is mounted on the upper

left with the GPS receiver beneath it. The TANS Vector sits underneath the wiring,

while the computer is located on the lower right. The power supply sits above the
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Figure A.3: Electrohydraulic valve (left) and steering angle potentiometer (right) on the
7800.

computer. An Orthman hydraulic valve, shown on the left in Fig. (A.3), actuated the

front wheels, and a potentiometer measured the front-wheel angle, both interfacing

with the tractor computer through a Motorola MC68HC11 microprocessor.
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