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1. Answer:
√

5−1
4

.

Consider:

sin 18◦ = cos 72◦ = 2 cos2 36◦ − 1 = 2(1− 2 sin2 18◦)2 − 1

= 1− 8 sin2 18◦ + 8 sin4 18◦

0 = 8x4 − 8x2 − x+ 1 = (x− 1)(2x− 1)(4x2 + 2x+ 1).

Clearly, x 6= 1, −1
2 , because 0 < sin 18◦ < sin 90◦ = 1. We solve the remaining term:

0 = 4x2 + 2x+ 1 =⇒ x =
−2±

√
4 + 4(4)

2(4)
=
−1±

√
5

4
.

The only root that is within our bounds is
√

5−1
4 .

2. Answer: 44
15

+ 4
15
i.

Consider:

3.0123 = 3 +
∞∑

n=0

0(2i)−(4n+1) +
∞∑

n=0

1(2i)−(4n+2) +
∞∑

n=0

2(2i)−(4n+3) +
∞∑

n=0

3(2i)−(4n+4)

= 3 +
∞∑

n=0

[
−1

4

(
1
16

)n

+
i

4

(
1
16

n)n

+
3
16

(
1
16

)n]

= 3 +
∞∑

n=0

(
− 1

16
+

1
4
i

)(
1
16

)n

= 3 +
(
− 1

16
+

1
4
i

)
1

1− 1
16

= 3 +
16
15

(
− 1

16
+

1
4
i

)
=

44
15

+
4
15
i.

3. Answer: 6.

This is a trivial application of Ramsey Theory. It is isomorphic to Problem 2 of the Power Round.
Consider one of the people, P , in the group, and that he or she may or may not have met last year.
Assume without loss of generality that P met at least three of them last year: A, B, and C. If any
two of these met each other last year, then those two and P all met each other last year. Alternatively,
none of A, B, and C met each other last year.

4. Answer: 1
16

cos 5θ + 5
16

cos 3θ + 5
8
cos θ

Notice that
cos(nθ) + i sin(nθ) = (cos θ + i sin θ)n = zn

and
cos(−nθ) + i sin(−nθ) = (cos θ + i sin θ)−n = z−n.

Adding these two equations, we get that cos(nθ) = (zn + z−n)/2. Then (cos(θ))5 = (z + z−1)5/32.
Expanding yields the binomial coefficients:

(z + z−1)5 = z5 + 5z4(z−1) + 10z3(z−2) + 10z2(z−3) + 5z(z−4) + z−5.

Then

(z + z−1)5/32 =
1
16

(z5 + z−5)/2 +
5
16

(z3 + z−3)/2 +
5
8

(z + z−1)/2 =
1
16

cos 5θ +
5
16

cos 3θ +
5
8

cos θ.
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5. Answer: 22011 − 1

We evaluate the inner sum by the Hockey Stick Identity. This identity is

n∑
i=r

(
i

r

)
=
(
n+ 1
r + 1

)
=⇒

2010∑
i=j

(
i

j

)
=
(

2011
j + 1

)
,

so that
2010∑
j=0

2010∑
i=j

(
i

j

)
=

2010∑
j=0

(
2011
j + 1

)
.

Now, using the fact that
n∑

i=0

(
n

i

)
= 2n,

we obtain
2010∑
j=0

(
2011
j + 1

)
=

2011∑
j=1

(
2011
j

)
=

2011∑
j=0

(
2011
j

)
−
(

2011
0

)
= 22011 − 1.

6. Answer: 96

The number of blue cells is n + m − 1; the number of total cells is nm. So 2010(m + n − 1) = nm,
or nm − 2010n − 2010m + 2010 = 0. This factors as (n − 2010)(m − 2010) − 20102 + 2010 = 0, or
(n−2010)(m−2010) = 2010·2009. Thus each of n−2010 andm−2010 must be one of the positive factors
of 2010 ∗ 2009; for each positive factor, there is one ordered pair. Since 2010 · 2009 = 2 · 3 · 5 · 72 · 41 · 67,
there are 2 · 2 · 2 · 3 · 2 · 2 = 25 · 3 = 96 solutions.

