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Motivation

Road fatalities represent about 1.35 millions of death each year worldwide.

94% of serious crashes are caused by human error.

source: LA Times Source: IEEE spectrum

World Health Organization, “Global status reporton road safety,” Tech. Rep., 2018.
National Highway Traffic Safety Administration, “Critical reasons for crashes investigated in the national motor vehicle crash causation survey,” Tech.Rep. DOT HS 812 506, 2018.



The Autonomy Stack
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Decision Making Algorithms

o Safe
 Robust to sensor limitations
e Scalable




Challenges for Autonomous Vehicles

Diverse traffic
Crowded

Occluded

Unexpected behaviors

Source: A. Palffy, J. F. P. Kooij, D. M. Gavrila,
“Occlusion aware sensor fusion for early crossing
pedestrian detection,” in IEEE Intelligent Vehicles
Symposium (1V), 2019.



Related Work: Rule-Based / Finite State Machines

l-ORWARD DRIVE

CROSS_DIVIDER ' \ STOP_SIGN_WAIT

STOP_FOR_CHEATERS

UTURN_DRIVE

PARKING _NAVIGATE

MISSION_COMPLETE

Source: M. Montemerlo et al. "Junior: The stanford entry in Source: L. Fletcher et al. "The MIT-Cornell collisionand
the urban challenge." Journal of field Robotics 25.9 (2008): why it happened." Journal of Field Robotics 25.10 (2008):
569-597. 775-807.
[ ] o [ ]
Limitations:

* Requires anticipatingevery situations
 Difficult to scale to complex scenarios
« Hard to take into account uncertainty (e.g. perception noise)




Related Work: Planning and Optimization

)

Online Methods
(tree search)

Problem Formulation
(mathematical model)

Offline Methods
(dynamic programming)

Planningalgorithm

Claim: A model that can capture sensor uncertainty, stochastic
behavior, and drivers’ intention would lead to good decision strategies.

Limitations:
* Requires a model
« Computationally expensive



Related Work: Planning and Optimization

|

Online Methods
(tree search)

Problem Formulation
(mathematical model)

Offline Methods
(dynamic programming)

Planningalgorithm

A model that can capture sensor uncertainty, stochastic behavior, and
drivers’ intention would lead to good decision strategies.

Candidate: partially observable Markov decision process (POMDP)



outine 4

o Y

Decision Making for
. Autonomous Driving
Introduction
1. Mathematical formulation

4
/ Scalability \ / Safety \

2. Utility 4, Safe
Reinforcement Learning

5. Model Checking in

3. Deep Corrections
POMDPs
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Partially Observable Markov Decision Processes

Mathematical framework for modeling processes with:

e Stochastic evolution
 State uncertainty (sensor noise, intentions)

(5, A OT,0,R,y)

Example: left-turn at an occluded intersection:




Y

(S, A QT,0,Ry)

* Every possible positions and
velocities of the ego vehicle

and the other car

“turn right” Y (Segm vegm Sotherli votherl)

* |ntention of the other driver:

N

turn left, turn right

Ego vehicle
(being controlled)



Actions 12

(5, A, QT,0,R,y)

e {—4ms~% —2ms™?%;0ms~%;2ms ™%}

* “beadon awire”, point-mass
dynamics




Transition Model 13

(S‘/q) OQT:O)R)]/)

><_

Probability of transitioning to
a next state given the previous
state and the action taken.

Constant velocity with noise

Probability of appearance



Observations 14

(S, A, OT,0,R,y)

* Receive noisy measurement of other
vehicles position and velocity

* Do notreceive observation if there
are occlusions




peleft 4

Since the state is not observable, the agent maintains a belief reflecting its
internal knowledge of the environment.

