In September 1964, with the Tokyo Olympics a mere month away, the streets of Japan’s capital were being repaired and refurbished, scrubbed and smoothed, in an effort, as reporters often put it, to prevent the city’s already slow-moving streets from suffering total paralysis. The specter of such gridlock spurred massive spending on all kinds of transportation projects, from the Tokyo Monorail to the bullet train to eight new subway routes. Spending on transportation consumed about 75 percent of the city’s total one-trillion-yen cost for its five-year Olympic overhaul.¹

But no project altered Tokyo more than the radically repurposed streets and new highways that emerged on the eve of the Games. Huge elevated expressways, some over forty meters high, began winding their way through the city in the early 1960s, dwarfing nearby buildings, shadowing parks and canals, and towering over large swaths of public spaces. Several modest surface streets nearly doubled in width following the removal of residential buildings and businesses. Such altered streetscapes,
while promoted as Olympic projects, were decades in the making. They arose as part of a push by the era’s city planners to make Tokyo a more modern (and modernist) metropolis, a place whose slow-moving streets—filled with chatting pedestrians and playing children—were redesigned as “efficient” and “orderly” thoroughfares reserved for the fast-moving motorist. They arose out of the expanding body of research that sought, as Tokyo added over ten thousand new vehicles to its roads each month, to understand and accommodate the extraordinary demands of modern mobility, an imperative essential not only to the city’s Olympic success, but also to its long-term viability.

Such research is on stark display in a map published in a special Olympic issue of the journal Shibuntosi (New city), a publication catering to planning officials and policymakers (fig. 49.1). The map shows traffic volumes around Tokyo in 1964 and catalogs possible trouble spots in the run-up to the games. As readers of this map, what are we to make of this wonky web of lines and circles, crammed with numbers, names, and percentages?

The first thing to notice is its schematic design. Like many topological maps, this one distorts directions, alters scale, and sacrifices strict geographic positioning to illustrate the connective relations between points. Simply put, what matters in this map more than specific city streets is the intersections and their relative position in the network. The map shows a total of twenty-nine intersections, marked with small circles, connected by a network of major boulevards. The shaded sections surrounding each intersection, either light-colored dots or darkened lines, indicate the volume of traffic, from 7 a.m. to 7 p.m., entering the crossing from a particular street. Light dots represent the freer-flowing roads operating under capacity, while dark lines show clogged roads operating above their prescribed thresholds. The figures next to each shaded wedge give the number of cars above (dark lines) or below (light dots) the street’s calculated capacity while percentages indicate the proportion this number represents, either over or under the street’s recommended traffic volume. Of the ninety-nine shaded wedges, sixty-five display “healthy” movement, and thirty-four show sluggish circulation. That is, about one-third of the streets channeling cars into intersections exceed acceptable limits, averaging 34 percent above capacity. And yet the map, buttressed by the accompanying article (by Hirokawa Yukichi, director of the Metropolitan Police Department’s Office of Transportation Planning and Research), stresses the city’s readiness, arguing that despite the dire predictions of clogged streets and congested traffic, the city is well prepared to handle the Olympic crowds. How could a map showing so many trouble spots make such a claim?

Answering this question requires knowledge of Olympic geography and midcentury trends in Tokyo development. Looking at the map again, we see a dark-shaded cluster of five intersections in the upper right side of the page, where seventeen of twenty-one streets were overburdened with traffic. These five crossings alone contain half of the map’s thirty-four designated trouble spots. What about these sites would make them prone to such congestion? One answer, obscured by the map’s topological design, is the cluster’s proximity to the center of the city. By the late 1950s, the streets around the Imperial Palace were notoriously congested, containing nine of the ten worst intersections in the city. Yet none of the city’s most congested intersections, many of which lay to the east of the palace, even appear on this map. Huge swaths of the so-called low city, the densely populated neighborhoods to the east and north of the palace, are largely ignored by this map, much as they were bypassed in the frenzied building for the games. The map, instead, devotes itself to areas west and south of the old city center. The cluster of trouble spots we see here, sitting north of the palace, are clear outliers, not only because of their geographic position but also because they sit far from any of the important Olympic venues.

