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Definitions

A graph is a collection of points (vertices) connected by line segments (edges). In this test,
all graphs will be simple — any two vertices will be connected by at most one edge — and
connected — you can get from any vertex to any other by following edges.

A simple connected graph with 7 vertices and 11 edges.

An edge n-coloring of a graph G is an assignment of one of n colors to each edge of G.
blue

blue

red
A 2-coloring of the earlier graph.

A complete graph is one in which any two vertices are connected by an edge.

1. a. (5 points) Draw a simple connected graph with 8 vertices and 7 edges, and 3-color its
edges.
Solution: Many graphs work. The only thing to note is that the graph must be a
tree, that is, it should have no cycles.

b. (5 points) Draw a complete graph on 5 vertices, and 2-color its edges so that it does
not contain a red triangle or a blue triangle (3 vertices, the edges between which are
all red or all blue).

Solution: The simplest depiction is a pentagon, with blue sides and red diagonals.

We will use K, to denote a complete graph on n vertices. A monochromatic K, is one in
which every edge has the same color. Hence, problem 1(b) could have been phrased “Color
K5 so that it has no monochromatic K3”.

2. (10 points) Show that no matter how you 2-color Kj, it will contain a monochromatic Kj.
(Hint: Think about all the edges coming from one vertex).
Solution: Pick any vertex v of Kg. Then there must be three edges of one color coming
from v, WLOG they are all blue. Now consider the three vertices on the other side of
these edges from v, and the edges between them. If any of the edges are blue, they form
a blue K3 with the blue edges from its endpoints going to v. However, if none of them

are blue, then we have a red Kj.
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The Ramsey number R(k) is the least number n such that no matter how you 2-color the
edges of K, there will be a monochromatic Kj. In problems 1(b) and 2, you have shown
that R(3) = 6.

Interestingly, R(4) is a difficult quantity to calculate, and R(5) is still unknown! Since we
cannot go much further in this vein, let us try looking at generalizations of Ramsey numbers.
Define R(k, j) as the least n such that every red, blue edge 2-coloring of K, contains either
a red K}, or a blue K;. Then R(n) is just R(n,n) under this new definition.

3. a. (5 points) Show that R(4,3) > 8 by exhibiting a 2-coloring.
Solution: A counterexample is given in the diagram below. Here, the graph shows
only blue edges; the edges that do not appear in the diagram are presumed to be red.

b. (15 points) Show that R(4,3) =9 (Hint: Use problem 2.)

Solution: Suppose that we have a 2-coloring of the edges of Ky in which there are
no blue triangles, nor red K,. Then any vertex v can have no more than 5 red edges
coming from it, because if it had six, the points on the other end would form a K,
and we already know that a Kg must contain a blue triangle — which we supposed to
be impossible — or a red triangle, which would form a red K, with the edges from v.
Likewise, no vertex can have more than 3 blue edges coming from it, for if four blue
edges came from one vertex, the K4 on the other end would have to be all red, or have
a blue edge and complete a blue triangle. Now, since every vertex has 8 edges coming
from it, we see that every vertex must have exactly 3 blue and 5 red edges. However,
this violates the handshake theorem — basically, there are 27 requests for a blue edge,
but these can only be granted in pairs because each edge connects two vertices.

4. a. (15 points) Show that
R(n,m) < R(n,m — 1)+ R(n —1,m).

(Hint: see hint to problem 2.)

Solution: Proof by induction on n + m. If n = 2, then R(n,m) = m, and likewise
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if m = 2. R(n,m) is not defined for smaller arguments. If we know the result for
n+m < k, let us take a complete graph on R(n — 1,m) + R(n,m — 1) vertices. Pick
any one vertex v, and consider the R(n —1,m) 4+ R(n,m — 1) — 1 edges coming from
it. By the pigeonhole principle, there are either R(n — 1,m) blue edges or R(n,m — 1)
red edges among these. WLOG, there are R(n — 1, m) blue ones. Now, the vertices on
the other side of those edges form a Kgr(n — 1, m), and so must contain either a red
K,, or a blue K,,_1, which with v forms a blue K,,.

b. (5 points) Conclude that R(n,m) is well defined, that is, that it exists for every n and
every m.
Solution: In the proof above, we showed that given m and n, every sufficiently large
graph must contain either a red K,, or a blue K,,, which is precisely the condition for
R(n,m) to exist.

From here on, we will explore some interesting properties and generalizations of Ramsey
numbers. Each section is independent.

Bounds on Ramsey Numbers

5. Color a graph of n? points, laid out in a n x n grid, as follows: The edge (u,v) is blue if

u and v are in the same row, and red otherwise.

a. (5 points) Show that any K, in that graph contains at least one red edge and at
least one blue edge.
Solution: By pigeonhole, there must be two points of the K, ; which are in the same
row, and so have a blue edge between them. Similarly, there must be two not in the
same row, and so those two will have a red edge between them.

b. (5 points) Conclude that R(n + 1,n + 1) > n?.
Solution: We just gave an example of a graph that has n? vertices, but no monochro-
matic K. Hence R(n,n) is greater than or equal to n?.