7. Answer: 1
p

− 1

Let the probability that a bug’s descendant’s die out be x. There are two ways for the bugs to die out:
either the initial bug dies (with probability 1 − p), or the bug successfully splits (probability p) and
both of its descendants die out (each with probability x). Therefore, x = (1 − p) + px2. Solving this
quadratic equation yields the two solutions x = 1 and x = 1

p − 1. Which is correct?

Define pn to be the probability that the bug dies out within n generations. Then, by the same reasoning
as before, pn+1 = (1−p)+pp2

n. From the definition of pn, we see that the sequence is always increasing.
We will show that pn <

1
p − 1 for every n, which would imply that x = 1

p − 1 is the correct solution.
This can be done by induction. Notice that p0 = 0 < 1

p − 1. Now, suppose that pk <
1
p − 1 for some

k. Then,

pk+1 = (1− p) + pp2
k < (1− p) + p(

1
p
− 1)2 = 1− p+ p

(
1
p2
− 2

1
p

+ 1
)

= 1− p+
1
p
− 2 + p =

1
p
− 1.

This completes the induction, so we indeed have pn < 1
p − 1, and hence the correct answer is indeed

1
p − 1.

8. Answer: (1, 1) and (3, 2)

From that 31 ≡ 3, 32 ≡ 9, 33 ≡ 11, 34 ≡ 1 mod 16, we can see that 3y 6≡ 1 mod 16. Thus 2x 6≡ 0
mod 16, so x is at most 3. The solutions are (1, 1) and (3, 2).

9. Answer: 4

If (x, y) is a solution, then x and y are roots of the quadratic equation t2 + at+ b = (t− x)(t− y) = 0.
Then −a = x + y and b = xy. We find that x2 + y2 = a2 − 2b = 9 and 1

x + 1
y = x+y

xy = −a
b = 9.

So a = −9b. Substituting this in the first equation, we get 81b2 − 2b − 9 = 0. This has two roots for
b, both of them real. Therefore there are two corresponding values of a, both real. In each case, the
quadratic leads to two ordered pairs, which gives four total ordered pairs. It is easy to check that they
are, indeed, distinct.
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10. Answer: 120

Note that n2 ≡ 0, 1, 4 mod 5. We consider three cases.

Case 1: n2 ≡ 0 mod 5, so that bn2

5 c = n2

5 . In this case, n ≡ 0 mod 5, so n = 5a for some integer a.
Then n2

5 = 5a2, which is not prime unless a = 1. Therefore, for this case, n = 5 is the only value of n
for which bn2

5 c is prime.

Case 2: n2 ≡ 1 mod 5, so that bn2

5 c = n2−1
5 = (n−1)(n+1)

5 . In this case, we have either n = 5a + 1 or
n = 5a − 1 for some integer a. Then n2

5 = a(n ± 1), which cannot be prime if a 6= 1. Therefore, for
this case, n = 4, 6 are the only values of n for which bn2

5 c might be prime. We can check that these
values of n do indeed yield primes 3 and 7.

Case 3: n2 ≡ 4 mod 5, so that bn2

5 c = n2−4
5 = (n−2)(n+2)

5 . In this case, we have either n = 5a + 2 or
n = 5a− 2 for some integer a. Then n2

5 = a(n± 2), which cannot be prime if a 6= 1. Therefore, for this
case, n = 3, 7 are the only values of n for which bn2

5 c might be prime. None of these values actually
yield primes however, as they give bn2

5 c = 1, 9.

Therefore, the only values of n for which bn2

5 c is prime are n = 4, 5, 6, and the product of these values
of n is 120 .

Generalization: Note that this procedure can be carried out when the denominator 5 is replaced by any
other number whose quadratic residues are all perfect squares. Which numbers satisfy this property?


