
 

 

 

 

 

CHARACTERIZATION OF THE CLOCK AND EPHEMERIS ERROR 

DISTRIBUTIONS OF THE GLOBAL SATELLITE NAVIGATION SYSTEM 

(GNSS) 

 

 

 

 

 

 

 

 

A THESIS 

SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND 

ASTRONAUTICS ENGINEERING 

AND THE COMMITTEE ON GRADUATE STUDIES 

OF STANFORD UNIVERSITY 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

ENGINEER 

 

 

 

 

 

Xinwei Liu Candidate 

June 2023 



© 2023 by Xinwei Liu. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.
http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: https://purl.stanford.edu/rz006yk2437

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
https://purl.stanford.edu/rz006yk2437


Approved for the department.

Todd Walter, Adviser

Approved for the Stanford University Committee on Graduate Studies.

Stacey F. Bent, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this thesis in electronic
format.

iii



Abstract

With the rapid development and the broadened usage of GNSS technology, it becomes increas-

ingly important to ensure the safety of the positioning, navigation, and timing provided by GNSS.

Concepts such as Advanced Receiver Autonomous Integrity Monitoring (ARAIM) are designed to

provide integrity guarantees for this purpose. These concepts rely on the characterization of the

errors. Reliable upper bounds can be placed on the potential errors in the positioning and timing

estimates. As more navigation signals are incorporated, it becomes more likely that one or more

signals may contain a significant error. Further, di↵erent error characteristics are expected to be

encountered with new constellations and new signals.

Multiple frequencies allow the near elimination of ionospheric errors, leaving satellite clock and

ephemeris error as one of the largest potential error sources. Therefore more emphasis is put on

characterizing the clock and ephemeris errors.

To shed light on the satellite clock and ephemeris error behavior, we focus on characterizing the

behavior of nominal satellite clock and ephemeris errors using Gaussian bounding parameters bias

and �. The errors are normalized by the user range accuracy (�URA). The bias and � parameters

correspond to the Gaussian mean and standard deviation, respectively. In particular, we investigate

the inherent variability of the Gaussian error bounding parameters and the stability of the parameters

with respect to di↵erent partitions such as time, di↵erent space vehicle numbers, di↵erent user

range accuracy, etc. To do so, we provide two algorithms to quantify the inherent variability of the

bounding parameters. We also provide an algorithm to capture this variability using a single set of

statistics corresponding to the Gaussian mean and standard deviation. We call these BIAS and ⌃.

In the first part of the thesis, we briefly introduce the GNSS integrity concept and the necessary

background regarding the bounding method. We also provide the motivation for this work and the

outline of the thesis.

In the second part of the thesis, we provide the data processing method used in the thesis and

provide a preliminary examination of how the error-bounding parameters evolve through time. We
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find that the error bounding parameters are relatively stable over time and that near-fault data

points a↵ect the stability.

In the third part of the thesis, we provide two algorithms to quantify the inherent variability in

the bounding parameters for the error data. We find that the error bounding parameters have low

variability based on the simulation results.

In the fourth part of the thesis, we provide a single set of statistics BIAS and ⌃ to capture the

quantified variability. We also provide detailed algorithms and the corresponding optimization tech-

niques. The experimental results show that the BIAS and bias values are small and that the ⌃ and

� values are mostly below �URA. We also show that the near-fault data points a↵ect the stability.

Finally, we explore how lowering the �URA a↵ects the bounding parameter stability. The exper-

imental results show that the bounding parameters become more stable after lowering the �URA.

These results provide insights into the stability of GNSS clock and ephemeris errors and can be used

to aid the development of ARAIM.
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Chapter 1

Introduction

1.1 GNSS and Integrity

The Global Navigation Satellite System (GNSS) is widely used daily, such as synchronization of

communication systems, power generation and distribution, agriculture financial transactions, etc.

In the past few years, there have been significant developments in GNSS, including launching a new

satellite block for GPS, replenishing GLONASS, launching new Galileo satellites, and developing

BeiDou. [1]

Currently, we have four major GNSS core constellations, the Global Positioning System (GPS),

GLONASS, Galileo, and BeiDou. With this wide variety of navigation resources and the broad usage

of navigation messages, we must provide safety guarantees. Any navigation system must regulate its

accuracy, availability, continuity, and integrity. For safety applications, we are particularly interested

in meeting the integrity requirement . [1]

Integrity is the measurement of how much we can trust the information provided by a particular

system to be correct. In navigation systems, it indicates how much we can trust the information

contained in the navigation messages. Naturally, it serves as a crucial component to guarantee the

safety of the application. There have been existing systems that monitor the integrity, including

Receiver Autonomous Integrity Monitoring (RAIM) [2], which utilizes redundancy checking of the

pseudo-range measurement. The most recently developed Advance Receiver Autonomous Integrity

Monitoring (ARAIM) incorporates constellations other than GPS and more navigation messages into

the system. [3] It enables the calculation of position error bounds by utilizing multiple satellites. If

the error exceeds a certain threshold, a warning is triggered.

Both RAIM and ARAIM rely on the fact that the ranging errors are bounded by the broadcast error

1



CHAPTER 1. INTRODUCTION 2

model with very high probabilities. For this reason, it is important to study and characterize the

satellite ranging errors.

1.2 Clock and Ephemeris Error

Navigation errors come from many sources. With the introduction of dual signals, namely L1 and L5

signals, the ionosphere errors become less critical, and the requirement on characterizing the clock

and ephemeris errors, one of the three major error sources with the other two being the code-carrier

coherence, and the signal deformation, now become prominent. The clock and ephemeris errors stem

from several sources, the network receivers, the antenna biases, the external corrections outside of

the safety processor, and other undetected errors. [4]

1.3 Nominal Error

Previous investigations were done at Stanford GPS lab by Dr. Liang Heng [1], Dr. Kazuma Gunning

[5], Dr. Todd Walter [6], and Dr. Santiago Perea. [7] The GPS performance standard defines nominal

errors as being those below some constant multiplied by user range accuracy (�URA). Errors larger

than this threshold are identified as faulted errors and are not considered nominal.

�URA is a parameter that conservatively represents each satellite’s expected user range error (URE)

to serve as an upper bound on the Root Mean Square (RMS) of this error. URE stems from the

control and space segment. Our goal is to characterize these nominal errors. [1]

1.4 Conservative Overbounding

In searching for ways better to characterize the satellite clock and nominal ephemeris errors, previous

researchers have contributed to coming up with a better representation of this type of error. We

need to consider all possible error combinations to meet the safety requirement. With this in mind,

one of the approaches is to develop a probability distribution that bounds the empirical distribution

of such errors.

The motivation for such an approach is the following:

1. The original error data set is usually very large, and it is not practical to use the empirical

data set.

2. The large data sets are di�cult for the users to process since satellite error data processing

requires excessive data combinations.
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3. It is required to account for the tail behavior to ensure integrity; thus, only using the mean

and the standard deviation is not enough for this purpose.

In the recent work, an algorithm that provides conservative Gaussian bounds for the CDF of the

empirical error distributions is described. This process is done in two steps. First, the algorithm

generates a symmetric unimodal (SU) bound that conservatively bounds over the empirical sample

distribution. Second, the algorithm creates a Gaussian distribution conservatively bounds over the

SU bound. This way, a conservative Gaussian bound for the empirical distribution is obtained in

the sense of [8].

We seek a Gaussian distribution because Gaussian is convenient for mathematical operation, and

the bounding property of this distribution is stable through convolution, in the sense that the

convolution of the bounding distribution bounds the convolution of the original distributions. This

property implies that after we combine the two Gaussian distributions, the new distribution is still

Gaussian, simplifying the mathematical operations.

This algorithm provides two parameters for the distribution, the bias and the sigma. These param-

eters represent the mean and standard deviation of the bounding distribution, respectively. We need

to distinguish these two parameters from the empirical distribution’s mean and standard deviation.

From now on, we will use bias and sigma to refer to the statistics of the bounding distribution and

mean and standard deviation to the statistics of the empirical distribution. [9] [10]

1.5 Stability Investigation

We can characterize the nominal clock and ephemeris distributions using the above-mentioned two

parameters. In particular, we want to investigate whether the past error statistics are stable so that

we can make some inferences about future error behavior. Specifically, if the past nominal error

bounding parameters are stable, we can have some confidence that they will likely stay stable in the

future, assuming no drastic changes occur. In this sense, we can infer future error statistics, which

is crucial for integrity applications. In the next section, we will give an outline of the structure of

this thesis.

1.6 Outline

This section provides an outline for the thesis.

1. Chapter II

(a) We introduce the data pre-processing method.
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(b) We examine the error statistics over time.

(c) We obtain the amount of data su�cient for characterization.

2. Chapter III

(a) We introduce the Training validation analysis method with the result.

(b) We introduce the bootstrap statistics method with the result.

3. Chapter IV

(a) We introduce a new statistical method to capture the variability with the result.

4. Chapter V

(a) We provide a method to reduce the computational cost for this new statistical method.

(b) We provide the algorithm for this new method.

5. Chapter VI

(a) We provide di↵erent ways to partition the data with di↵erent features.

(b) We discuss the significance of near-fault data points.

6. Chapter VII

(a) We discuss the data used for the experiments and data processing methods.

7. Chapter VIII

(a) We show the experimental result for GPS and Galileo data.

(b) We show the experimental result after eliminating the near-fault data points.

(c) We show the experimental result for GPS data after lowering �URA to give conservative

approximations for CNAV messages.

1.7 Author Acknowledgement

The error data used as inputs to the algorithms in Chapter 8 is partly provided by Rebecca Wang.

She is the second author of the papers used in section 8. Those two papers are ”Satellite Clock and

Ephemeris Error Bounding Characterization for Galileo” and ”Estimated CNAV and Evaluation of

Satellite Clock and Ephemeris Error Bounding Predictability for Integrity Applications.” Professor

Todd Walter also provided part of the data used by GPS error analysis in all chapters. He is the
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advisor to this research and the third or fourth author of all the papers used in this research. Dr.

