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1. Answer: ±
√

2
2

(1 + i)

For an answer in the form z = a + bi note that z2 = a2 − b2 + 2abi. The real part is zero, so a = b.
2ab = 2a2 = 1 so a = b = ±

√
2

2 . Thus z = ±
√

2
2 (1+ i). One can use polar coordinates and De Moivre’s

theorem to arrive at the same result.

2. Answer:
(

0
1
11

)
A2 =

(
3 0
0 3

)
= 3I Thus A4 = 9I2 = 9I. We can see A6 = 27I and A8 = 81I. Thus A8 + A6 +

A4 + A2 + I = 121I =
(

121 0
0 121

)
. Let v =

(
a
b

)
and then

(
121 0
0 121

)(
a
b

)
=
(

121a
121b

)
.

Setting 121a = 0 and 121b = 11. This means a = 0 and b = 1
11 . Thus v =

(
0
1
11

)
.

3. Answer:
(2007

11

)
Imagine a sequence of n numbers, {1, 2, 3 . . . , n+1}. A combination of k+1 elements may be chosen by
first choosing k from the set {1,. . . ,k} and attaching the (k +1)th number. Then another combination
can be formed by choosing k from the set {1, . . . , k +1} and attaching the (k +2)th number. You may
continue in this fashion until choosing k from {1, . . . , n}. Therefore the summation that we ask for is
equal to

(
n+1
k+1

)
=
(
2007
11

)
. To check, you may examine a smaller sum such as

(
10
10

)
+
(
11
10

)
+
(
12
10

)
=
(
13
11

)
4. Answer: 1

25

C=correct problem; W=wrong problem;
C*=Smartie thinks a problem is correct; W*=Smartie thinks a problem is wrong;
S=problem from Stanford; R=problem from Rice
We are given P (W |W∗) = 3

4 , P (W ∗ |R) = 1
5 , and P (W ∗ |S) = 1

10 . We can solve for P (R) = 1
3 , P (S) =

2
3 , and P (C) = #correct problems

total problems = 9·10+16·10
10·10+20·10 = 5

6 .
We want to find P (W ∗ |C):

P (W ∗ |C) =
P (C|W∗) · P (W∗)

P (C)
, where

P (W∗) = P (W ∗ |R) · P (R) + P (W ∗ |S) · P (S)

=
1
5
· 1
3

+
1
10

· 2
3
, and

P (C|W∗) = 1− P (W |W∗)

= 1− 3
4

=
1
4

So P (W ∗ |C) =
1
4 ·

2
15

5
6

= 1
25 .

5. Answer: 2−
√

2
4

1



∞∑
k=1

1
k
√

k + 2 + (k + 2)
√

k
=

∞∑
k=1

1√
k(k + 2)

1√
k +

√
k + 2

=
∞∑

k=1

1√
k(k + 2)

(
k + 2

2
− k

2

)

=
1
2

∞∑
k=1

(
1√
k
− 1√

k + 2

)
=

1
2

(
1
1

+
1√
2

)
=

2−
√

2
4

The infinite series in its final form is a telescoping sum.

6. Answer: 112
The teams’ scores must sum to 1 + 2 + . . . + 50 = 1

2 · 50 · 51 = 1275. The winning score must be no
larger than 1

10 · 1275 = 127.5 and is at least 1 + 2 + 3 + 4 + 5 = 15. However, not all scores between
15 and 127 inclusively are possible because all teams must have integer scores and no team can tie the
winning team. If the winning score is s, the sum of all teams’ scores is at least s + 9(s + 1) = 10s + 9,
so solving gives s ≤ 126. Hence, 126− 15 + 1 = 112 winning scores are possible.

