CubeSat Demonstration of Sub-nanosecond Optical Time Transfer

Anh N. Nguyen¹ (anh.n.nguyen@nasa.gov), Watson Attai¹, Nathan Barnwell², Maria Carrasquilla², Jonathan Chavez², Olivia Formoso¹, John Hanson¹, Belgacem Jaroux¹, Asia Nelson², Tyler Noel², Seth Nydam², Ken Oyadomari¹, Jessie Pease², Frank Pistella², Cedric Priscal¹, Tyler Ritz², Steven Roberts², Paul Serra², Jan Stupl¹, Evan Waxman², Jasper Wolfe¹, and John W. Conklin² (iwconklin@ufl.edu)

1. NASA Ames Research Center

2. University of Florida

Background and Motivation

- Application of precision time transfer to space:
 - Satellite navigation system
 - **Beyond LEO** $(\Delta x = c \Delta t)$
 - Global time standards
 - Test of general relativity
 - Satellite encryption/authentication
- Optical time transfer
 - More resilient to ionospheric effects than RF (~1/f²)
 - CNES T2L2 (2008), hosted payload on Jason-2

T2L2 mission [P. Guillemot et al 2006]

Spacecraft Overview

- CHOMPTT (CubeSat Handling of Multisystem Precision Time Transfer) is a precision timing satellite equipped with atomic clocks synchronized with a ground clock, via laser pulse
- CHOMPTT will demonstrate technology for deep space navigation, satellite networking, and distributed aperture telescopes
- CHOMPTT objectives:
 - <200 ps time transfer error (6 cm)
 - <20 ns clock drift after 1 orbit (6 m)
 - Real time clock update
 - Measure clock drift

CHOMPTT Baseline Measurement

Single Time-Transfer <200 ps time transfer error, < 20 ns clock drift after 1 orbit

CHOMPTT Extended Measurement I

On-orbit clock correction

CHOMPTT Extended Measurement II

Time-Transfer with Optical Communications Uplink

CHOMPTT Extended Measurement III

Drift-mode

Optical Time Transfer Architecture

OPTI Payload

Timing

Coarse Time MSP430 counter

- Chip Scale Atomic Clocks (CSACs) are used as clock reference
- TDC-GPX and MSP430 counter are synchronized on a chosen clock rising edge
 - Within 7 μs TDC-GPX range

Fine Time

Time-to-digital converter (TDC-GPX)

- Integrated COTS Acam TDC-GPX
- Measurement based on propagation delays
- Autonomous calibration using delay lock loops
- Low power (<150 mW)
- 10 ps single shot accuracy (12 ps measured)

Channel Board

Top View

Bottom View

Bench Testing

Ground Segment

Space Segment

Measured timing error: 100 psec (3 cm) @ 1 sec 17 nsec (5 m) @ 6000 sec

Bench Testing

Clock difference (2 CSACs) measured using OPTI breadboard

Time-transfer Error Budget

High Altitude Balloon Testing

- ~100,000 ft. for 6+ hours
- Successful OPTI operations in near-space environment
- Obtained system health data
- Successful power cycle test

25 hr Minor Cycle Concept of Operations

Satellite Laser Ranging Facility

Townes Institute Science & Technology Experimentation Facility (TISTEF) managed by University of Central Florida (UCF) at Kennedy Space Center

TISTEF

1 km Testing Range

50 cm Tracking Telescope

Control Room

Optics Lab

Optical Links

Time Transfer Link Overview

Coherent	Flare	NX

• 1064 nm

Ø. O .a

- 3mm Beam diameter
- Linear Polarized

Link Transmit Characteristics

Altitude	Laser	Pulse	Laser	Rep
	Energy	Duration	Power	Rate
500 km	1.1 mJ	2.6 ns	~423 kW	50 Hz

Link Detector Characteristics 30° Elevation				
Detector	Power Received			
OPTI APD	180 nW			
Ground APD	8 nW			
Link Detector Characteristics 90° Elevation				
Link Detector Character	istics 90° Elevation			
Link Detector Character	istics 90° Elevation			
Link Detector Character Detector	istics 90° Elevation Power Received			
Link Detector Character Detector OPTI APD	istics 90° Elevation Power Received 810 nW			

Spacecraft

NODeS-Derived Bus

- Smartphone as main processor
- 13 Solar Panels
 - 8 identical 1U GOMSpace P110 panels
 - 5 identical 1U NODeS TASC panels with 15 cells
- Lithium UHF transceiver for uplink & downlink
- StenSat UHF transmitter for beacon
- 3 RF Antennas
 - GPS patch on 1U zenith face
 - Lithium and beacon monopoles off 3U faces
- 4 18650 Li-Ion Batteries
- ACS 3 RW, magnetometer and torque coils
- Novatel OEMV-1 GPS receiver
- 8 PCB subassemblies electrically interconnected through a single backplane PCB
- Single ribbon cable payload and bus interface for data and power

NODeS Assembly

NODeS Mission Objectives

- Flight demonstrate the commanding of a satellite through a network of satellites by transferring a command from the ground through a relay satellite to a target satellite and having the target satellite execute the command.
- Flight demonstrate the ability of a swarm to autonomously negotiate which spacecraft shall take the role of leader (Captain) based on criteria dependent on the states of the two satellites.
- Collect and downlink time synchronized multipoint science data using EPISEM instrument

NODeS Mission Summary

Mission Goal	Req'd	Ach'ved
Space-to-Ground Links	5	10+
Ground Command of S/C through Network	1	11
Perform Captaincy Negotiation	2	4
Collect Science Packets & Transfer to Ground	5	1,199 as of 7/27/16
Monitor S/C state-of-health	20 days	72 days +

ElaNa XIX Launch

- RocketLab Electron, Mahia NZ
- Low Earth Orbit: 500 km x 85 deg

Auckland

Hamiltono

Wellington

New Zealand Christchurch

Dunedir

oTauranga

Rotorua

almerston North

- Delivery: March 2017
- Launch: June 2017

ROCKETILAB

slot #11

Schedule

- PL + Bus FlatSat Interface testing and SLR Facility development
 - Fall 2016
- Build CHOMPTT FU
 - Dec 2016
- CubeSat Delivery
 - March 2017
- Elana XIX Launch
 - June 2017

University of Florida CHOMPTT Team

Backup Slides

Laser Communication

- 2-Pulse Position Modulation (2 slots per pulse)
- High precision measurement only on the first pulse
- Synchronization string provides phase and rate for communication, masks SLR Delay