Juan Blanch is the advisor to this research and is also the second or third author for all the papers

used in this thesis. The papers are ”Satellite Clock and Ephemeris Error Bounding Characterization

for Galileo and Estimated CNAV,” ”Evaluation of Satellite Clock and Ephemeris Error Bounding

Predictability for Integrity Applications,” and ”Investigation into Satellite Clock and Ephemeris

Errors Bounding Uncertainty and Predictability.” One can find all publications on the o�cial website

of the Institute of Navigation and at https://gps.stanford.edu/all-gps-lab-published-documents.



Chapter 2

Data Processing Method for UPE

This chapter will introduce the data processing method and examine the error statistics over time.

The data processing method will be used for other algorithms in later chapters. By examining the

error statistics over time, we can naively observe the stability of the statistics with respect to time.

This analysis also informs us how much data is needed for characterization.

2.1 Data Processing Method and near-fault error e↵ect

The GPS broadcasted clock and ephemeris data and the Galileo broadcasted and truth clock and

ephemeris data we use throughout this thesis are provided by the International GNSS Service [11].

The GPS clock and ephemeris truth data is provided by the National Geospatial-Intelligence Agency

(NGA). [12]

The GPS clock data we use is computed using the di↵erence between the precise and the broadcast

data. [6] In particular, it is the GNSS clock and ephemeris errors normalized by �URA projected

to the line of sight of 200 evenly distributed users around the globe. Each of these is called User

Projected Error (UPE). In this example, we use 12 years of data and 45 satellites for GPS. The data

sampling rate is every 15 minutes.

We obtain the nominal errors by thresholding the projected error normalized by �URA using the

standard definition of 4.42 for GPS. However, as long as the fault probability does not exceed 10�5

as defined in [13], we can vary the threshold used to separate nominal from faulted. We lowered the

threshold to 3 to explore the e↵ect of removing the near-fault data points on the estimated nominal

error distribution.

For GPS, we first select the error data for one satellite. We compute a common ”bias search space”

6
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containing possible bias values for all users using the bounding algorithm. We then find the optimal

bias and sigma to minimize the error bounds. Not all the biases in the search space can produce a

feasible bounding. We apply binary search to find the smallest bias that produces feasible bounding

for all the users. Then we take the largest sigma corresponding to that bias across all of the 200

users. More details on finding the bias and � parameters are provided in Chapter V.

In this way, we find the optimal bounding parameters for this particular satellite’s clock and

ephemeris errors. We represent the algorithm in a flow chart in Figure 2.1 for the case of GPS.

We should expect most of the normalized � values to be below one since the errors are normalized

Figure 2.1: Data process algorithm for GPS. The sampling rate is every 15 minutes, and there are
approximately 11,680 points in a year.

by �URA, which is a conservative representation stated in Chapter I.

In the next section, we discuss how to apply the algorithm to the post-processed data to examine

how error statistics evolve with time.

2.2 Time history data division

Given the time series of the satellite clock and ephemeris errors, we want to know how each distribu-

tion evolves with time. In other words, we wish to evaluate the stability of the bounding parameters

over time. Here, we take the error data for a certain time window. We then slide the time window

forward to get the corresponding data. For example, we set the time window for GPS to be 3 years.

We take the data from 2008 through 2010 and compute the corresponding bounding parameters.
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We then slide the time window by 1 year, take the data from 2009 through 2011 and compute the

bounding parameters again. We repeat the process until we get to the year 2021. Particularly, we

also can aggregate all satellites together. The process is shown in figure2.2 If we observe similar

Figure 2.2: Time period division

bounding parameter values corresponding to each period, we can draw some preliminary conclusions

regarding the stability of the bounding parameters over time and use this information to predict

future error-bounding behavior. In the next section, we show the result using this sliding-window

method for each user.

2.3 Error time history results

We show the results with data normalized by �URA in Figure 2.3. Each line represents a satellite.

Each data point represents the bounding parameter applied to three years of error data for GPS.

We slid the three-year window by every 6 months for GPS.

The plots show that the bias parameter appears stable based on this rough examination. Specifically,

all the values are below 0.3 and with slight variations. For �, we observe more variable behavior.

One IIA block’s satellite’s � exceeds the normalization with the standard threshold, and all the

satellite bounding parameters stay below the normalization with the lower threshold. In addition,

abrupt jumps occur more often in the standard threshold plot, indicating instability.
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(a) (b)

(c) (d)

Figure 2.3: Parameters for GPS clock and ephemeris errors from the year 2008 to the year 2020
using with three years time window (a) bias with the threshold of 4.42 times �URA (b) bias with
the threshold of 3 times �URA (c) � with the threshold of 4.42 times �URA (d) � with the threshold
of 3 times �URA

2.4 Required amount of data and Aggregated result evolving

with time

This instability could potentially be due to a lack of data used for the analysis. If we assume

that there are two independent data points per day, and the probability of a fault event occurring is

10�5, we likely do not have enough independent data to generate meaningful statistical results at that

probability level because the clock and ephemeris errors are strongly correlated over time. This e↵ect

could potentially cause the error to exceed the bounding threshold. [14] [13] We mitigated the lack

of data issue by aggregating errors from all satellites to obtain enough data to stabilize the bounding

parameters. This approach assumes that the satellites should have similar error characteristics. The

results are shown in Figure 2.4. Here, the red lines represent the error data using the threshold of

3, and the blue lines represent the error data using the standard threshold. The dotted lines are for

the �, and the solid lines are for the bias.
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Figure 2.4: Parameter values plotted against time for aggregated satellite values.Three years time
window with the threshold of 4.42 and 3 times �URA for GPS

The plots show that the bias parameter is highly stable, as represented by the blue and red solid

lines. The bias parameter also appears to be stable even with each satellite. For this reason, we

focus our study on the � parameter. Although with the standard threshold, normalized � no longer

exceeds one as represented by the dotted blue lines, the instability persists, whereas stability can be

observed in the lower threshold plot, as represented by the dotted red lines. This result indicates

that the near-fault data points are likely responsible for the variability.

The time history analysis study shows that three years of data for each satellite likely provides too

few independent data points for time series analysis. Thus, we should use the aggregated satellite

error for the time history error analysis of the bounding parameter.

The time history plots also show that the bias parameter is highly stable, and the � parameter is

less stable. This result is likely due to the near-fault data points.

After this preliminary study, In the next chapter, we apply the training-validation and bootstrap

methods to further investigate the error statistics stability.



Chapter 3

Training-Validation and Bootstrap

The preliminary study showed us that the bounding parameters are not necessarily stable for each

time window. In other words, it implies that there may exists inherent variability in the data. After

a preliminary study, we now introduce two statistical methods for quantifying the variability of

the satellite error bounding parameters, the training-validation method and the bootstrap method.

In the following sections, we first present the data used for the experiment, then we present the

algorithms and the experiment result for both methods.

3.1 Data used for both algorithms

In this experiment, we again used the 12 years of satellite clock and ephemeris errors, but now

examining the maximum projected error (MPE) as well as the UPE, normalized by the �URA. The

MPE is the largest possible projected error onto Earth for each satellite for every given epoch. We

first applied a threshold of 4.42 to get the nominal error. We computed the bias and � directly for

the MPE values. For UPE, as there is only one unique value at each time, we calculated the smallest

bounding bias for all the users and selected the � that provided bounding for all users as described

in the previous chapter.

3.2 Training Validation Method

Our goal for examining the variability of the bounding parameters of the given errors is to use them

and make inferences about future error bounding parameters. In other words, we are interested in

the variability and the predictability of the bounding parameters.

11
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To investigate the variability and predictability in the bounding parameter �, we applied the training-

validation method, an extension of the training-validation method used in the machine learning

algorithm. We designated a part of the data set as ”training data,” computed their bounding

parameter, and compared the values to the bounding values generated from the rest of the data

set, the validation data. We made those two comparisons to examine how closely the training

data bounding parameters resemble the validation’s. This method can be viewed as a prediction

simulation experiment conducted on the available data, and it gives us insights into what would

happen if we use all the available data to predict future bounding parameters.

We represent the training-validation algorithm in Algorithm 1

3.2.1 Training Validation Algorithm

The training-validation algorithm is presented in Algorithm 1

Algorithm 1: Training-Validation Method

Result: Training Bounding Parameters and Validation Bounding Parameters
Divide the data into a training set and validation set;
Compute the bounding parameters from the validation set;
for m times do

Divide the training set into chunks of data ;
Randomly select the data chunks from the training set as training data;
Compute the bounding parameters corresponding to the selected data as training
bounding parameters;
Store the calculated parameters;

end
Construct distribution using the stored training and validation parameters.

We post-processed the simulated data by plotting the histogram of the ratio between the training

and validation parameters and calculating the standard deviations. The results give us an intuition

of how well the training data approximate the validation data, or in other words, approximates the

predictability of the data set. In addition, the standard deviation will give us an insight into the

variability of the parameters. Specifically, this method is applied to investigate the variability and

predictability of the satellites over time using the same set of satellites for training and validation.

The algorithm divides the data into half and half in time and uses them as training and validation

sets. The training set is further divided into units of 6 months to preserve time correlation. We

draw the training data from the training set data units. This method can also evaluate the e↵ect

of training time length on the result by varying it. For the validation set, rather than dividing the

data into blocks, we use the entire validation set to compute a single set of bounding parameters.



CHAPTER 3. TRAINING-VALIDATION AND BOOTSTRAP 13

3.2.2 Training-Validation Result

The training-validation experiment was applied using the normalized GPS UPE data. After selecting

the training and validation data, we aggregated the satellites to avoid instability due to a lack of

data.

