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Motivation 2

Road fatalities represent about 1.35 millions of death each year worldwide.

94% of serious crashes are caused by human error.

source: LA Times Source: IEEE spectrum

World Health Organization, ‘‘Global status report on road safety,’’ Tech. Rep., 2018.
National Highway Traffic Safety Administration, ‘‘Critical reasons for crashes investigated in the national motor vehicle cra sh causation survey,’’ Tech. Rep. DOT HS 812 506, 2018.



The Autonomy Stack 3

Route Planning Decision Making Motion Planning Feedback Control

Perception

Visible road users states,
traffic signs, 
obstacles

Ego vehicle state, 
geometric constrains

Ego vehicle stateRoad network,
Destination

h - min 1s – 0.1s 100ms – 10ms 1ms



Decision Making Algorithms 4

• Safe
• Robust to sensor limitations
• Scalable



Challenges for Autonomous Vehicles 5

• Diverse traffic

• Crowded

• Occluded

• Unexpected behaviors

Source: A. Palffy, J. F. P. Kooij, D. M. Gavrila, 
“Occlusion aware sensor fusion for early crossing 
pedestrian detection,” in IEEE Intelligent Vehicles 
Symposium (IV), 2019.



Related Work: Rule-Based / Finite State Machines 6

Source: M. Montemerlo et al. "Junior: The stanford entry in 
the urban challenge." Journal of field Robotics 25.9 (2008): 
569-597.

Source: L. Fletcher et al. "The MIT–Cornell collision and 
why it happened." Journal of Field Robotics 25.10 (2008): 
775-807.

Limitations:
• Requires anticipating every situations
• Difficult to scale to complex scenarios
• Hard to take into account uncertainty (e.g. perception noise)



Related Work: Planning and Optimization 7

Online Methods
(tree search)

Planning algorithm

Offline Methods
(dynamic programming)

Problem Formulation
(mathematical model)

Limitations:
• Requires a model
• Computationally expensive

Claim: A model that can capture sensor uncertainty, stochastic 
behavior, and drivers’ intention would lead to good decision strategies.



Related Work: Planning and Optimization 8

Candidate: partially observable Markov decision process (POMDP)

Online Methods
(tree search)

Planning algorithm

Offline Methods
(dynamic programming)

Problem Formulation
(mathematical model)

A model that can capture sensor uncertainty, stochastic behavior, and 
drivers’ intention would lead to good decision strategies.



Introduction

Outline 9

Decision Making for 
Autonomous Driving

1. Mathematical formulation

Scalability

2. Utility 
Decomposition

3. Deep Corrections

Safety

4. Safe 
Reinforcement Learning

5. Model Checking in 
POMDPs

6. Conclusions



Partially Observable Markov Decision Processes 10

(S, A, O, T, O, R, 𝛾)

Mathematical framework for modeling processes with:
• Stochastic evolution
• State uncertainty (sensor noise, intentions)

Example: left-turn at an occluded intersection:



State 11

(S, A, O, T, O, R, 𝛾)

• Every possible positions and 
velocities of the  ego vehicle 
and the other car

𝑠𝑒𝑔𝑜 , 𝑣𝑒𝑔𝑜 , 𝑠𝑜𝑡ℎ𝑒𝑟1 , 𝑣𝑜𝑡ℎ𝑒𝑟1

• Intention of the other driver: 
turn left, turn right

“turn right” 

Ego vehicle 
(being controlled)



(S, A, O, T, O, R, 𝛾)

Actions 12

• {−4 𝑚𝑠−2; −2𝑚𝑠−2; 0𝑚𝑠−2; 2𝑚𝑠−2}

• “bead on a wire” , point-mass 
dynamics



Transition Model 13

• Probability of transitioning to 
a next state given the previous 
state and the action taken. 

