1. Answer: $\frac{1+\sqrt{5}}{2}$

Let $x = \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}}$. Then $x^2 = 1 + \sqrt{1 + \sqrt{1 + \dots}}$. Thus $x^2 = x + 1$. The positive root of $x^2 - x - 1 = 0$ is $\frac{1 + \sqrt{5}}{2}$.

2. **Answer:** $\frac{334703}{1665000}$

This is simply

$$\frac{2010}{10000} + \frac{1}{10000} \cdot \frac{228}{999} = \frac{334703}{1665000}.$$

3. Answer: 19801 and 20201

Notice that $4x^4 + 1 = 4x^4 + 4x^2 + 1 - (2x)^2 = (2x^2 + 2x + 1)(2x^2 - 2x + 1)$. Setting x = 100, we have that $400000001 = 19801 \cdot 20201$.

4. Answer: ± 123

Note that $(x + \frac{1}{x})^2 = x^2 + \frac{1}{x^2} + 2 = 9$. Thus, $x + \frac{1}{x} = \pm 3$. Therefore,

$$x^{5} + \frac{1}{x^{5}} = \left(x + \frac{1}{x}\right)^{5} - 5\left(x^{3} + \frac{1}{x^{3}}\right) - 10\left(x + \frac{1}{x}\right)$$
$$= \left(x + \frac{1}{x}\right)^{5} - 5\left(x + \frac{1}{x}\right)^{3} + 5\left(x + \frac{1}{x}\right)$$
$$= \pm 123$$

5. Answer: 17

The open lockers will be the ones with an odd number of odd divisors. These numbers are of the form $2^k \cdot n^2$, where n is odd. We can simply check that the open lockers are numbered

6. Answer: 1027

If S(n) is the nth partial sum, note that if m is the kth triangular number, $S(m) = k^2$. Since $44^2 = 1936$ and $45^2 = 2025$, we want to begin our search at 44(44+1)/2 = 990. Because (2010-1936)/2 = 37, 37 more 2s are needed, so the needed term is n = 990 + 37 = 1027.

7. Answer: 21,26,31,36,41,46

$$6x + 5 \equiv -19 \mod 10$$

$$6x \equiv -24 \mod 10$$

$$x \equiv -4 \mod \frac{10}{\gcd(10, 6)}$$

$$x \equiv -4 \mod 5$$

$$x \equiv 1 \mod 5$$

That is, x is in the form 5k + 1 where k is an integer.

8. Answer: $3^{n+1} - 2^{n+1}$

We use the fact that if P(x) is a polynomial of degree n, then P(x+1)-P(x) is a polynomial of degree n-1. Define $\Delta P(x) = P(x+1)-P(x)$. By induction on m, it can be easily proved that $\Delta^m P(x)$ is a polynomial of degree n-m such that $\Delta^m P(k) = 2^m \cdot 3^k$ for $0 \le k \le n-m$ when $0 \le m \le n$. Moreover, $\Delta^{n+1}P$ is identically zero, since $\Delta^n P$ is degree zero and applying Δ to constants leaves zero. Thus

$$\begin{split} P(n+1) &= P(n) + (P(n+1) - P(n)) \\ &= P(n) + \Delta P(n) \\ &= P(n) + \Delta P(n-1) + (\Delta P(n) - \Delta P(n-1)) \\ &= P(n) + \Delta P(n-1) + \Delta^2 P(n-1) \\ &= P(n) + \Delta P(n-1) + \Delta^2 P(n-2) + (\Delta^2 P(n-1) - \Delta^2 P(n-2)) \\ &= P(n) + \Delta P(n-1) + \Delta^2 P(n-2) + \Delta^3 P(n-2) \\ &= \cdots \\ &= \sum_{i=0}^n \Delta^i P(n-i) + \Delta^{n+1} P(0) \\ &= \sum_{i=0}^n 2^i 3^{n-i} \\ &= 3^{n+1} - 2^{n+1}. \end{split}$$

9. **Answer: 31**

Factor the equation as (x+2)(y-5)+10=30, or (x+2)(y-5)=20. x must be 2 less than a factor of 20. The solutions for x are thus 2, 3, 8, and 18, which sum to 31.

10. **Answer:** $\frac{2}{1005}$

We can rewrite this equation as

$$\begin{split} \frac{x^2}{x^2-1} + \frac{x^2}{x^2-2} + \frac{x^2}{x^2-3} + \frac{x^2}{x^2-4} &= \\ \frac{1+(x^2-1)}{x^2-1} + \frac{2+(x^2-2)}{x^2-2} + \frac{3+(x^2-3)}{x^2-3} + \frac{4+(x^2-4)}{x^2-4} \\ &= (2010x-4) + 4 = 2010x. \end{split}$$

We divide by x; this makes us lose the solution x = 0, but this does not affect the sum of solutions. Therefore, we have

$$\frac{x}{x^2-1} + \frac{x}{x^2-2} + \frac{x}{x^2-3} + \frac{x}{x^2-4} = 2010$$

Clearing denominators yields the polynomial equation

$$x((x^2-2)(x^2-3)(x^2-4)+(x^2-1)(x^2-3)(x^2-4)+$$

$$(x^2-1)(x^2-2)(x^2-4)+(x^2-1)(x^2-2)(x^2-3))$$

$$=2010(x^2-1)(x^2-2)(x^2-3)(x^2-4)$$

The solutions that we want are therefore the roots of the polynomial

$$2010x^8 - 4x^7 + (lower order terms) = 0$$

By Vieta's formulas, the sum of the roots of this polynomial equation is therefore $\frac{4}{2010}$.