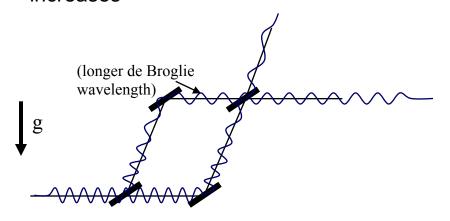
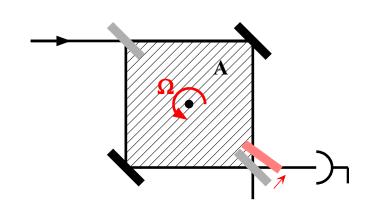


Navigation, Gravitation and Cosmology with Cold Atom Sensors

Atom Interferometry Group Stanford Center for Position, Navigation and Time Mark Kasevich

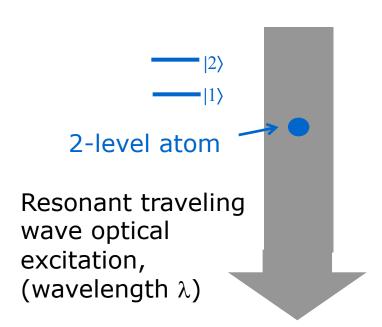

de Broglie wave sensors


Gravity/Accelerations

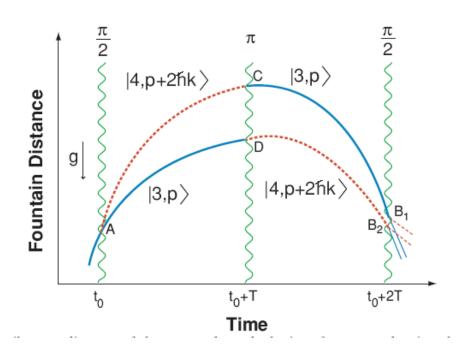
As atom climbs gravitational potential, velocity decreases and wavelength increases

Rotations

Sagnac effect for de Broglie waves



Current ground based experiments with atomic Cs: wavepacket spatial separation ~ 1 cm, phase shift resolution $\sim 10^{-5}$ rad


(Light-pulse) atom interferometry

Resonant optical interaction

Recoil diagram

Momentum conservation between atom and laser light field (recoil effects) leads to spatial separation of atomic wavepackets.

Enabling Science: Laser Cooling

Laser cooling techniques are used to achieve the required velocity (wavelength) control for the atom source.

Laser cooling: Laser light is used to cool atomic vapors to temperatures of $\sim 10^{-6}$ deg K.

Image source: www.nobel.se/physics

The Nobel Prize in Physics 1997

"for development of methods to cool and trap atoms with laser light"

Claude Cohen-Tannoudji

William D. Phillips

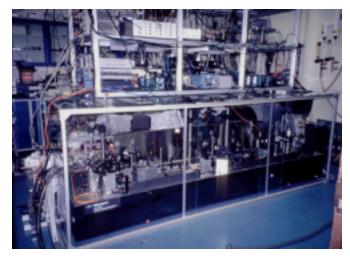
USA

Stanford

University

France

Collège de France Paris, France Stanford, CA, USA and École Normale Supérieure Paris, France

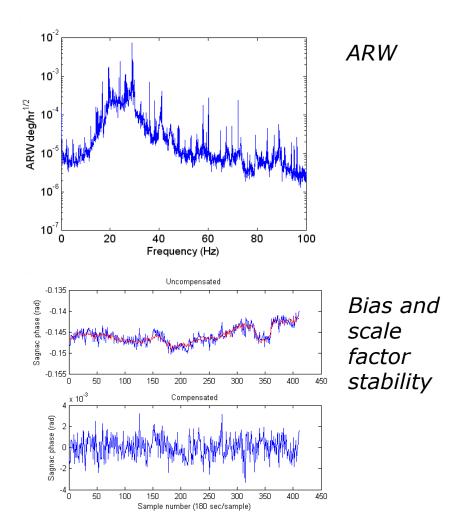

1948 -1933 -

USA

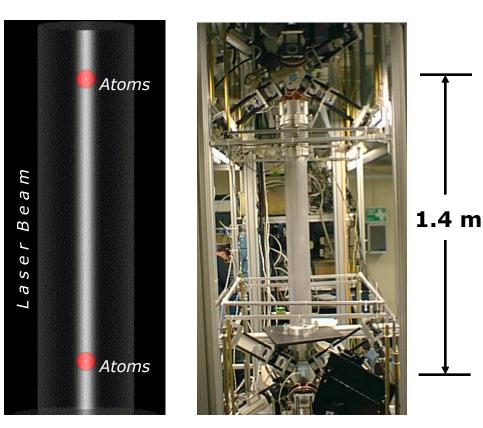
National Institute of Standards and Technology Gaithersburg, Maryland, USA

