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1. n ≤ x < n + 1 if and only if n is the greatest integer less than or equal to x. The second condition is
equivalent to the first since x − 1 < n ⇒ x < n + 1. The corresponding statements are dxe = n ⇐⇒
n− 1 < x ≤ n ⇐⇒ x ≤ n < x + 1.

2. From the first problem, we have b−xc = n ⇒ n ≤ −x < n + 1 ⇒ −n− 1 < x ≤ −n ⇒ −n = dxe.

3. Assume first that x < n. Then by problem 1, bxc ≤ x < n. Now assume bxc < n; by problem
1 we know x < bxc + 1, and since both are integers, bxc ≤ n. Similarly, n < x ⇐⇒ n < dxe,
x ≤ n ⇐⇒ dxe ≤ n, and n ≤ x ⇐⇒ n ≤ bxc.

4. Let m = bn + xc. Then m ≤ n + x < m + 1, so m − n ≤ x < m − n + 1, so bxc = m − n and thus
m = n + bxc. Similarly dn + xe = n + dxe.

5. We split x into floor and fractional part: bnxc = bn bxc+ n {x}c = n bxc+ bn {x}c. Thus for the two
to be equal, bn {x}c = 0 so 0 ≤ n {x} < 1, so {x} < 1/n.

6. To round up, take
⌊
x + 1

2

⌋
. We see this works by splitting the inside into a floor and a fractional part;

if {x} < 1/2, adding 1/2 doesn’t change the floor, but if {x} ≥ 1/2, adding 1/2 increases the floor by
1. A similar argument gives

⌈
x− 1

2

⌉
for rounding down.

7. 2x+1
2 = x + 1

2 , so the first term rounds looks like our rounding formula, except the result is always
one too high except when x + 1/2 is an integer, in which case it correcly rounds up. Now notice that
dαe − bαc is 0 if α is an integer and 1 otherwise, so the next two terms subtract 1 if 2x+1

4 = x+1/2
2 is

not an integer. Thus the other terms correct the first term to the correctly rounded value when x+1/2
is not an integer. When x + 1/2 is an integer, the other terms leave the first term alone if it’s an even
one, but subtract one if it’s odd. Thus the formula always rounds x to the nearest integer, rounding
halves up or down when x + 1/2 is even or odd.

8. Let k =
⌈

n
m

⌉
. We have k − 1 < n

m ≤ k. Since m−1
m < 1, n+m−1

m < k + 1. Since n, m are integers, and
n
m > k − 1, we know that n

m ≥ k − 1 + 1
m , so n+m−1

m > k. Thus k =
⌊

n+m−1
m

⌋
.

9. First note that if α and β are integers, the answer in both cases is β−α. Let n be an integer in [α, β);
by problem 3 we have that dαe ≤ n < dβe, so the number of integers in the interval is dβe − dαe.
Similarly, n ∈ (α, β] implies bαc < n ≤ bβc, giving bβc − bαc.

10. Since α is irrational, we know 0 < {mα} < 1, and also n/α < 1. Plugging in bmαc = mα− {mα}, we
obtain bmαn/α− {mα}n/αc = bmn− {mα}n/αc = mn− 1.

11. If bxc = x, we are done; otherwise, bxc < x. Thus f(bxc) < f(x) since f is increasing, and so
bf(bxc)c ≤ bf(x)c. If bf(bxc)c < bf(x)c, since f is continuous there must be a number y such that
bxc ≤ y < x and f(y) = bf(x)c. By the special property of f , this means y is an integer, but there can
be no integer between x and its floor! Thus we must have bf(bxc)c = bf(x)c. Similarly, for decreasing
f , bf(x)c = bf(dxe)c.

12. (Proof by contrapositive) Suppose α 6= β, and assume without loss of generality that α < β. Then
there must be a positive integer m such that m(β − α) ≥ 1. Thus mβ −mα ≥ 1 so bmβc > bmαc, so
the mth elements of the spectra are different.

13. Suppose n is a winner; let k = b 3
√

nc. Then k3 ≤ n < (k + 1)3 and n = km for some m. Note that N3

is a winner; let’s assume n < N3, so that 1 ≤ k < N . Now substituting km for n, k3 ≤ km < (k + 1)3

so k2 ≤ m < (k + 1)3/m. Using our formula for the number of integers in a half-open interval,
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there are
⌈
(k + 1)3/k

⌉
−

⌈
k2

⌉
=

⌈
k2 + 3k + 3 + 1/k

⌉
− k2 = 3k + 4 of these. We then simply sum

this for the possible values of k (it’s an arithmetic series), and add back in the n = 1000 case to get
1 + 4(N − 1) + 3

2 (N − 1)N = 1
2 (3N2 + 5N − 6).

14. A proof by induction is quickest (though not the most general or elegant). The statement is true for
n = 0, and starting from n and moving up to n + 1:

1
6
n(n + 1)(2n + 1) + (n + 1)2 = (n + 1)

(
n2

3
+

n

6
+ n + 1

)
=

1
6
(n + 1)(2n2 + 7n + 6)

=
1
6
(n + 1)(n + 2)(2n + 3)

15. Note that the terms for a2 ≤ k < n are all equal to a, so they contribute (n − a2)a to the sum.
We now consider the rest of the sum, 0 ≤ k < a2. Let m = b

√
kc; then m ≤

√
k < m + 1 so

m2 ≤ k < (m + 1)2 ≤ a2. We sum over k first instead of m; there are (m + 1)2 −m2 possible values of
k, so our new sum is:

a−1∑
m=0

m((m + 1)2 −m2 =
a−1∑
m=0

m(2m + 1) = 2
1
6
(a− 1)a(2a− 1) +

1
2
a(a− 1)

Expanding, we have 2a3

3 − a2

2 − a
6 ; adding in the k ≥ a2 terms, we obtain the desired result.

16. There are 2n− 1 each of horizontal lines vertical lines between cells of the grid, and the circle crosses
each one twice. Since r2 is not an integer, the circle cannot pass through the corner of any cell, by
the Pythagorean theorem. Thus the circle passes through a cell for each time it crosses a line, giving
4(2n− 1) = 8n− 4 = 8r cells. f(n, k) = 4

⌊
r2 − k2

⌋
: consider f(n, k)/4; placing the x, y axes along the

grid with origin at the center we can easily see from the equation of a circle that this is the number of
cells above x = k within the circle.
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