These venues were concentrated in the west and southwest portions of the city: the National Gymnasium and athletes’ village near Shibuya, the main National Stadium near Shinjuku, and the Olympic Park Stadium Complex out in Komazawa. Shibuya and Shinjuku (near the middle of this map) were becoming the new “centers” of the city, a trend that had started after the 1923 earthquake but vastly accelerated in the 1960s. Most of the streets featured prominently on the map are the so-called “Olympic roads” that, running alongside these venues, were transformed in five short years from modest roads into major thoroughfares. Kannana Avenue (Ring Road 7), running north-south along the entire left side of the page, connected the Komazawa Olympic complex in the far southwest to numerous points farther north. While the full loop circling the city took fifty-eight years to finish, the Olympic portion encompassing the western
half of the ring was completed, at enormous expense, in a mere five years. Even more substantial were the changes to Aoyama Avenue, running east-west through the middle of the map. Connecting the city center to Shibuya and Komazawa, Aoyama Avenue was dubbed “Olympic Tokyo’s Main Street” for its central role in shuttling visitors to the game venues. Now a center for high-end fashion boutiques and trendy stores, in the late 1950s Aoyama Avenue was a modest street of two-story shop fronts that was expanded to nearly double its original width for the Olympics. Meter for meter, this expansion became the most expensive project in the city’s transportation overhaul.4

All told, because of the extraordinary expense of compensating landowners, the cost for widening surface streets like Aoyama Avenue ran to about five times that of building the new thirty-two-kilometer elevated highway winding its way up from the airport and out to the Olympic venues. Yet it is impossible to discuss Olympic-era Tokyo, or to fully understand this map, without considering the outsized role of the city’s elevated highway system. In the early 1960s, the highways embodied a near-utopian solution to the city’s traffic woes. A high-speed road without intersections, it was reasoned, would be free from the gridlock troubling the earth-bound streets below. The most exaggerated expression of such thinking appears in the city plans of the Metabolist school architects, most strikingly in A Plan for Tokyo 1960, by Tange Kenzō, the designer of the National Stadium for the 1964 games. Figure 49.2 shows Tange’s reimagined city stretching across Tokyo Bay, its design dominated by enormous ten-lane highways structuring

Figure 49.2 “Model, Office District in Civic Axis and Residential District on the Sea” [Mokei toshijiku no naka no ofisubiru chiku to kaijō jūkyō chiku 模型都市軸の中のオフィスビル地区と海上住居地区]. from Tange Kenzō’s 1960 Plan for Tokyo: Toward a Structural Reorganization. Reproduced by permission from Hirose Mami et al., Metabolism, the City of the Future: Dreams and Visions of Reconstruction in Postwar and Present-Day Japan (Tokyo: Mori Art Museum and Shinkenchiku-sha, 2011), 68. Photograph by Kawasumi Akio.
On the Road in Olympic-Era Tokyo

213

the city through a series of stacked loops. This radical redesign, he predicted, would allow a traffic capacity of two hundred thousand vehicles per hour, or “from ten to thirty times the capacity of high-speed highways now in use.” Only by vastly increasing such capacity throughout the city, Tange argued, could Tokyo be saved from its “confused, paralyzed, even moribund state.”

It is partly this utopian thinking—the highways’ position literally and figuratively “above it all”—that explains their absence from a map devoted to the mundane, exasperating business of congested intersections. The new freeways seemed incapable of such congestion, untroubled as they were by the start-and-stop frustration of surface streets. In the years following the Olympics, amid the excitement of Japan’s high-growth era, city planners pushed for an infrastructure commensurate with modern forms of mobility. Indeed, many planners, from avant-garde architects to government officials, stressed that the city’s surface streets, with their chaotic mix of pedestrians and vehicles, should function more like the highways by being committed to the high-speed transport of people and goods. For many years, such messianic faith led to the building of ever-larger roadways: an often ill-fated effort to solve gridlock by creating a more motorized Tokyo.

Notes

3. See the influential pamphlet Dōro kōtsu no konran wa sukueruka? Kōsoku dōro o chūshin ni Tōkyō wa wakagaeru (Tokyo: Toshi Keikaku Kyōkai, 1959), 42. Iwaidabashi, listed as the worst intersection in the city, saw 121,911 vehicles a day. The worst intersection shown on the map is Suidobashi, at 35,273. Also see similar figures in Yamada Masao’s article “Tōkyō no toshi kōsoku dōro keikaku 1,” Shintoshi 14 (8) (July 1960): 2–8.

4. The estimated cost of Aoyama Avenue was 21.5 billion yen for 8,199 meters (2.67 million yen per meter), about 90 percent of which was for acquiring land and compensating landowners on either side of the road. The bullet train, by comparison, was on average a “mere” 687,658 yen per meter (380 billion for 552 kilometers). See “Ichō oku en no orinpikku seisin,” Shūkan Yomiuri 23 (41) (October 11, 1964): 37.

Suggested Readings

This reading is an excerpt from Cartographic Japan: A History in Maps.