• Constant velocity with noise

• Probability of appearance

(S, A, O, T, O, R, 𝛾)



Observations 14

• Receive noisy measurement of other 
vehicles position and velocity

• Do not receive observation if there 
are occlusions

(S, A, O, T, O, R, 𝛾)



Belief 15

Since the state is not observable, the agent maintains a belief reflecting its 
internal knowledge of the environment.

A belief is a distribution over states 
• internal states (intentions)
• partially observed physical states



Policy 16

Policy: mapping from beliefs to actions

Find a policy
𝜋 ∶ B → A

that maximizes



Partially Observable Markov Decision Processes 17

𝑅 𝑠, 𝑎 = 𝜆safety𝑅safety 𝑠, 𝑎 + 𝜆efficiency𝑅efficiency 𝑠, 𝑎 + 𝜆comfort𝑅comfort(𝑠, 𝑎)

In this work: 𝑅 𝑠,𝑎 = 𝟙goal − 𝜆𝟙collision

(S, A, O, T, O, R, 𝛾)



Applying the model to different scenarios 18



Approach Summary 19



Value Function 20

𝑄∗(𝑏, 𝑎) : average accumulated discounted reward if the agent starts in belief 
𝑏, takes action 𝑎 and follows the optimal policy for the remaining steps.

Decision rule: 𝜋∗ 𝑏 = argmax
𝑎

𝑄∗(𝑏, 𝑎)

Bellman equation for POMDPs:

Immediate reward Expected future reward



Algorithms for Solving POMDPs 21

QMDP:

• Up to millions of states

• No information gathering

• Optimistic solution

SARSOP:

• Up to tens of thousands of states

• Information gathering

Note: Both require discrete state spaces

One user problem:
• 4D Grid 

𝑠𝑒𝑔𝑜 , 𝑣𝑒𝑔𝑜 , 𝑠𝑜𝑡ℎ𝑒𝑟1 , 𝑣𝑜𝑡ℎ𝑒𝑟1
• Total number of states:

1𝟎k for the crosswalk
20k for the intersection

Tractable

Two users problem:
• 6D Grid 

𝑠𝑒𝑔𝑜 , 𝑣𝑒𝑔𝑜 , 𝑠𝑜𝑡ℎ𝑒𝑟1 , 𝑣𝑜𝑡ℎ𝑒𝑟1 , 𝑠𝑜𝑡ℎ𝑒𝑟2 , 𝑣𝑜𝑡ℎ𝑒𝑟2
• Total number of states:

𝟐𝟎𝟎k for the crosswalk
7M for the intersection

Intractable!



• Scale decision making algorithms 
to scenario with multiple traffic 
participants

1.Introduction

2.Utility Decomposition 
3.Deep Corrections
4.Safe Reinforcement Learning
5.Model Checking in POMDPs
6.Conclusion



Utility Fusion 23

Approximate the solution to the large problem as a combination of the 
subproblems:

𝑄∗ 𝑏, 𝑎 ≈ 𝑓 𝑄1
∗ 𝑏1 , 𝑎 , … , 𝑄𝑛

∗ 𝑏𝑛 , 𝑎

Examples:

or 
𝑄∗ 𝑏, 𝑎 ≈ min

𝑖
𝑄𝑖
∗(𝑏𝑖 , 𝑎)



Entity Based Decomposition 24

𝑏

𝑏1

𝑏2

𝑏3

𝑄single(𝑏1 , 𝑎)

𝑄single(𝑏2, 𝑎)

𝑄single(𝑏3, 𝑎)
𝑎 = argmax𝑎min

i
(𝑄single 𝑏𝑖, 𝑎 )

0
brake accelerate

0
brake

accelerate

0
brake accelerate

0
brake

accelerate

Evaluating 𝑄single is computationally cheap



Occluded Crosswalk Demo 25



Occluded Crosswalk Demo 26



Occluded Intersection Demo 27



Occluded Intersection Demo 28



Results 29

• Collision cost is varied
• Reward tuning allows to get safe policies
• The choice of the fusion function matters a lot

QMDP SARSOP
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Average time to cross (s) Average time to cross (s)



