Sense and Avoid for Unmanned Aircraft Systems: Integrity and Continuity

Michael Jamoom, Mathieu Joerger and Boris Pervan

Illinois Institute of Technology

11 November 2015
Scope of Research

- New methods to quantify safety of sense and avoid (SAA) sensors for Unmanned Aircraft Systems (UAS) by evaluating integrity and continuity risks
 - Sensing to alert is addressed, avoidance maneuvering is not

- Methods to establish:
 - Integrity risk of not detecting imminent loss of self-separation
 - Probability of false alert, the continuity risk

- Results can be used to set sensor requirements
Overview

- Background
- Methodology
- 3D Sensitivity Analysis
The Need for Sense and Avoid

- FAA Modernization and Reform Act of 2012
 - Congressional mandate for broader UAS access into NAS
 - For safety, a UAS requires "sense and avoid" (SAA) capability
 - Analogous to "see and avoid" responsibility for manned aircraft

- Pilot must see and avoid non-cooperative intruders
 - Cooperative aircraft employ a transponder or ADS-B

- UAS will require a SAA system to sense intruder aircraft
 - Non-cooperative intruders will need to be sensed
 - Potential sensors include electro-optical, infrared or radar

Self Separation and Collision Avoidance (CA)

- Self-separate to remain "well clear"
 - "Well clear" subjectively referenced in regulations\(^2\)
 - RTCA SC-228 defined a well clear threshold\(^3\)
 - Time to horizontal closest point of approach (CPA), \(\tau\), of 35 sec
 - Horizontal and vertical miss distances (MD) of 4000 ft and 450 ft\(^4\)

- CA maneuver to avoid a near mid-air collision (NMAC)

\(^4\) RTCA SC-228, Draft *Detect and Avoid (DAA) Minimum Operational Performance Standards (MOPS)*, Sep 2015
Problem Statement and Response

- **Quantify SAA safety given sensor uncertainty**
 - Sensors can be noisy

- **In response, this research:**
 - Defines UAS SAA integrity risk and continuity risk methods
 - Ensures a predetermined level of safety
 - Maps and bounds sensor requirement trade space
 - Using single intruder, constant velocity model
 - Maintaining desired integrity and continuity
Integrity Risk and Continuity Risk

- **Integrity risk**: Probability of Hazardously Misleading Information (HMI) without providing a timely warning
 - SAA system senses no hazard when hazard is present

- **Continuity risk**: Probability of false alert (FA) where an alert is issued when no hazard is present
 - SAA system senses hazard when none present
 - FA's can lead UAS to maneuver unexpectedly
 - Potential increased workloads for ATC and intruder pilots
 - Induced hazards with different intruders

- **SAA integrity and continuity depend on sensor errors**
 - Certification can use both to allocate sensor requirements
Methodology and the Measurement Model

- **Methodology**
 - Define measurement model and trajectory states
 - Account for sensor error uncertainty
 - Define hazard states
 - Time to closest point of approach (CPA), tau
 - Horizontal CPA
 - Vertical distances at WCT circle entry and exit
 - Define integrity and continuity requirements
 - Set limits on hazard threshold buffers to meet integrity/continuity
 - Determine if sensors meet requirements or explore trade space

- **Measurement model**
 - Can be used for any sensor or any set of sensors
 - Trajectory states are intruder relative position and velocity
 - Determine trajectory state estimate error covariance
Hazard States

- Well Clear is lost when $5 \left(\tau_{\text{mod}} \leq \tau_{\text{SS}} \right) \cap \left(r_{\text{CPA}} \leq r_{\text{MD}} \right) \cap \left(z \leq \pm z_{\text{MD}} \right)$

