Position location at Qualcomm
Pre-GPS to SoC
Irwin Mark Jacobs, Founding Chairman and CEO Emeritus
November 2, 2016
OmniTRACS, First Commercial Product
Two-way data communications and position location

Transition from LORAN to Qualcomm 2-Satellite Positioning

Commercial launch with Schneider National, October 1988
Next, Development of CDMA for 2G Cellular

Started following the commercial launch of OmniTRACS, November 1988

November 1989
First CDMA demonstration in San Diego; then Manhattan

November 1991
CDMA commercial size phone demonstrated - 3 custom chips

July 1993
IS-95 2G cellular CDMA standard issued

November 1995
First commercial 2G CDMA network launched in Hong Kong

To reduce cost, GPS is used to time and frequency synchronize CDMA

1989 demo system
Van-size “mobile” phone with 2 base stations
Challenge: Incorporate GPS in CDMA to Meet E911 Requirements

Significant Problems with enabling GPS in mobile

- Poor Antenna for GPS
- Self-jamming (FDD)
- Low level signal
- Rapid response
- High accuracy
- Low power
- Affordable components
- Space constrained
SnapTrack acquired in 2000

Assisted-GPS (A-GPS) incorporated in CDMA mobile in one year; later standardized in 3GPP / 3GPP2

Early E911 prototyping performance studies, 1998
Competition with Advanced Forward Link Trilateration (AFLT)

E911 Phase 2 specified <50 meters 67% of the time for 95% phones by 12/31/2005
Today, ~170 million E911 Calls Annually with A-GPS successfully meeting E911 requirements
Mobile SoC evolves with Growing GNSS

Operate with up to 85 satellites by end of 2016

<table>
<thead>
<tr>
<th>Year</th>
<th>GNSS</th>
<th>Satellites/Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>GPS</td>
<td>United States 31 satellites</td>
</tr>
<tr>
<td>2011</td>
<td>Glonass</td>
<td>Russia 24 satellites</td>
</tr>
<tr>
<td>2014</td>
<td>BeiDou</td>
<td>China 14 satellites (35 total)</td>
</tr>
<tr>
<td>2016</td>
<td>Galileo, QZSS</td>
<td>Europe and Japan 2nd Half 2016</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Correlator capacity</th>
<th>Power</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>~10K</td>
<td>100’s mA</td>
<td>On demand single fix</td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Correlator capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>~1M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>>15 dB sensitivity improvement</td>
<td>Few mA’s</td>
<td>Ubiquitous always on</td>
</tr>
</tbody>
</table>
Location in Qualcomm’s integrated mobile platform

- Many location based apps running on high performance AP/GPU
- Low power signal processing
- Shared memory
- Correlator engine for rapid acquisition of weak signals
- Integrated RF
- Use all GNSS constellations + bands
- Cloud services enable A-GNSS for E911/LBS
- MEMS sensor assisted positioning
- Barometer
- WLAN RSSI + RTT
- WWAN ranging
- Co-existence management
- Spoof detection + mitigation
Mobile GPS - from saving lives to providing the foundation for innovative new uses

- Watches
- Fitness Bands
- Drones
- ATMS
- Bulldozers
- Stoplights
- Weather Forecasting
- Automotive
beyond navigation
Opening new opportunities with high precision positioning

Connected car and autonomous driving
• Road-level to lane-level guidance
• Autonomous driving <<1m accuracy
• Very low Latency communications

Drones and robotics
• Search and rescue
• Safety in geo-hazard environments
• Weather monitoring
• Precision agriculture
A growing set of drone use cases

All Require Accurate Position Location

Flying cameras
- Consumer flying cameras
- Movies and news media
- Real estate

Delivery
- Package delivery
- Transport of medicines and vaccines

Public safety
- Emergency services
- Cellular coverage for first responders
- Search and rescue

Agricultural
- Crop visual inspections
- Automated planting
- Livestock tracking

Inspection
- Critical infrastructure inspection (e.g. cell towers, bridges)
- Inspection of hard-to-reach assets (e.g. oil & gas, wind turbines)
Enabled by Progress Fusing Visual-inertial odometry with GPS/GNSS for accurate localization

- Accurate 6-Degrees Of Freedom pose

![Diagram](image.png)
Challenges remain for a complete mobile location experience

- Lack of location ubiquity deep indoors
- Vertical Accuracy
- Battery drain
- Privacy management
- Rapid Fusion with Multiple Sensors and Data from Cloud
Thank You

Snapdragon is a trademark of QUALCOMM Incorporated, registered in the United States and other countries. Qualcomm Halo and Toq are a trademark of QUALCOMM Incorporated.