An Air Traffic Management System for Remotely Piloted Aircraft System

Shou-Ju Yeh
National Cheng Kung University
PNT Symposium 2018
Stanford, California
Nov. 7, 2018
Booming Drone Industry

• The drone will likely more than double in size over the next 5 years, from the present 1.1 million units to over 2.4 million units.

Source: FAA Aerospace Forecasts 2018-38
Mini Air Traffic Management System (miniATMS)
Outline

• Introduction to miniATMS
 – Properties
 – Architecture
• Modules in miniATMS
• Conclusions
• Future Work
miniATMS Properties

• Three advantages:
 – Current main ATMS would not be interfered
 – The miniATMS is able to support the controlled airspace and the non-controlled airspace
 – The miniATMS is capable of being the main ATMS backup

• Three modules:
 – Geographic information system (GIS)
 – Radar information
 – Vehicle
miniATMS Architecture

Vehicle Module

ADS-B Antenna

GIS Module

Radar Module

miniATMS

WAN/LAN data communications servers

Surveillance radar

weather
GIS Module

- A data storage format for storing the location, shape, and attributes of geographic features
- Flight information region, coastline, runway, and county area
Radar Module

- ATMS server supported
- Convective weather awareness

NCR
KHR
OLR
TDT
HLT
SDC

miniATMS

Local Internet

Communication Server

HDLC Protocol
ASTERIX Protocol
Weather Information
High-Level Data Link Control (HDLC) Protocol

- Flag

 01111110 | HDLC frame | 01111110

- Abort

 01111110 | HDLC frame | 01111111 | 11111111

- Zero-bit insertion

 01110111 | 11110010

 01110111 | 11011001 | 0
ASTERIX CAT008

ASTERIX : All Purpose STructured Eurocontrol SuRveillance Information EXchange

<table>
<thead>
<tr>
<th>CAT</th>
<th>LEN</th>
<th>FSPEC</th>
<th>Items of the first record</th>
<th>......</th>
<th>FSPEC</th>
<th>Items of the last record</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>FRN</th>
<th>Data Item</th>
<th>Information</th>
<th>Length in Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I008/010</td>
<td>Data Source Identifier</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>I008/000</td>
<td>Message Type</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>I008/020</td>
<td>Vector Qualifier</td>
<td>1+</td>
</tr>
<tr>
<td>4</td>
<td>I008/036</td>
<td>Sequence of Cartesian Vectors in SPF Notation</td>
<td>(1 + 3 x n)</td>
</tr>
<tr>
<td>5</td>
<td>I008/034</td>
<td>Sequence of Polar Vectors in SPF Notation</td>
<td>(1 + 4 x n)</td>
</tr>
<tr>
<td>6</td>
<td>I008/040</td>
<td>Contour Identifier</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>I008/050</td>
<td>Sequence of Contour Points in SPF Notation</td>
<td>(1 + 2 x n)</td>
</tr>
<tr>
<td>FX</td>
<td></td>
<td>Field Extension Indicator</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>I008/090</td>
<td>Time of Day</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>I008/100</td>
<td>Processing Status</td>
<td>3+</td>
</tr>
<tr>
<td>10</td>
<td>I008/110</td>
<td>Station Configuration Status</td>
<td>1+</td>
</tr>
<tr>
<td>11</td>
<td>I008/120</td>
<td>Total Number of Items Constituting One Weather Picture</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>I008/038</td>
<td>Sequence of Weather Vectors in SPF Notation</td>
<td>(1 + 4 x n)</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>Reserved for Special Purpose (SP) Indicator</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>Reserved for the RFS Indicator</td>
<td>-</td>
</tr>
<tr>
<td>FX</td>
<td>-</td>
<td>Field Extension Indicator</td>
<td>11</td>
</tr>
</tbody>
</table>

FSPEC ‘10100001 01000000’
Radar Module Verifications

Date: 11-16-2012 Time: ~20:20Z

miniATMS

Java-based Multidimensional Display System (JMDS)

: airport

- 30~41 dBZ
- 18~30 dBZ

10 n.m.
Vehicle Module

1090 MHz ADS-B Signal (ID, position, speed ...)

telescopic antenna

MCX connector

R820T Tuner chip

DVB-T TV Tuner Dongle

Receiver

miniATMS

dump1090

Vehicle Module

DF17

<table>
<thead>
<tr>
<th>Message Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft identification</td>
</tr>
<tr>
<td>Airborne Position Message</td>
</tr>
<tr>
<td>Airborne Velocity Message</td>
</tr>
</tbody>
</table>
Vehicle Module Verifications
Mini Air Traffic Management System (miniATMS)
Conclusions

• This work develops the miniATMS that is capable to monitor the RPAS on the GIS over the controlled airspace.

• miniATMS provides the information of the convective weather and aircraft for the air traffic controllers and RPAS operators.

• miniATMS is independent to the online ATMS but compatible to it based on the ADS-B supporting and the radar server connection.
Future Work: RAIM Prediction
Thank You for Your Attentions,
Any Question?