We selected 2 and 5 years of training data for the simulation, computed the training-to-validation

data ratio, and centered the histogram at 0. We generated a thousand simulation data points and

set the thresholds to 3 and 4.42. The ratios of training�
validation� � 1 are plotted in Figure 3.1

(a) (b)

(c) (d)

Figure 3.1: Parameters for GPS clock and ephemeris errors from the year 2008 to the year 2020
using three years time window for � with the threshold of 3 times �URA with (a) 2 years training
years and standard deviation of 0.0197(b) 5 years of the training year and standard deviation of
with a standard deviation of 0.0146 and with the threshold of 4.42 times �URA with(c) 2 years of
the training year and standard deviation of 0.0590 (d)5 years of the training year and standard
deviation of 0.0047

The closer the values are around 0, the better the predictions are. In addition, we want the ma-

jority of the data to lie on the negative side to achieve conservative bounding. If we have small

standard deviations for the bounding parameter distribution, we can infer that the given data has

low variability.

In the plots, the ratio values are close to 0 and have low standard deviations, which indicates that

the prediction method works well with data for as little as two years. We can also observe that the

majority of the data lies in the negative range, implying overestimation, which is desired to achieve

conservative bounding.



CHAPTER 3. TRAINING-VALIDATION AND BOOTSTRAP 14

With the increase in training data size, we have a lower standard deviation, indicating that more

data will likely stabilize the parameter. However, we observe contradicting e↵ects after lowering the

threshold to 3. For training data size of 2 years, the standard deviation decreased, and for training

data size of 5 years, the standard deviation increased. This somewhat unexpected increase in the

standard deviation is likely due to the inherent behavior of the data. In Figure 2.4, we can see

that for the first four years, the error data with the threshold of 4.42 seems to behave more stable

than error data with the threshold of 3. In other words, it is not surprising that error data with a

threshold of 4.42 exhibit more stable bounding behavior for a more extended period.

We find that the past aggregated UPE data for GPS has low variability and good predictability and

will likely produce conservative bounds for future errors using as little as two years of data. We now

move on to the bootstrap method.

3.3 Bootstrap Method

Bootstrap is another method used for quantifying variability. This section gives a brief explanation

of the mathematics behind the bootstrap method.

Bootstrap is a resampling method used to evaluate the uncertainty in the estimation. It assumes

that the sample we have is representative of the actual population. We refer to this sample as the

original sample in the following paragraphs. The bootstrap method is, in essence, a simulation using

sampling with replacement based on the above assumption. The statistics parameter distribution

generated from the bootstrap simulation should be similar to the one generated from the actual

population. [15] [16]

Another way to understand this is that by sampling with replacement, we create alternative history

data, and by generating a large number of alternative histories, we can explore the inherent uncer-

tainty in the error data. This section will go through a simple explanation of the bootstrap theory,

why and how we apply the bootstrap method to our problem, and finally, present the bootstrap

algorithm.

The bootstrap method computes the probability distribution of a particular parameter and thus

can provide its variability. Suppose we are interested in parameter ✓. First, let us draw n samples

from the population to form the original sample. Then we sample with replacements for M times to

generate M new set of sub-samples, each with the length of n. By doing so, we have generated M

iid bootstrap sub-samples. For each of those bootstrap sub-sample, we can compute the bootstrap

estimator parameter ✓̂⇤n. [17]
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We represent the distribution of the parameter using the below Equation [17]

Fn(t) = P
⇣p

n

⇣
b✓n � ✓

⌘
 t

⌘

Here, the b✓n is the estimator for ✓. The bootstrap estimation of the distribution can be represented

using the below Equation [17]

F̂n(t) = P
⇣p

n

⇣
b✓⇤n � b✓n

⌘
 t

���X1, . . . , Xn)

Given that we have the original sample as{X1, . . . , Xn}. We can argue that Fn(t) is close to some lim-

iting distribution, and ˆFn(t) is close to another limiting distribution. The two limiting distributions

are close to each other; thus, the distribution and the bootstrap estimation are close. Furthermore,

we can apply the Monte Carlo approximation using the M samples we have obtained to calculate

the distribution represented by the below Equation [17]

F̄ (t) =
1

M

MX

j=1

I

⇣p
n

⇣
b✓⇤j � b✓j

⌘
 t

⌘

This estimation is also close to bFn(t), which is close to Fn(t). Thus, we have obtained the original

parameter distribution as long as M is large. [17]A version applied to the mean of the data can be

easily proven using the central limit theorem and the law of large numbers. Further expansion on

the theory can be found in Asymptotic Statistics by A. W. van der Vaart. In our case, we apply the

bootstrap method to the overbounding parameter bias and �.

3.3.1 Bootstrap Application to Bounding Parameters

Bootstrap fits our problem as it is a well-developed method to investigate variability within the

data series. [18] In addition, bootstrap does not require a model. Since we do not have a known

model for the error bounding parameter distribution, the bootstrap method is a good candidate for

evaluating parameter variability. [19] Also, bootstrap does not make many assumptions about the

distribution. [15]

3.3.2 Bootstrap Algorithm

In this section, we present the bootstrap algorithm. A typical bootstrapping method is executed

according to the following Algorithm 2: [15]

In this case, our statistics parameter ✓ distribution would reflect the ✓ distribution if we draw

the statistics distribution directly from the population. Our study slightly varies the method by
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Algorithm 2: Bootstrap Method

Result: Statistic Distribution
Draw a sample from the population with size n as the original sample;
for m times do

Draw sub-samples with size n from the original sample with replacements and store the
sub-samples;
Calculate the statistics parameter ✓ for the sub-sample;
Store ✓;

end
Construct distribution using ✓

dividing the original sample into smaller units and then drawing the sub-sample from the units with

replacements. We elaborate on the incentive for this change in the experiment section. We chose

the original sample as the available error history.

There are di↵erent advantages to using the training validation and the bootstrap method. The

training-validation method is more intuitive than the bootstrap method. It precisely simulates a

prediction process of the future error bounding statistics distribution. On the other hand, mathe-

matics is well-established for the bootstrap method. It is a commonly accepted algorithm, and it is

a valid estimator for quantifying uncertainty. The following section lays out the experimental setup

and shows the results.

3.3.3 Bootstrap result

We first took every satellite’s MPE time history for GPS data and divided it into units of 15 minutes,

0.5 days, one day, and one month. When applying sampling with replacement to the original sample,

we used these units as sampling units. Then we took the original sample to be the later six years,

nine years, and 12 years to explore the e↵ect of the original sample size on the bootstrapping result.

We then sample the units with replacements from the original sample many times.

We gradually relaxed the time independence assumption by increasing the sampling unit size. In the

bootstrapping method, we have the underlying assumption that the sampling units are independent

of each other. In other words, if we choose every 15 minutes as the unit sample size, we assume that

every 15 minutes, we have a data set independent of the previous 15 minutes. We incorporated time

correlation into the data set by increasing the unit size, thus relaxing the strong time independence

assumption.

We chose every 15 minutes because this is the error sampling rate. We chose 0.5 days based on

the number of ephemeris uploads to the satellites. We chose one day and one month to explore the

e↵ect of expanding the time units. We selected 6 years and 12 years as the original sample size to

show the impact of the original sample size. We then applied the same method to the aggregated
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satellites, expanding the data size by 45.

Individual satellite

In Figure 3.2 and 3.3, we show the results obtained from the satellite with svn 67 and 71. These

are normalized histograms. It turns out that the threshold does not matter for these two satellites

due to the lack of near-fault data points. Thus we are only showing the results for the threshold of

4.42. In addition, for each satellite, due to the limited operation period, for example, svn 67 and

71’s operation data are mostly available only in the later six years. It turns out that the result for

the later six years and a total of 12 years are very similar. So we only show the result for 12 years

with 1000 samples. The di↵erence between the di↵erent original samples size is more obvious for

the aggregated error plot since there are always satellites operating, so we do not have the limited

operation period issue.

(a) (b)

(c) (d)

Figure 3.2: Satellite with svn 67 bootstrap result for � = 0.333 for GPS clock and ephemeris MPE
for 12 years with units of (a) 15 minutes with a standard deviation of 0.00825 (b) 0.5 day with
a standard deviation of 0.0512 (c) 1 day with a standard deviation of 0.0517 (d)30 days with a
standard deviation of 0.0536
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In Figure 3.2 (a), we observe a mono-peak histogram with a small standard deviation for the bound-

ing parameter distribution. This result indicates little variability or small uncertainty in the bound-

ing parameter. However, as we increased the sampling unit’s size, the parameter’s standard deviation

started to increase. Moreover, we see two distinct peaks in the distribution. The two peaks become

more evident as the sampling unit size grows. After grouping the time steps into units, we added

the time correlation when applying the re-sampling method and added time correlation. We create

a second peak, presenting the two modes in the error bounding parameter behavior. The result

implies that we could have under or overestimated the parameter with the multi-modal behavior.

For example, we could have gotten a value close to the lower peak, whereas the actual result is

closer to the higher peak. This bi-modal behavior shows that the error bounding parameter likely

has a larger uncertainty when we do not assume that the data points sampled every 15 minutes are

independent.

(a) (b)

(c) (d)

Figure 3.3: Satellite with svn 71 bootstrap result for � = 0.333 for GPS clock and ephemeris MPE
for 12 years with units of (a) 15 minutes with a standard deviation of 0.00805(b) 0.5 day with a
standard deviation of 0.0110(c) 1 day with standard deviation of 0.0145 (d)30 days with a standard
deviation of 0.0183

A similar result is shown in Figure 3.3. As the unit size increased, we increased the time correlation



CHAPTER 3. TRAINING-VALIDATION AND BOOTSTRAP 19

to relax the assumption that error data points sampled every 15 minutes are independent, creating

more peaks and a larger standard deviation. This result has the important implication that the

uncertainty in the parameter tends to be larger than the result without the data point independence

assumption. Even with a small degree of time correlation introduced, taking units every 0.5 days,

we could potentially still get large variability in the bounding parameter for a single satellite. Here,

by applying the bootstrap method, we created an alternative history of error data that could have

happened and can happen in the future, suggesting that the inherent variability might be larger

than it appears in the actual time series data.