A belief is a distribution over states
* internalstates (intentions)
 partially observed physical states




oty 4

Policy: mapping from beliefs to actions

Find a policy
m:B—->.A4

that maximizes

E[Z ¥' R(s ag) | s ~bo]

t=0



Partially Observable Markov Decision Processes

(5, A OT,0,R,y)

R(S: Cl) — AsafetyRsafety (S: a) + AefficiencyRefficiency (S: a) + AcomfortRcomfort (S' a)

In this work: R(s,a) = ﬂgoal — Mconision




Applying the model to different scenarios




Approach Summary 19
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Value Function 20

Q" (b, a) : average accumulated discounted reward if the agent starts in belief
b, takes action a and follows the optimal policy for the remaining steps.

Decision rule: 7*(b) = argmax Q" (b, a)
a

Bellman equation for POMDPs:
QD (b,a) = R(b, @) +y Z Pr(o | a,b) max Q™ (b’, a)
d
o

H_/ \ ~ y

Immediate reward Expected future reward




Algorithms for Solving POMDPs 21

QMDP:
* Up tomillions of states

/ Tractable

* Noinformation gathering

N . Intr !
* Optimistic solution tractable
Two users problem:
SARSOP: . o . 6D Grid
Up to ten.so t ous%\n S of states (Sego;vego;Sotherl'vothe‘l‘l’SOtherz’vOtheTZ)
* Information gathering * Total number of states:

200k for the crosswalk
7M for the intersection

Note: Both require discrete state spaces



Scale decision making algorithms

to scenario with multiple traffic
participants

1.Introduction

2.Utility Decomposition

3.Deep Corrections
4.Safe Reinforcement Learning
5.Model Checkingin POMDPs

6.Conclusion .
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Utility Fusion 23

Approximate the solution to the large problem as a combination of the
subproblems:

Q*(b' a) ~ f(QI(le Cl), ) Q::L(bn) Cl))

Examples:
Q'(b,@) ~ ) Qi (b;,0)

or
Q*(b,a) ~ miin Q; (b;, a)



Entity Based Decomposition 24

Evaluating Qsingle IS computationally cheap & Qsingle (b1, a)

| g 1 0 . I
bl 7 . brake accelerate

S b, — — AN Qsingle(bZJa)

(B L i .
“ I o 0 accelerate
G . = .4

v

e Qsingle(bBJa

, 1

brake accelerate

a = argmaxg, miin(Qsingle (b;,a))

l accelerate

0
brake I




Occluded Crosswalk Demo

Ego car state

x= 16.088 m
v= 1.363m/s
a= -2.000 m/s"2

- Ego car — . occluded target

Pedestrian — visible target

ground truth

Belief
Absent state




Occluded Crosswalk Demo

Ego car state

x= 5.000m

v= 7.434 m/s
a=  0.000 m/s"2

- Ego car occluded target

Pedestrian — visible target

ground truth

EE
Absent state




Occluded Intersection Demo

V
0' |

Ego car state ' Y '
XxX= 6515m

V= 1.300 m/s

a= -2.000 m/s"2

- Ego car Absent state

Other cars occluded target
» ground truth
m)  Belef

— Visible target




Occluded Intersection Demo

AT

Xx= 6.540m
V= 1.800 m/s
a=  3.000 m/s*2

- Ego car Absent state

N Y Ve
|t

Other cars occluded target
» ground truth
m  Belef

— visible target




Results

SARSOP

(

Collision rate (%)

Average timeto cross (s) Average timeto cross (s)

e Collision cost is varied
* Reward tuning allows to get safe policies
* The choice of the fusion function matters a lot



Resuls 4@

Collision rate (%)  Time to cross (%)