Results 30

Collision rate (%) Time to cross (%)

Crosswalk

Baseline 0.1 ± 0.04 18.58± 5.39

QMDP 0.0 ± 0.0 10.61± 3.76

SARSOP 0.0 ± 0.0 10.51± 4.44

Intersection

Baseline 0.1 ± 0.04 13.46± 3.04

QMDP 0.0 ± 0.0 6.20 ± 2.108

SARSOP 0.7 ± 0.83 4.38 ± 0.1342



Discussion 31

1. POMDP approach can handle sensor occlusions and stochastic behaviors and 
outperforms rule-based methods.

2. Reward tuning allows to generate different behavior

3. Decomposition methods highly reduce the computational cost of POMDP 
algorithms

Drawbacks:

• Rough approximation 

• Makes strong assumptions of independence between traffic participants



• Learn a corrective term, 
represented by a neural network, 
to refine the approximation

• Faster learning

• Better performance.
1.Introduction
2.Utility Decomposition 

3.Deep Corrections
4.Safe Reinforcement Learning with Scene 
Decomposition
5.Model Checking in POMDPs
6.Conclusion



Utility Decomposition with Deep Corrections 33

Learnt using Deep Q 
learning

• Utility decomposition performs well empirically ☺

• Sacrifices optimality 

• Learn a corrective term :

Obtained via utility 
decomposition or prior 
knowledge



Reinforcement Learning 34

Requires: Black box simulator (model free RL), reward function: 𝑅(𝑠, 𝑎)

Environment: POMDP

Transition model:
𝑠′, 𝑟 ∼ 𝐺 𝑠, 𝑎

Observation model:
𝑜 ~ 𝐻(𝑠′)

Policy: Value function 
approximated by a NN

𝑎 = argmax𝑄(𝑏; 𝜃)

𝑎 𝑏, 𝑟



Train the Corrective Factor 35

Step 1: 
Learn 𝑄𝑠𝑖𝑛𝑔𝑙𝑒 in an environment with one entity

Step 2:
Learn 𝛿 in the full environment



Train the Corrective Factor 36

• Using deep Q-learning

• Freeze the weights of 𝑄𝑖

• Propagate the gradients through 
the correction term only



Results 37

DQN: Solving the full problem 
with a deep Q network

Decomposition only: Applying 
utility fusion

Decomposition with 
correction: Adding a corrective 
term to the utility fusion 
solution

=> Domination of the 
correction method
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Time to cross (s)

DQN Decomposition with 
correction

Decomposition 
only

Fusion with max-sum Fusion with max-min

Time to cross (s)



Results 38

• The correction function is being trained 
on twice as less samples than the 
regular DQN policy.

• Converges faster

• Leveraging prior knowledge allows to 
significantly reduce the time spent for 
exploration

[1] P. Sunehag, et al, “Value-Decomposition Networks for Cooperative Multi-Agent Learning Based on Team Reward,” in AAMAS, 2018.

Value decomposition 
network structureTraining budget (number of interactions)
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%
)

[1]



Discussion 39

1. Improve the approximation from utility decomposition by learning a 
corrective term

2. Learn the corrective term through deep reinforcement learning

3. Learns faster than other methods

4. Outperforms policies trained from scratch or using decomposition method 
only

Related Work: 

- T. Silver et al, “Residual policy learning”, Arxiv 2018.

𝜋𝜃 𝑠 = 𝜋 𝑠 + 𝑓𝜃(𝑠)



• Rely on a model checker to 
enhance safety.

• Combine model checking with the 
decomposition method1.Introduction

2.Utility Decomposition 
3.Deep Corrections

4.Safe Reinforcement 
Learning 
5.Model Checking in POMDPs
6.Conclusion



Safe Reinforcement Learning using Model Checking 41

• Model Checking allows to verify property of systems with high confidence

• Given a safety specification

• Identify actions satisfying the specification using Model Checking

• Constrain the action space to enforce the satisfaction of the safety specification.

