1. **Answer:** $\frac{-1}{x^2+1}$

Notice that as $t \to 0$, both the numerator and the denominator approach 0. Thus, applying L'Hopital's rule on t (keeping x constant):

$$\frac{d}{dt} \left[\tan^{-1} \left(\frac{1}{x+t} \right) \right]_{t=0} = -\frac{1}{1+x^2}$$

2. **Answer: 1**

Let $f(x) = e^x - x - \frac{x^3}{3}$. Then $f'(x) = e^x - 1 - x^2$. When x < 0, $e^x < 1$ and $1 + x^2 > 1$, so $f'(x) = e^x - (1 + x^2) < 0$. Thus, f is decreasing on $(-\infty, 0)$. When x = 0, $f'(x) = f'(0) = e^0 - 1 - 0^2 = 1 - 1 = 0$. Finally, for x > 0, $f'(x) = e^x - 1 - x^2 > 0$ by a Maclaurin series expansion, so f is increasing on $(0, \infty)$. Thus, f must attain its minimum when x = 0, at which point f has the value $e^0 - 0 - \frac{0^3}{3} = 1$.

3. Answer: $\sqrt{2}$

Consider:

$$\frac{d}{dt}\sin^{-1}(t - \sqrt{1/2})\Big|_{t=0} = \frac{d}{dt} \int_{-\infty}^{\infty} e^{tx} f(x) dx \Big|_{t=0} = \int_{-\infty}^{\infty} x e^{tx} f(x) dx \Big|_{t=0} = \int_{-\infty}^{\infty} x f(x) dx$$

$$\frac{d}{dt}\sin^{-1}(t - \sqrt{1/2})\Big|_{t=0} = \frac{1}{\sqrt{1 - \left(\sqrt{1/2} - t\right)^2}} \Big|_{t=0} = \frac{1}{\sqrt{1 - (1/2)}} = \sqrt{2}.$$

4. Answer: $x = -\frac{2}{3}$ and x = 0

Notice that $f(x) \to 0$ as $x \to \pm \infty$. Since $9x^2 + 6x + 2$ has no real roots, the maximum value of f(x) is attained at the maximum of the absolute values of the critical points of $\frac{3x+1}{9x^2+6x+2}$.

The extrema of $\frac{3x+1}{9x^2+6x+2}$ occur at $x=-\frac{2}{3}$ and x=0. It is easily checked that maxima of f(x) occur at both of these points.

5. Answer: $\frac{128\sqrt{3}}{27}$

Let the circular island be a circle of radius 2 centered at the origin. Without loss of generality, let the length of the rectangular base be from -x to x and the width from -y to y. Notice that by the equation of a circle, $x^2 = 4 - y^2$. Then

$$V = \frac{1}{3}(2x)^2(2y) = \frac{8}{3}x^2y = \frac{8}{3}(4-y^2)y = \frac{8}{3}(4y-y^3)$$
$$\frac{dV}{dy} = \frac{8}{3}(4-3y^2) = 0 \implies y = \sqrt{\frac{4}{3}}$$
$$V = \frac{8}{3}\left(\frac{8}{3}\right)\sqrt{\frac{4}{3}} = \frac{128}{9\sqrt{3}} = \frac{128\sqrt{3}}{27}.$$

6. **Answer: 13**

This is the evaluation of the mean of a Poisson distribution: for any λ ,

$$\sum_{k=0}^{\infty}ke^{-\lambda}\frac{\lambda^k}{k!}=\sum_{k=1}^{\infty}ke^{-\lambda}\frac{\lambda^k}{k!}=\lambda\sum_{k=1}^{\infty}e^{-\lambda}\frac{\lambda^{k-1}}{(k-1)!}=\lambda e^{-\lambda}\sum_{m=0}^{\infty}\frac{\lambda^m}{m!}=\lambda e^{-\lambda}e^{\lambda}=\lambda.$$

7. Answer:
$$\frac{-2\cos(t^2)}{t}$$

By the Leibniz integral rule, the above integral becomes

$$\int_{-\ln 1/t}^{\ln 1/t} -e^x \sin(te^x) \, dx + \cos(te^{\ln(1/t)})(-1/t) - \cos(te^{-\ln(1/t)})(1/t)$$

$$= \frac{\cos(te^x)}{t} \Big|_{-\ln 1/t}^{\ln 1/t} - \frac{\cos(1) + \cos(t^2)}{t}$$

$$= \frac{-2\cos(t^2)}{t}.$$

8. Answer: ln 3

The partial sums of this sum are equal to

$$\left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{3n}\right) - 3\left(\frac{1}{3\cdot 1} + \frac{1}{3\cdot 2} + \dots + \frac{1}{3\cdot n}\right)$$

$$= \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n} = \frac{1}{n}\left(\frac{1}{1+\frac{1}{n}} + \frac{1}{1+\frac{2}{n}} + \dots + \frac{1}{1+\frac{2n}{n}}\right)$$

This is a Riemann sum, so as $n \to \infty$ the partial sums converge to

$$\int_0^2 \frac{1}{1+x} \, dx = \ln 3.$$

9. **Answer: 3**

As you can see it from this graph, F(k) is the area of region that "lies between" y = f(x) = x(4-x) and y = k. Let A be the region below y = f(x) and above y = k, and B be the region below y = k and above y = f(x). Then F(k) = A + B. Meanwhile, we can find the area of A by integrating with respect to y-variable. Since x belongs to the interval of length l(t) when y = t, we can say

$$A = \int_{k}^{4} l(t) dt.$$

Apply the same reasoning to B, then we have

$$B = \int_0^k (4 - l(t)) dt.$$

Thus, by the fundamental theorem of calculus,

$$\begin{split} \frac{d}{dk}F(k) &= \frac{d}{dk}A + \frac{d}{dk}B \\ &= \frac{d}{dk}\left(\int_{k}^{4}l(t)\,dt\right) + \frac{d}{dk}\left(\int_{0}^{k}(4-l(t))\,dt\right) \\ &= -l(k) + (4-l(k)) \\ &= 4 - 2l(k). \end{split}$$

Since l(k) is decreasing by k, F(k) achieves minimum when $\frac{d}{dk}F(k)=0$. One can easily find that k=3 if l(k)=2, so the answer is 3.

10. Answer: $y = -4x^2 + 5x - 7$

Such a parabola intersects f(x) precisely where f'(x) = 0. Hence, the value of the intersection points do not change when we replace f(x) by f(x)+g(x)f'(x) for any g(x). Therefore, since $f'(x)=6x^5-12x+6$, we must have that $f(x)-1/6xf'(x)=-4x^2+5x-7$ passes through the three critical points. Since three points determines a parabola uniquely, this must be the unique parabola passing through the three critical points.