

ATOMIC CLOCKS TECHNOLOGIES FOR GALILEO & RELATED APPLICATIONS

Pascal Rochat Managing Director, Founder

rochat@spectratime.com

GNSS ONBOARD ATOMIC CLOCKS REQUIREMENTS DEPENDS ON :

- > Autonomy (clock model upload rate: tens of minutes to days)
- > Navigation and positioning accuracy (meters to tens of meters)
- Satellite platform design and technical requirements
- > Availability of the reference signal on board within specifications

Clocks key parameters:

- Long term drift or drift stability
- Short term stability
- Frequency sensitivity to environment (temperature, magnetic field, voltage, radiations)
- Reliability figure of onboard elements versus requested Availability figure

POSITION ERROR INDUCED BY THE ONBOARD PASSIVE MASER

SPACE RUBIDIUM (RAFS) AND PASSIVE HYDROGEN MASER (PHM)

Spectratime delivered more than 100 RAFS flight models and 50+ PHM flight physics packages.

Both clock technologies have a number of years of flight experience, of which more than 100 RAFS, and 45 PHM are actually flying in various orbits.

Galileo GIOVE –IOV : from 12.2005

Ø spectratime

BeiDou: from 04.2009

Galileo FOC: 12.2013

FREQUENCY STABILITY COMPARISION BETWEEN GALILEO AND GPS

ORBIT PREDICTION ERROR LIMITING THE ON BOARD CLOCK CLOCK MODELLING

GIOVE orbit prediction error

Source: ESA/GMV , EFTF 2009

GALILEO SYSTEM PERFORMANCES

Ranging Performance

Galileo Signal in Space Ranging Accuracy - Worst case Dual Frequency [m]

Galileo Signal in Space Ranging Accuracy - Worst case Single Frequency [m]

SPACE RAFS DEVELOPEMENT : A 25+ YEARS STORY

- 1991 Space clock first design start for RadioAstron mission
- **1996** First ESA contract for NavSat clock design
- 2002 Life time program of 5 EQM models + QM,

meeting all expectations in terms of lifetime (>12 years)

along with radiations testing.

- 2005-2006 First launch & Design of 100% Swiss unit
- 2012-2017 Performances improvements under ESA GNSS evolution program

FREQUENCY STABILITY OF ON BOARD RAFS GAST101

Source: ESA , EFTF 2018

PHYSICS PARAMETERS IMPROVEMENT

- The new RAFS design is focused to improve its robustness to external or internal perturbations/variations.
- The RAFS robustness is better as the various key parameters are improved.
- > The key parameters are typically:
 - Light shift
 - Pressure shift & Power shift
 - Thermal sensitivity of the cell
 - Thermal sensitivity of the lamp

	Old design	New design	
Cell	Gas Mixture 1	Gas Mixture 4	Improvement factor
Lamp	Туре А	Туре С	
Light shift [/%]	7.0E-11	5.0E-12	14
Pressure shift [/°C/mbar]	3.3E-11	2.0E-12	16
Coef. cell [/°C]	5.0E-12	5.0E-12	Equal
Coef. lamp [/°C]	5.0E-12	-2.0E-11	But not too critical
Short term stab @ 1sec .	3.0E-12	3.0E-12	Equal

SUMMARY

Øspectratime

an Orolia branc

- Because of its excellent reliability, good performances versus quality and price, the rubidium clock is the first choice for the GNSS satellites atomic clocks.
- With the increased batches numbers, the performances has been gradually improved, leading to 2E-14/°C typical temp. coefficient.
- ➢ Guaranteed full performances with +-1 °C variations on base plate.

PASSIVE MASER DEVELOPEMENT HISTORY

- 2000 Set-up of consortium constituted of the Observatory of Neuchatel, Selex Galileo & Spectratime and start of SPHM development program
- 2003 Industrialisation program & lifetime verification program
- From 2009 Set-up of production & tests capability up to 2 SPHM / month.
- 2010 Achievement of full stability on 'Mini Maser', physics package only 8Kg
- 2012-2018 Qualifications program of mini Maser & electronics package improvements

FREQUENCY STABILITY ON GALILEO SATS PHM

PASSIVE MASER PHYSICS PACKAGE SIZE/WEIGHT REDUCTION

Key improvements :