Problem 6 gives us a polynomial lower bound for R(n,n), and it does so constructively —
we know exactly which graph will give a counterexample. Erdés has shown that, if we are
willing to be nonconstructive, we can get a much better lower bound:

6. a. (5 points) Show that if the edges of K, are colored red or blue randomly with equal
probability (i.e., by flipping a coin for each edge), then the probability that it contains
a monochromatic K, is at most
MY 91-(3)
n

Solution: The probability that n vertices chosen at random form a monochromatic

K, is 91=(3). There are (7:) ways to choose n vertices, so by the union bound the
chance of at least one of those choices being monochromatic is that product.

b. (5 points) Show that if (’:) < 2(3)71, that probability is less than 1.
Solution: Multiply both sides by 2(3)~1.
n_ 1

c. (10 points) Using the fact that (Tg) < m", show that if m = 5=w~3 then (:r:) < 217(3),
and conclude that



n 1 1 n

Solution: m" = (2z7»72)" = 2§’5’1 < 2(5)-1, Now, from the previous parts we
have seen that this implies that a randomly colored K,, will have probability less than
1 of containing a monochromatic K. But this means that there is some coloring which
does not contain a monochromatic K, and so R(n,n) > m.

7. (20 points) Prove a complementary upper bound: R(n,n) < 4™.

Solution: Take any coloring of Ky». Pick a vertex v, and consider all 22" —1 edges coming
from it. Then there are at least 22"~ edges of one color, so we give v a flag of that color
and restrict our attention to the smaller graph, of those vertices on the other ends of the
majority-color edges. In this graph we repeat this argument, and we continue doing this
until we get to a single point. At the end of this process we have a set of 2n vertices,
all flagged with different colors, so some color must have at least n flags, by pigeonhole,
and we can take the K, given by the vertices flagged with this color. Now, if v; and v;
are in this subgraph, with ¢ < j, then the edge from v; to v; is colored the same color
as the flag on v;. But all of the vertices in this subgraph have the same color flags, so
it is monochromatic. Then, since we have shown that every coloring of K4» must have a
monochromatic K,,, R(n,n) < 4"

k-color Ramsey Numbers

Similar to our definition R(n,m), we can define R(ny,ng, ns,...,ny) to be the least m such
that if K, is colored with k colors, there is some monochromatic K, of color ¢;.

8. (15 points) Prove that R(3,3,3) < 17. (In fact, R(3,3,3) = 17, but this is difficult to
show.)
Solution: Take a 3-coloring of K7, and pick any vertex v. Consider the edges coming
from v. There are sixteen of them, and 16/3 > 5, so there must be some color with 6
edges of that color coming from v. Call this color green, the others red and blue. Consider
the K on the other end. Since all the edges going from v to it are green, if it contains
a single green edge, we have a green triangle. But if not, that is a 2 colored Ky, so since
R(3,3) = 6, we must have a red or blue triangle instead.

9. (20 points) Show that
R(na,...,nk) < R(na,na, ... ng_o, R(ng, ng—1))

Solution: Take a k-coloring of K, where
m = R(niy,...,n;) < R(ny,na,...ng_o, R(ng,ng_1))

and repaint it so that colors m and m — 1 look the same. Then by the definition of
the Ramsey number, we must either have a K, in color ¢ < £ — 1, or we must have a
KRg(n,_, ) in the last two colors. But even in the last case, by the definition of R(n,m),

we must have a [, , in color £ — 1 or a K, in color k, which completes the proof.

This gives us the existence of R(ny,...,ny) for all {n,... , ng}.

10. Prove that



a. (10 points)
R(3,...,3) < 3r!
e
Solution: Induction on r. The base case is done in problems 2 and 8. To induct, let
us suppose that

R(3,...,3) <3(r—1)!
——
r—13’s

and that we have a coloring of Kj(_1). Then we can choose a vertex v, and it has
many edges of up to r colors coming from it, but in particular we can choose some
color ¢ so that there are at least 3(r — 1)! edges of color ¢ coming from v. Now, if the
K3(-—1y1 on the other end has any edges colored ¢, then we have a triangle of color c.
But if not, then that graph is colored with only » — 1 colors, and so by the inductive
hypothesis it contains a monochromatic triangle.
b. (15 points)
R(3,...,3)>2"
——
r 3’s

Solution: As before, we induct, and the base case is problem la. Now, take a r — 1-
coloring of Ky-—1, which does not have any monochromatic triangles, put two copies
side by side, and connect all of their vertices by edges of color . Then there are no
triangles of color r, because two points of the triangle would have to lie in the same
copy of the Kyr—1, and there are no monochromatic triangles of any other color by the
induction hypothesis.

Infinite Ramsey Numbers

11. (30 points) Define Ky = (V, E), where V = {1,2,3,...}, and E = {(3,j) :i,j €V, i <

j}. This is in some sense an infinite complete graph. Show that if every edge is colored
red or blue, there is some infinite subset V’ of V such that all of the edges between points
of V' are the same color.
Solution: The proof is similar to that of problem 7. Take any vertex v; and consider
the edges coming from it. There must be an infinite number of either red or blue edges,
so we put a flag of that color on vy, and then we restrict our attention to the smaller (but
still infinite!) subgraph on the other ends of these edges. Repeat this process (infinitely).
When we finish, we have a sequence vy, vq,vs, ... of vertices of the graph, each with a
red or blue flag, such that if i < j, then v; and v; are connected by an edge of the same
color as the flag on v;. Well, this sequence must contain an infinite number of vertices
all flagged the same color, so take this subset, and the edges between them are all the
same color. This is an infinite monochromatic complete subgraph, as desired.



