Power Solutions 2007 Stanford Math Tournament March 4, 2007

- 1. $n \le x < n+1$ if and only if n is the greatest integer less than or equal to x. The second condition is equivalent to the first since $x-1 < n \Rightarrow x < n+1$. The corresponding statements are $\lceil x \rceil = n \iff n-1 < x \le n \iff x \le n < x+1$.
- 2. From the first problem, we have $\lfloor -x \rfloor = n \Rightarrow n \le -x < n+1 \Rightarrow -n-1 < x \le -n \Rightarrow -n = \lceil x \rceil$.
- 3. Assume first that x < n. Then by problem 1, $\lfloor x \rfloor \le x < n$. Now assume $\lfloor x \rfloor < n$; by problem 1 we know $x < \lfloor x \rfloor + 1$, and since both are integers, $\lfloor x \rfloor \le n$. Similarly, $n < x \iff n < \lceil x \rceil$, $x \le n \iff \lceil x \rceil \le n$, and $n \le x \iff n \le \lfloor x \rfloor$.
- 4. Let $m = \lfloor n+x \rfloor$. Then $m \le n+x < m+1$, so $m-n \le x < m-n+1$, so $\lfloor x \rfloor = m-n$ and thus $m = n + \lfloor x \rfloor$. Similarly $\lceil n+x \rceil = n + \lceil x \rceil$.
- 5. We split x into floor and fractional part: $\lfloor nx \rfloor = \lfloor n \lfloor x \rfloor + n \{x\} \rfloor = n \lfloor x \rfloor + \lfloor n \{x\} \rfloor$. Thus for the two to be equal, $\lfloor n \{x\} \rfloor = 0$ so $0 \le n \{x\} < 1$, so $\{x\} < 1/n$.
- 6. To round up, take $\lfloor x+\frac{1}{2} \rfloor$. We see this works by splitting the inside into a floor and a fractional part; if $\{x\} < 1/2$, adding 1/2 doesn't change the floor, but if $\{x\} \ge 1/2$, adding 1/2 increases the floor by 1. A similar argument gives $\lceil x-\frac{1}{2} \rceil$ for rounding down.
- 7. $\frac{2x+1}{2} = x + \frac{1}{2}$, so the first term rounds looks like our rounding formula, except the result is always one too high except when x + 1/2 is an integer, in which case it correctly rounds up. Now notice that $\lceil \alpha \rceil \lfloor \alpha \rfloor$ is 0 if α is an integer and 1 otherwise, so the next two terms subtract 1 if $\frac{2x+1}{4} = \frac{x+1/2}{2}$ is not an integer. Thus the other terms correct the first term to the correctly rounded value when x + 1/2 is not an integer. When x + 1/2 is an integer, the other terms leave the first term alone if it's an even one, but subtract one if it's odd. Thus the formula always rounds x to the nearest integer, rounding halves up or down when x + 1/2 is even or odd.
- 8. Let $k = \left\lceil \frac{n}{m} \right\rceil$. We have $k-1 < \frac{n}{m} \le k$. Since $\frac{m-1}{m} < 1$, $\frac{n+m-1}{m} < k+1$. Since n,m are integers, and $\frac{n}{m} > k-1$, we know that $\frac{n}{m} \ge k-1+\frac{1}{m}$, so $\frac{n+m-1}{m} > k$. Thus $k = \left\lfloor \frac{n+m-1}{m} \right\rfloor$.
- 9. First note that if α and β are integers, the answer in both cases is $\beta \alpha$. Let n be an integer in $[\alpha, \beta)$; by problem 3 we have that $\lceil \alpha \rceil \leq n < \lceil \beta \rceil$, so the number of integers in the interval is $\lceil \beta \rceil \lceil \alpha \rceil$. Similarly, $n \in (\alpha, \beta]$ implies $\lfloor \alpha \rfloor < n \leq \lfloor \beta \rfloor$, giving $\lfloor \beta \rfloor \lfloor \alpha \rfloor$.
- 10. Since α is irrational, we know $0 < \{m\alpha\} < 1$, and also $n/\alpha < 1$. Plugging in $\lfloor m\alpha \rfloor = m\alpha \{m\alpha\}$, we obtain $\lfloor m\alpha n/\alpha \{m\alpha\} n/\alpha \rfloor = \lfloor mn \{m\alpha\} n/\alpha \rfloor = mn 1$.
- 11. If $\lfloor x \rfloor = x$, we are done; otherwise, $\lfloor x \rfloor < x$. Thus $f(\lfloor x \rfloor) < f(x)$ since f is increasing, and so $\lfloor f(\lfloor x \rfloor) \rfloor \le \lfloor f(x) \rfloor$. If $\lfloor f(\lfloor x \rfloor) \rfloor < \lfloor f(x) \rfloor$, since f is continuous there must be a number g such that $\lfloor x \rfloor \le g < x$ and $f(g) = \lfloor f(g) \rfloor$. By the special property of f, this means g is an integer, but there can be no integer between g and its floor! Thus we must have $\lfloor f(\lfloor x \rfloor) \rfloor = \lfloor f(g) \rfloor$. Similarly, for decreasing f, |f(g)| = |f(g)|.
- 12. (Proof by contrapositive) Suppose $\alpha \neq \beta$, and assume without loss of generality that $\alpha < \beta$. Then there must be a positive integer m such that $m(\beta \alpha) \geq 1$. Thus $m\beta m\alpha \geq 1$ so $\lfloor m\beta \rfloor > \lfloor m\alpha \rfloor$, so the m^{th} elements of the spectra are different.
- 13. Suppose n is a winner; let $k = \lfloor \sqrt[3]{n} \rfloor$. Then $k^3 \le n < (k+1)^3$ and n = km for some m. Note that N^3 is a winner; let's assume $n < N^3$, so that $1 \le k < N$. Now substituting km for n, $k^3 \le km < (k+1)^3$ so $k^2 \le m < (k+1)^3/m$. Using our formula for the number of integers in a half-open interval,