1948 -

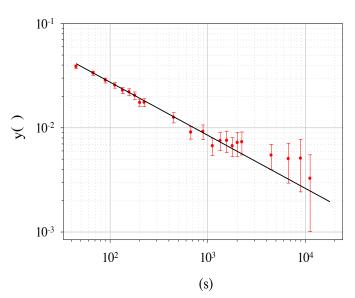
Laboratory gyroscope



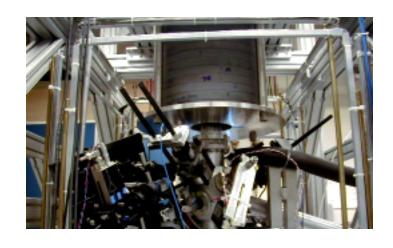
AI gyroscope


ARW 4 μ deg/hr^{1/2}

Bias stability: $< 60 \mu deg/hr$


Scale factor: < 5 ppm

Laboratory gravity gradiometer


Distinguish gravity induced accelerations from those due to platform motion with differential acceleration measurements.

Demonstrated differential acceleration sensitivity:

 $4x10^{-9}$ g/Hz^{1/2} (2.8x10⁻⁹ g/Hz^{1/2} per accelerometer)

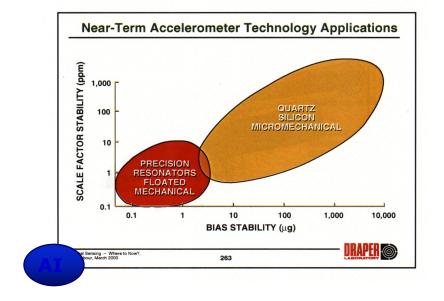
Gravity Gradiometer: Measurement of G

1.7 a 1.6 Lower Gravimeter (arb) 1.1.2 Lower Gravimeter (arb) 1.2 Lower Gravimeter (arb) 1.3 Lower Gravimeter (arb) 1.4 Lower Gravimeter (arb) 1.5 Lower Gravimeter (arb) 1.7 Lower Gravimeter (arb) 1.8 Lower Gravimeter (arb) 1.9 Lower Gravimeter (arb) 1.10 Lower Gravimeter (arb)

Pb mass translated vertically along gradient measurement axis.

Systematic	$\frac{\delta G}{G}$
Initial Atom Velocity	1.88×10^{-3}
Initial Atom Position	1.85×10^{-3}
Pb Magnetic Field Gradients	1.00×10^{-3}
Rotations	0.98×10^{-3}
Source Positioning	0.82×10^{-3}
Source Mass Density	0.36×10^{-3}
Source Mass Dimensions	0.34×10^{-3}
Gravimeter Separation	0.19×10^{-3}
Source Mass Density inhomogeneity	0.16×10^{-3}
TOTAL	3.15×10^{-3}