Crosswalk

Baseline 0.1 £0.04 18.58 + 5.39

QMDP 0.0 £0.0 10.61+ 3.76
—  SARSOP 0.0 +£0.0 10.51 + 4.44

Intersection

Baseline 0.1 +0.04 13.46 + 3.04
— QMDP 0.0 £0.0 6.20 + 2.108

SARSOP 0.7 £0.83 4.38 + 0.1342



Discussion 31

1. POMDP approach can handle sensor occlusions and stochastic behaviors and
outperforms rule-based methods.

2. Reward tuning allows to generate different behavior

3. Decomposition methods highly reduce the computational cost of POMDP

algorithms oo
:-_—.___u:s : .;-;j:: " Cunatsz)
Drawbacks: S SJ 4
* Rough approximation 2=

* Makes strong assumptions of independence between traffic participants



* Learn a correctiveterm,
represented by a neural network,

to refine the approximation

* Fasterlearning

1.Introduction
2.Utility Decomposition * Better performance.

3.Deep Corrections

4.Safe Reinforcement Learning with Scene
Decomposition
5.Model Checkingin POMDPs

6.Conclusion : . _ l*jusicm
|~ : min/sum

s




Utility Decomposition with Deep Corrections

 Utility decomposition performs well empirically ©
 Sacrifices optimality ®

* |Learn a corrective term:

Q*(b,a) = Qiow(b,a) +6(b,a;0) = z Qsingte (bi,a;8") + 6(b,a; 0)

l
Obtainedvia utility Learnt using Deep Q

decompositionor prior |earning
knowledge



Reinforcement Learning

Requires: Black box simulator (model free RL), reward function: R(s, a)

/ Environment: POMDP \

Transition model:
s',r ~G(s,a)
Observation model:

\_ o~H(s" - by
- I

Policy: Value function
approximated by a NN

= Q(b;0
\a arg max Q ( )/




Train the Corrective Factor 35

Q'(B,) ~ ) Quingte(biy ;6 + (b, 0)
[

Step 1: =
Learn Qgipn g1 iN an environment with one entity Cw B
e
U PICW Bl
Step 2: —
Learn § in the full environment o -




Train the Corrective Factor 36

—————————————————

<
&
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* Using deep Q-learning

* Freezethe weights of Q; Fusion

* Propagate the gradients through
the correction term only

-----------------

Correction

7




Results

Fusion with max-sum

Fusion with max-min

i 2

9
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Decomposition
only

9

10 11 12

Time to cross (s)

_._

Decompositionwith
correction

DQN: Solving the full problem
with a deep Q network

Decomposition only: Applying
utility fusion

Decomposition with
correction: Adding a corrective
term to the utility fusion
solution

=> Domination of the
correction method



Resuls &

100 * The correction function is being trained
- on twice as less samples than the

W1 regular DQN policy.
g 80 C
= * Converges faster
? 70  Leveragingprior knowledge allows to
S —a&— Decomposition . o g° .
3 & Cdrrection S|gn|f|ca!1tly reduce the time spent for

—e— DQN exploratlon
It vDN [1]
| | |

1-105 2-10° 3-105 4-105 5-10° /
Training budget (number of interactions) :

H Value decomposition
network structure

[1] P. Sunehag, et al, “Value-Decomposition Networks for Cooperative Multi-Agent Learning Based on Team Reward,” in AAMAS, 2018.



Discussion 39

1. Improve the approximation from utility decomposition by learning a
correctiveterm

2. Learn the corrective term through deep reinforcementlearning

3. Learns faster than other methods

4. Qutperforms policies trained from scratch or using decomposition method
only

Related Work:
- T. Silver et al, “Residual policy learning”, Arxiv 2018.

g (s) = m(s) + fo(s)



* Rely on amodel checkerto
enhance safety.

