PNT Symposium Stanford University
China’s High Speed Railway Application with GNSS

Jin Shi 2015.11

Beijing National Railway Research & Design Institute of Signal & Communication Co., Ltd (CRSCD)
Outline

• China’s High Speed Railway
• GNSS Application in Railway
• GNSS Performance Study
• GNSS Special in Railway Application
• GNSS Enhancement Tech
• Future Application
• Summary
China’s High Speed Railway

• Brief History of China’s High Speed Railway
 – Introduced on April 18, 2007
 – 4x4 PDL network has been finished by 2014
 – Operational speeds of up to 380 km/h (240 mph)
 – Daily ridership has grown from 237,000 in 2007 to 2.49 million in 2014
 – Cumulative ridership had reached 2.9 billion by October 2014
 – World Largest HSR Network
China’s High Speed Railway

- Railway Map of China 2015
 - HSR line length exceeds 16,000KM (9900mi) in 2014
 - Combined with hybrid lines the length exceeds 20,380 km (12,660 mi) in 2014
 - 16,775 km (10,423 mi) is under construction
 - HSR network will double in 2020
Railway map of China
Colored lines showing CRH and other high speed rail services
Last update: 2015-09-30

- Blue lines: Lines capable for speed above 300 km/h
- Green lines: Newly built lines capable for 200-299 km/h
- Orange lines: Upgraded lines and other lines with CRH service
- Gray lines: Conventional lines with no CRH service
China’s High Speed Railway

• China’s HSR Network in 2020
 – 28/32 provinces and regions are connected
 – Redefine city distance, 8 hours between core metropolis
 – Challenge to traditional railway control system
 – Revolution for transportation industry
China’s High Speed Railway

- The Role of CRSC in China’s HSR History
 - Standard Contributor
 - System Design Solution Provider
 - Core Control System Manufacturer
 - Project Contractor and Executor
 - System Maintainer
GNSS Application in Railway

• Why China has Fantastic Construction Speed
 – Scientific planning and organization
 – Frontier design and verification technology
 – “Know How” experience during construction
 – Complete autonomy and fully customized Capability

• GNSS data plays important role for Railway
 – Early stage simulation
 – Rapid and accurate construction
 – ITCS control system
 – UAV for OAM
GNSS Application in Railway

• China’s Contribution to GNSS
 – Brief history of Compass Navigation System
 • BeiDou-1 System—2000-2003, bidirectional System, geostationary orbit
 • BeiDou-2 System—20012-Now, bidirectional System, hybrid orbit
 • free civilian service has a 10-meter location-tracking accuracy, synchronizes clocks with an accuracy of 10 nanoseconds, measures speeds to within 0.2 m/s.
 • restricted military service has a location accuracy of 10 centimeters
GNSS Application in Railway

- Coverage Area of Compass System
 - BeiDou-1
 - 70°E to 140°E
 - 5°N to 55°N
 - BeDou-2
 - 55°E - 180°E
 - 55°S - 55°N
GNSS Application in Railway

- **Roadmap of Compass System**
 - B1: 1559.052~1591.788MHz
 - B2: 1166.22~1217.37MHz
 - B3: 1250.618~1286.423MHz

<table>
<thead>
<tr>
<th>Time</th>
<th>Constellation</th>
<th>Coverage Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>5GEO+5IGSO+4MEO</td>
<td>Asia</td>
</tr>
<tr>
<td>2020</td>
<td>5GEO+3IGSO+27MEO</td>
<td>Global</td>
</tr>
</tbody>
</table>
GNSS Application in Railway