Demonstrated 0.1 E gravity gradient sensitivity

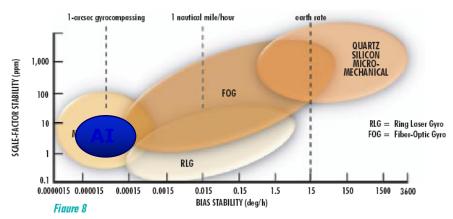

Sensor characteristics

Light-puse AI accelerometer characteristics

Bias stability: <10⁻¹⁰ g

Noise: 4x10⁻⁹ g/Hz^{1/2}

Scale Factor: 10⁻¹²

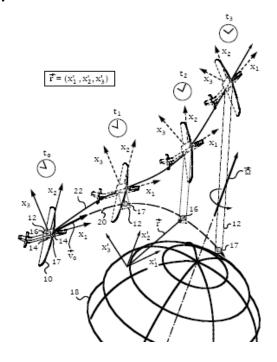


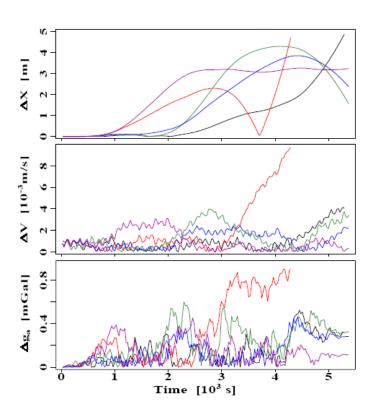
Light-puse AI gyroscope characteristics

Bias stability: <60 μdeg/hr

Noise (ARW): 4 μdeg/hr^{1/2}

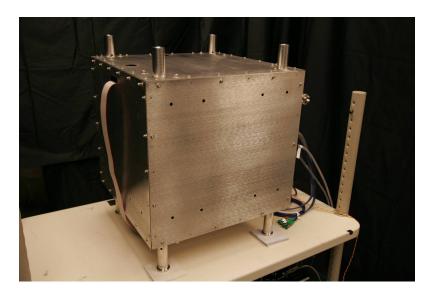
Scale Factor: <5 ppm

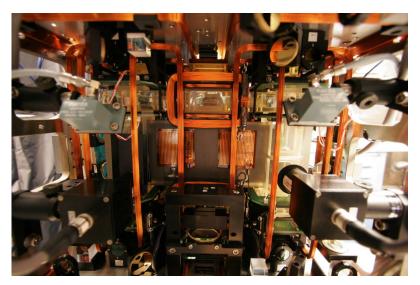



Source: Proc. IEEE/Workshop on Autonomous Underwater Vehicles

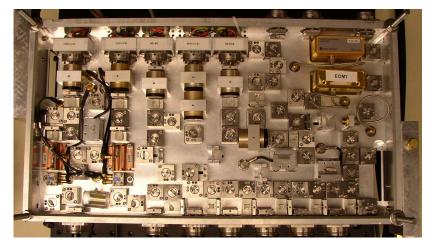
Navigation performance

Determine geo-located platform path.

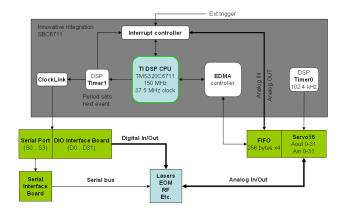

Necessarily involves geodetic inputs


Simulated navigation solutions. 5 m/hr system drift demonstrated.

Compact gravity gradiometer/gyroscope/accelerometer



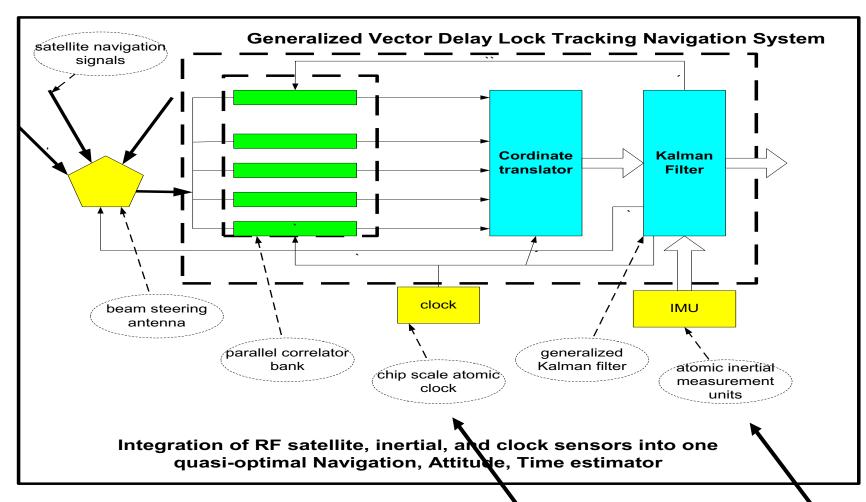
Multi-function sensor measures gravity gradient, rotation and linear acceleration along a single input axis.


