Algebra Solutions
 2006 Stanford Math Tournament
 February 25, 2006

1. Answer: 668

Note that $111=3 \cdot 37$. It follows that m_{i} is divisible by 37 for all $i=3,6,9, \ldots, 2004$. The others will clearly leave remainders of 1 or 11 .
2. Answer: 10

The expression can be written as $(x-2)^{2}+(x-y)^{2}+(y-2 z)^{2}+(z-1)^{2}+10$. This clearly must be at least 10. Indeed, if $x=2, y=2, z=1$, this value is achieved.
3. Answer: $(1+2 i)(2+3 i)$

We write $-4+7 i=(a+b i)(c+d i)$. The solution can be intuitive after the first line of expansion, in the same way as factoring of polynomials. However, we can assume $a=1$ and then move factors from $(c+d i)$ back to $(a+b i)$ if we don't end up with integers (fortunately, in this case we're lucky).

$$
\begin{aligned}
-4+7 i & =(a+b i)(c+d i) \\
& =a c-b d+(a d+b c) i \\
& =c-b d+(d+b c) i
\end{aligned}
$$

We then know c should be positive (and not too large), so we can try $c=1$, giving $1-b d=-4$ and $b+d=7$, which clearly has no rational solution. We then try $c=2$, giving $6=b d$ and $2 b+d=7$, which is easily solved giving the final solution.
4. Answer: $\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}$

$$
\begin{aligned}
\frac{a^{3}}{(a-b)(a-c)}+\frac{b^{3}}{(b-a)(b-c)}+\frac{c^{3}}{(c-a)(c-b)} & =\frac{a^{3}(c-b)+b^{3}(a-c)+c^{3}(b-a)}{(a-b)(b-c)(c-a)} \\
& =\frac{a^{3}(c-b)+a\left(b^{3}-c^{3}\right)+b c^{3}-c b^{3}}{(a-b)(b-c)(c-a)} \\
& =\frac{(c-b)\left(a^{3}-a\left(b^{2}+b c+c^{2}\right)+b^{2} c+c^{2} b\right.}{(a-b)(b-c)(c-a)} \\
& =-\frac{b^{2}(c-a)+b\left(c^{2}-a c\right)+a^{3}-a c^{2}}{(a-b)(c-a)} \\
& =-\frac{(c-a)\left(b^{2}+b c-a c-a^{2}\right)}{(a-b)(c-a)} \\
& =\frac{(a+b)(a-b)+c(a-b)}{a-b} \\
& =a+b+c
\end{aligned}
$$

5. Answer: 352

Let N represent the number of remaining pebbles after Kramer eats the second. Then N is divisible by 10 , and $N+1$, which must end in 1 , is divisible by 9 . Put $N+1=100 a+10 b+1$, where a and b are digits summing to 8 or 17 (so the sum of the digits will be divisible by 9 - hence the number will be divisible by 9). Now we need $N+2$ to be divisible by 8 . Try $82,172,262$, and 352 to get 352 as the answer.
6. Answer: 31, - 25

From the first equation:

$$
\begin{aligned}
a b-a & =b+119 \\
a(b-1) & =(b-1)+120 \\
(a-1)(b-1) & =120
\end{aligned}
$$

Similarly, $(b-1)(c-1)=60$ and $(a-1)(c-1)=72$. Therefore $\frac{a-1}{c-1}=2$, and so $2(c-1)^{2}=72$. This gives $c=7$, and then it is easy to find $a=13$ and $b=11$. The other solution is $c=-5$, so $a=-11$, and $b=-9$. The sums are 31 and -25 .
7. Answer: $a=6, b=5$

Since $11 \mid a a b b, a a b b=11 \cdot a 0 b$. Factor $n^{4}-6 n^{3}=(n-6) n^{3}$, so clearly $n>6$, as $a a b b>0$. Also, $a 0 b<1000$, so unless $n=11, n<10$. Trying $n=7,8,9$ yields no solutions, so $n=11$ must be the only solution, if it exists. Indeed we get $6655=(11-6) \cdot 11^{3}$.
8. Answer: $\frac{27}{55}$
$\frac{2}{x\left(x^{2}-1\right)}=\frac{1}{x}\left(\frac{1}{x-1}-\frac{1}{x+1}\right)=\frac{1}{x(x-1)}-\frac{1}{x(x+1)}$
Let $f(x)=\frac{1}{x(x-1)}$. Then:
$\sum_{x=2}^{10} \frac{2}{x\left(x^{2}-1\right)}=\sum_{x=2}^{10}(f(x)-f(x+1))=\sum_{x=2}^{10} f(x)-\sum_{x=3}^{11} f(x)=f(2)-f(11)=\frac{1}{2 \cdot 1}-\frac{1}{11 \cdot 10}=$ $\frac{1}{2}-\frac{1}{110}=\frac{27}{55}$
9. Answer: 169

Let A be the value of the expression. We have: $m^{2}+n^{2}-13 m-13 n-m n+A=0$. Multiplying by 2 yields:

$$
\begin{aligned}
& m^{2}-2 m n+n^{2}+m^{2}-26 m+n 2-26 n+2 A=0 \\
& (m-n)^{2}+(m-13)^{2}+(n-13)^{2}=2 \cdot 13 \cdot 2-2 A
\end{aligned}
$$

In order for there to be a single solution, the sum of the squares must equal zero, yielding $A=169$. If instead the sum is a positive integer with a solution (m, n), then (n, m) will provide an additional solution unless $m=n$. In that case, $(26-m, 26-n)$ is an additional solution. Hence, it is both sufficient and necessary that the sum of the squares equal zero in order that the solution be unambiguous.
10. Answer: $\left(\frac{a}{a-1}\right)^{2}$

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{k}{n^{k-1}} & =\frac{1}{1}+\frac{2}{k}+\frac{3}{k^{2}}+\frac{4}{k^{3}}+\cdots \\
& =\left(\frac{1}{1}+\frac{1}{k}+\frac{1}{k^{2}}+\frac{1}{k^{3}}+\cdots\right)+\left(\frac{1}{k}+\frac{1}{k^{2}}+\frac{1}{k^{3}}+\cdots\right)+\left(\frac{1}{k^{2}}+\frac{1}{k^{3}}+\cdots\right)+\cdots \\
& =\left(\frac{1}{1}+\frac{1}{k}+\frac{1}{k^{2}}+\frac{1}{k^{3}}+\cdots\right)+\frac{1}{k}\left(\frac{1}{1}+\frac{1}{k}+\frac{1}{k^{2}}+\cdots\right)+\frac{1}{k^{2}}\left(\frac{1}{1}+\frac{1}{k}+\cdots\right)+\cdots \\
& =\left(\frac{1}{1}+\frac{1}{k}+\frac{1}{k^{2}}+\frac{1}{k^{3}}+\cdots\right)\left(\frac{1}{1}+\frac{1}{k}+\frac{1}{k^{2}}+\frac{1}{k^{3}}+\cdots\right) \\
& =\left(\frac{1}{1-1 / k}\right)^{2} \\
& =\left(\frac{k}{k-1}\right)^{2}
\end{aligned}
$$