• Train an RL agent in a higher fidelity environment 



Identifying Acceptable Actions 42

𝑃𝑠(𝑠, 𝑎) : probability of reaching the goal safely when taking action 𝑎 in state 𝑠

Given a minimum acceptable probability of success 𝛾, the set of acceptable 
action is given by:

𝐴 𝑠 = 𝑎 𝑃𝑠(𝑠, 𝑎) > 𝛾 }

𝑃𝑆(𝑠, 𝑎) can be computed using value iteration (polynomial in the number of states)

Note: Assume full observability and approximate 𝑃𝑆 𝑏, . ≈ σ𝑠 𝑏 𝑠 𝑃𝑆(𝑠, . )



Constrained Exploration 43

In state 𝑠

• If 𝐴 𝑠 is empty

• Default to 𝜋safe 𝑠 = argmaxa 𝑃𝑆(𝑠, 𝑎)

• Else 

• Choose action in 𝐴(𝑠) using any exploration policy (e.g. 𝜖-greedy)

Guaranteed: never prioritize unsafe actions over safe actions

Not guaranteed: the policy has a probability of success of at least 𝛾



Training with constraints 44

• Our approach moves the 
Pareto frontier towards safe 
regions of the operation space

• Decoupling of the two 
objectives simplify the design 
process.
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Time stepsScenario (fully observable):

RL
Safe RL



Model Checking and Decomposition Methods 45

𝑃𝑆 𝑏, 𝑎 = min
𝑖

𝑃𝑆(𝑏𝑖, 𝑎)

𝑄 𝑏, 𝑎 = min
𝑖

𝑄(𝑏𝑖 , 𝑎)

For each subproblem compute 𝑃𝑠 and 𝑄



Revisiting the Decomposition Method 46

Example of three canonical scenarios in a 
complex scene. 
There are 32 instances of canonical scenarios in 
this scene (𝑁pedestrians ×𝑁cars×𝑁obstacles)

Ego Vehicle Other Vehicle Pedestrian

Canonical Scenarios

Consider a subset of agents instead of considering only one agent



Safe Reinforcement Learning with Scene Decomposition 47

1. Find suitable state decomposition

2. Compute the probability of success for the sub-problem 

3. Compute the value function for the sub-problem 

4. Online:

• Belief update to estimate the state

• apply a conservative fusion algorithm (min)

Model Checking

RL with constrained 
exploration



48



Evaluations Scenarios 49

a: only one other car, sensor noise b: only one other car, sensor noise + occlusions

c: car and pedestrian interaction, 
perfect observation

d: car and ego interaction, 
perfect observation

e: multiple cars, pedestrians, 
sensor noise + occlusions.



Discussion 50

1. Rule-based method perform well on simple 
scenarios

2. Relying on model-checking improves safety 

3. Belief state planning improves robustness to 
sensor uncertainty

4. RL is better for complex scenarios (e)

5. Scene decomposition allows to scale to a large 
number of traffic participants
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• Formulate the model checking 
problem as a reward 
maximization problem

• Use approximate POMDP solvers 
to solve the problem 

Main contribution

1.Introduction
2.Utility Decomposition 
3.Deep Corrections
4.Safe Reinforcement Learning 

5.Model Checking in 
POMDPs
6.Conclusion



Constrained Reachability 52

What is the probability to reach a given set of states while avoiding some 
other?

Compute 𝑃𝑠(𝑠, 𝑎) for all states and actions

Reward function for reachability:
Desired set 𝐵

𝑅reach 𝑠 = 1 if s ∈ 𝐵
𝑅reach 𝑠 = 0 otherwise

Add absorbing states:
If 𝑠 ∈ 𝐵 , 𝑠 is absorbing
Avoid set is absorbing



Constrained Reachability in a POMDP 53

Compute the probability of success from any belief: 𝑃𝑆(𝑏, 𝑎)

G. Norman, D. Parker, and X. Zou, “Verification and control 
of partially observable probabilistic systems,” in Real-Time 
Systems, 2017.

