# Introduction to Advanced RAIM

Juan Blanch, *Stanford University*July 26, 2016

Satellite-based Augmentation
Systems

Availability as a function of user location



Receiver Autonomous Integrity
Monitoring (556 m Horizontal Error
Bound)

Availability as a function of user location



### Signals used by aviation in 2016



### Signals that may be used by aviation users in 2025



+ better clocks and orbit determination

## Best use of multi-constellation multi-frequency for aviation?

If RAIM could be extended to vertical navigation:

- Worldwide coverage of the most stringent operations
- Arctic Navigation
- No need for GEO satellites
- No real time ground monitoring network

#### What do we want?

$$std(\hat{x}_{v} \quad x_{v})$$
 1.8 m

- Accuracy
- Integrity

$$P(|\hat{x}_v - x| > \text{Alert Limit \& no alert}) \le 10^{-7}$$

Continuity

$$P(alert) \le 8 \times 10^{-6}$$

#### What do we fear?

- Faults
- Nominal conditions



#### Threat model

|                                 | Nominal                                                                                        | Narrow fault                                                                                          | Wide fault                                                                              |
|---------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Clock and Ephemeris             | Orbit/clock estimation and prediction and broadcast limits                                     | Includes clock runoffs, bad ephemeris, unflagged manoeuvres                                           | Erroneous EOPP, inadequate manned ops, ground-inherent failures                         |
| Signal Deformation              | Nominal differences in signals due to RF components, filters, and antennas waveform distortion | Failures in satellite payload signal generation components. Faulted signal model as described in ICAO | N/A                                                                                     |
| Code-Carrier<br>Incoherence     | e.g. incoherence observed in IIF L5 signal or GEO L1 signals                                   | e.g. incoherence observed in IIF L5 signal or GEO L1 signals                                          | N/A                                                                                     |
| Interfrequency Biases           | Delay differences in satellite payload signal paths                                            | Delay differences in satellite payload signal paths TBC                                               | N/A                                                                                     |
| Satellite Antenna Bias          | Look-angle dependent biases caused at satellite antennas                                       | Look-angle dependent biases caused at satellite antennas                                              | N/A                                                                                     |
| Ionosphere                      | N/A                                                                                            | Scintillation                                                                                         | Multiple scintillations at solar storms                                                 |
| Troposphere                     | Nominal troposphere error (after applying SBAS MOPS model for tropo correction)                | N/A                                                                                                   | N/A                                                                                     |
| Receiver Noise and<br>Multipath | Nominal noise and multipath terms in airborne model (TBC Gailleo BOC(1,1) and L5/E5a))         | e.g.: receiver tracking failure or<br>multipath from onboard<br>reflector. TBC                        | e.g.: receiver tracking<br>multiple failure or multipath<br>from onboard reflector. TBC |

#### GLONASS constellation wide fault



## GPS Service history: Nominal clock and ephemeris errors (2009-2014)



# Mapping the threat model into the Integrity Support Message

|                                 | Nominal                                                                                        | Narrow fault                                                                                          | Wide fault                                                                              |
|---------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Clock and Ephemeris             | Orbit/clock estimation and prediction and broadcast limits                                     | Includes clock runoffs, bad ephemeris, unflagged manoeuvres                                           | Erroneous EOPP, inadequate manned ops, ground-inherent failures                         |
| Signal Deformation              | Nominal differences in signals due to RF components, filters, and antennas waveform distortion | Failures in satellite payload signal generation components. Faulted signal model as described in ICAO | N/A                                                                                     |
| Code-Carrier<br>Incoherence     | e.g. incoherence observed in IIF L5 signal or GEO L1 signals                                   | e.g. incoherence observed in IIF L5 signal or GEO L1 signals                                          | N/A                                                                                     |
| Interfrequency Biases           | Delay differences in satellite payload signa that                                              | Delay diff Pences in satellite payload sign Satth TBC                                                 | N/A <b>P</b> const,i                                                                    |
| Satellite Antenna Bias          | Look-angle dependent bases caused at satellite antennas                                        | Look-angle dependent biases caused at satellite antennas                                              | N/A                                                                                     |
| Ionosphere                      | N/A                                                                                            | Scintillation                                                                                         | Multiple scintillations at solar storms                                                 |
| Troposphere                     | Nominal troposphere error (after applying SB. Tropode for tropo correction)                    | N/A                                                                                                   | N/A                                                                                     |
| Receiver Noise and<br>Multipath | Nominal noise and multipath terms in airborn model (TBC Gailleo BOC(1,1) and alreborne, i      | e.g.: receiver tracking failure or<br>multipath from onboard<br>reflector. TBC                        | e.g.: receiver tracking<br>multiple failure or multipath<br>from onboard reflector. TBC |

#### Solution Separation Algorithm



Blanch et al "Advanced RAIM user Algorithm Description: Integrity Support Message Processing, Fault Detection, Exclusion, and Protection Level Calculation," *Proceedings of the 25th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2012)*, Nashville, TN, September 2012