- Microwave Cavity size reduction while keeping same quality factor Qk
- Keeping same H storage bulb volume

$$\sigma_{y}(\tau) = \sqrt{\frac{k_{s}kTF}{2A_{c}}} \frac{(1+S_{0}-\alpha)^{2}}{Q_{0}\alpha\sqrt{S_{0}}(1+S_{0})} \tau^{-\frac{1}{2}}$$
$$\alpha = \frac{\mu_{0}\mu_{B}^{2}\eta'Q_{k}I}{\hbar V_{b}\gamma_{1}\gamma_{2}} \qquad \alpha \approx 0.3, \text{ So} \approx 0.3$$

MINI-PHM EQM PP MODEL STABILITY TEST

MERCURY ION FREQUENCY STANDARD (MIFS)

Development of Innovative Atomic Clocks for Satellites

Øspectratime

- No Laser
- No Cryogenics
- No Microwave cavities
- No wall collisions, high Q line
- No gas load, not a gas 'flow-thru' architecture, no consumables
- No Light shift!

MIFS: PRINCIPLE AND DESIGN

- Based on Mercury lamp (²⁰²Hg⁺) optical pumping/detection
 with a linear trap design optimized for large ion numbers (10⁶ -10⁷ ¹⁹⁹Hg⁺).
- Clock Transition: 40,507,347,996.8 Hz

202 Hg 'Lamp' Ion

194 nm emission

MIFS DEVELOPEMENT

*⊘*spectratime

an Orolia brand

Atomic Clocks Technologies | 2019 18 Orolia

MIFS DEVELOPEMENT

Parameter			Clock Technolo	gy
	Unit	РНМ	RAFS	MIFS (target)
ADEV@1s	-	< 1E-12	3E-12	< 1E-12
ADEV@1d	-	< 5E-15	1E-14	< 1E-14
Frequency drift	1/day	<1E-15	< 1E-13	< 1E-15
Magnetic sensitivity	1/G	< 3E-13	< 1E-13	< 1E-14
Thermal sensitivity	1/°C	< 3E-14	< 3E-14	< 1E-15
Volume	litre	28	2.5	< 5
Mass	kg	18	3.4	< 5
Power	W	60	< 35	< 30
Lifetime	years	12	> 15	> 15
Time to 1 ns error	days	2	0.3	10

GNSS ONBOARD CLOCKS ENSEMBLE

GNSS ONBOARD TIMING SUBSYSTEM

Critical payload of Global Navigation Satellite System, consisting of

- Ultra-stable on-board atomic clocks
- Clock Monitoring and Control Unit (CMCU)

> Direct impact on navigation system performance through contributions of system ranging error and availability

1st generation of Galileo satellites

- □ 1 x Master: PHM
- □ 1 x Hot redundancy: RAFS
- CMCU selects the clock signal to be distributed
 - > Vulnerabilities and risks

Next generation

> Stability, robustness , reliability

ONE CLOCK ENSEMBLE (ONCLE)

A concept of the ONCLE for a robust time and frequency reference system proposed by Spectratme in 2009.

• Improved robustness and performances

Advanced processing in real time with min. 3 input clocks

- Clock Ensemble based on weighted averaging
- Clock Fault Detection & Correction based on a cascade of low-pass recursive filters & associated logic
- Steering loop to keep all clocks in phase and frequency
- Simple and reliable
 - Describing the provided of the state of the

DEVELOPMENTS UNDER EGEP

European GNSS Evolution Programme (EGEP)

- □ 2012 2014: Robust On-board Frequency Reference Subsystem (FRS), Elegant Breadboard
 - > Feasibilities of HW & Algorithms approaches demonstrated
- □ 2015 2019: On-board Clock Ensemble CMCU (CMCU+), Engineering Model
 - > 50% contributions from Orolia (Spectratime)
 - HW: Output module (inc. LNMO), DC-DC Converter, Box mechanics
 - Algorithms: design, development , high-level verification tests

Spectratime an Orolia brand

gn∨

AIRBUS

Spectratime an Orolia brand

ALGORITHMS DESIGN

Algorithm architecture based on FRS development, adapted with CMCU HW architecture

VERIFICATION METHOD

Algorithms design verified successfully by simulation under various test cases with 3 clock sets including clock events on master and secondary clocks