Interior view

Laser system

Sensor electronic/laser subsystems

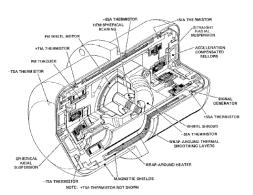
Control electronics frames (controls 6 sensor heads)



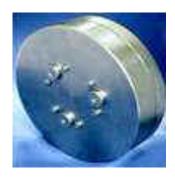
Laser frames (scalable architecture provides light for 2-6 sensor heads)

Next generation integrated INS/GPS

Stanford Center for Position, Navigation and Time. In collaboration with Per Enge, Jim Spilker

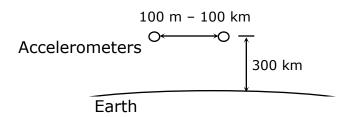

Atomic physics contributions

Space-based applications


- Platform jitter suppression
 - High resolution line-of-sight imaging from space
 - Inertial stabilization for next-generation telescopes
- Satellite drag force compensation at the 10⁻¹⁰ g accuracy level
 - GPS satellite drag compensation
 - Pioneer-type experiment
- Autonomous vehicle navigation, formation flying

Existing technology:

- ESGN (submarine navigation)
- Draper LN-TGG gyro
- Litton/Northrop HRG (Hemispherical Resonator)



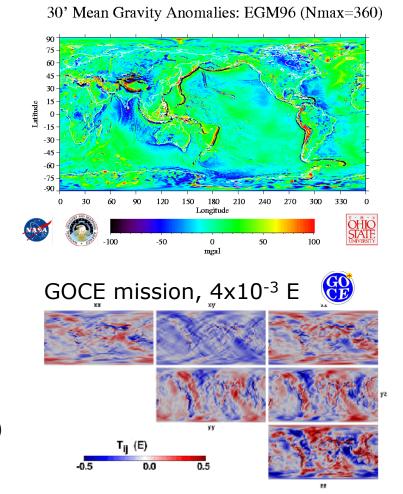
LN-TGG; 1 nrad 0.1-100 Hz source: SPIE 4632-15

Fibersense/NG IFOG

Space-based geodesy (also lunar geodesy)

Accelerometer sensitivity: 10⁻¹³ g/Hz^{1/2}

Long free-fall times in orbit


Measurement baseline

- 100 m (Space station)
- 100 km (Satellite constellation)

Sensitivity:

- -10^{-4} E/Hz^{1/2} (Space Station)
- 10⁻⁷ E/Hz^{1/2} (Satellite constellation)

Earthquake prediction; Water table monitoring

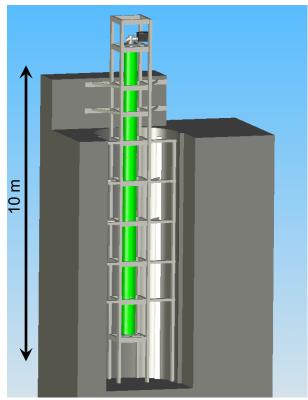
http://www.esa.int/export/esaLP/goce.html

Basic Science: Equivalence Principle

Co-falling 85Rb and 87Rb ensembles

Evaporatively cool to < 1 μ K to enforce tight control over kinematic degrees of freedom

Statistical sensitivity


 $\delta g \sim 10^{-15}$ with 1 month data collection

Systematic uncertainty

 $\delta g \sim 10^{-16}$ limited by magnetic field inhomogeneities and gravity anomalies.

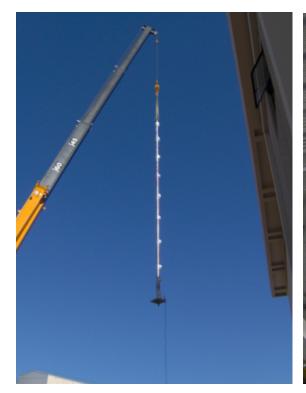
Also, new tests of General Relativity

Precursor to possible space-based appratus.

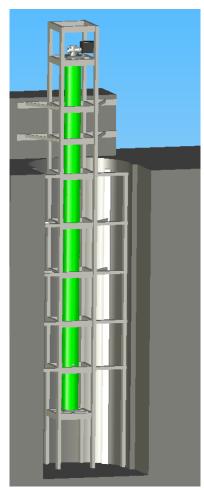
10 m atom drop tower.