7. Answer: 1200

The midpoint of the segment connecting (x, y) and (x′, y′) is
(

x+x′

2 , y+y′

2

)
. Therefore a and a′ must

have the same parity, as must b and b′ for the midpoint to be a lattice point. We therefore divide the
set into four groups: (even,even), (even,odd), (odd,even), (odd,odd), with the number of points in each
group a, b, c, d. The number of such segments is then(

a

2

)
+
(

b

2

)
+
(

c

2

)
+
(

d

2

)
=

a(a− 1)
2

+
b(b− 1)

2
+

c(c− 1)
2

+
d(d− 1)

2

=
1
2
(
a2 − a + b2 − b + c2 − c + d2 − d

)
=

1
2
(
a2 + b2 + c2 + d2 − 100

)
This is minimized when a = b = c = d, giving a value of 1

2 (4 · 252 − 100) = 1200.

8. Answer: 1
Expanding ki(j) we have

ki(j) =
(n + 1)n!n!(i + j)!(2n− i− j)!
(2n + 1)i!(n− i)!j!(n− j)!(2n)!

=

(
i+j

i

)(
2n−i−j

n−i

)(2n + 1
n + 1

)
.

We claim that
n∑

j=0

(
i + j

i

)(
2n− i− j

n− i

)
=
(

2n + 1
n + 1

)
.

We show this by bijection. If we pick n+1 items from among 2n+1 we must choose the i+1st element
at position i + 1, i + 2, ... , or 2n + 1 − (n − i). For each such choice, we can pick the first i objects
from among the first i + j and the last n− i from among the last 2n− i− j, 0 ≤ j ≤ n. Thus

n∑
j=0

(
i + j

i

)(
2n− i− j

n− i

)
=
(

2n + 1
n + 1

)
.

2



9. Answer: 88
Let f(n) = 2006

n . For sufficiently small n, bf(n)c takes a different value. Consequently, for all sufficiently
small m, there exists at least one value of n for which bf(n)c = m. Note that if a and b are positive
real numbers for which a = bac+ a′ and b = bbc+ b′, then bac − bbc = a− b + (b′ − a′). Note also that
|b′ − a′| < 1. Hence, if f(n)−f(n+1) > 1, then bf(n)c > bf(n + 1)c. Also, if f(n)−f(n+1) < 1, then
bf(n)c − bf(n + 1)c < 2 (i.e. equals 0 or 1). The equation 2006

x − 2006
x+1 = 1 implies x2 + x− 2006 = 0,

or x = 1
2 (5

√
321 − 1) < 1

2 (5(18) − 1) = 44.5. Note also that x > 1
2 (5(17) − 1) = 42. So 42 < x < 45,

implying that if n ≥ 45, f(n)−f(n+1) < 1 and that if n ≤ 42, f(n)−f(n+1) > 1. Evaluating bf(n)c
for n = 42, 43, 44, and 45, we see that each are unique. We conclude that the first 44 terms are unique
integers. The rest of the terms take on the values 1, 2, . . . ,

⌊
2006
45

⌋
, or 44 additional terms.

10. Answer: π
2

We show by induction that
m∑

n=1

arctan
(

1
n2 − n + 1

)
= arctan(m)

.
Clearly arctan

(
1

1−1+1

)
= arctan 1.

If
∑m

n=1 arctan
(

1
n2−n+1

)
= arctan(m), then

tan

(
m+1∑
n=1

arctan
(

1
n2 − n + 1

))
= tan

(
arctan(m) + arctan

(
1

(m + 1)2 − (m + 1) + 1

))

=
m + 1

m2+m+1

1−m 1
m2+m+1

=
m(m2 + m + 1) + 1
m2 + m + 1−m

=
m3 + m2 + m + 1

m2 + 1

=
(m + 1)(m2 + 1)

m2 + 1

tan

(
m+1∑
n=1

arctan
(

1
n2 − n + 1

))
= m + 1

m+1∑
n=1

arctan
(

1
n2 − n + 1

)
= arctan(m + 1)

Thus as m →∞ the sum goes to arctan(+∞) = π
2 .
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