Leveraging Commercial Broadband LEO Constellations for Navigation

Tyler Reid, Andrew Neish, Todd Walter, & Per Enge Stanford University GPS Lab

ION GNSS+ 2016
Portland, OR

More Applications Coming

Drawbacks of GPS

- **Dependent:** We have become reliant on this now critical infrastructure for nearly all aspects of our lives.
- Easy to Jam: Can take out a city block with a 20 Watt GPS jammer.
- Goal: To increase GNSS resilience.

Changing Space

- There has been a resurgent interest in building large constellations of low Earth orbiting (LEO) satellites to deliver broadband internet to the world.
- Proposals have been announced by OneWeb with support from Virgin and Qualcomm, SpaceX with support from Google, Boeing, and Samsung.
- Can these be leveraged as a platform for navigation by piggybacking with a hosted navigation payload?

Hosted Payload

- WAAS is an FAA payload which has been hosted on a variety of commercial GEO satellites including Intelsat, Telesat, and Inmarsat.
- This shows WAAS on Intelsat's Galaxy 15, a GEO telecommunications satellite.

GPS (32) + Iridium (66)

Satellite Footprint

Iridium (66)

OneWeb (648)

SpaceX / Samsung (4000+)

Error Budget

• What is our 3D position error?

```
User Position
Range Dilution
Error of
Precision
```

GDOP as a Function of Constellation Size

Error Budget

What is our 3D position error?

```
User Position
Range Dilution
Error of
Precision
```

What Does URE Need to Be?

	Horizontal	Vertical	SIS URE
GPS Global DOPS / URE Analysis (95%)	3.309 m	4.860 m	0.8 m
OneWeb Global DOPS / URE Analysis (95%)	2.864 m	4.773 m	3.0 m

*A constellation like OneWeb could have a URE 3x worse and give comparable positioning performance.

How do We Get That URE

Clocks

 Need to use clocks that get comparable performance to GPS.

Orbit

- Orbit ephemeris.
- Constellation-wide orbit determination.

Cost

How can this be done at a lower than traditional cost? We want this to make sense for a hosted payload in LEO.

Clocks

- Each GPS satellite has 4 atomic clocks onboard.
- Each costs millions of dollars and consume ~40 Watts.
- They are too costly in terms of \$'s and power for low cost LEO.

Chip Scale Atomic Clock (CSAC)

- Low Power: <120mW
- **Small Size**: 17 cc volume, 1.6"x1.4"x0.5"
- Low Cost: ~1000\$, projected to be ~\$300 in coming years.
- Trade off: ~100x worse at one day compared to GPS clocks.
- Can get comparable performance if you update once per orbit (100 minutes) instead of once per day.

Source: Symmetricom

Orbits

- With the CSAC, we need to know the orbit within a 3D RMS position of 5 meters (~3 meters in along track, cross track, and radial directions – all equally important in LEO).
- Ephemeris accuracy will be largely based on the orbit determination, prediction, and parametrization.

Satellite Motion = Spherical Gravity Field + ... +Higher Order Gravity +Third Body Gravity +Atmospheric Drag **+Solar Radiation Pressure**

Perturbation Forces as a Function of Altitude

GPS Ephemeris

6 Keplerian Orbital Elements

Correction to orbital rate

Account for orbit precession

Account for J₂ harmonic in radial, along-track, & cross-track

GPS Ephemeris Message Representation URE

LEO Fit Interval to Match GPS URE Performance

Orbit Determination?

Ground Station Constraints

Ground Station + Crosslink Constraints

Use GPS Above

Total Ionizing Radiation Dose

Total Ionizing Radiation Dose

Conclusions

Navigation from LEO:

- Strength in numbers: more satellites and better geometry allows looser constraints on the URE (Orbit + Clock).
- Less harsh radiation environment allows for 'careful' COTS design.

Potential Benefits:

- Closer satellites can mean stronger signals and resistance to jamming.
- Geometric diversity: LEOs move across the sky faster than MEOs, giving some multipath rejection.
- Constellation is more robust to single satellite failures.