Why GPS III?

• Deliver critical new high-value GPS space capabilities
 – Improved PNT accuracy and power for both warfighter and civilian users
 – Additional civil signal (L1C)
 – Enhanced M-code Earth Coverage power
 – Graceful growth path for future capability insertion (GPS IIIA → IIIB → IIIC)

• High-Confidence Acquisition
 – "Back to Basics" program execution
 – Mission Success emphasis
 – Time certain development for on-time launch availability

• Reverse previous space program acquisition pitfalls
 – Unnecessary technical, cost and schedule risks
 – Cost overruns and schedule delays
 – Program restructures or terminations

Low risk solution to satisfying on-going GPS modernization
GPS III Team

• Lockheed Martin
 – Spacecraft Development
 – Critical Space Vehicle Components
 – Space Vehicle Assembly, Integration and Test
 – Space Vehicle Launch Processing
 – Program Management

• ITT
 – Navigation Payload Design, Development and Production

• General Dynamics
 – Network Communications Element
 – UHF Crosslinks

Experienced Team Executing In Partnership with USAF GPS Wing
A2100 History

- Thirty-eight A2100s on-orbit today
 - 1st A2100 in operation for over 13 years
 - No SV failures after over 250 spacecraft-years accumulated to date
 - Received Frost & Sullivan’s Satellite Reliability Award: “Most reliable and efficient of its class”
 - Exceptional earth pointing reliability
- Modular design accommodates large range of payloads and launch vehicles
 - Features parts reduction/simplified construction
 - Increased on-orbit reliability
 - Reduced weight and cost
 - Proven production cycle time

GPS III built on highly reliable satellite bus platform
GPS IIR/IIR-M Heritage

- Twenty GPS IIR/IIR-M space vehicles on orbit today
 - 1st GPS IIR in operation for over 12 years
 - 1st GPS IIR-M in operation for over 4 years
 - 19 spacecraft currently operational with well over 100 spacecraft-years to date
 - Improved overall GPS constellation accuracy
 - Exceptional payload reliability (>99.9%)

- Modernization of GPS IIR accelerates acquisition of additional capabilities
 - GPS IIR-M provides ionospheric correction capability for civil users with L2C capability
 - 1st L2C NAV broadcast began in Sep 2009
 - Allows manufacturers to start early receiver development
 - Provides second set of military codes for both L1 and L2
 - Provides anti-jamming through flexible power capability
 - Flexible design allowed demonstration of third civilian signal (L5)
GPS IIIA (8 planned)
- Increased accuracy (0.63 m spec)
- Increased Earth Coverage Power (-151.5 dBW)
- Additional civil signal (L1C)
 - Interoperable with Galileo and Japan's QZSS
- Bus capacity for IIIB and IIIC

GPS IIIB (8 planned)
- Real-time command and control cross-links
 - Allows upload of all GPS IIIB/IIICs via single contact
 - Improves constellation accuracy

GPS IIIC (16 planned)
- High-power spot beam
 - Provides increased anti-jamming capability for warfighter

Flexible transition and content of future blocks reduces program risk
GPS III Schedule

Pre-Award
- Risk mitigation
- 72 months to 1st launch

Contract Award

Integrated Baseline
- Technical
- Schedule
- Performance

Preliminary Design
- Multiple subsystem and element reviews

Critical Design
- Multiple subsystem and element reviews

Production & Test
- Engineering Models
- Component Qualification
- Flight Production

First IIAA Launch

notional representation

2-4 missions per year

First IIIA Mission

Final IIC Mission

Preliminary Design: On-cost, on-schedule, meets/exceeds technical specs
• Closing Comments