* Combine model checking with the

L.Introduction decomposition method

2.Utility Decomposition
3.Deep Corrections

4.Safe Reinforcement

o
Learning Discretenop model] safe actor
5.Model Checkingin POMDPs
6.Conclusion Model RLAgent Enwronm':nt
Checking OO}
Safe (00
actions

observation, reward



Safe Reinforcement Learning using Model Checking

* Model Checking allows to verify property of systems with high confidence
* Given a safety specification
 Identify actions satisfying the specification using Model Checking

» Constrainthe action space to enforce the satisfaction of the safety specification.
* Trainan RL agent in a higher fidelity environment

Specification Discrete MDP model safe action
( v A 4 \ ( \ ( ) \
Model RL Agent Environment

A 4

Checking )
(0
- ) Sate : @ : y - y

observation, reward




Ildentifying Acceptable Actions

P.(s,a) : probability of reaching the goal safely when taking action a in state s

Given a minimum acceptable probability of success y, the set of acceptable
action is given by:

A(s) ={al|Fs(s,a) > v}

{Ps(s, a) can be computed using value iteration (polynomial in the number of states) }

Note: Assume full observability and approximate Ps(b,.) = ), b(s)Ps(s,.)



Constrained Exploration

In state s
« IfA(s)isempty
» Defaulttom ¢ (s) = argmax, Ps(s,a)
* Else
* Choose actionin A(s) using any exploration policy (e.g. e-greedy)

{Guaranteed: never prioritize unsafe actions over safe actions }

Not guaranteed: the policy has a probability of success of at least y



Training with constraints 44

* QOur approach movesthe | | | | | | |
Pareto frontier towards safe o RL
regions of the operation space

S
|
|

* Decoupling of the two
objectives simplify the design
H—a—u
process. | | I | | | I
16 18 20 22 24 26 28 30

Scenario (fully observable): Time steps

- N\ =

Collision rate (%)
DO
|
|

-
I

].—\
S




Model Checking and Decomposition Methods

For each subproblem compute P, and Q

Observation Scene
decomposition

Ps(b,a) = min P¢(b;, a)
l

________

\ Q(by,.), Ps(by,.)

Utility a
Fusion

Q(b‘ru ')JPS(bTU )

________

Q(b,a) = ml_in Q(b;, a)



Revisiting the Decomposition Method

Consider a subset of agents instead of considering only one agent

Example of three canonicalscenariosin a

complex scene.
There are 32 instances of canonicalscenariosin

thisscene (Npedestrians X Nears X Nobstacles)

L3 0 canonical Scenarios

- Ego Vehicle - OtherVehicle&' Pedestrian



Safe Reinforcement Learning with Scene Decomposition

1. Find suitable state decomposition

Model Checki
2. Compute the probability of success for the sub-problem

3. Compute the value function for the sub-problem RL with constrained

exploration

4. Online:
» Belief update to estimate the state
 apply a conservative fusion algorithm (min)






Evaluations Scenarios

a: only one other car, sensor noise

c¢: car and pedestrian interaction,
perfect observation

4

-
O
-

b: only one other car, sensor noise + occlusions

%

=< —e=

d: car and ego interaction,
perfect observation

e: multiple cars, pedestrians,
sensor noise + occlusions.



Discussion 50

400

[ DRL updater -
[/ D Rule-based no updater
300 ] ) Rule-based updater

0l b Safe-RL updater

I 1 Safe-Rule-based updater

1. Rule-based method perform well on simple
scenarios

200

il Al
3. Beliefstate planningimproves robustness to S N ) ;
sensor uncertainty

Steps to goal (0.15)

2. Relying on model-checkingimproves safety

1072
S . T
4, RLis better for complex scenarios (e) o !
O
S
5. Scene decompositionallowsto scaleto alarge @ 2
number of traffic participants S % 1
0 i - e
a b c d e

Scenario



* Formulate the model checking
problem as a reward

maximization problem

1.Introduction

2.Utility Decomposition
3.Deep Corrections

4.Safe Reinforcement Learning

5. MOdel CheCking in Main contribution
PO M D PS POMDP Model Checker

6.Conclusion LTL Formula

Product POMDP

* Use approximate POMDP solvers
to solve the problem




Constrained Reachability 52

What is the probability to reach a given set of states while avoiding some
other?