~10 cm wavepacket separation (!)

Error Model


Use standard methods to analyze spurious phase shifts from uncontrolled:

- Rotations
- Gravity anomalies/gradients
- Magnetic fields
- Proof-mass overlap
- Misalignments
- Finite pulse effects


Known systematic effects appear controllable at the $\delta g \sim 10^{-16}$ level.

-k _{eff} g T²	-2.84724×10 ⁸	1.
- k _{eff} R _E Ω _y ² T ²	6.21045×10 ⁵	2.18122×10 ⁻³
k _{eff} T _{ss} V _L T ³	1.57836×10 ²	5.54347×10 ⁻⁶
	-9.20709×10 ²	3.23369×10 ⁻⁶
$-\frac{7}{12}$ k_{eff} T_{ss} g T^4		
2 k _{eff} v _{x0} Ω _y T ²	1.97884×10 ¹	6.95002×10 ⁻⁸
$-3 \text{ k}_{\text{eff}} \text{ V}_{\text{L}} \Omega_{\text{y}}^{2} \text{ T}^{3}$	-5.16411	1.81373×10 ⁻⁸
$\frac{7}{4} k_{eff} \Omega_y^2 g T^4$	3.0124	1.05801×10 ⁻⁸
$rac{7}{12}$ k _{eff} R _E T _{EE} Ω_{y}^{2} T ⁴	2.00827	7.05338×10^{-9}
$\frac{k_{\rm eff}^2 T_{xx} \hbar T^3}{2 m}$	7.05401×10^{-1}	2.47749×10^{-9}
$k_{\tt eff} T_{\tt ss} v_{\tt s0} T^3$	7.05401×10^{-1}	2.47749×10^{-9}
$k_{\tt eff} T_{\tt ss} T^2 z_0$	8.92817×10^{-2}	3.13573×10^{-10}
$-\frac{7}{4} \text{ k}_{\text{eff}} \text{ R}_{\text{E}} \Omega_{\text{y}}^{4} \text{ T}^{4}$	-6.57069×10^{-3}	2.30774×10^{-11}
$-\frac{7}{4}k_{\tt eff}R_{\tt E}\Omega_{\tt y}^{2}\Omega_{\tt s}^{2}{\tt T}^4$	-3.84744×10^{-3}	1.35129×10^{-11}
$-\frac{3 k_{\rm eff}^2 \Omega_{\rm v}^2 h T^3}{2 m}$	-2.30795×10^{-3}	8.10592×10^{-12}
$-3 \text{ k}_{\text{eff}} \text{ V}_{\text{m0}} \Omega_{\text{y}}^2 \text{ T}^3$	-2.30795×10^{-3}	8.10592×10^{-12}
$rac{1}{4}~\mathrm{k_{eff}}\mathrm{T_{zz}}^2\mathrm{V_L}\mathrm{T}^5$	2.18739×10^{-3}	7.68251×10^{-12}
$3 \text{ k}_{\text{eff}} \text{ v}_{y0} \Omega_y \Omega_z \text{ T}^2$	1.76607×10^{-3}	6.20273×10^{-12}
$-\frac{31}{360} \text{ keff Tss}^2 \text{ g T}^6$	-7.53436×10^{-4}	2.6462×10^{-12}
$4~B_0~V_L~T^2~\alpha b_{z1}$	5.14655×10^{-4}	1.80756×10^{-12}
$-4~B_0~g~T^3~\alpha~b_{z1}$	-5.14655×10^{-4}	1.80756×10 ⁻¹²
$k_{eff} \Omega_y^2 T^2 z_0$	9.73714×10 ⁻⁵	3.41985×10^{-13}
$- k_{eff} \Omega_y \Omega_z T^2 y_0$	-7.45096×10 ⁻⁵	2.61691×10^{-13}
$\frac{7}{6}$ k _{eff} T _{ss} v _{x0} Ω_{y} T ⁴	6.39894×10^{-5}	2.24742×10^{-13}
$-7 V_L g T^4 \alpha b_{z1}^2$	-4.7766×10^{-5}	1.67762×10^{-13}
$\frac{7}{6}$ k _{eff} T _{xx} V _{x0} Ω_y T ⁴	-3.19947×10^{-5}	1.12371×10^{-13}
$4 \text{ V}_{\text{L}}^2 \text{ T}^3 \alpha b_{\text{m}1}^2$	2.72948×10^{-5}	9.58642×10^{-14}
3 g ² T ⁵ α b ₂₁	2.04711×10 ⁻⁵	7.18982×10 ⁻¹⁴

Equivalence Principle Installation

10 m atom drop tower.