Launch Plan of BeiDou in 2016

<table>
<thead>
<tr>
<th>No</th>
<th>Launch Time</th>
<th>Load</th>
<th>Rocket Type</th>
<th>Launch Base</th>
<th>Launch Slot</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2016年</td>
<td>BeiDou</td>
<td>CZ-3B/C</td>
<td>XiChang</td>
<td>2</td>
<td>#21,22?</td>
</tr>
<tr>
<td>2</td>
<td>2016年</td>
<td>TianGong-2</td>
<td>CZ-2F</td>
<td>JiuQuan</td>
<td>921</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2016年</td>
<td>ShenZhou-11</td>
<td>CZ-2F</td>
<td>JiuQuan</td>
<td>921</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2016年</td>
<td>GF-3</td>
<td>CZ-2D</td>
<td>TaiYuan</td>
<td>New Slot</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2016年</td>
<td>GF-5</td>
<td>CZ-2D</td>
<td>TaiYuan</td>
<td>New Slot</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2016年</td>
<td>GF-6</td>
<td>CZ-2D</td>
<td>TaiYuan</td>
<td>New Slot</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2016年</td>
<td>FengYun-3D</td>
<td>CZ-4B</td>
<td>TaiYuan</td>
<td>New Slot</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2016年</td>
<td>FengYun-4</td>
<td>CZ-3B/C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2016年</td>
<td>HXMT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2016年</td>
<td>CO2观测星</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2016年</td>
<td>中法海洋卫星</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2016年</td>
<td>地震电磁星</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2016年</td>
<td>SJ - 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2016年</td>
<td>量子通信实验星</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2016年</td>
<td>BeiDou</td>
<td>CZ-3B/C</td>
<td>XiChang</td>
<td>2</td>
<td>#23,24?</td>
</tr>
<tr>
<td>16</td>
<td>2016年</td>
<td>BeiDou</td>
<td>CZ-3B/C</td>
<td>XiChang</td>
<td>2</td>
<td>#25,26?</td>
</tr>
<tr>
<td>17</td>
<td>2016年</td>
<td>BeiDou</td>
<td>CZ-3B/C</td>
<td>XiChang</td>
<td>2</td>
<td>#27,28?</td>
</tr>
<tr>
<td>18</td>
<td>2016年</td>
<td>遥感-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2016年</td>
<td>遥感-31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2016年</td>
<td>遥感-32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2016年</td>
<td>天链1号04星</td>
<td>CZ-3B</td>
<td>XiChang</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
GNSS Application in Railway

• Early Design Simulation
 – Determine the location of communication base station
 – 3D Modeling and integrated with GIS system (Google Earth)
 – Typical environment confirmation
 – Geometry parameter abstraction
 – Antenna feed system 3D modeling
 – Rough performance simulation
 – Channel sounding and data acquisition
 – Fine grain performance simulation
GNSS Application in Railway

- Early Design Simulation
 - For HSR lines
 - For Inter-City lines
 - For Metro lines
- Early Design Simulation
 - Antenna feed System Simulation
GNSS Application in Railway

- Early Design Simulation
GNSS Application in Railway

- ITCS Control System
 - First line using ITCS is Tsinghai-Tibet line – West area, wide plain terrain

- RAIMS requirement for ITCS Control System
 - Reliability
 - Accuracy/Availability
 - Data Integrity
 - Maintainability
 - Safety Integrity
GNSS Application in Railway

- GNSS System in Qinghai-Tibet Line
 - GNSS Combined Satellite System
GNSS Application in Railway

• UAV for OAM
 – RF signal measure
 – Power line check
 – Line measurement before construction
GNSS Performance Study

• Flat Area Case Study
 – Error bound within 10m
测量地面上两个点之间的距离

地图长度：10.62 米
地面长度：10.62
方位：229.22 度数
GNSS Performance Study

• City Area Case Study
 – Error can not be bound within 10m
• Point Jitter
GNSS Performance Study

- Point Jitter
GNSS Performance Statistics

- Signal Shift
 - Always happen near the station
测量地面上两个点之间的距离

地图长度： 38.89 米
地面长度： 40.41
方位： 217.70 度数
GNSS Performance Statistics

• Signal Lost
 – Always happen in the long tunnel
GNSS Special in Railway Application

- High speed, High reliability, High Accuracy
 - Speed > 380KM/H
 - MTBF > 10^9 hours
 - Accuracy < 2m
 - Small antenna size
 - Response Time < 1s