Aggregated satellites

As indicated in the time history plot, we tend to create a more stable parameter with more inde-

pendent data points by aggregating the satellites together. We examine the bootstrap result from

the aggregated satellites with 10000 samples. In Figure 3.4, we plot the result using a threshold of

4.42 and with the original sample size of 6 years.

(a) (b)

(c) (d)

Figure 3.4: Satellite aggregated bootstrap result for � = 0.776 for GPS clock and ephemeris MPE
for 6 years with the threshold of 4.42 units of (a) 15 minutes with a standard deviation of 0.0783
(b) 0.5 day with a standard deviation of 0.125(c) 1 day with standard deviation of 0.124(d)30 days
with a standard deviation of 0.124
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Here, we observe the same multi-modal behavior in the plots. The peaks become more distinct than

before, and the standard deviation grows with the increasing unit size from 15 minutes to 12 hours,

consistent with each satellite’s result. The time correlation e↵ect becomes less evident among the

unit size of 12 hours, one day, and one month. The peaks and the large standard deviation are likely

due to the introduced time correlation described in the above sections. Notice that we should not

compare the standard deviation of the aggregated satellite bounding parameter distribution with

the single satellite since the satellites we selected are newer and thus are likely to produce a better

result than the other satellites.

One important factor we wish to explore is the e↵ect of the original sample size on the bootstrapping

result. We took to expand the original sample size to the later 9 years and plotted it in Figure 3.5

(a) (b)

(c) (d)

Figure 3.5: Satellite aggregated bootstrap result for � = 0.768 for GPS clock and ephemeris MPE
for 9 years with the threshold of 4.42 units of (a) 15 minutes with a standard deviation of 0.0415
(b) 0.5 day with a standard deviation of 0.0409(c) 1 day with a standard deviation of 0.0415(d)30
days with a standard deviation of 0.0428

As we can observe, the standard deviation of the � parameter distribution is significantly reduced

with a larger original sample size, which is more representative of the whole population, in our case,

the entire time of service of the satellites. In addition, we observe that the multi-modal behaviors

are less noticeable. Both results indicate a potential decrease in the parameter variability as we
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increase the original sample size.

Now we can further expand the original sample size to 12 years of data and apply bootstrap to the

aggregated satellite MPE with units of 15 minutes, 0.5 days, one day, and 30 days. The results are

plotted in Figure 3.6. This bootstrap result should represent the whole population more since we

expand the bootstrap sub-sample size.

(a) (b)

(c) (d)

Figure 3.6: Satellite aggregated bootstrap result for � = 0.787 for GPS clock and ephemeris MPE
for 12 years with the threshold of 4.42 units of (a) 15 minutes with a standard deviation of 0.0299(b)
0.5 day with a standard deviation of 0.0314(c) 1 day with a standard deviation of 0.0332(d)30 days
with a standard deviation of 0.0344

The plot shows that the multi-modal behavior becomes less noticeable with more data available.

The standard deviations also significantly decreased compared to the results obtained using a smaller

original sample. This result indicates that the bounding parameter for the aggregated satellite error

is stable and will likely stay stable in the future.

As suggested by the time history study, the near-fault data points increase the bounding parameter

variability. We thus choose to eliminate these outliers in the bootstrapping process by lowering the

threshold to 3. The results are shown in Figure 3.7.

As shown in Figure 3.7, the multi-modal behavior becomes less noticeable compared to the bootstrap
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(a) (b)

(c) (d)

Figure 3.7: Satellite aggregated bootstrap result for � = 0.584 for GPS clock and ephemeris MPE
for 6 years with the threshold of 3 units of (a) 15 minutes with a standard deviation of 0.0226(b)
0.5 day with a standard deviation of 0.0375(c) 1 day with a standard deviation of 0.0379(d)30 days
with a standard deviation of 0.0380

result obtained before near-fault data point elimination. This result is a good indication that the

multi-modal behavior is likely caused by the few near-fault data points in the aggregated satellite

error data. After eliminating the near-fault data points, the bounding parameter tends to exhibit

more stable behavior.

Now, we increase the original sample size as we did before. The results are shown in Figure 3.8

As we can observe from the result, the multi-modal behavior nearly vanishes, and we are left with

highly stable parameter statistics. Finally, we increased the original size to 12 years with a threshold

of 3. The result is shown in Figure 3.9

We can barely observe the multi-modal behavior after we lower the threshold to 3 and increase the

original sample size to 12 years. The standard deviation of the parameter distribution significantly

decreased. This result again shows that the near-fault data points likely contribute to the uncer-

tainties in the bounding parameter, and by expanding the original sample size, the parameter is
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(a) (b)

(c) (d)

Figure 3.8: Satellite aggregated bootstrap result for � = 0.578 for GPS clock and ephemeris MPE
for 9 years with the threshold of 3 units of (a) 15 minutes with a standard deviation of 0.00878(b)
0.5 day with a standard deviation of 0.0112(c) 1 day with a standard deviation of 0.0112(d)30 days
with a standard deviation of 0.0106

stabilized. In Figure 3.9, we see little variation in the error bonding parameter. This result repre-

sents the inherent variability of the Gaussian bounding estimates since it is not a↵ected by the few

near-fault data points and uses all the error data available. The plot shows that di↵erent sampling

units produce similar distribution and standard deviation, suggesting that the time correlation no

longer has a significant impact. The �, as shown in the plot, has a small variation ranging from

0.542 to 0.628. The standard deviation is lower than 0.0095.

This chapter’s study shows that three years of data for each satellite likely provides too few inde-

pendent data points for time series analysis. Thus, we should use the aggregated satellite error for

the time history error analysis of the bounding parameter. The time history plots show that the

bias parameter is highly stable, and the � parameter is less stable. This result is likely caused by

the near-fault data points.

We then explore using the training-validation method to simulate the data prediction process and

find that the past aggregated UPE data for GPS has little variability and good predictability and

will likely produce conservative bounds for future errors using as little as two years of data.
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(a) (b)

(c) (d)

Figure 3.9: Satellite aggregated bootstrap result for � = 0.578 for GPS clock and ephemeris MPE
for 12 years with the threshold of 3 units of (a) 15 minutes with a standard deviation of 0.00866(b)
0.5 day with standard deviation of0.00920(c) 1 day with a standard deviation of 0.0094(d)30 days
with a standard deviation of 0.00918

Finally, we used the bootstrap to evaluate the uncertainty in our bounding estimate. By varying the

sampling units, we include the temporal correlation. The result shows that the past error estimates

have acceptable uncertainty even with a high degree of time correlation assumption. The standard

deviation of the Gaussian bounding distribution ranges from 0.542 to 0.627, with low variability for

GPS. This result shows that the GPS clock and ephemeris error bounding parameter is highly stable

and can be well characterized with the available data.



Chapter 4

Variability Quantification

Parameter Derivation

The bootstrap method measures our variability in the bounding distributions by generating a prob-

ability distribution of the bounding parameters. However, we also need to provide the user with a

single set of Gaussian bounding parameters that incorporates the variability in the bounding process.

To solve this problem, we develop a method for computing a single set of Gaussian bounding pa-

rameters that accounts for its probability distribution. We introduce the mathematical formulation

in this Chapter.

In the previous chapter, we utilize the bootstrap method to generate possible alternative error

histories to explore the data’s inherent variability. As a result, we obtain the probability distribution

of the bounding parameters. Depending on the spread of the distribution, we can estimate the

variability of the parameters. However, the probability distributions are hard to use; thus, we

present a way to formulate a single parameter that captures all the variabilities explored in the

bootstrap process in this section.

Our error bounding distributions are Gaussian distributions with certain means and standard de-

viations equal to �s as error bound ⇠ N (bias,�). The probability bound of the absolute value

of an error larger than some bounding value L, using the Gaussian bound as its probability, can

be written as 2(1 � Q(L�bias
� )) where Q is the CDF of the Gaussian distribution. Following the

bootstrapping step, we obtain the probability distribution for the set of bounding parameters bias

and � as pb(bias,�). Then equation 4.1 can be used to express the probability of the absolute value

25
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of the error " larger than L

P (|"| > L)  2⇥ (1�Q(
L� bias

�
)) (4.1)

From the bootstrap process, we obtained the probability distribution of the bounding parameters.

Each set of bounding parameter value (bias,�) has a probability of pb(bias,�). In order to capture

this probability distribution or the variabilities of the parameters, we apply marginalization. We

rewrite the expression in the following form

P (|"| > L) 
Z

bias,�
2⇥ (1�Q(

L� bias

�
))pb(bias,�)d(bias,�) (4.2)

Furthermore, we wish to express our probability distribution P (|" > L|) as a single Gaussian distri-

bution CDF using the following equation

P (|"| > L)  2⇥ (1�Q(
L�Bias

⌃
)) (4.3)

Here, Bias and ⌃ are the Gaussian bounding parameters. We equate the left hand side of equation

4.2 and 4.3 and formulate equation 4.4

Z

bias,�
2⇥ (1�Q(

L� bias

�
))pb(bias,�)d(bias,�) = 2⇥ (1�Q(

L�Bias

⌃
)) (4.4)

Equating the two sides of the equation allows Bias and ⌃ to account for the probability distribution

on the left-hand side of the equation. In this way, Bias and ⌃ are the new Gaussian distribution

parameters that capture the inherent variability in the bounding parameters. The Gaussian CDF

can be expressed as Q(L�bias
� ) = 1

2 (1 + erf(L�bias

�
p

(2)
)).The above expression can be simplified to

L�Bias

⌃
= erf

�1(

Z

bias,�
erf(

L� bias

�
p
(2)

)pb(bias,�)d(bias,�)) (4.5)

Knowing pb(bias,�) provided by bootstrap simulation, the parameter L�Bias
⌃ can be computed

numerically. This method gives us the relation between the three parameters L, Bias, and ⌃, with

the latter being the Gaussian bounding parameters that capture the inherent variability in the data

set.



