Speciation of Pb(II) sorbed by Burkholderia cepacia/goethite composites.

TitleSpeciation of Pb(II) sorbed by Burkholderia cepacia/goethite composites.
Publication TypeJournal Article
Year of Publication2003
AuthorsTempleton, AS, Spormann AM, Brown GE
JournalEnvironmental science & technology
Volume37
Issue10
Pagination2166-72
Date Published2003 May 15
ISSN0013-936X
KeywordsAdsorption, Burkholderia cepacia, Environmental Pollutants, Hydrogen-Ion Concentration, Iron Compounds, Lead, Microscopy, Electron, Nitrates, Spectrum Analysis, X-Rays
AbstractBacterial-mineral composites are important in the retention of heavy metals such as Pb due to their large sorption capacity under a wide range of environmental conditions. However, the partitioning of heavy metals between components in such composites is not probed directly. Using Burkholderia cepacia biofilms coated with goethite (alpha-FeOOH) particles, the partitioning of Pb(II) between the biological and iron-(oxyhydr)oxide surfaces has been measured using an X-ray spectroscopic approach. EXAFS spectra were fit to quantitatively determine the fraction of Pb(II) associated with each component as a function of pH and [Pb]. At pH < 5.5, at least 50% of the total sorbed Pb(II) is associated with the biofilm component, whereas the total uptake within the composite is dominated by goethite (> 70% Pb/goethite) above pH 6. Direct comparison can be made between the amount of Pb(II) bound to each component in the composite vs separate binary systems (i.e., Pb/biofilm or Pb/goethite). At high pH, Pb(II) uptake on the biofilm is dramatically decreased due to competition with the goethite surface. In contrast, Pb uptake on goethite is significantly enhanced at low pH (2-fold increase at pH 5) compared to systems with no complexing ligands. The mode of Pb(II)-binding to the goethite component changes from low to high [Pb]. Structural fitting of the EXAFS spectra collected from 10(-5.6) to 10(-3.6) M [Pb]eq at pH 6 shows that the Pb-goethite surface complexes at low [Pb] are dominated by inner-sphere bidentate, binuclear complexes bridging two adjacent singly coordinated surface oxygens, giving rise to Pb-Fe distances of approximately 3.9 A. At high [Pb], the dominant Pb(II) inner-sphere complexes on the goethite surface shift to bidentate edge-sharing complexes with Pb-Fe distances of approximately 3.3 A.
Alternate JournalEnviron. Sci. Technol.
0 November 24, 2010