- Fit for mass construction
 - Easy to deploy
 - Easy to maintain (depopulated zone)
 - Environment friendly
GNSS Special in Railway Application

• 2 Dimension, Different requirement
 – Along the running direction, 5s tolerance, 500m for HSR
 – Perpendicular to the running direction, < 2 meter
 – Fast locating time < 1s

• Real track is 1.5D not real 3D
 – No need to calculate 3D cordination
 – Time shift is enough for calculation
 – Track coordinate can be exactly known in advance

• Special enhancement tech can be used
 – Get fast converge rate
 – More accurate result
GNSS Enhancement Tech

- Dimension Reduction Enhancement Tech
 - Using the accurate geometry coordinate of the track
 - Using the satellite NAV telegram to get the satellite orbit
 - Pre-calculate the distance of every reference point at reference time point
 - All the pre-calculated data can be download to the GNSS receiver before the train is started.
GNSS Enhancement Tech

• Dimension Reduction Enhancement Tech
 – Traditional GNSS equation solves 4 unknowns
 – 4 satellites are needed to form 4 independent equations
 – Introduction of time table function $H(t)$ to reduce unknowns
\[\| H(t_1 + \Delta t) - PS1(t) \| = \rho_{t_1,p}^1 + bc(T_{t_1}^{s1} - T_{t_1}^{train}) \]

\[\| H(t_1 + \Delta t) - PS2(t) \| = \rho_{t_1,p}^2 + bc(T_{t_1}^{s2} - T_{t_1}^{train}) \]

\[\sqrt{(x-x_i)^2 + (y-y_i)^2 + (z-z_i)^2} + bc = p_i, \; i = 1, 2, \ldots, n \]

\(\rho_{t_1,p_1}^1 \rho_{t_1,p_1}^2 \) accurate value are exactly known

\(\rho_{t_1,p_2}^1 \rho_{t_1,p_2}^2 \)

Can be calculated because satellite and point position are known

\(\rho_{t_2,p_1}^1 \rho_{t_2,p_1}^2 \) accurate value are exactly known

\(\rho_{t_2,p_2}^1 \rho_{t_2,p_2}^2 \)
Time Table of WuHan-ShenZhen HSR Line 70% Throughput 2015.3.28

Position of the Train the Length from Ref Point

Time of Day
GNSS Enhancement Tech

• Direction Enhancement Tech
 – Using GSM-R communication network
 – Using LTE 4G network location reference signal
 – Using base station ID to get running direction
 – Avoid head on collision in low position accuracy
 – Using Time table function to add reference point via the balise or RF ID
 – Increase the accuracy on intersection plane
GNSS Enhancement Tech

- Direction Enhancement Tech
GNSS Enhancement Tech

• Time domain Enhancement Tech

 – Once the time is sync with satellite then the initial position can be get through time table $H(t)$ function immediately
 – Using time domain continuity to correct position error
 – Improve error correction process especially in station
 – Big data analysis process (Human Control/ATO Control)
• Geometry domain Enhancement Tech
 – Railway using special geometry curves, such as $y = \frac{x^3}{6RL}$
 – Using curvature and altitude to do 2D MSL match process to accelerate the convergence of GNSS search process
 – Using geometry continuity to correct coordinate
 – Greatly reduce the probability of jitter
• Result

– For simple geography situation, accuracy and response time can be improved a lot

– For complicated geography situation, the reliability of GNSS system even using enhancement tech still needs improvement although is rare(Murphy’s Law)

– More reliable and stable methodology is still on its way
Future Application

• Low Cost Railway System
• HSR Control System Enhancement
• Collision Warning System
• Smart OAM System
Summary

• GNSS is important to railway construction
• GNSS combined with enhance tech can get fantastic improvement for railway application
• The cost of accurate GNSS system can be under control
• Future usage of GNSS in unmanned railway vehicle (URV) is very promising
Thank you

Q&A

- Address: CRSC Building, ZongBujidi, Fengtai District, Beijing, China
- Postcode: 100160
- Phone: +86 10-5080 5594
- mail: sj@crscd.com.cn
- website: www.crscd.com.cn