- Four **hazard states** are derived from trajectory states
 - τ, time to horizontal CPA: $\tau_{\text{mod}} = D_{\text{mod}}^{2} \left(\ddot{x} - \ddot{y} \right)^{2} \frac{x x + y y}{x x + y y} \quad \tau_{\text{true}} = \frac{-(x \ddot{x} + y \ddot{y})}{x x + y y}$
 - r_{CPA}, horizontal CPA distance: $r_{\text{CPA}} = \sqrt{(x + \tau_{\text{true}} \dot{x})^2 + (y + \tau_{\text{true}} \dot{y})^2}$
 - z_+ and z_-, vertical distances at 2D WCT circle entry and exit
 - Given $r_{\text{CPA}} \leq r_{\text{MD}}$: $z_{\pm} = z + \dot{z} \tau_{\pm} \quad r_{\text{MD}} = \sqrt{(x + \tau_{\pm} \dot{x})^2 + (y + \tau_{\pm} \dot{y})^2}$

- **Hazard estimate errors based on trajectory estimate errors**
 - Hazard state estimates $\hat{\tau}, \hat{r}_{\text{CPA}}, \hat{z}_+, \text{and } \hat{z}_-$ are correlated

5. RTCA SC-228, Draft DAA MOPS, Sep 2015
Tau-only Integrity Risk

- **HMI**: a hazard exists, but that hazard is not sensed

- **Adjusted threshold for integrity**
 - At $\tau = \tau_{SS}$, probability of HMI is an unacceptable 50%
 - Adjust threshold by adding $k_{\tau} \sigma_{\tau}$ to τ_{SS}
 - $Q(x)$ is the tail probability of the normal distribution

\[P_{HMI} = P(\hat{\tau} > \tau_{SS} + k_{\tau} \sigma_{\tau} | \tau \leq \tau_{SS}) \quad (1) \]

- P_{HMI} needs to be less than a given integrity requirement, I_{τ}
 - To account for this, $k_{\tau} = Q^{-1}(I_{\tau})$
Integrity Risk for all Hazard States

- Horizontal and vertical thresholds are adjusted for integrity
 - $k_r \sigma_r$ is added to horizontal miss distance (MD) threshold, r_{MD}
 - $k_+ \sigma_+$ and $k_- \sigma_-$ are added to vertical MD threshold, z_{MD}

- HMI: a hazard exists, but that hazard is not sensed
 - $P_{\text{HMI}} = P[\text{Sense No Hazard} | \text{Hazard Exists}]$
Integrity Risk for all Hazard States

- $\hat{\tau}, \hat{r}_{CPA}, \hat{z}_+, \text{ and } \hat{z}_-$ are correlated
 - P_{HMI} is computationally expensive quadruple integral
 - Analytic upper bounds are more appropriate for aviation

- **HMI must be less than the integrity requirement, $P_{HMI} \leq I_{SS}$**
 - HMI overbounded by Q-functions that are bounded by I_{SS}

![Diagram showing the risk for all hazard states with key variables and bounds]
Tau-only Continuity Risk

- False Alert (FA): no hazard exists, but a hazard is sensed

\[P_{FA} = P(\hat{\tau} \leq \tau_{SS} + k_\tau \sigma_\tau | \tau > \tau_{SS}) \] (2)

- \(P_{FA} \) needs to be less than a given continuity requirement
 - To account for this we select \(\ell_\tau = -\Phi^{-1}(C_\tau), \Phi(x) = 1 - Q(x) \)
 - When \(\tau_{SS} < \tau < (\tau_{SS} + k_\tau \sigma_\tau + \ell_\tau \sigma_\tau) \), FA rate is worse than \(C_\tau \)
Continuity Risk for All Hazard States

- Continuity buffers added to horizontal and vertical thresholds

- FA: a hazard is sensed, but no hazard exists
 - \(P_{FA} = P(\text{Sense Hazard}|\text{No Hazard Exists}) \)
Continuity Risk for All Hazard States

- Bound ensuring P_{FA} is less than required continuity, C_{SS}
Operational Limits

- We inflate WCT to meet integrity/continuity requirements

- We want small \((k + \ell)\sigma\) to minimize impact on airspace
 - We choose an \(\epsilon\) as an operational limit on \((k + \ell)\sigma\)
 - Hazard state estimate standard deviations decrease with time

- \(\tau\) operational limits are \(\tilde{\sigma}_\tau \triangleq \frac{\epsilon\tau_{SS}}{k_\tau + \ell_\tau}\) and \(\tilde{\tau} \triangleq (1 + \epsilon)\tau_{SS}\)
 - Establishes top-level sensor requirements