𝑃𝑆(𝑏, 𝑎) is analogous to 𝑄(𝑏, 𝑎) in a 
POMDP where 𝑅 = 𝑅reach



Model Checking in POMDP overview 54

Linear Temporal 
Logic Formula

POMDP Model Checker

POMDP PlannerConversion to a 
reachability problem

Discrete POMDP

𝑃𝑠(𝑏, 𝑎)



Implementation 55

LTL Formula

POMDP Model

POMDP Model Checker

LTL to 
DRA

Spot
POMDP 
Planner

Product 
POMDP

𝑃𝑠(𝑏, 𝑎)

POMDPs.jl

MECs

A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu, “Spot 2.0 – a framework for LTL and ω-automata 
manipulation,” in Automated Technology for Verification and Analysis (ATVA), ser. Lecture Notes in Computer Science, 2016.
M. Egorov, Z. N. Sunberg, E. Balaban, T. A. Wheeler, J. K. Gupta, and M. J. Kochenderfer, “POMDPs.jl: A framework for sequential decision 
making under uncertainty,” Journal of Machine Learning Research,2017.

https://github.com/sisl/POMDPModelChecking.jl

https://github.com/sisl/Spot.jl
Replace by any 

value-based 
methods

https://github.com/sisl/POMDPModelChecking.jl
https://github.com/sisl/Spot.jl


Results 56

• Better precision than previous work

• Solve model checking in larger POMDPs that were intractable before
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Occluded Crosswalk 57

• Probability of success for every belief

• As uncertainty increases, the probability of 
success varies

• It takes into account the possibility that in 
the future we will have a better observation.

Ego car position on the road
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Discussion 58

1. Model Checking problems can be solved as reachability problem in POMDPs

2. POMDP planners like SARSOP can be used for model checking

3. This methodology provides state-of-the-art performance 

4. Limited to discrete models for now



6. Conclusion



Conclusions 60

1. Belief state planning is robust to sensor occlusions and perception uncertainty. 
Policies tend to outperform rule-based methods.

2. Decomposition methods improves the scalability of POMDP solvers. 
They can be augmented using deep reinforcement learning through the deep corrections 
technique.

3. Model checking can help improving safety of reinforcement learning policies.

4. POMDP Planners can solve model checking problems.



Future Work 61

• Real-world testing

• POMDPs in the real world: K. Wray et al. "Online decision-making for scalable 
autonomous systems." International Joint Conference on Artificial Intelligence. 2017. 

• Multi-agent Reinforcement Learning 

• Learning cooperative policies 

• Combining model-based planning with data driven models

• Model based approaches could benefit from using more sophisticated models



Other works 62

• Online planning for navigating intersections 

• Learning to merge in dense traffic
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Online planning and modeling:
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• M. Bouton, A. Nakhaei, K. Fujimura, and M. J. Kochenderfer, “Safe reinforcement learning with scene decomposition for navigating complex urban environments,” in IEEE 
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Interaction-aware planning:
• M. Bouton, A. Nakhaei, K. Fujimura, and M. J. Kochenderfer, “Cooperation-aware reinforcement learning for merging in dense traffic,” in IEEE International Conference on 

Intelligent Transportation Systems (ITSC), 2019.

Model Checking
• M. Bouton, J. Tumova, M. J. Kochenderfer, “Point-Based Method for Model Checking in Partially Observable Markov Decision Processes”, in AAAI Conference on Artificial 

Intelligence (AAAI), 2020.
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Contributions 65

Modeling Autonomous Driving Problems

Online Planning at Intersections

Learning to Merge in Dense Traffic

Decomposition methods

Deep Corrections

Safe Planning

• Reinforcement learning with probabilistic guarantees

• Model checking in partially observable environments

Problem Formulation

Online Methods

Offline methods

Simulations

Formal guarantees

Planning algorithm Policy evaluationContribution areas