I

Compute P,(s, a) forall states and actions



Constrained Reachability in a POMDP

Compute the probability of success from any belief: P;(b, a)

@ \
Ps(b,a) is analogous to Q(b,a) in a
POMDP where R = Ry¢5cp

. 4

G. Norman, D. Parker, and X. Zou, “Verification and control
of partially observable probabilistic systems,” in Real-Time
Systems, 2017.




Model Checking in POMDP overview

/ POMDP Model Checker \
Linear Temporal :/ \ / \

Logic Formula

Conversion to a . POMDP Planner Fs (b, Cf)
reachability problem

Discrete POMDP —

AN L Y




Implementation

POMDP Model Checker \
LTL Formula __
ol POMDP Fs(b, a)
POMDP Mode Planner -
https://github.com/sisl/POMDPModelChecking.jl \
Replace by any
https://github.com/sisl/Spot.jl value-based

meth
A. Duret-Lutz,A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu, “Spot2.0 - a framework for LTL and w-automata
manipulation,” in Automated Technology for Verification and Analysis (ATVA), ser. Lecture Notes in Computer Science, 2016.

M. Egorov, Z. N. Sunberg, E. Balaban, T. A. Wheeler, J. K. Gupta, and M. J. Kochenderfer, “POMDPs.jl: A framework for sequential decision
making under uncertainty,” Journalof Machine Learning Research,2017.


https://github.com/sisl/POMDPModelChecking.jl
https://github.com/sisl/Spot.jl

Resuls 48

T T TTT] T T TTT] T T TTT] T I ——

10—1 = —e— SARSOP
= —m— Lovejoy |
i —+—QMDP
/B — +FIB I
Q —2 | ¢ |
EE’ 10 - .
c — A ]
(@) - —_‘——___\'.\.\ o
s | -t
5 1073 | =
8 - i
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10-4 il
[ [ [ [ [T

1 10 100

Solving time (s)

* Better precision than previous work

* Solve model checkingin larger POMDPs that were intractable before



Occluded Crosswalk 57

* Probability of success for every belief

* Asuncertainty increases, the probability of
success varies

 Ittakes intoaccountthe possibilitythatin
the future we will have a better observation.

Pedestrian position along the crosswalk

- Ego car position on the road

; Probability of success I ' B |
0.4




Discussion 53

1. Model Checking problems can be solved as reachability problem in POMDPs
2. POMDP planners like SARSOP can be used for model checking
3. This methodology provides state-of-the-art performance

4. Limitedto discrete models for now



6. Conclusion




Conclusions 60

1. Belief state planning is robust to sensor occlusions and perception uncertainty.
Policies tend to outperform rule-based methods.

2. Decomposition methods improves the scalability of POMDP solvers.
They can be augmented using deep reinforcement learningthrough the deep corrections
technique.

3. Model checking can help improvingsafety of reinforcement learning policies.

4. POMDP Planners can solve model checking problems.



Future Work 61

* Real-worldtesting

 POMDPsin thereal world: K. Wray et al. "Online decision-making for scalable
autonomoussystems." International Joint Conference on Artificial Intelligence. 2017.

* Multi-agent Reinforcement Learning
* Learningcooperativepolicies

* Combining model-based planning with data driven models
* Modelbased approachescould benefit from using more sophisticated models



Other works

* Online planning for navigating intersections

Frame
Simulation time

Throttle
Steer
Brake
Reverse:
Hand brake
Manual
Gear

Manual ctri-

H="for help
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Contributions 65

Modeling Autonomous Driving Problems
Online Planning at Intersections

Learning to Merge in Dense Traffic

Decomposition methods

Deep Corrections

Safe Planning

* Reinforcementlearning with probabilistic guarantees
* Model checkingin partially observable environments

[ Online Methods } [ Simulations }

Formal guarantees

Problem Formulation —

Offline methods

@ Contribution areas Planning algorithm Policy evaluation