- A good sensor will reduce each \(\sigma\) below \(\tilde{\sigma}\) prior to \(\tilde{\tau}\)
Applying Self-Separation Tests

- Similar curves and limits for r, z_+ and z_-
- For continuity, self-separation testing must be minimized
- Once all hazard σ's are below their $\tilde{\sigma}$'s, one test is required
3D Example: Nominal Parameters

- Start with nominal spherical sensor
 - Radar: 5 Hz, $\sigma_\dot{\rho} = 0.5 \text{ ft}/\text{s}$, $\sigma_\rho = 5 \text{ feet}$\(^6\), 8 NM range\(^7\)
 - EO: $\sigma_\theta = 0.05^\circ$, $\sigma_\phi = 0.05^\circ$\(^8\)

- Use RTCA SC-228 Well Clear Threshold
 - $\tau_{SS} = 35 \text{ sec}$, $r_{MD} = 4000 \text{ feet}$, $\epsilon_{\tau} = \epsilon_r = 10\%$
 - $z_{MD} = 450 \text{ feet}$, $\epsilon_z = 56\%$, $z_{MD}(1 + \epsilon_z) = 700 \text{ feet}$

- $I_{SS} = 10^{-6}$ and $C_{SS} = 10^{-3}$
 - Set $k_{\tau} = k_r = k_+ = k_- = 4.98$ and $\ell_{\tau} = \ell_r = \ell_+ = \ell_- = 3.4$

\(^6\)Chen, R. H., et al., *Multi-Sensor Data Integration for Autonomous Sense and Avoid*, AIAA Infotech@Aerospace, St Louis, MO, Mar 2011

\(^7\)Edwards, M., *A Safety Driven Approach to the Development of an Airborne Sense and Avoid System*, AIAA Infotech@Aerospace, Garden Grove, CA, Jun 2012

\(^8\)Chen, R. H., et al., *Multi-Sensor Data Integration for Autonomous Sense and Avoid*, AIAA Infotech@Aerospace, St Louis, MO, Mar 2011
3D Example: Trajectories

- Seven constant-velocity 3D intruder trajectories
 - Four head-on trajectories
 - Three descending: top-back, bottom-front, collision course
 - Level top
 - Three tangent trajectories
 - Level top, descend top, descend bottom
 - 370 knots closure, 5000 fpm for non-cooperative intruders

9 RTCA SC-228, Draft DAA MOPS, Sep 2015
3D Example: Nominal Case

- All trajectories meet σ_τ and σ_r requirements

![Nominal σ_τ vs τ](chart1)

![Nominal σ_r vs τ](chart2)
3D Example: Nominal Case

- Trajectories do not meet σ_+ and σ_- requirements

- Tangent trajectories are furthest from meeting requirements
 - Climb/descent rates largest impact: $z_{\pm} = z + \dot{z} \tau_{\pm}$

Nominal σ_+ vs τ

Nominal σ_- vs τ
3D Example: Adjustment

- σ_θ improved slightly to 0.02°
- All trajectories now meet requirements
- Other options: range, sample rate, k's, ℓ's, ϵ's
3D Example: Conclusions from Analysis

- Applied a method to determine sensor trade space
- Carried out a sensitivity analysis of sensor elements
 - Tangent trajectories most restrictive
 - Improving σ_θ had the most impact
Conclusions and Future Work

- **Developed SAA safety evaluation methods**
 - Advanced method quantifying UAS SAA integrity and continuity risk
 - Ensures a predetermined level of safety
 - Mapped and bounded sensor requirement trade space in 3D
 - Quantified performance with single intruder, constant velocity model

- **Future research**
 - Multiple intruder problem
 - Accounting for uncertainty of aircraft dynamics
 - Fault detection
 - Testing on hardware
Acknowledgement

- Appreciation to the FAA for supporting this research
 - Phil Maloney and his UAS Certification Obstacle Team
 - FAA Hughes Technical Center in Atlantic City, NJ
 - FAA Grant #14-G-018
Happy Veteran's Day from IIT in Chicago