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. n <z <n+1if and only if n is the greatest integer less than or equal to x. The second condition is

equivalent to the first since x — 1 < n = = < n + 1. The corresponding statements are [z] = n <=
n—1l<x<n<= zrz<n<x+1.

From the first problem, we have |—z| =n=n< -2 <n+1l=-n—-1<z<-n= —n=[z].

Assume first that © < n. Then by problem 1, |z] < 2 < n. Now assume |xz]| < n; by problem
1 we know = < |x] + 1, and since both are integers, |z| < n. Similarly, n < 2 <= n < [z],
xr<n <= [z] <n,and n <z < n < |z].

Let m = |n+4+xz|. Then m<n4+z<m+1l,som—n<z<m-—n+1,so|z] =m—n and thus
m=mn+ |z]. Similarly [n+z] =n+ [z].

We split = into floor and fractional part: |nz| = [n|z| +n{z}| =n|z] + |n{z}]|. Thus for the two
to be equal, [n{z}] =0s00<n{z} <1,s0 {z} <1/n.

To round up, take Lx + %J We see this works by splitting the inside into a floor and a fractional part;
if {x} < 1/2, adding 1/2 doesn’t change the floor, but if {x} > 1/2, adding 1/2 increases the floor by
1. A similar argument gives (m - 7] for rounding down.

# =ux+ %, so the first term rounds looks like our rounding formula, except the result is always

one too high except when x + 1/2 is an integer, in which case it correcly rounds up. Now notice that
f 2z+1 _ xz+1/2 is
4 2

[a] — |a] is 0 if « is an integer and 1 otherwise, so the next two terms subtract 1 i
not an integer. Thus the other terms correct the first term to the correctly rounded value when z+1/2
is not an integer. When x 4 1/2 is an integer, the other terms leave the first term alone if it’s an even
one, but subtract one if it’s odd. Thus the formula always rounds z to the nearest integer, rounding
halves up or down when = + 1/2 is even or odd.

Let k = [—] We have k —1 < & < k. Since 2=t < 1, ”*m L < k + 1. Since n,m are integers, and
= >k —1, we know that - >k—1+—so”+7ml>k Thusk—L"*TmlJ.
First note that if o and [ are integers, the answer in both cases is 5 — «. Let n be an integer in [«, 3);

by problem 3 we have that [a] < n < [F], so the number of integers in the interval is [3] — [«].
Similarly, n € (o, 8] implies || <n < |5], giving |B] — |«].

Since « is irrational, we know 0 < {ma} < 1, and also n/a < 1. Plugging in |ma] = ma — {ma}, we
obtain |man/a — {ma}n/a| = [mn — {ma}n/a] =mn— 1.

If |z] = =, we are done; otherwise, |x] < x. Thus f(|z]) < f(z) since f is increasing, and so
Lf(lz))] < |f(z)]. I |f (L DI < Lf (m)j, since f is continuous there must be a number y such that
|z] <y < axand f(y) = | f(x)]. By the special property of f, this means y is an integer, but there can
be no integer between x and its floor! Thus we must have | f(|z])] = | f(z)]. Similarly, for decreasing

fy L (@)] = LF([])]-

(Proof by contrapositive) Suppose « # 3, and assume without loss of generality that o < 5. Then
there must be a positive integer m such that m(8 — «) > 1. Thus mf — ma > 1 so |[mg| > |ma], so
the mt" elements of the spectra are different.

Suppose n is a winner; let k = |/n]. Then k? <n < (k+1)® and n = km for some m. Note that N3
is a winner; let’s assume n < N3, so that 1 < k < N. Now substituting km for n, k* < km < (k +1)3
so k2 < m < (k+ 1)3/m. Using our formula for the number of integers in a half-open interval,
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there are [(k+1)3/k| — [k?] = [k*+3k+3+1/k| — k* = 3k + 4 of these. We then simply sum
this for the possible values of k (it’s an arithmetic series), and add back in the n = 1000 case to get
14+4(N—-1)+3(N-1)N = 1(3N?+5N —6).

A proof by induction is quickest (though not the most general or elegant). The statement is true for
n = 0, and starting from n and moving up to n + 1:

1 n?> n
6n(n+1)(2n+1)+(n+1)2:(n+1) <3+6+n+1>

1
= E(n—i— 1)(2n® + Tn + 6)

= é(n +1)(n+2)(2n + 3)

Note that the terms for a®> < k < n are all equal to a, so they contribute (n — a?)a to the sum.
We now consider the rest of the sum, 0 < k < a?. Let m = L\/EJ, then m < vk < m+ 1 so
m? <k < (m+1)? < a® We sum over k first instead of m; there are (m + 1)? — m? possible values of
k, so our new sum is:

a—1 a—1

— 1 1
m((m+1)%—=m?=> m@2m+1)=2_(a—1)a(2a—1) + a(a— 1)
m=0 m=0 6 2
Expanding, we have % — ‘12—2 — §; adding in the k > a® terms, we obtain the desired result.

There are 2n — 1 each of horizontal lines vertical lines between cells of the grid, and the circle crosses
each one twice. Since 2 is not an integer, the circle cannot pass through the corner of any cell, by
the Pythagorean theorem. Thus the circle passes through a cell for each time it crosses a line, giving
4(2n—1) = 8n—4 = 8r cells. f(n,k) =4 |r* — k*|: consider f(n, k)/4; placing the z,y axes along the
grid with origin at the center we can easily see from the equation of a circle that this is the number of
cells above z = k within the circle.



