1. Answer: $\frac{1+\sqrt{5}}{2}$

Let $x=\sqrt{1+\sqrt{1+\sqrt{1+\ldots}}}$ Then $x^{2}=1+\sqrt{1+\sqrt{1+\ldots}}$. Thus $x^{2}=x+1$. The positive root of $x^{2}-x-1=0$ is $\frac{1+\sqrt{5}}{2}$.

2. Answer: $\frac{334703}{1665000}$

This is simply

$$
\frac{2010}{10000}+\frac{1}{10000} \cdot \frac{228}{999}=\frac{334703}{1665000}
$$

3. Answer: 19801 and 20201

Notice that $4 x^{4}+1=4 x^{4}+4 x^{2}+1-(2 x)^{2}=\left(2 x^{2}+2 x+1\right)\left(2 x^{2}-2 x+1\right)$. Setting $x=100$, we have that $400000001=19801 \cdot 20201$.
4. Answer: $\pm \mathbf{1 2 3}$

Note that $\left(x+\frac{1}{x}\right)^{2}=x^{2}+\frac{1}{x^{2}}+2=9$. Thus, $x+\frac{1}{x}= \pm 3$. Therefore,

$$
\begin{aligned}
x^{5}+\frac{1}{x^{5}} & =\left(x+\frac{1}{x}\right)^{5}-5\left(x^{3}+\frac{1}{x^{3}}\right)-10\left(x+\frac{1}{x}\right) \\
& =\left(x+\frac{1}{x}\right)^{5}-5\left(x+\frac{1}{x}\right)^{3}+5\left(x+\frac{1}{x}\right) \\
& = \pm 123
\end{aligned}
$$

5. Answer: 17

The open lockers will be the ones with an odd number of odd divisors. These numbers are of the form $2^{k} \cdot n^{2}$, where n is odd. We can simply check that the open lockers are numbered

$$
1,2,4,8,9,16,18,25,32,36,49,50,64,72,81,98,100
$$

6. Answer: 1027

If $S(n)$ is the nth partial sum, note that if m is the k th triangular number, $S(m)=k^{2}$. Since $44^{2}=1936$ and $45^{2}=2025$, we want to begin our search at $44(44+1) / 2=990$. Because $(2010-1936) / 2=37$, 37 more $2 s$ are needed, so the needed term is $n=990+37=1027$.
7. Answer: 21,26,31,36,41,46

$$
\begin{aligned}
6 x+5 & \equiv-19 \quad \bmod 10 \\
6 x & \equiv-24 \quad \bmod 10 \\
x & \equiv-4 \quad \bmod \frac{10}{\operatorname{gcd}(10,6)} \\
x & \equiv-4 \quad \bmod 5 \\
x & \equiv 1 \quad \bmod 5
\end{aligned}
$$

That is, x is in the form $5 k+1$ where k is an integer.
8. Answer: $3^{n+1}-2^{n+1}$

We use the fact that if $P(x)$ is a polynomial of degree n, then $P(x+1)-P(x)$ is a polynomial of degree $n-1$. Define $\Delta P(x)=P(x+1)-P(x)$. By induction on m, it can be easily proved that $\Delta^{m} P(x)$ is a polynomial of degree $n-m$ such that $\Delta^{m} P(k)=2^{m} \cdot 3^{k}$ for $0 \leq k \leq n-m$ when $0 \leq m \leq n$. Moreover, $\Delta^{n+1} P$ is identically zero, since $\Delta^{n} P$ is degree zero and applying Δ to constants leaves zero. Thus

$$
\begin{aligned}
P(n+1) & =P(n)+(P(n+1)-P(n)) \\
& =P(n)+\Delta P(n) \\
& =P(n)+\Delta P(n-1)+(\Delta P(n)-\Delta P(n-1)) \\
& =P(n)+\Delta P(n-1)+\Delta^{2} P(n-1) \\
& =P(n)+\Delta P(n-1)+\Delta^{2} P(n-2)+\left(\Delta^{2} P(n-1)-\Delta^{2} P(n-2)\right) \\
& =P(n)+\Delta P(n-1)+\Delta^{2} P(n-2)+\Delta^{3} P(n-2) \\
& =\cdots \\
& =\sum_{i=0}^{n} \Delta^{i} P(n-i)+\Delta^{n+1} P(0) \\
& =\sum_{i=0}^{n} 2^{i} 3^{n-i} \\
& =3^{n+1}-2^{n+1} .
\end{aligned}
$$

9. Answer: 31

Factor the equation as $(x+2)(y-5)+10=30$, or $(x+2)(y-5)=20 . x$ must be 2 less than a factor of 20 . The solutions for x are thus $2,3,8$, and 18 , which sum to 31 .
10. Answer: $\frac{2}{1005}$

We can rewrite this equation as

$$
\begin{aligned}
& \frac{x^{2}}{x^{2}-1}+\frac{x^{2}}{x^{2}-2}+\frac{x^{2}}{x^{2}-3}+\frac{x^{2}}{x^{2}-4}= \\
& \frac{1+\left(x^{2}-1\right)}{x^{2}-1}+\frac{2+\left(x^{2}-2\right)}{x^{2}-2}+\frac{3+\left(x^{2}-3\right)}{x^{2}-3}+\frac{4+\left(x^{2}-4\right)}{x^{2}-4} \\
& =(2010 x-4)+4=2010 x .
\end{aligned}
$$

We divide by x; this makes us lose the solution $x=0$, but this does not affect the sum of solutions. Therefore, we have

$$
\frac{x}{x^{2}-1}+\frac{x}{x^{2}-2}+\frac{x}{x^{2}-3}+\frac{x}{x^{2}-4}=2010
$$

Clearing denominators yields the polynomial equation

$$
\begin{aligned}
& x\left(\left(x^{2}-2\right)\left(x^{2}-3\right)\left(x^{2}-4\right)+\left(x^{2}-1\right)\left(x^{2}-3\right)\left(x^{2}-4\right)+\right. \\
& \left.\quad\left(x^{2}-1\right)\left(x^{2}-2\right)\left(x^{2}-4\right)+\left(x^{2}-1\right)\left(x^{2}-2\right)\left(x^{2}-3\right)\right) \\
& =2010\left(x^{2}-1\right)\left(x^{2}-2\right)\left(x^{2}-3\right)\left(x^{2}-4\right)
\end{aligned}
$$

The solutions that we want are therefore the roots of the polynomial

$$
2010 x^{8}-4 x^{7}+(\text { lower order terms })=0
$$

By Vieta's formulas, the sum of the roots of this polynomial equation is therefore $\frac{4}{2010}$.