Chapter 5

Variability Quantification

Algorithm

With this new development, we seek to utilize UPE to compute the bootstrap statistics using

the mathematical formulation given in the previous chapter. In this chapter, we first introduce

a method to reduce the computation cost and its corresponding algorithm. To do so, we reduce the

computation time by replacing the original bounding algorithm with a direct bounding algorithm.

Then we present the algorithm for computing the new statistics parameters.

In addition, in the previous chapter, we applied the bootstrap method to the MPE. However, MPE

values are generally bimodal and thus lead to artificially large bias due to this bimodal e↵ect. [5] By

using UPE, we can eliminate the bimodal e↵ect of the MPE.

5.1 UPE Direct Bounding Bootstrap Algorithm

One downside of using a statistical method like Bootstrap is the computational cost. Since the

bounding procedure is repeated many times for Bootstrap, we need to guarantee that each bounding

step is computationally cheap. The most computationally expensive step is a procedure we refer to

as symmetric unimodal(SU) condition checking.

This process stems from the Gaussian bounding algorithm, as introduced in Chapter II. The bound-

ing algorithm first computes an empirical CDF based on the distribution. Then it applies a symmet-

ric unimodal (SU) bounding algorithm to produce a SU CDF distribution over the empirical CDF.

Finally, the algorithm produces a Gaussian bound over the SU CDF. The SU bounding used in the

algorithm relies on linear programming and is conditioned on excess mass. This bounding step is
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necessary as it guarantees stability through convolution for Gaussian bounding. [10]

The bias we use has to satisfy the SU bounding conditions simultaneously for all the users [10], given

we are applying the algorithm to UPE. The process is shown in figure 5.1.

Figure 5.1: Bounding process achieved by two steps: the SU bounding and the Gaussian bounding

Since we are working with 200 users, we must find the smallest bias that satisfies all users’ SU

conditions, as we did when we computed how the bounding parameters evolved with time in Chapter

II. As a reminder, we use the binary search to find the bias. We apply a bias to all 200 users each

time to check if this bias satisfies the SU condition for all 200 users. Using binary search, we can

find the smallest possible bias to achieve the SU condition for all the users.

We then use this bias as the input for the bounding algorithm, compute the �s that correspond to

each user, and take the largest � as the bounding parameter. The flow chart in Chapter II roughly

illustrates the process. Here, we show the details in figure5.2

Figure 5.2: Process to find the smallest feasible bias and the corresponding largest � among the
users

This search step requires O(log(n)) computation step given the possible bias range length to be

n. Each step checks the SU conditions 200 times since we have 200 users, making it the most
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computationally expensive step. This step is further applied to all SVNs. The entire procedure is

repeated 1000 times for Bootstrap, which becomes time-consuming. To reduce computational time,

we apply the direct bounding algorithm.

The essential idea behind this algorithm is that we neglect the SU bounding and directly apply the

Gaussian bounding to the empirical CDF. In this way, we no longer need to check for SU conditions.

Thus, we can remove the binary search. We refer to this method as the direct bounding method.

We refer to the original bounding method as the two-step bounding method.

One shortcoming of the direct bounding algorithm is that it relies on the user to provide the bias

value. Here, we recommend that the user pick the median of the given data set. We do not elaborate

on the bounding algorithm further. The detail of the bounding process can be found in the previous

study, ”Gaussian Bounds of Sample Distributions for Integrity Analysis”. [9] [10]

In order to justify this simplification, we check experimentally to ensure that given the same bias

value, the two methods produce similar �s. The results are shown in Chapter VIII. Based on the

provided plots, the � values generated by the two methods are on the order of 0.01. In other words,

we could substitute the two-step bounding with the direct bounding without a↵ecting the bootstrap

result for the given data set severely. This replacement is not always valid, but it appears to hold

for the data sets we are analyzing.

5.2 Three Parameters Comparison and Algorithm

In the previous chapters, we have established the mathematical tools for computing the single

bounding parameter that accounts for the variability in the bounding parameters and the bootstrap

computation simplification utilizing the direct bounding algorithm. We can compute the following

three sets of bounding parameters given a set of data: the two-step bounding parameters, the direct

bounding parameters, and the single bootstrap bounding parameters.

5.2.1 Two-step bounding algorithm

The first parameter is computed by applying the two-step Gaussian bounding algorithm. Taking

the example of computing the bounding parameter corresponding to one SVN using UPE, we show

the algorithm in 3

5.2.2 Direct bounding algorithm

The direct bounding algorithm is a simplification of the two-step bounding algorithm. The algorithm

is shown in Algorithm 4
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Algorithm 3: Two Step Gaussian Bounding for One SVN

Result: Two Step Gaussian Bounding bias and � for one SVN
Take the 200 user data corresponding to the SVN;
for all the users do

Compute the right and left medians of the empirical CDF;
Take the largest of the two values to be the lower bound for bias;
Compute the right and left maximum value for the empirical CDF;
Take the smallest of the two values to be the higher bound for bias;
Gather the lower and higher bound for bias give the bias range for this particular user;

end
Compute the union of the ranges for all users;
while upper bias bound and lower bias bound di↵erence smaller than a small value ✏ do

Set bias to be the median of the bias range;
Check the SU condition for all users corresponding to the bias;
if all users satisfy the SU condition then

Set the current bias as the upper bias bound;
else

Set the current bias as the lower bias bound;
end

end
Get the final bias after the while loop condition is met;
for all the users do

Compute the � corresponding to the bias using the two-step bounding algorithm;
end
Take the largest of the �s to be the bounding parameter

Algorithm 4: Direct Gaussian Bounding for One SVN

Result: Direct Gaussian Bounding bias and � for One SVN
Take out the 200 user data corresponding to the SVN;
for all the users do

Compute the right and left medians of the empirical CDF;
Take the largest of the two values to be the bias;

end
for all the users do

Compute the � corresponding to the bias using the direct bounding algorithm;
end
Take the largest of the �s to be the bounding parameter
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In our experiment, rather than computing the bias, we directly use the bias computed from the

two-step bounding to compare � values with the same bias.

5.2.3 Bootstrap bounding algorithm

The bootstrap algorithm combines the bootstrap process, the direct bounding algorithm, and the

overall bounding algorithm. We first divide the error data into units as we did in the previous

chapters to preserve time correlation. Then we do a sample with replacements on the units, getting

a new set of data that is the same size as the original data set. We apply the direct bounding

algorithm to the new data set. This process is repeated 1000 times, which gives us 1000 bias and �

values. Let the number of bootstrap resamples be N . We discretize equation 4.4 and set the pb for

each set of bounding parameter to be 1
N . We get equation 5.1 through some algebraic manipulation.

We then apply equation 5.1 to compute the single set of bounding parameters that captures the

bootstrap probability distribution.

L�BIAS

⌃
= Q

�1

 
1

N

NX

i=1

Q

✓
L� bias(i)

�(i)

◆!
(5.1)

Here, N is the bootstrap time, which is 1000. Each bootstrap result generates a set of bias(i) and

�(i). We then take the Gaussian CDF Q and sum the results. After dividing the result by N ,

we take the inverse of Gaussian CDF, which gives us the left-hand side of the equation. With the

given relation for L, Bias, and ⌃, we need to guarantee that the bounding parameters Bias and ⌃

work for all possible bounding value L, and we need to eliminate one extra degree of freedom in the

equation.

parameter selection

To eliminate the extra degree of freedom, we choose to set BIAS to be the same as the bias computed

from the two-step bonding process using the original data before bootstrapping. To guarantee that

the bounding parameters work for all L values, we loop through di↵erent Ls and compute their

corresponding ⌃s. The largest ⌃ is used as the overall bootstrap bounding parameter. The range

of L we pick here is from the bias computed using the two-step bonding process applied to all the

data to the maximum error value. The algorithm is shown in 5

In this way, we have obtained three sets of bounding parameters, the two-step bounding, the direct

bounding, and the bootstrap bounding. Here, the bias values are set to be the same for comparison

purposes for all the bounding methods. If the bootstrap bounding parameter is close to the two-step

and the direct bounding parameters, we can substitute the bootstrap bounding parameter with the

other two and save computation power. This way, we can capture the inherent variability in the
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Algorithm 5: Bootstrap Overall Bounding for One SVN

Result: Bootstrap Overall Bounding bias and � for one SVN
Take one SVN error data with 200 users as the original sample;
Designate the length of sampling units;
Divide the data into units by time periods; each consists of 200 user data;
for 1000 times do

Sample with replacements on the units, producing resamples with the same size as the
original sample;
Apply direct bounding algorithm to the new sample, compute and store the bias and �;

end
Designate the L range from the bias computed using the two-step bounding algorithm
applied to the original sample to the largest error data value from the original sample;
Set the Bias to be the bias computed using the two-step bounding algorithm applied to the
original sample;
for all the possible L values do

Compute the ⌃ value using equation 5.1
end
Use the largest ⌃ as the bounding parameter

parameters with less computation power. This point is elaborated on in chapter VIII.

Plot example

In this section, we show an example of the plot that contains the three sets of parameters obtained

from the three bounding algorithm in Figure 5.3 where we plot the Galileo satellite nominal clock

and ephemeris errors normalized by �URA.

Figure 5.3: A demonstration of the three bounding method. We partitioned the data by di↵erent
time window as it shows on the y-axis. On x-axis, we plot the value of the bounding parameters.

The specific data plotting method will be explained in the following chapters. Here, we focus

on di↵erent values produced by di↵erent bounding methods. As demonstrated by the plot, when

we zoom in to the � values corresponding to the year of 2018, we can see that the three bounding

methods produce di↵erent values, with the green dot being the bootstrap method, the blue dot being
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the direct bounding method, and the red dot being the two-step bounding method. Specifically, the

bootstrap method gives us 0.740, the direct method gives 0.733, and the two-step method gives us

0.751.

In the next chapter, we talk about the data partition method to examine how the bounding param-

eters vary with di↵erent observable conditions.