there are $\lceil (k+1)^3/k \rceil - \lceil k^2 \rceil = \lceil k^2 + 3k + 3 + 1/k \rceil - k^2 = 3k + 4$ of these. We then simply sum this for the possible values of k (it's an arithmetic series), and add back in the n=1000 case to get $1+4(N-1)+\frac{3}{2}(N-1)N=\frac{1}{2}(3N^2+5N-6)$.

14. A proof by induction is quickest (though not the most general or elegant). The statement is true for n = 0, and starting from n and moving up to n + 1:

$$\frac{1}{6}n(n+1)(2n+1) + (n+1)^2 = (n+1)\left(\frac{n^2}{3} + \frac{n}{6} + n + 1\right)$$
$$= \frac{1}{6}(n+1)(2n^2 + 7n + 6)$$
$$= \frac{1}{6}(n+1)(n+2)(2n+3)$$

15. Note that the terms for $a^2 \le k < n$ are all equal to a, so they contribute $(n-a^2)a$ to the sum. We now consider the rest of the sum, $0 \le k < a^2$. Let $m = \lfloor \sqrt{k} \rfloor$; then $m \le \sqrt{k} < m+1$ so $m^2 \le k < (m+1)^2 \le a^2$. We sum over k first instead of m; there are $(m+1)^2 - m^2$ possible values of k, so our new sum is:

$$\sum_{m=0}^{a-1} m((m+1)^2 - m^2 = \sum_{m=0}^{a-1} m(2m+1) = 2\frac{1}{6}(a-1)a(2a-1) + \frac{1}{2}a(a-1)$$

Expanding, we have $\frac{2a^3}{3} - \frac{a^2}{2} - \frac{a}{6}$; adding in the $k \ge a^2$ terms, we obtain the desired result.

16. There are 2n-1 each of horizontal lines vertical lines between cells of the grid, and the circle crosses each one twice. Since r^2 is not an integer, the circle cannot pass through the corner of any cell, by the Pythagorean theorem. Thus the circle passes through a cell for each time it crosses a line, giving 4(2n-1)=8n-4=8r cells. $f(n,k)=4\lfloor r^2-k^2\rfloor$: consider f(n,k)/4; placing the x,y axes along the grid with origin at the center we can easily see from the equation of a circle that this is the number of cells above x=k within the circle.