Gravitation

Light-pulse interferometer phase shifts for Schwarzchild metric:

- Geodesic propagation for atoms and light.
- Path integral formulation to obtain quantum phases.
- Atom-field interaction at intersection of laser and atom geodesics.

Objective:

Ground-based (possible future space-based) precision tests of post-Newtonian gravity.

Post-Newtonian trajectories for classical particle:

$$\frac{d\mathbf{v}}{dt} = -\nabla(\phi + 2\phi^2 + \psi) - \frac{\partial\zeta}{\partial t} + \mathbf{v} \times (\nabla \times \zeta) + 3\mathbf{v}\frac{\partial\phi}{\partial t} + 4\mathbf{v}(\mathbf{v} \cdot \nabla)\phi - \mathbf{v}^2\nabla\phi$$
From Weinberg, Eq. 9.2.1

Prior work, de Broglie interferometry: Post-Newtonian effects of gravity on quantum interferometry, Shigeru Wajima, Masumi Kasai, Toshifumi Futamase, Phys. Rev. D, 55, 1997.

Ground-based Post-Newtonian Interferometry

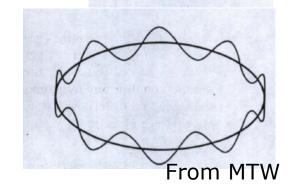
Calculated phase shifts for ground based, 10 m, apparatus.

- Analysis indicates that several post-Newtonian terms are comfortably within apparatus reach.
- In-line, accelerometer, configuration (milliarcsec link to external frame NOT req'd).
- New contraints of PPN parameters.
- Identification of most-promising space-based tests.

Collaborators: Savas Dimopolous, Peter Graham, Jason Hogan.

GM keff T ² rlaser ²	$1. \times 10^8$
$-\frac{2 \text{ GM keff T}^3 \text{ vLr}}{\text{rlaser}^3}$	-2000.
_ GM T ² ωeff rlaser ²	-1000.
GM T ² ωA rlaser ²	1000.
7 GM ² keff T ⁴ 6 rlaser ⁵	116.667
3 GM keff T ² vLr rlaser ²	30.
_ 3 GM ² keff T ³ rlaser ⁴	-3.
- GM keff ² T ³ m rlaser ³	-1.
7 GM keff T ⁴ vLr ² 2 rlaser ⁴	0.035
2 GM T ³ vLr weff rlaser ³	0.02
$= \frac{2 \text{ GM T}^3 \text{ vLr } \omega \text{A}}{\text{rlaser}^3}$	-0.02
3 GM keff ² T ² 2 m rlaser ²	0.015
GM ² keff T ² rlaser ³	0.01
$-\frac{11 \text{ GM}^2 \text{ keff T}^5 \text{ vLr}}{2 \text{ rlaser}^6}$	-0.0055
$-\frac{7 \text{ GM}^2 \text{ T}^4 \omega \text{eff}}{6 \text{ rlaser}^5}$	-0.00116667
$\frac{7 \text{ GM}^2 \text{ T}^4 \omega \text{A}}{6 \text{ rlaser}^5}$	0.00116667
$-\frac{8 \text{ GM keff } \text{T}^3 \text{ vLr}^2}{\text{rlaser}^3}$	-0.0008
$-\frac{3\mathrm{GM}\mathrm{T}^2\mathrm{vLr}\omega\mathrm{eff}}{\mathrm{rlaser}^2}$	-0.0003
35 GM ² keff T ⁴ vLr 2 rlaser ⁵	0.000175
$\frac{\text{GM T}^2 \text{ vLr } \omega \text{A}}{\text{rlaser}^2}$	0.0001
7 GM keff ² T ⁴ vLr 2 m rlaser ⁴	0.000035

Cosmology


Are there (local) observable phase shifts of cosmological origin?