Chapter 6

Data Partition Method for

Satellite Error Analysis

With the bounding algorithm, we can produce a single set of bounding parameters that captures the

inherent variability. Given the available data, we further explore how the bounding parameters vary

with di↵erent observable conditions. In this sense, we can evaluate the stability over di↵erent ob-

servable condition values. These partitions give us insights into whether the current error-bounding

parameter values are representative of the future error-bounding parameter behavior.

Here, we must distinguish the variability captured by the new statistics parameter and the stability

over di↵erent observable condition values. We use variability to refer to the inherent data variability

quantified using Bootstrap and stability to refer to how the statistics change with di↵erent observable

condition values. It is important not to mix the two in the following chapters.

The observable conditions we are interested in are time period, space vehicle number (SVN), satellite

blocks, user range accuracy, and the age of data. This section elaborates on how we partition the

data and its motivation.

6.1 Time period

The first variable is the time period. The same sliding window introduced in Chapter II is applied

here. We refer to Chapter II for further detail.

If we observe similar bounding parameter values corresponding to each period, we can draw some

preliminary conclusions regarding the variability of the bounding parameters over time and use this
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information to predict future error-bounding behavior.

6.2 Space vehicle number(SVN)

The second variable is the space vehicle number. Each GPS satellite is given a unique SVN that

identifies the specific satellite. For a given SVN, we seek to provide a valid upper bound correspond-

ing to each satellite. We obtain the SVN partition by processing the observable Pseudorandom Noise

(PRN) values. In addition, we want to know if the given error behavior is representative of other

satellites including those that are yet to be collected.

To make rough predictions of the future error data, we need to explore how the bounding parameters

vary with di↵erent SVNs and whether the bounding parameters are stable for di↵erent SVNs. To

achieve this evaluation, we partition the error data by SVN. Here, for each satellite, we take the

entire error history from 2008 to 2022 and apply the bounding algorithm. We set the bias to be the

same for all the SVNs and compute the di↵erent SVN’s � bounding values.

6.3 Satellite blocks

The third variable is the satellite block. For GPS, the satellites that have the same satellite design

are divided into several blocks. The users can choose which satellite block they are interested in.

With the satellite block being another condition, we want to examine whether the error behavior

changes with satellite design. We take the entire time span for each block and aggregate all the

satellites within the block to compute the error bound parameters. We repeat this process for all

the blocks and compare among the blocks.

6.4 User range accuracy (URA)

The fourth variable is the URA, which broadcast from the GPS satellites as part of the ephemeris

message. We can obtain this partition from the observable. We compute the error bounding param-

eters for each URA error data point. Each error data point corresponds to a particular URA. We

take the entire time span of data and divide the errors by di↵erent URA values. Each set contains

all 200 users’ data points corresponding to that URA. Here, we aggregate the error data for the

entire time period and for all satellites.

6.5 Time since last update (TSLU)

Finally, we repeat the process for the age of data or TSLU by dividing the error data by di↵erent

TSLU and computing their corresponding bounding parameters. If relative consistency is achieved
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for each variation’s error bounding parameters, we can conclude that high stability exists in the data

and draw conclusions regarding the data yet to be collected.



Chapter 7

Data for Satellite Error Bounding

Characterization

In this chapter, we elaborate on the data used. We elaborate on what type of data is used and what

constellations are included. In the previous chapter, we observed the e↵ect of near-fault data points

and how they a↵ect the bounding parameter stabilities. This chapter also explains how to eliminate

the near-fault data points. Finally, as new message types will be included in ARAIM, we seek to

provide error-bound characterization for those messages. [20] [21]To conservatively approximate how

the error bound might behave, we provide an estimation method in this chapter.

7.1 GPS and Galileo data used for the bounding characteri-

zation experiment

For this experiment, we use two constellations, GPS and Galileo. We are given the GPS satellite

clock and ephemeris error data normalized by �URA from 2008 to 2022 for each SVN. We are further

given the URA and TSLU data corresponding to each epoch and satellite. For a single SVN, we

create 200 users projected errors, the error vector projected to the user’s line of sight. This process

uses 200 users evenly distributed around the globe.

We take the Galileo user projected error from 2018 to 2022. The data is taken every 5 minutes. We

partition the data by time window and SVN.

37



CHAPTER 7. DATA FOR SATELLITE ERROR BOUNDING CHARACTERIZATION 38

7.2 Near-fault Data Elimination and fault definition change

For GPS, the nominal clock and ephemeris errors are defined as the error with a value below

4.42 ⇥ �URA, where �URA is the User Range Accuracy. The Psat value for GPS is 10�5 [14],

which establishes the maximum percentage of data that can be considered faulty.

In a previous chapter, we observed that by lowering this threshold from 4.42⇥ �URA to 3⇥ �URA,

we obtained more stable behavior for the bounding parameters for di↵erent observable condition

values. In this sense, lowering the threshold ”stabilizes” the bounding parameters. We apply similar

techniques to GPS and Galileo nominal clock and ephemeris data in the following chapters. In doing

so, we essentially change the definition of fault by changing the threshold value.

For GPS, we apply the same technique as mentioned above. In this case, the error data points

between those thresholds are also regarded as faulted data points and eliminated. The total data

eliminated remain below Psat.

For Galileo, the nominal error is defined with a threshold of 4.17⇥ �URA. The Psat is 3⇥ 10�5 . In

this study, we seek to set the threshold to a lower value for Galileo such that the fraction of data

eliminated is less than Psat. we set the threshold to be 2 ⇥ �ura such that the data eliminated is

slightly smaller than 10�5 for the new definition of faulty data points.

7.3 Error bounding parameter characterization for messages

after lowering �URA

The Civil Navigation (CNAV) message, broadcasted on L5, will be used to provide improved

ephemeris data as well as integrity parameters for use by ARAIM. One of the major di↵erences

between the current legacy navigation message and the CNAV message is that the CNAV message

has the capability to broadcast lower URA values. [20] [21]In this sense, we are motivated to learn

the behavior of the error-bounding parameters with lower URA values.

To do so, we take the LNAV clock and ephemeris data points corresponding to �URA = 2.40meters,

normalize them with lower �URA values and find the nominal error with a threshold of 4.42. In this

sense, we have ”inflated” the normalized error data values. We see tighter error bounds with the

di↵erent �URA values.



Chapter 8

GNSS Error Bounding Parameter

Characterization Result

In this chapter, we show the experiment results for GPS and Galileo and satellite errors with lower

URA values using the data partitions mentioned in the above chapter.

In this chapter’s experimental result, we aim to do the following.

1. Justify the bootstrap simplification, which replaces the two-step bounding algorithm with the

direct bounding algorithm in each bootstrap sub-sample computation.

2. Justify the two-step bounding parameter substitution, which substitutes the bootstrap bound-

ing parameter with the two-step bounding parameter.

3. Explore the bounding parameter stability under di↵erent conditions.

4. Explore the e↵ect of fault definition change.

5. Examine whether the parameters are bounded by the broadcast URA values.

6. Examine whether the bias values are su�ciently small as to neglect for Horizontal ARAIM.

We elaborate on the motivation for the first four objectives.

For the first objective, as stated in the previous chapter, to reduce the computational cost of the

bootstrap method used to compute the bootstrap bounding �, we replace the two-step bounding

parameters with the direct bounding parameters. If we observe that the two-step and the direct
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bounding parameters are close, we are motivated to apply this simplification to the bootstrap bound-

ing parameters. For our plot, this result corresponds to the blue and red dots being close to each

other.

For the second objective, suppose the two-step and the direct bounding parameters are close to

the bootstrap bounding parameters. We can use the two-step bounding parameter to capture the

inherent variability of the bounding parameters explored using the bootstrap bounding parameters

for the data set. We are motivated to apply this substitution due to the high computation cost of

the bootstrap bounding method. If such a substitution is justified, we can capture the bounding

parameter’s inherent variability without expending additional computational power for the given

data.

For the third objective, we observe how the bounding parameters vary under di↵erent conditions.

Suppose the bounding parameter values are close to each other for di↵erent conditions. In that

case, we can conclude that the parameters are ”stable” for the given data and can use the computed

values to infer the bounding parameter for data yet to be collected.

Finally, we can explore how lowering the fault definition threshold changes the bounding behavior.

8.1 GPS Error Bounding Parameter Characterization Result

We first compute the two-step, direct, and bootstrap bounding parameters for time period variation

with a 3 years time window and slide every 1 year. The data is computed for the GPS satellite clock

and ephemeris nominal UPE from 2008 to 2021. We set the bias for the three types of bounding to

be the same for better � comparisons.

In this implementation, for better � comparison, we choose to set each bias(i) to be the same as the

bias parameter computed using the two-step and the direct bounding algorithms using the original

data set. In this way, we are only varying �(i) for each bootstrap sub-samples.

The results are shown in figure 8.1

The left figure is the temporal variation of the bounding parameters for nominal errors normalized

by �URA. As we can observe from the plots, the bias values are small, with the largest value being

0.034. All the �s are below 0.91. The three processes produce � with similar values, with the largest

di↵erence being 0.0084. The standard deviation of the two-step � bounding parameter value is 0.16.

The right figure is the temporal variation of the bounding parameters for nominal errors normalized

by �URA excluding the near-fault data points by eliminating the normalized error data points larger

than 3. This plot does not contain the bootstrap data points. As we can observe from the plots,

the bias values are small, with the largest value being 0.031. All the �s are below 0.64. The three
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(a) nominal threshold with 4.42⇥ �URA (b) threshold with 3⇥ �URA

Figure 8.1: Bounding parameter results for direct, two-step and bootstrap bounding processes vary-
ing in time. The blue dots are the direct bounding �s computed using the designated 3 years of data.
The red dots are the two-step bounding �s computed using the designated 3 years of data, and the
green dots are the bootstrap bounding �s computed using the abovementioned method. The black
circles are the biases. Since we set them to be the same for three bounding methods, they overlap.

processes produce � with similar values, with the largest di↵erence being 0.019. In addition, the

bounding parameter � becomes more stable for di↵erent time periods. The standard deviation of

the two-step � bounding parameter value is 0.048. In other words, the � parameter’s variation for

time decreases and becomes more stable by regarding the near-fault data points as faulted.