High-level performance verification conducted at CMCU+ EM level

- □ Real-time operation
- □ 2 sets of clock configurations (atomic clock technology diversity)
 - ✓ Set A: 1 x PHM + 3 x RAFS
 - ✓ Set B: 3 x PHM + 1 x RAFS
- Test results verified by
 - Clock handling capability
 - ✓ ADEV
 - Maximum Accumulated Phase Offset (MAPO)

CMCU+ TEST SETUP

Testing and validation tool

iTest[®] FemtoStepper

- ✓ Ability to 'REPLAY' clock data
- ✓ Generate clock anomalies
- ✓ High resolution : 100 fs, 1e-17

TEST CASE: ENSEMBLE STATIONARY PERFORMANCE

> Two AFS Sets, two data sets: 2-day per 1s; 4-hour per 0.1s

Allan Deviation $\sigma_y(\tau)$ 1E-11 1E-11 1E-12 1E-14 1E-15 1E-16 1E-17 1E-

> Output ADEV:

Ø spectratime

an Orolia branc

|--|

- Set B At 1s, equivalent as PHM, impacted by PLL
 - $At \ge 10s: 1/\sqrt{3} \text{ of ADEV of PHM}$

TEST CASE: HEALTHY AFS REMOVAL BY COMMAND_A (MASTER)

> PHM01: Removal at 500s

> PHM01 removed and smoothly switched over

TEST CASE: HEALTHY AFS INCLUSION BY COMMAND_A (SECONDARY)

> RAFS03: Included at 500s

> RAFS included w/o impact on output

Ø spectratime

an Orolia branc

TEST CASE: HIGH-DYNAMICS FREQUENCY JUMP_A (MASTER)

> Input PHM01: f jump=2e-13 ~ MAPO_100=1.22ns

> CMCU+ output: f jump corrected by SJ ~ MAPO_100=0.45ns

TEST CASE: MEDIUM-DYNAMICS FREQUENCY JUMP_A (MASTER)

> Input PHM01: f jump=1e-12 during 2500s ~ MAPO_100=4.8ns

> CMCU+ output: f jump corrected by JD&SJ ~ MAPO_100=1.12ns

TEST CASE: WFN LEVEL INCREASE_A (MASTER)

> Input PHM01: 10xWFN

> CMCU+ output: f jump corrected by JD&SJ ~ MAPO_100=0.28ns

TEST CASE: FAILURE JUMP_A (MASTER

> Failed Master PHM detected by FD, removed and switched over ~ MAPO_100=0.28ns

CONCLUSIONS

Direct Results

- > Algorithms designed, developed, and verified by an extended test and validation campaign
- > Functionalities and performances verified successfully with improved robustness and timing accuracy
- > A smart, robust and feasible solution for a spaceborne implementation
- > Benefits for on-board timing sub-system for 2nd Generation of Galileo satellites (G2G)

Next

- > Further tuning of parameters
- > To be implemented into fully flight hardware
- Configurability and flexibility of operation

MINIATURE CLOCKS

FOR FUTURE LEO – PNT SATELLITES

MINI RUBIDIUM: PROJECT GOAL & APPLICATIONS

- \rightarrow High stability frequency source
- \rightarrow Telecom & mobile network synchronization (TDM, PTP)
- → Military airborne, ground, mobile & unmanned radio communications
- \rightarrow Oil & gas sensor-based exploration
- \rightarrow Instrumentation
- \rightarrow Portable & battery-sensitive applications
- → GPS-based applications

Frequency	10 MHz
Temperature range	-5°C to 55°C
Frequency change over Temp. range	<= 2E-10
Short term stability	1.5E-10 @ 1s
Aging (after 3 month)	< 2E-12 / day

Size	52.2 × 52.2 × 19.5mm.
Weight	90 g max.
Volume	< 50 cc
Power	0.4 W

DOUBLE-RESONANCE PHYSICS PACKAGE

Schematic of the laser pumped double resonance (D1) physics package

- (+) Less constraints on laser (No RF modulation)
- (+) No need taking care of light polarization
- (+) Laser amplitude & frequency drift can be compensated
- (+) With new patented technique, less RF power is necessary and no size limitation

NEW MINIATURE RUBIDIUM CLOCK : DRIFT RATES

MINI RUBIDIUM: PRODUCTION STATUS

Physics Package (DIL-14)
 VCO @3GHz
 DSP micro-processor

Øspectratime

an Orolia branc

MOBILE PNT – MRO50 APPLICATIONS

THANK YOU FOR YOUR ATTENTION

Spectratime an Orolia brand