### Advanced RAIM concept



Integrity Support Message :  $\sigma_{URA,i}$   $P_{sat,i}$   $P_{const,j}$ 

#### Integrity Support Message

|                              | Parameter              | Description                                                        | Value                                 | Size (bits) |  |  |  |
|------------------------------|------------------------|--------------------------------------------------------------------|---------------------------------------|-------------|--|--|--|
|                              | ISM_WN                 | ISM Week Number                                                    | [0, 1, 1023]                          | 10          |  |  |  |
| ader                         | ISM_TOW                | ISM Time of Week (hours)                                           | [0, 1, 167]                           | 8           |  |  |  |
| Data Header                  | ANSP ID                | Service Provider Identification                                    | [0, 1, 255]                           | 8           |  |  |  |
| Dat                          | Criticality            | Usable for Precise/Vertical?                                       | [0, 1]                                | 1           |  |  |  |
|                              | Total Header = 27 bits |                                                                    |                                       |             |  |  |  |
| Per Constellation Parameters | $Mask_i$               | 32 bits indicating whether an SV is valid for ARAIM (1) or not (0) | $[m_1, m_2, \ldots m_{32}]$           | 32          |  |  |  |
| Para                         | $P_{const,i}$          | Probability of constellation fault at a given time                 | [10-8, 10-5, 10-4, 10-3]              | 2           |  |  |  |
| ion                          | $P_{sat,j}$            | Probability of satellite fault at a given time                     | [10-6, 10-5, 10-4, 10-3]              | 2           |  |  |  |
| tellat                       | $a_{\mathit{URA},j}$   | Multiplier of the URA for integrity                                | [1, 1.25, 1.5, 2, 2.5, 3, 5, 10]      | 3           |  |  |  |
| Cons                         | $a_{\mathit{URE},j}$   | Multiplier of the URA for continuity & accuracy                    | [0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 4] | 3           |  |  |  |
| Per (                        | $b_{nom,j}$            | Nominal bias term in meters                                        | [0.0:0.25: 2.5,, 3, 4, 5, 7.5, 10]    | 4           |  |  |  |
|                              | Total Core = 4         | 46 bits x 4 Constellations = 184 bits                              |                                       |             |  |  |  |

Would fit in one SBAS message (250 bits), or in one GPS CNAV message (300 bits)

# Multi-constellation L1-L5 ARAIM availability map



GPS 24 – Galileo 24

URA = 1 m

 $P_{const} = 10^{-4}$ 

# Vertical ARAIM: L1-L5 performance

LPV-200

| Constellation/URA            | .5 m | .75 m | 1 m  | 1.5 m | 2 m  |
|------------------------------|------|-------|------|-------|------|
| Depleted (GPS 23 – GAL 23)   | 88.1 | 86.1  | 81.3 | 38.1  | 0    |
| Baseline (GPS 24 – GAL 24)   | 100  | 100   | 98.8 | 88.2  | 3    |
| Optimistic (GPS 27 – GAL 27) | 100  | 100   | 99.8 | 94.9  | 21.8 |

#### LPV-250

| Constellation/URA            | .5 m | .75 m | 1 m  | 1.5 m | 2 m   |
|------------------------------|------|-------|------|-------|-------|
| Depleted (GPS 23 – GAL 23)   | 94.0 | 91.8  | 87.7 | 75.0  | 35.4  |
| Baseline (GPS 24 – GAL 24)   | 100  | 100   | 100  | 99.0  | 89.5  |
| Optimistic (GPS 27 – GAL 27) | 100  | 100   | 100  | 100   | 93.85 |

Constellation wide fault is mitigated by the residuals check:  $P_{const} = 10^{-4}$ 

### Horizontal ARAIM with GPS only (matches current RAIM performance)



## Horizontal ARAIM with GPS and GLONASS



#### Summary

- Advanced RAIM is a natural and very promising method to exploit multi-constellation GNSS.
- It will improve dramatically horizontal performance and may provide vertical guidance
- Advanced RAIM is conceptually simple (at the user level)
- Challenges remain for the determination of the Integrity Support Message

#### Reports and publications

Working Group C, ARAIM Technical Subgroup, Interim Report, Issue 1.0, December 19, 2012.
 Available at:

http://ec.europa.eu/enterprise/newsroom/cf/\_getdocument.cfm?doc\_id=7793 http://www.gps.gov/policy/cooperation/europe/2013/working-groupc/ARAIM-report-1.0.pdf

 GPS-Galileo Working Group C ARAIM Technical Subgroup Milestone 2 Report, February 11, 2015. Available at:

http://www.gps.gov/policy/cooperation/europe/2015/working-group-c/ http://ec.europa.eu/growth/tools-databases/newsroom/cf/itemdetail.cfm?item\_id=8191

#### Other publications:

- Walter, Todd, Blanch, Juan, "Characterization of GNSS Clock and Ephemeris Errors to Support ARAIM," *Proceedings of the ION 2015 Pacific PNT Meeting*, Honolulu, Hawaii, April 2015, pp. 920-931.
- Blanch, J., Walter, T., Enge, P., Kropp, V.,"A Simple Position Estimator that Improves Advanced RAIM Performance," IEEE Transactions on Aerospace and Electronic Systems Vol. 51, No. 3, July 2015.
- Blanch, J., Walter, T., Enge, P., Lee, Y., Pervan, B., Rippl, M., Spletter, A., Kropp, V., "Baseline Advanced RAIM User Algorithm and Possible Improvements," *IEEE Transactions on Aerospace and Electronic Systems*, Volume 51, No. 1, January 2015.
- Blanch, J., Walter, T., and Enge, P., "Results on the Optimal Detection Statistic for Integrity Monitoring," Proceedings of the Institute of Navigation International Technical Meeting 2013, San Diego, January 2013. Submitted to NAVIGATION.
- Phelts, R.E., Blanch, J., Walter, T., Enge, P., "The Effect of Nominal Signal Deformation Biases on ARAIM Users," Proceedings of the 2014 International Technical Meeting of The Institute of Navigation, San Diego, California, January 2014, pp. 56-67.