From the result, we can make several observations. First, the small di↵erences among the three

bounding methods indicate that there might be a possibility that we could potentially substitute

the bootstrap and the two-step bonding processes with the direct bonding process. Since two-step

and direct bounding algorithms produce similar bounding statistics values, we can replace two-step

with direct bounding in the bootstrap bounding algorithm. Since bootstrap bounding parameter

values are close to the two-step bounding parameter values, we are motivated to replace the bootstrap

with two-step bounding algorithm. The bootstrap bounding gives the bounding parameters that

take into account the inherent variability, and the two-step bounding guarantees that the bounding

is stable through convolution. [9] [10] Although applying the two-step bounding algorithm is not

computationally costly, this process is repeated 200000 times, 200 times for 200 users, and 1000

times for 1000 bootstrap sub-samples.

In addition, if we regard the near-fault data points as faulted, the bounding parameter � becomes

more stable. Since the � parameter is stable through time, it might be possible for us to make

predictions of the future data and regard the past data as relatively representative.

Finally, we observe that all � values are below 1 and the biases are small.

We also computed similar bounding parameters for each SVN. Here, we do not manually set the
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bias(i) to be the same for each bootstrap sub-sample. However, when calculating the SIGMA

parameter, in Equation 5.1, rather than using bias(i), we use the bias computed in two-step and

direct bounding algorithm to compute the bounding parameters. One could have used the same

bias value for each bootstrap sub-sample.

Here we use 14 years of UPE data for GPS, each with 200 users. The results are shown in figure 8.2

(a) nominal threshold with 4.42⇥ �URA (b) threshold with 3⇥ �URA

Figure 8.2: Bounding parameters for error data partitioned by SVN. On the left, we have the nominal
error, and on the right, we use a lower threshold to explore the near-fault error data point e↵ect

The normalized nominal error biases are below 0.20, with the largest bias associated with SVN 25,

47, and 57. The � values are all below 1.02. The largest di↵erence among the three bounding �s

is 0.17 from SVN 75. The standard deviation of the two-step � values is 0.22. After eliminating

the near-fault data points, the largest bias is 0.20. The � values are all smaller than 0.77. The

largest di↵erence among the three bounding �s is 0.1690 from SVN 75. The standard deviation of

the two-step � values is 0.16.

Here, we observe very small di↵erences between the three bounding methods except for SVN 75

and 76, which means we could potentially replace using two-step bounding parameters to replace
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the bootstrap bounding parameters. Although there exists variability among di↵erent SVNs, the

standard deviation of the two-step � values decreased after eliminating the near-fault data points,

signifying the e↵ect of near-fault data points. Finally, most � values are below 1, and most error

data have small biases with a few exceptions.

We now show the results for each satellite block for GPS in figure 8.3. We apply the same variation as

we did in the case of the satellite time period, meaning that we fix the bias value for each bootstrap

sub-sample and calculate the corresponding � value for di↵erent sub-samples.

(a) nominal threshold with 4.42⇥ �URA (b) threshold with 3⇥ �URA

Figure 8.3: Bounding parameters for error data partitioned by satellite blocks. On the left, we have
the nominal error, and on the right, we use a lower threshold to explore the near-fault error data
point e↵ect

Here, we observe similar behavior as in the case with varying time periods. Here, we only calculated

the bootstrap bounding parameters before eliminating the near-fault data points. The three bound-

ing parameters are close to each other. We observe good stability after eliminating the near-fault

data points. For the nominal error, the largest bias is 0.033, the largest � is 0.91, and the largest

� di↵erence is 0.0084. The standard deviation of the two-step � values is 0.29. For the error data

after eliminating the near-fault data points, the largest bias is 0.033, the largest � is 0.64, and the

largest � di↵erence is 0.019. The standard deviation of the two-step � values is 0.19.

We then plot the data partition by URA in figure8.4

For this partition, we only plotted the two-step and direct bounding methods. As shown in the plots,

those two algorithms produce similar results. The parameters become more stable after eliminating

the near-fault data points. For the nominal error, the largest bias is 0.095, the largest � is 0.86, and

the largest � di↵erence is 0.0081. The standard deviation of the two-step � values is 0.27. For the

error data after eliminating the 0.0081 near-fault data points, the largest bias is 0.072, the largest
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(a) nominal threshold with 4.42⇥ �URA (b) threshold with 3⇥ �URA

Figure 8.4: Bounding parameters for error data partitioned by user range accuracy. On the left, we
have the nominal error, and on the right, we use a lower threshold to explore the near-fault error
data point e↵ect

� is 0.60, and the largest � di↵erence is 0.0081. The standard deviation of the two-step � values is

0.21. As we can see, the bounding becomes more conservative as the URA value increases.

Finally, in figure 8.5, we show the error bounding parameters partitioned by the time since the last

upload. Teh data we used are taken from 2014 through 2022.

The bounding algorithms produce similar bounding parameter values, and the parameters are more

stable after eliminating the near-fault data points. For this partition, for the nominal error, the

largest bias is 0.036, the largest � is 0.82, and the largest � di↵erence is 0.0030. The standard

deviation of the two-step � values is 0.13. For the error data after eliminating the near-fault data

points, the largest bias is 0.036, the largest � is 0.66, and the largest � di↵erence is 0.0012. The

standard deviation of the two-step � values is 0.076.

The above results show that the di↵erences among the two-step bounding, direct bounding, and

bootstrap bounding �s are small, with the largest being 0.17 for SVN 75, but overall the di↵erences

are smaller than 0.01. However, the small di↵erence between the two-step and the direct bounding

algorithm is due to the nature of the data being symmetric and unimodal. The two methods are not
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(a) nominal threshold with 4.42⇥ �URA (b) threshold with 3⇥ �URA

Figure 8.5: Bounding parameters for error data partitioned by user time since the last update. On
the left, we have the nominal error, and on the right, we use a lower threshold to explore the near-
fault error data point e↵ect

equivalent mathematically and will possibly produce di↵erent results given another set of data with

di↵erent properties. The standard deviation of the � bounding parameter decreases after eliminating

the near-fault data points, which suggests that the near-fault data points could potentially increase

the stability of the bounding parameters. The above results also suggest that the bias value is small

for most partitions. The normalized �s are below 1 except for SVN 39,

To summarize, the result shows that for GPS satellite clock and ephemeris errors from 2008 to 2021,

partitioned by time, SVN, satellite blocks, URA, and TSLU, the bias bounding parameter values

are small, with a few exceptions. The � values are all below 1 except for SVN 39. The near-fault

data points a↵ect the bounding parameter stability for the observable conditions. The di↵erences

among the �s produced by the two-step bounding algorithm, the direct bounding algorithm, and

the bootstrap bounding algorithm are small.

8.2 Galileo

In the Galileo plot analysis, we apply a similar analysis.

We take the Galileo user projected error from 2018 to 2022. The data is taken every 5 minutes. We

define the faulted data as values larger than �URA ⇥ 4.17 and �URA ⇥ 2 to explore the e↵ect of fault
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definition. In this case, as applied in the case of GPS, we plot the bounding parameters against

di↵erent observable condition values.

We first compute the bounding parameters against di↵erent time periods using the same method as

we did for GPS. The time period window is taken to be 1 year, and we slide this window by every

6 months. The result is shown in Figure 8.6

(a) nominal error bounding parameters �URA ⇥ 4.17 (b) nominal error bounding parameters �URA ⇥ 2

Figure 8.6: Bounding parameter results for direct, two-step, and bootstrap bounding processes
varying in time. The blue dots are direct bounding �s computed using the designated 1 year of
data. The red dots are the two-step bounding �s computed using the designated 1 year of data, and
the green dots are the bootstrap bounding �s computed using the abovementioned method. The
black circles are the biases. Since we set them to be the same for the three bounding methods, they
overlap.

Here, we plot the three sets of bounding parameters. The blue dots are direct bounding �s computed

using the designated 1 year of data. The red dots are the two-step bounding �s computed using the

designated 1-year data. The green dots are the bootstrap bounding �s computed using the statistics

formulated in Chapter IV.

For this study, we set the bias values to be the same for better � comparisons. We observe that all

three bounding methods produce similar � values. This result justifies the bootstrap simplification

for the given data set. It implies that it might be possible to use the two-step bounding method to

capture the inherent variability in the bounding parameters. Furthermore, we observe that � values

decrease with time, except for 2019. The bounding parameter variation with di↵erent observable

condition values becomes less obvious after lowering the threshold. In addition, all the bounding

parameters are below the normalization with small bias values.

We then explore the variation with di↵erent space vehicle numbers (SVN). The results are plotted

in figure 8.7

As we can observe from the plot, the bounding parameters are close. All the parameters are below the

normalization. The newer satellites have lower � values compared to older satellites. After lowering
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(a) nominal error bounding parameters �URA ⇥ 4.17 (b) nominal error bounding parameters �URA ⇥ 2

Figure 8.7: Bounding parameter results for direct and two-step bonding processes varying in SVN.
The blue dots are the direct bounding �s computed using the designated 1 year of data. The red
dots are the two-step bounding �s computed using the designated 1 year of data. The black circles
are the biases. Since we set them to be the same for two bounding methods, they overlap.

the threshold, the � values become more stable. All the parameters are below normalization, and

the bias values are small.

We find that the normalized nominal errors are bounded by Gaussian distribution with a mean below

1 and a standard deviation of 0.04. We showed that di↵erent bounding algorithms produce similar

bounding parameter values for given observable condition values. This result implies we can use

the two-step bounding algorithm, which is computationally cheap to capture the inherent variability

of the bounding parameters. We also find that newer satellites tend to generate smaller bounding

�, and the bounding parameters become more stable after eliminating the near-fault data points.

Finally, all the bounding parameters are below the normalization with small bias values.

