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The Premise

You may have noticed that the addition of 
constraints to an optimization problem has the 
effect of making it much more difficult. 

The goal of penalty functions is to convert 
constrained problems into unconstrained 
problems by introducing an artificial penalty for 
violating the constraint.



The Premise
Consider this example: Suppose there is a freeway 
(like a toll freeway) that monitors when you enter 
and exit the road.

Instead of establishing a speed limit of 65 mph, 
they could use these rules:

• You can drive as fast as you want.

• If you drive under 65 mph you can use our road 
for free.

• Every mph you drive over 65 will cost you $500.



The Premise

The previous example had no constraints – you 
can drive as fast as you want! But the effect of 
these rules would still be to limit drivers to 
65mph. You can also control the likelihood of 
speeding by adjusting the fine. 

Penalty functions work in exactly this way.



Initial Steps

We will be working with a very simple example: 

minimize f(x) = 100/x

subject to x ≤ 5
(With a little thought, you can tell that f(x) will be minimized 
when x = 5, so we know what answer we should get!)

Before starting, convert any constraints into the 
form (expression) ≤ 0. In this example, x ≤ 5 
becomes:

x – 5 ≤ 0 



Initial Steps

Once your constraints are converted, the next 
step is to start charging a penalty for violating 
them. Since we’re trying to minimize f(x), this 
means we need to add value when the 
constraint is violated.

If you are trying to maximize, the penalty will 
subtract value. 



Quadratic Loss: Inequalities
With the constraint x – 5 ≤ 0, we need a penalty that is: 

• 0 when x – 5 ≤ 0  (the constraint is satisfied)

• positive when x – 5 is > 0 (the constraint is violated)

This can be done using the operation 

P(x) = max(0, x – 5) 

which returns the maximum of the two values, either 0 
or whatever (x – 5) is.

We can make the penalty more severe by using 

P(x) = max(0, x – 5)2.

This is known as a quadratic loss function.



Quadratic Loss: Equalities

It is even easier to convert equality constraints 
into quadratic loss functions because we don’t 
need to worry about the operation (max, g(x)). 
We can convert h(x) = c into h(x) – c = 0, then 
use

P(x) = (h(x) – c)2

The lowest value of P(x) will occur when h(x) = c, 
in which case the penalty P(x) = 0. This is exactly 
what we want.



Practice Problem 1

Convert the following constraints into quadratic 
loss functions:

a) x ≤ 12

b) x2 ≥ 200

c) 2x + 7 ≤ 16

d) e2x + 1 ≥ 9

e) 4x2 + 2x = 12



The Next Step
Once you have converted your constraints into 
penalty functions, the basic idea is to add all the 
penalty functions on to the original objective 
function and minimize from there:

minimize T(x) =  f(x) + P(x)

In our example,

minimize T(x) = 100/x + max(0, x – 5)2



A Problem

But… it isn’t quite that easy. 

The addition of penalty functions can create severe 
slope changes in the graph at the boundary, which 
interferes with typical minimization programs.

Fortunately, there are two simple changes that will 
alleviate this problem.



First Solution: r
The first is to multiply the quadratic loss function by 
a constant, r. This controls how severe the penalty 
is for violating the constraint. 

The accepted method is to start with r = 
10, which is a mild penalty. It will not form 
a very sharp point in the graph, but the 
minimum point found using r = 10 will not 
be a very accurate answer because the 
penalty is not severe enough.



First Solution: r

Then, r is increased to 100 and the 
function minimized again starting from the 
minimum point found when r was 10. The 
higher penalty increases accuracy, and as 
we narrow in on the solution, the 
sharpness of the graph is less of a 
problem.

We continue to increase r values until the 
solutions converge. 



Second Solution: Methods
The second solution is to be thoughtful with 
how we minimize. The more useful minimization 
programs written in unit 2 were interval 
methods. The program started with an interval 
and narrowed it in from the endpoints.

With a severe nonlinearity, interval methods 
have a tendency to skip right over the minimum.



Second Solution: Methods

For this reason, interval methods are generally 
not ideal for penalty functions. It is better to use 
methods that take tiny steps from a starting 
point, similar to the “brute force” methods we 
used in 1-variable, or any of the methods we 
used in 2-variable minimization.

It is also important when using penalty functions 
to run the program a few times from various 
starting points to avoid local extremes.



Practice Problem 2 
Write a program that, given an initial point and a 
function, 

1) uses the derivative to determine the 
direction of the minimum

2) takes small steps in that direction until the 
function value increases

3) decreases the step size to narrow in on the 
minimum

4) reports the minimum value
Test, document and save your code!



The Final Step
Now, back to the example: 

minimize f(x) = 100/x

subject to x ≤ 5

has become

minimize T(x) = 100/x + r · (max(0, x – 5)2)

The initial point must be chosen in violation of the 
constraint, which is why these are known as 
“exterior penalty functions”. We’ll start with x = 20.



Practice Problem 3

Using your step minimization program, minimize 

f(x) = 100/x + 10 · (max(0, x – 5))2

from starting point 20. Call your answer “a”.

Then, minimize 

f(x) = 100/x + 100 · (max(0, x – 5))2

from starting point a.

Repeat for r = 1000 and r = 10,000.



Practice Problem 4

Write a function that will carry out successive 
iterations of raising the value of r and closing 
the interval boundaries. Check your loop with 
the previous problem, then use it to solve this 
problem:

minimize f(x) = 0.8x2 – 2x

subject to x ≤ 4

Test different starting points to see the effect.



Practice Problem 5
Next, solve this problem:

Minimize f(x) = (x – 8)2

subject to x ≥ 10

(Be careful with that ≥! it will affect both your g(x) and 
your starting point.)



A Note About Exterior Penalty 
Functions

Because exterior penalty functions start outside 
the feasible region and approach it from the 
outside, they only find extremes that occur on 
the boundaries of the feasible region. They will 
not find interior extremes.

In order to accomplish that, these are often 
used in combination with interior penalty 
functions… next lesson!