Analysis has been limited to simple metrics:

- FRW:
$$ds^2 = dt^2 - a(t)^2(dx^2 + dy^2 + dz^2)$$

McVittie: ~Schwarzchild + FRW

$$g = \left(\frac{1-m(t)/2r}{1+m(t)/2r}\right)^2 dt^2 - \left(1+\frac{m(t)}{2r}\right)^4 a^2(t) \left(dr^2 + r^2 d\Omega^2\right).$$
 Giulini, gr-qc/0602098

Work in progress ...

Future theory: Consider phenomenology of exotic/speculative theories (after validating methodology)

Collaborators: Savas Dimopolous,

Peter Graham, Jason Hogan.

Future technology: Quantum Metrology

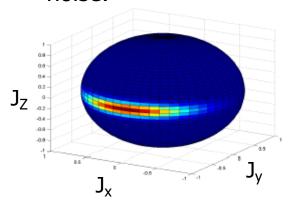
Atom shot-noise limits sensor performance.

Recently evolving ideas in quantum information science have provided a road-map to exploit exotic quantum states to significantly enhance sensor performance.

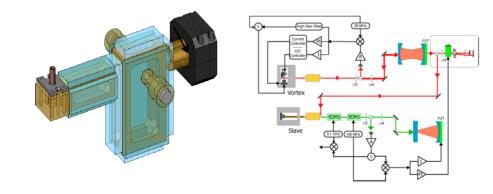
- Sensor noise scales as 1/N where N is the number of particles
- "Heisenberg" limit
- Shot-noise $\sim 1/N^{1/2}$ limits existing sensors

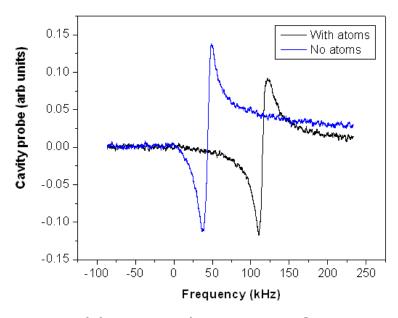
Challenges:

- Demonstrate basic methods in laboratory
- Begin to address engineering tasks for realistic sensors


Impact of successful implementation for practical position/time sensors could be substantial.

Enables crucial trades for sensitivity, size and bandwidth.




Quantum Metrology

- Exploit exotic quantum states to measure phase shifts at Heisenberg (1/N) limit
- CQED approach promising for precision sensors.
 Dispersive atom-cavity shifts enable requisite QND state preparation.
- Possible 10x to 100x improvement in sensor noise.

Spin squeezed state enables 1/N sensitivity

Possible QND detection of atom number (~5 atom resolution).

Summary

- Precision navigation
 - Pioneer
- Equivalence Principle
- Post-Newtonian gravity
- Cosmology
- + quantum metrology in future sensor generations

Thanks

- Todd Gustavson, Research Scientist
- Boris Dubetsky, Research Scientist
- Todd Kawakami, Post-doctoral fellow
- Romain Long, Post-doctoral fellow
- Olaf Mandel, Post-doctoral fellow
- Peter Hommelhoff, Post-doctoral fellow
- Ari Tuchman, Research scientist
- Catherine Kealhoffer, Graduate student, Physics
- Wei Li, Graduate student, Physics
- Hui-Chun Chen, Graduate student, Applied Physics
- Ruquan Wang, Graduate student, Physics
- Mingchang Liu, Graduate student, Physics
- Ken Takase, Graduate student, Physics
- Grant Biedermann, Graduate student, Physics
- Xinan Wu, Graduate student, Applied physics
- Jongmin Lee, Graduate student, Electrical engineering
- Chetan Mahadeswaraswamy, Graduate student, Mechanical engineering
- David Johnson, Graduate student, Aero/Astro engineering
- Geert Vrijsen, Graduate student, Applied physics
- Jason Hogan, Graduate student, Physics
- Nick Ciczek, Graduate student, Applied Physics
- Mike Minar, Graduate student, Applied Physics
- Sean Roy, Graduate student, Physics
- Larry Novak, Senior assembly technician
- Paul Bayer, Optomechanical engineer