We now move on to the analysis for error messages after lowering �URA.

8.3 Error bounding parameter result after lowering �URA

For the error messages after lowering �URA, we use the LNAV message for GPS from 2008 to 2022,

taken every 15 minutes, and examine using lower �URA values. Specifically, we select the LNAV

clock and ephemeris errors with �URA = 2.4meters and normalize them by lower �URA. We first
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explore the appropriate �URA values that are reasonable for our study by computing the bounding

parameters for all the given data after changing the �URA. This analysis uses the nominal error

defined as the error value less than 4.42⇥�URA.In figure 8.8. we plot the bounding parameter values

against di↵erent �URA normalizations.

Figure 8.8: nominal error bounding parameters for di↵erent �URAvalues

Here we ignored the bootstrap analysis and plotted the direct and the two-step bounding parameters.

As we can observe from the plot, the bounding exceeds the normalization for �URA values lower

than 1. We, therefore, pick values to be 2 and 1.5 meters.

However, although we use our result to gain insight into how CNAV message error behavior and

serve as a conservative estimation, this plot does not indicate that for true CNAV error, the �URA

can only go to 1.5 meters. One should refrain from drawing direct conclusions regarding how low

the CNAV error’s �URA can go based on this study.

We again compute the bounding parameter values for each condition. Since the computation is

carried out by finding the smallest bounding bias that works for all the users and then finding the

� that works for all the users for that bias value, we need to guarantee that each user, for the given

observable condition, can provide enough data to generate a statistically significant result. For our

case, we discard the UPE value corresponding to a specific user and specific observable condition if

the amount of data is less than 10000 data points, which is approximately 3 months’ worth of data.

This process is important as lowering �URA reduces the data amount with the same threshold.

For these plots, we focus on four potential findings. First, we explore the di↵erences between bound-

ing parameters generated from di↵erent bounding algorithms, namely the two-step and the direct

bounding algorithms. Second, we explore how bounding parameters vary with di↵erent observable
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condition values. Third, we examine how lowering the �URA impacts the bounding parameters.

Fourth, we examine if the bias values are small. Finally, we determine whether any of the bounding

parameters exceed the normalization. Unlike the previous analyses, rather than focusing on the

near-fault data point e↵ect, we focus on how di↵erent �URA values can a↵ect the results. Because

errors larger than 4.42 x URA are removed, lowering the URA also has the e↵ect of lowering the

threshold. In the case of lowering the �URA to 2, 1.73⇥ 10�6 amount of data is eliminated. In the

case of lowering the �URA to 1.5, 4.79⇥ 10�6 amount of data is eliminated.

We first plot results varying time period for �URA of 2 and 1.5 meters in figure 8.9. The time window

is three years and is slid every 1 year.

(a) nominal error bounding parameters �URA =
2meters

(b) nominal error bounding parameters �URA =
1.5meters

Figure 8.9: Normalized GPS bounding parameters vary by time from 2008 to 2022 with time window
of 3 years and slide every 1 year plotted for di↵erent �URA values

Here we can see that the two-step and the direct bounding �s have negligible di↵erences for a given

time window. The � values have a decreasing trend and were only larger from 2019 to 2022. In

addition, we observe that lowering the �URA values, although ”inflates” the data, also stabilizes the

data as we observe less variation in the � values among the di↵erent time windows. After inflating

the data, applying the same threshold allows the algorithm to filter out more data, thus, stabilizing

the bounding parameters. One can also examine this e↵ect by looking at the threshold value. We

can consider the error values prior to normalization. We have threshold = 4.42⇥�URA.As we lower

the �URA value, the threshold value is also lowered, causing more data to be eliminated. As a direct
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result of the data elimination, the bounding parameter values become ”uniform” or stable. Another

observation we can make is that all the bounding parameters are below the normalization, and the

bias values are small.

Moving onto the analysis for di↵erent SVNs. We plot the result in figure 8.10

(a) nominal error bounding parameters �URA =
2meters

(b) nominal error bounding parameters �URA =
1.5meters

Figure 8.10: Normalized error bounding parameters vary by SVN from 2008 to 2022 plotted for
di↵erent �URA values

Here the two-step and the direct bounding �s di↵erence are small for a given SVN. The � values

do not have a general trend, with several exceeding the normalization. The e↵ect of lowering the

�URA value is not obvious. For �URA = 2meters, SVN 26,35,38,40,and 73 exceed the normalization.

For �URA = 1.5m, SVN 24,26,27,30,35,38,39,40,and 61 exceed the normalization. In addition, the

bias values are relatively large for SVN 24, 25, 27, 35, 47, and 57. SVN 24, 25, and 27 have biased

UPE data. Their mean is larger than the others. SVN 35, 47, and 57 have asymmetric distributions,

which cause the bounding biass to be larger. In addition, some of the SVNs su↵er from a lack of data



CHAPTER 8. GNSS ERROR BOUNDING PARAMETER CHARACTERIZATION RESULT 51

due to retirement. Moving onto the satellite block variation. In figure 8.11, we plot the bounding

parameter values against di↵erent satellite blocks.

(a) nominal error bounding parameters �URA =
2meters

(b) nominal error bounding parameters �URA =
1.5meters

Figure 8.11: Normalized error bounding parameters vary by block from 2008 to 2022 plotted for
di↵erent �URA values

Here the two-step and the direct bounding �s di↵erence are small for a given block. The � values tend

to decrease for newer satellite blocks. The bounding parameters are more stable for �URA = 1.5m.

No block exceeds the normalization for �URA = 2m. For �URA = 1.5m, block IIA barely exceeds

the normalization. In addition, the bias values are small for all blocks.

We also compute the bounding parameter values against di↵erent ages of data or times since the

last upload (TSLU) for 2013 to 2022. The results are plotted in Figure 8.12

The two-step and the direct bounding �s di↵erence are small for a given age of data. There is no

apparent trend for how the bounding parameters vary with the age of the data. Lowering the �URA

stabilizes the parameters. No block exceeds the normalization for �URA = 2m. For �URA = 1.5m,

only one data point barely exceeds the normalization. In addition, the bias values are small for all

ages of data. Our plot shows safe support even after lowering the �URA values.

After lowering the �URA, we find that the normalized nominal errors are bounded by Gaussian

distribution with a mean below 1 After lowering the �URA values to 2 and 1.5 meters for LNAV

error data, we see that lowering the �URA stabilizes the bounding parameters. Most of the bias

values are small with a few SVN exceptions, and most of the bounding parameters are below the

normalization. These results provide valuable insights for the satellite error integrity analysis for

ARAIM applications.
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(a) nominal error bounding parameters �URA =
2meters

(b) nominal error bounding parameters �URA =
1.5meters

Figure 8.12: Normalized error bounding parameters vary by TSLU from 2008 to 2022 plotted for
di↵erent �URA values



Chapter 9

Conclusions

This thesis work examines the stability of satellite clock and ephemeris nominal errors. In particular,

it utilizes statistics provided by the Gaussian bounding algorithm and quantifies their stability using

various methods. In Chapter I, we briefly introduced the background of GNSS and navigation system

integrity. Then we moved on to talk about the nominal clock and ephemeris errors and why it is

important to characterize its bounding statistics stability.

In Chapter II, we reviewed the data processing method for the satellite clock and ephemeris data.

This nontrivial process details how to process the user-projected error data for each user and each

satellite and to combine them into the correct data structure for bounding parameter calculation.

We then introduced a sliding-window method to characterize the bounding parameter stability over

time. Finally, we applied the data processing method and the sliding-window method to the GPS

data and show how the bounding statistics evolve over time. This result reveals that using three

years of data for a single satellite is insu�cient for stability quantification. We thus aggregated the

satellites together. The aggregated result shows high stability and reveals the e↵ect of near-fault

data points on stability.

In Chapter III, we introduced two methods, training validation, and bootstrap. For the training

validation method, we presented the algorithm and the results from the GPS data. The results of the

simulations showed good stability and predictability. For the bootstrap method, we first presented

the mathematical justification, then we showed the algorithm and presented the result on GPS. The

simulation results show high stability in the bounding parameters.

In Chapter IV, we introduced a new statistics parameter that stems from the bootstrap method.

Compared to the bootstrap method used in Chapter III, it has the advantage of being a single set

of parameters while capturing the stability of the statistics. It is easier to use. We provide the

53
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mathematical derivation in this chapter.

In Chapter V, to resolve the high computation cost due to bootstrap, we presented a way to simplify

the way we apply the bounding algorithm, namely, the direct bounding method. We then present

the algorithms on how to apply the bounding method before and after simplification. The goal

here is to compare the results before and after simplification to see if it is acceptable to apply the

simplification. We then introduced the algorithm using the equations in Chapter IV to compute the

new statistics.

In Chapter VI, we introduced di↵erent ways to partition the data so that we can explore how the

bounding parameters vary with di↵erent observable conditions. Those conditions are time periods,

SVN, satellite blocks, URA, and TSLU.

In Chapter VII, we presented what type of data we use for the experiment data for the algorithms

introduced in Chapter V. Specifically, we described the constellation used, how we explore the e↵ect

of the near-fault data point, and how we lower the �URA values to explore how this parameter could

a↵ect the bounding parameter stability to approximate the e↵ect of CNAV message type.

In Chapter VIII, we presented the experimental result using the algorithm in Chapter V and the

data in Chapter VII with the partition methods in Chapter VI. The result for GPS and Galileo

showed that most normalized � parameters are below �URA for di↵erent observable conditions, the

bounding biass are small, the near-fault data points a↵ect the bounding parameter stability, and

justifies the usage of the simplification mentioned in Chapter V. We found the similar result after

lowering �URA. In addition, the parameters become more stable.

These results provide important insights into the stability of the GNSS clock and ephemeris error

stability for the past years with di↵erent partitions. It provides the analysis tool for characterizing

the error data stability and promising results to aid the future development of systems such as

ARAIM and provide navigation safety to applications such as aviation.
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